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An Algorithmic Framework for Estimating Rumor
Sources with Different Start Times

Feng Ji, Wee Peng Tay, Senior Member, IEEE, and Lav R. Varshney, Senior
Member, IEEE

Abstract

We study the problem of identifying multiple rumor or infection sources in a network under the susceptible-
infected model, and where these sources may start infection spreading at different times. We introduce the notion of
an abstract estimator, which given the infection graph, assigns a higher value to each vertex in the graph it considers
more likely to be a rumor source. This includes several of the single-source estimators developed in the literature.
We introduce the concepts of a quasi-regular tree and a heavy center, which allows us to develop an algorithmic
framework that transforms an abstract estimator into a two-source joint estimator, in which the infection graph can
be thought of as covered by overlapping infection regions. We show that our algorithm converges to a local optimum
of the estimation function if the underlying network is a quasi-regular tree. We further extend our algorithm to
more than two sources, and heuristically to general graphs. Simulation results on both synthetic and real-world
networks suggest that our algorithmic framework outperforms several existing multiple-source estimators, which
typically assume that all sources start infection spreading at the same time.

Index Terms

Rumor source, infection source, multiple source estimation, SI model, quasi-regular tree

I. INTRODUCTION

Online social networks have grown immensely in recent decades. More and more users are obtaining
news and other information from social networks [1]–[7]. Information is also being propagated across
networks with increasing speed due to increases in network connectivity. For example, a recent report [8]
shows there are now 1.59 billion Facebook users and the number of degrees of separation between them is
only 3.57 on average. Therefore, if a rumor is posted by several individuals on the network, a significant
proportion of the network population can be “infected” by it in a short period of time. If the rumor leads
to reputation or economic loss, a law enforcement agency may want to identify the network members
who started the rumor. Similarly in the epidemiology of infectious diseases that spread through social
contacts, it is important to identify patient zero(s).1 There is also growing interest in network science to
trace the sources and spread of ideas [9], which may have several independent origins [10], [11]. All
of these real-world problems can be placed in the framework of rumor source detection, which we now
describe.

Suppose a rumor spreads in a network, possibly starting at different sources and times. After the rumor
has spread for a certain amount of time, we observe the members in the network infected by the rumor. Our
task is to infer the rumor source(s) from the infected network. This is called the rumor source detection
problem.

This work was supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2 grants MOE2013-T2-2-006 and
MOE2014-T2-1-028.
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and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (e-mail: varshney@illinois.edu).

1Outbreaks of the same disease can have independent sources. For example, the Ebola virus first emerged in the Democratic Republic
of Congo (then Zaire) in 1976 near the Ebola River, but also nearly simultaneously the same year in South Sudan (then Sudan). In 2014,
an outbreak in the Democratic Republic of Congo followed an outbreak in West Africa. Detailed virological and epidemiological analysis
performed later shows all four outbreaks had distinct patient zeros.
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Mathematically, the problem can be described as follows. Let G = (V, E) be a network graph with set of
vertices V and set of edges E . A rumor starts to spread from several independent sources s1, . . . , sn ∈ V at
different times. Although there are various spreading models, in this paper, we consider the homogeneous
Susceptible-Infected (SI) spreading, in which the rate at which a rumor propagates across each edge in the
network is the same, and any infected vertex cannot recover from the infection. Our framework allows us
to consider both the continuous-time diffusion model in [12], [13] and the discrete-time diffusion model
in [14], [15]. In the continuous-time model, the time taken for the rumor to propagate across each edge
is independent and identically distributed as a continuous distribution with exponential tail behavior [12],
[13]. In the discrete-time model, time is discretized into slots and the probability of the rumor propagating
from an infected node to a suspectible neighbor is the same in each time slot and for all infected nodes
[14], [15]. At a certain time instance, an observation of all infected vertices is made. The collection of
all infected vertices and the edges among them gives a subgraph I of G. We call I the infection graph.
We wish to estimate s1, . . . , sn based only on the information in I . Several existing works on infection
spreading in a network focus on the diffusion process (see e.g. [16]–[19]); we are looking at the “inverse
problem.”

The single rumor source detection problem (n = 1) has been studied extensively under various
assumptions using a variety of algorithmic techniques, e.g. [12], [14], [15], [20]–[31], to name a few.
The problem proves to be challenging even in this situation. One of the pioneering works in rumor source
estimation, [12], proposed to find a node that maximizes an estimator function called rumor centrality.
Herein, we shall follow this optimization-based strategy as a guideline in the multiple sources problem we
consider. Note that several single-source estimators can be cast in the same optimization framework. We
would like to mention that apart from an estimator based approach for the single source, there are also
discussions using time-stamp information [20], [25], [27], belief propagation [21] and a dynamic message
passing method [24]. In this paper, we mainly work with estimators that assume only limited knowledge
about the infection process, including a snapshot observation of the infected nodes at a particular point in
time, and the network topology. This differs from [21] and [24] (with appropriate extension to estimate
multiple sources) as these Bayesian approaches assume additional knowledge of the spreading process in
order to construct a probability model.

There have been prior attempts to tackle the multiple sources detection problem, for example [23], [30],
[32]–[34]. Let us briefly recall one of the key geometric ideas used in [30]: make a partition2 of I and find
a source in each partition. The drawbacks of this approach are: (a) it is possible that infected vertices from
different sources can merge, and performing source estimation independently in each partition may result
in a biased estimate (see Figure 1); and (b) different sources may start infection spreading at different
times. A successful approach should take both of these issues into account. The first drawback can be
mitigated in the absence of the second: algorithms proposed for when infections start at the same time
at all sources and the infection size is large are proven to be asymptotically correct for the class of
geometric trees [23]. However, all previous works on multiple sources detection assume that sources start
their infection spreading at the same time, which limits their practical application.

In this paper, we develop a theoretical framework to estimate rumor sources, given an observation of
the infection graph I and the number of rumor sources. We do not assume rumor spreading starts at the
same time at every source. For easier explanation, we first study the two-source identification problem
in a tree network under the SI model and then generalize our framework to multiple sources and for
all graph types. Our approach combines probabilistic, combinatorial, and geometric inference. Compared
to other approaches, we replace the concept of partition by that of covering, namely, we allow large
overlap between infection regions assigned to different infection sources (see Figure 1). To achieve this,
we introduce the notion of heavy center to describe the subgraph that would have been infected by a
single infection source if the infection is deterministic with an unknown rate. Thus the resulting infection
graph can be interpreted to contain a deterministic center region and stochastic extensions hanging from

2For a review of theory on Voronoi partitions and power diagrams, see [35]–[37].
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Fig. 1. Schematic illustration of the difference between a partition scheme and a covering scheme we introduce in the paper. Suppose u
and v are sources. A partition scheme (left) may give two regions separated by the line l; however, some parts that are apparently infected
by u are allocated to v. If one applies a single-source detection algorithm in the region of v, the estimated position of the source v may
be shifted away from its true location to v′ (the red node). Therefore, we propose a new scheme (right) by allowing overlap, while making
sure the regions are “correctly” allocated to both nodes u (the blue region) and v (the pink region).

this center due to the randomness of the infection process. (This center is called heavy in the sense that
it is a region instead of a single vertex. More details are presented in Section III.) Intuitively, we want
the region infected by every source to be: (a) combinatorially/probabilistically optimal; as well as (b)
geometrically feasible.

The rest of the paper is organized as follows. Section II introduces the notion of quasi-regular tree. This
is the basic graph model adopted in the paper for source estimation. Section III is the core of the paper.
It introduces the notions of covering, heavy center, and the joint source estimators. It demonstrates how
to combine geometry, probability, and combinatorics in handling the two-source identification problem in
a tree. Section IV presents our algorithm and discusses its implementation and complexity, and Section
V extends to general graphs. Section VI presents simulation results to verify the performance of our
proposed approach. Finally, Section VII concludes.

II. THE BASIC MODEL: QUASI-REGULAR TREE

In this section, we introduce quasi-regular trees as the basic model for discussion. Let T be a tree with
V as the set of vertices and E as the set of edges. Given any two vertices u and v, denote the shortest
path between them by [u, v] and use (u, v), (u, v], and so on to denote the path with the corresponding
boundary vertex at the open side excluded. Let d(u, v) be the length of the path between u and v in T .
For any subset S ⊂ T , by abuse of notation, we write S for S ∩ V if no confusion arises. The size of
S ∩ V is denoted |S|. In the following, we give a few elementary definitions that lead to the notion of
quasi-regular trees.

Definition 1. Let Z+ denote the set of non-negative integers. For x ∈ V and r ∈ Z+, write

DT (x, r) = {y ∈ T | d(x, y) ≤ r}

as the closed disc centered at x with radius r.

Definition 2. Let S ⊂ T .
(a) The convex hull conv(S) of S is defined as the intersection of all connected subtrees of T containing

S.
(b) If S is connected, it is called a subtree. If S is also finite, define the height of S as

`(S) = max{d(x, y) | x, y ∈ S}.
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For a fixed point x0 of S, define the height based at x0 as

`x0(S) = max{d(x0, y) | y ∈ S}.

(c) A subtree S ′ of height r of S ⊂ T is called a full subtree of height r in S if for any x ∈ S\S ′, the
convex hull of S ′ ∪ {x} has height greater than r.

In this paper, we assume that the number of rumor sources is known a priori (we have developed a
method to estimate the number of sources in [38]). We develop an algorithmic framework that finds an
appropriate infection region for each source (which can overlap with each other), if that source had been
the only rumor source. Then, existing rumor source estimators like those in [12], [14], [15], [23] can be
applied in each of these infection regions to identify the corresponding rumor source. We refer to any of
these rumor source estimators as abstract estimators, as defined below.

Definition 3. An abstract estimator is a pair (E, e) such that:
(a) e is an estimation function that assigns a non-negative real number to each pair (T ′, v), where T ′ is

a subtree of T and v ∈ T ′; and
(b) E is a source estimator that assigns to each connected subtree T ′ ⊂ T a subset of vertices E(T ′) of

T ′ such that
E(T ′) = arg max

v∈T ′
e(T ′, v).

Because of property (b) in Definition 3, it is enough to specify the estimation function e. We include E
as part of the definition to simplify notation in the rest of the paper. The function e(T ′, v) is an estimation
function that assigns a higher value to a vertex v it considers more likely to be a rumor source, given
that the infected nodes are T ′. In the following, we give some examples to illustrate Definition 3.

Example 1. As we remarked earlier, to give a complete description of (E, e), it is enough to specify the
estimation function e. Let T ′ be an observed infection tree.

(i) The maximum likelihood estimator (MLE): Let I denote the infection tree generated by the source
s. The MLE estimator is given by

eMLE(T ′, v) = P (I = T ′ | s = v ) . (1)

It is widely adopted in theory as a probabilistic rumor source estimator; however, the computation is
costly even for the single-source problem. It is described in several references, including [12], [23].

(ii) The Jordan center estimator:

eJ(T ′, v) =

(
max
v′∈T ′

d(v, v′)

)−1
. (2)

The set of nodes EJ(T ′) = arg maxv∈T ′ eJ(T ′, v) are called the Jordan centers of T ′. This is a
combinatorial estimator that can be found with low computational complexity. For motivation and
relation with eMLE , see [30], [39]. Note here that in order to state the problem as a maximization
problem, we take the reciprocal of the distance function. This is slightly different from the notion of
the Jordan center estimator used in other works, though equivalent.

(iii) The rumor centrality estimator:

e′RC(T ′, v) =
|T ′|!∏

u∈T ′ |T v
u |
, (3)

where T v
u is the subtree of T ′ rooted at u pointing away from v. Recall that this means that T v

u

consists of nodes v′ such that u ∈ [v, v′]. Assuming homogeneous spreading in the SI model, the
quantity e′RC(T ′, v) gives the number of different paths leading to T ′ given v as the source. It is
introduced in [12] (where it is denoted by R(T ′, v)) and discussed in greater details in subsequent
papers, such as [13].
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As the factors |T ′|! and |T v
v | = |T ′| are both independent of the vertex v, we may omit them from

the formula. We therefore have the following equivalent estimator

eRC(T ′, v) =
1∏

u∈T ′\v |T v
u |
. (4)

The estimator eRC is a combinatorial approximation of eMLE , for in the case of a regular tree, the
source detection functions EMLE and ERC associated with eMLE and eRC satisfy: EMLE = ERC (cf.
[12]).

(iv) The weight and distance centrality:

eW (T ′, v) = ( max
u:child of v

|T v
u |)−1; (5)

eDC(T ′, v) = (
∑
u∈T ′

d(u, v))−1. (6)

Detailed discussion of these estimators can be found in [12] and [40]. Our presentation is slightly
different from their original forms in view of Definition 3(c), which always casts the detection problem
as a maximizing problem. The associated source detection function EW (T ′) is called the centroid of
T ′; while EDC(T ′) is called the distance center of T ′. These two estimators are closely related to
the rumor centrality estimator. To be more precise, in the case of general tree, they are essentially
the same as it is proved in [12] and [40] (Theorem 2) that

ERC = EDC = EW .

Although we do not discuss the centroid and the distance center in detail, we note that both fit well
in the general framework of the paper. The discussion can be modified from that of the Jordan center
and the rumor centrality estimators.

Now we introduce the abstract quasi-regularity condition as follows.

Definition 4. Given an estimator (E, e), an infinite tree T is called quasi-regular with respect to (w.r.t.)
(E, e) if the following conditions hold:
(a) v ∈ E(DT (v, r)), for all v ∈ V and r ∈ Z+.
(b) Let v ∈ V be a vertex. For every pair of vertices u and u′ such that d(u, v) = r and d(u′, v) = r+ 1,

let T ′ = conv({DT (v, r)\u} ∪ {u′}). Then

e(DT (v, r), v) > e(T ′, v).

Intuitively, in the rumor spreading problem, condition (a) in Definition 4 says that if the infection graph
is a disc, then the center of the disc is identified by the estimator (E, e) as the rumor source. Condition
(b) says that, roughly speaking, the estimator assumes the rumor spreads homogeneously at the same
rate in all directions. These two properties qualitatively justify concepts we will introduce in subsequent
sections. Let us provide some further insight into Definition 4.

Lemma 1. The following statements are true for a tree T w.r.t. the rumor centrality estimator (ERC , eRC)
described in Example 1 above.

(i) Suppose in any disc DT (v, r) ⊂ T , for any full subtrees T1 and T2 within the disc and having heights
r1 and r2, respectively, with r1 < r2, one has

|T1| ≤ |T2|.

Then condition (a) of Definition 4 holds true.
(ii) Let

αl = inf

{
(|T1|+ 1)(|T2| − 1)

|T1||T2|

∣∣∣∣ T1, T2 are full subtrees of height l + 1

}
.
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u

v

u′

v

Fig. 2. An illustration of condition (b) of Definition 4. The condition requires that the estimation function e assigns a higher value to the
subtree on the left.

v v′ v u

v′

Fig. 3. Examples of trees in the proof of Lemma 1 (i). From (4), to prove (8), it suffices to consider only nodes u ∈ [v, v′]. In the tree on
the left, the reflection of v w.r.t. the midpoint of [v, v′] is v′, while in the tree on the right, the reflection of u is itself.

If

lim
n→∞

∏
1≤l≤n

αl ≥ 1/2, (7)

then condition (b) of Definition 4 holds true.
In particular, T is quasi-regular w.r.t. the (ERC , eRC)-estimator if the conditions of both (i) and (ii) are
satisfied.

Proof:
(i) It suffices to prove that eRC(DT (v, r), v) ≥ eRC(DT (v, r), v′) for all v′ ∈ DT (v, r); or equivalently,

following [12] (cf. Fig. 3), ∏
u∈[v,v′]

|T v′

u | ≥
∏

u∈[v,v′]

|T v
u |. (8)

For each vertex u ∈ [v, v′], let u′ be the reflection of u w.r.t. the midpoint of [v, v′]. We claim that
|T v′

u′ | ≥ |T v
u | for each u ∈ [v, v′]. By definition, |T v′

u′ | is the number of vertices of a full subtree of
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height strictly larger than the height of the subtree corresponding to T v
u . By the given condition in

(i), |T v′

u′ | ≥ |T v
u |.

(ii) Taking T1 = T2, we see that αl < 1 for all l. The sequence of products
∏

1≤l≤n αl is thus decreasing in
l, and converges since it is lower-bounded by zero. Under the condition (7) we have

∏
1≤l≤n αl > 1/2

for each l ≥ 1.
For a vertex v, let S = DT (v, r) and S ′ = conv({S\u} ∪ {u′}), with u, u′ as given in Definition 4.
Let u′′ ∈ S be the parent vertex of u′ w.r.t. v (i.e., the neighboring node of u′ that is closer to v than
u′). As u is removed, u 6= u′′. We obtain

eRC(S, v)

eRC(S ′, v)
=

∏
y∈(v,u′′](|T v

y |+ 1)
∏

z∈(v,u](|T v
z | − 1)∏

y∈(v,u′′] |T v
y |
∏

z∈(v,u] |T v
z |

=
2
∏

y∈(v,u′′)(|T v
y |+ 1)

∏
z∈(v,u)(|T v

z | − 1)∏
y∈(v,u′′) |T v

y |
∏

z∈(v,u) |T v
z |

= 2
∏

y∈(v,u′′),z∈(v,u),d(v,y)=d(v,z)

(|T v
y |+ 1)(|T v

z | − 1)

|T v
y ||T v

z |

≥ 2
∏

1≤l≤r−1

αl

> 1.

In Lemma 1, we have provided technical conditions under which a tree T is quasi-regular w.r.t. the
rumor centrality estimator. It is easy to see that a regular tree is quasi-regular by our definition (see
Example 2 (ii) below). There are however non-regular trees that can be quasi-regular.

In the following, we give specific examples of quasi-regular trees for the Jordan center estimator and
the MLE.

Example 2. (i) For the Jordan center estimator (EJ , eJ), it is not hard to see from the definition that
any tree is quasi-regular.

(ii) In the case of regular trees, EMLE = ERC (cf. [12]). Condition (i) of Lemma 1 clearly holds for a
regular tree T . Let us verify condition (ii) in the lemma for T . As any two full subtrees have the
same size, we have

αl ≥
(l + 2)l

(l + 1)(l + 1)
=

l

l + 1

l + 2

l + 1
.

It is easy to verify that limn→∞
∏

1≤l≤n αl ≥ 1/2. In conclusion, any regular tree is quasi-regular
w.r.t. both the MLE and the rumor centrality estimators.

In the rest of the paper, we shall be concerned mainly with tree networks that are quasi-regular w.r.t. the
(ERC , eRC)-estimator or the (EJ , eJ)-estimator. For convenience, we call such trees quasi-regular without
specifying the estimator unless otherwise mentioned.

III. HEAVY CENTERS AND THE TWO-SOURCE JOINT RUMOR CENTRALITY ESTIMATOR

In this section, we first define the concept of a heavy center, and use it to develop a two-source joint
estimation framework. Our development in this section is based on a quasi-regular tree. Our proposed
algorithm is generalized to more than two rumor sources and extended heuristically general graphs in
Section V. In the following discussion, we let T be a quasi-regular tree w.r.t. an abstract estimator (E, e)
and I ⊂ T be the observed infected subtree.
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1
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5

4 6

8

7

Fig. 4. An example of Definition 5. The tree T ′ consists of node 1 to node 8. Let u = 3 and v = 6 be two nodes. We note that
T1 = conv({1, 2, 3, 4, 5, 6}) = DT (3, 2) ⊂ T , while DT (3, 3) contains (gray) nodes outside T ′. By definition, the heavy center at u = 3
is the subtree T1. Similarly, the heavy center at v = 6 is T2 = conv({3, 4, 5, 6, 7, 8}). As T ′ = T1 ∪ T2, we see that T1 and T2 form a
2-covering of T ′. Moreover, this is not a partition as T1 ∩ T2 = conv({3, 4, 5, 6}) (the pink nodes).

A. The General Setup
We need the following definitions.

Definition 5. Let T ′ ⊂ T be a subtree.
(a) A heavy center h(v, r) of T ′ is a disc DT (v, r) ⊂ T ′ such that DT (v, r+1) * T ′. The latter condition

is called the maximality condition. We may denote h(v, r) by h or hv for convenience if no confusion
arises. It is important to note that the discs DT (v, r) and DT (v, r + 1) are taken in the ambient tree
T in order for the concept to be of any use.

(b) We say that the subtrees T1, T2, . . . , Tk form a k-covering of T ′ if T ′ =
⋃k

i=1 Ti. In certain situations,
if k is obvious from the context, we may just say “covering” for convenience.

Definition 6. Given subtrees T1 ⊂ T2 ⊂ T , define the contraction T2/T1 as the tree obtained from T2 by
replacing T1 by a single point.3 The contracted vertex is also denoted by T1 if no confusion arises.

Definition 7. A two-source joint estimator (w.r.t. (E, e)) is a pair (E2, e2) such that there exists a function
f (which depends on (E, e)) with the following properties:
(a) For each covering {T1, T2} of I with heavy centers h1 ⊂ T1 and h2 ⊂ T2,

e2(T1, h1;T2, h2) = f(e(T1/h1, h1), e(T2/h2, h2));

(b) E2(I) = arg max
hi⊂Ti,i=1,2

e2(T1, h1;T2, h2), where the maximization is over all possible 2-coverings

{T1, T2} of I; and
(c) The function f satisfies the following property: if x ≥ x′ ≥ 0 and y ≥ y′ ≥ 0, then f(x, y) ≥ f(x′, y′).

In the following two subsections, we detail the two-source joint estimators w.r.t. (EJ , eJ) and (ERC , eRC)
respectively. In particular, we indicate in each case the function f being used.

3The term contraction and the corresponding notation are borrowed from topology; what we introduce here is nothing but the quotient
space.
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Fig. 5. An example of Definition 6. T1 is the (full) tree on the left consisting of node 1 to node 10 and T2 is the (blue) subtree consisting
of node 1 to node 3. The contraction procedure shrinks T2 to a single vertex, also labeled 1. The remaining vertices and connections are
not changed. The resulting tree T1/T2 is shown on the right.

B. The Joint Jordan Center Estimator
Consider a subtree I ⊂ T and suppose it has been infected by a single rumor source. The Jordan center

estimator for the single rumor source identification problem [14], [15] finds the set of Jordan centers of
I , i.e., nodes v such that the maximum distance of v to all vertices of I is minimized. Let J (I) denote
the set of Jordan centers. We now define the heavy Jordan centers hJ (I) as the collection of nodes v ∈ I
such that the maximal distance from all the vertices of I to hv, the heavy center of v in I , is minimized.
See Fig. 6 for an example. The following lemma gives a relationship between J (I) and hJ (I).

Lemma 2. For any subtree I ⊂ T , the intersection J (I) ∩ hJ (I) is non-empty.

Proof: Let u0 be a vertex of hJ (I). If u0 is already in J (I), then there is nothing to prove. Otherwise,
we can always choose v ∈ I with the following properties:

(i) v ∈ J (I);
(ii) each u ∈ [u0, v) is not in J (I).

Let u′ ∈ [u0, v) be the neighbor of v on the path between v and u0. Suppose that for all w ∈ T u0
v ,

d(w, v) < maxv′∈I d(v′, v). Then, we have d(w, u′) ≤ maxv′∈I d(v′, v) for all w ∈ I , which implies
that u ∈ J (I), a contradiction to property (ii) of v. Therefore, there exists a node w ∈ T u0

v such that
d(w, v) = maxv′∈I d(v′, v). Let hv = DT (v, r) be the heavy center of v in I . Every vertex v′ ∈ hv ∩ T u0

v

has equal distance d(v′, u0) = r+d(v, u0) to u0. On the other hand, for each vertex v′ ∈ hv∩T v
u′ , we have

d(v′, u0) < r. Therefore, hv ⊂ hu0 the heavy center of u0 in I . Moreover, hv shares the same boundary
with hu0 in T u0

v . Therefore, the maximal distance of points of I from hu0 and hv agree. Hence, v ∈ hJ (I)
and lies in J (I) ∩ hJ (I).

A simple consequence of this is the following: for each vertex u which is a Jordan center, there is
always a vertex v ∈ hJ (I) such that d(u, v) ≤ 1. To see this, let v = u0 ∈ J (I)∩hJ (I). As the distance
between two vertices of J (I) is at most 1, so is the distance between v and u. This observation allows
us to find canonical members of the set hJ (I), which contains more than one element in general.

We now describe our joint Jordan center estimator. Intuitively speaking, suppose u, v ∈ I are the rumor
sources. Let hu and hv be the heavy centers with disc centers u and v respectively. We want the maximum
distance from the remaining vertices of I to either hu or hv, whichever is nearer, as small as possible.
This is exactly the idea of infection range introduced in [30, Definition 4].
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u1

u2

u0

v

Fig. 6. A subtree I with 6 vertices is indicated by the solid line segments. The heavy centers of u0, u1, and u2 in I are the same tree,
which is indicated in blue. The vertex u0 is in hJ (I) but not in J (I). The procedure described in the proof of Lemma 2 finds the node v
in hJ (I) ∩ J (I).

Therefore we are looking for a covering T1 and T2 of I with heavy centers h1 ⊂ T1 and h2 ⊂ T2 such
that min{eJ(T1/h1, h1), eJ(T2/h2, h2)} is maximized. Notice our definition of eJ given in Example 1 is
slightly different from the one given in [30].

In the language of Section III-A, we choose the joint Jordan center estimator (E2
J , e

2
J) with e2J given

by
e2J(T1, h1;T2, h2) = f(eJ(T1/h1, h1), eJ(T2/h2, h2))

where f(x, y) = min(x, y). It is clear f satisfies property (c) of Definition 7.

C. The Joint Rumor Centrality Estimator
To describe the joint rumor centrality estimator, we begin with a lemma.

Lemma 3. Suppose we are given covering and heavy centers hi ⊂ Ti, i = 1, 2. The number of different
paths leading to T1 and T2 jointly, starting from h1 and h2 respectively, is given by the following formula

e′RC(T1/h1, h1)e
′
RC(T2/h2, h2)

(|T1/h1|+ |T2/h2| − 2)!

(|T1/h1| − 1)!(|T1/h1| − 1)!
.

Temporarily denote this quantity by euRC(T1, h1;T2, h2).

Proof: Given T1, T2, h1, h2, we form an auxiliary tree T ′ with root v that branches in two directions:
T1/h1 with h1 identified with v and T2/h2 with h2 identified with v. This is the same as gluing the two
contractions together at a single vertex.

Now it is easy to see that the quantity we wish to calculate is the same as e′RC(T ′, v) and it suffices to
compute this estimator.

The most direct way is to apply the definition:

e′RC(T ′, v) =
(|T ′| − 1)!∏
y 6=v∈T ′ |T v

y |
= (|T ′| − 1)!

e′RC(T1/h1, h1)

(|T1/h1| − 1)!

e′RC(T2/h2, h2)

(|T2/h2| − 1)!

= e′RC(T1/h1, h1)e
′
RC(T2/h2, h2)

(|T1/h1|+ |T2/h2| − 2)!

(|T1/h1| − 1)!(|T1/h1| − 1)!
.
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One recognizes the last fraction in the expression is just a binomial term and so the result can also be
obtained from a standard combinatorial argument.

The quantity euRC(T1, h1;T2, h2) may not, however, be a good estimator, as the sizes of the contractions
Ti/hi, i = 1, 2 depend on the choices of hi, i = 1, 2 even if we fix Ti, i = 1, 2. In order to make a fair
comparison, we need to normalize euRC(T1, h1;T2, h2).

The quasi-regular condition predicts that the spreading tends to fill the infection region layer-by-layer.
Therefore, we expect that given hi = DT (vi, ri) ⊂ Ti, i = 1, 2, the vertices Ti\hi are distributed at the
distance ri + 1 away from vi. If this is the case, a calculation similar to the lemma suggests to choose

enRC(T1, h1;T2, h2) =
|T1/h1|+ |T2/h2| − 2)!

((|T1/h1| − 1)!)2((|T2/h2| − 1)!)2

as the normalization factor. To measure the deviation from the putative optimal, we take the quotient

euRC(T1, h1;T2, h2)

enRC(T1, h1;T2, h2)
;

and this yields the two-source joint estimator.

Definition 8. For a 2-covering of I with two heavy centers hi ⊂ Ti, i = 1, 2, define the joint rumor
centrality estimator

e2RC(T1, h1;T2, h2) =
e′RC(T1/h1, h1)

(|T1/h1| − 1)!

e′RC(T2/h2, h2)

(|T2/h2| − 1)!
.

Define the joint source detection function

E2
RC(I) = arg max

hi⊂Ti,i=1,2
e2RC(T1, h1;T2, h2).

By the definition of the single-source estimator eRC and the construction of the contractions, we also
have the following formula;

e2RC(T1, h1;T2, h2) =
∏

u∈T1\h1

1

|T v1
u |

∏
v∈T2\h2

1

|T v2
v |

= eRC(T1/h1, h1)eRC(T2/h2, h2). (9)

From this formula, we see qualitatively that we essentially have to satisfy two things: (a) minimize the
number of vertices not contained in the union of the two heavy centers; (b) these vertices should distribute
evenly around the boundaries of the heavy centers. These agree with the goal of our task.

We notice that the estimator e2RC decays quickly with increase in the size of I . Therefore in actual
implementation using this estimator, one may use log(e2RC) instead.

In the language of Section III-A, we choose the joint rumor centrality estimator (E2
RC , e

2
RC) with e2RC

given by
e2RC(T1, h1;T2, h2) = f(eRC(T1/h1, h1), eRC(T2/h2, h2))

where f(x, y) is simply xy (recall eRC in Example 1 (iii) is equivalent to e′RC). It is clear that f satisfies
property (c) of Definition 7.

IV. JOINT SOURCE DETECTION (JSD) ALGORITHM

In this section, we give a two-step heuristic algorithm in the two-source identification problem (for
a given abstract estimator), called the joint source detection (JSD) algorithm. We give an overview of
the proposed algorithm, and defer specific implementation details to Section V as the implementation
depends on the choice of abstract estimator. We then prove that the algorithm converges, under a mild
condition on the abstract estimator. In the following discussion, let T be a fixed quasi-regular tree, I
the observed infected subtree and (E2, e2) a joint two-source estimator associated with the single source
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Fig. 7. A schematic illustration of the JSD algorithm. Suppose in the l-th iteration, we obtain vl1 and vl2 (top-left). We fist find the associated
heavy centers hl

1 and hl
2 (top-right). We perform the covering step and obtain two (possibly overlapping) regions T l+1

1 bounded by the green
curve and T l+1

2 bounded by the red curve (bottom-left). Within each region, we identify the new (estimated) source, and this completes the
re-optimization step and hence one iteration (bottom-right).

estimator (E, e) (recall the definition given in Section III-A). A simple illustration of the scheme is given
in Figure 7.

Initialize with a covering {T 0
1 , T

0
2 } of I with heavy centers h0i ⊂ T 0

i , i = 1, 2. Let v0i be the disc center
of h0i , for i = 1, 2. We perform the following two steps at each iteration l ≥ 0.

Step 1: the covering step.
From the previous iteration, we have hli ⊂ T l

i , i = 1, 2. Enlarge hli with center vli, if necessary, so
that they are both heavy centers of I . Reassign the vertices of I\{hl1 ∪ hl2} to hl1, h

l
2 to get a covering

{T l+1
1 , T l+1

2 } so that e2(T l+1
1 , hl1;T

l+1
2 , hl2) is maximized.

We remark here that hl1 and hl2 are not always heavy centers of I as the maximality condition may not
hold. Therefore we first make them heavy centers. We shall justify this in Theorem 1 below.

Step 2: the re-optimization step.
In each T l+1

i obtained from Step 1, find

hl+1
i = arg max

h′
i: heavy center of T l+1

i

e(T l+1
i /h′i, h

′
i).

Set vl+1
i to be the disc center of hl+1

i .

The JSD algorithm terminates if max{d(vli, v
l+1
i ), i = 1, 2} ≤ η for some predetermined positive value

η or a fixed number of iterations are completed.
Theorem 1. The JSD algorithm w.r.t. the abstract estimator (E, e) converges to a local optimum of e2 if
the following holds true: for any T1 ⊂ T2 ⊂ T3, if T1 contracts to a node labeled as T1 in T3/T1 and T2
contracts to a node labeled as T2 in T3/T2, then e(T3/T1, T1) ≤ e(T3/T2, T2) (see Figure 8).

Proof: It suffices to show that in both Step 1 and Step 2 of the JSD algorithm, the joint estimator
e2 is improved.

Consider Step 1. Let hli
′ be the heavy center of I having vli (the disc center of hli) as the disc center.

Form a covering of I as T l
i
′

= hli
′ ∪ T l

i , which is a tree as it is the union of two trees with nontrivial
intersection. Moreover, T l

i
′
/hli
′ is the contraction of hli

′∩T l
i in T l

i . Clearly, we have the following inclusions:
hli ⊂ hli

′ ∩ T l
i ⊂ T l

i . Consequently, the following inequality holds due to the condition of the theorem and
Property (c) of Definition 7:

e2(T l
1, h

l
1;T

l
2, h

l
2) = f(e(T l

1/h
l
1, h

l
1), e(T

l
2/h

l
2, h

l
2))

≤ f(e(T l
1

′
/hl1

′
, hl1
′
), e(T l

2

′
/hl2

′
, hl2
′
) = e2(T l

1

′
, hl1
′
;T l

2

′
, hl2
′
).
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Fig. 8. An example of the condition in Theorem 1. T3 contains node 1 to node 10, T2 contains node 1 to node 4; and T1 contains node 1 to
node 3 (top). T3/T1 is shown on bottom left and T3/T2 is shown on bottom right. One observes eJ(T3/T2, 1) = 1 ≥ eJ(T3/T1, 1) = 1/2
and eRC(T3/T2, 1) = 1 ≥ eRC(T3/T1, 1) = 1/3.

The value on the right-side of the inequality is further improved in Step 1; and the claim follows.
For Step 2, we use Property (c) in Definition 7 again. As f is non-decreasing in the two variables,

therefore to maximize e′, it is enough to maximize e in each component of the covering. Therefore, e′ is
improved in Step 2. The proof is now complete.

Notice that in Step 1 of the JSD algorithm, we essentially fix hi, i = 1, 2 and improve e2 by changing
the covering, whereas in Step 2 we fix Ti, i = 1, 2 and improve e2 by changing the heavy centers. This
is just a discrete version of gradient descent. It can be easily verified that both eJ and eRC satisfy the
condition given in Theorem 1 above. Therefore, applying the JSD algorithm for each of these estimators
yields a local optimal estimate of the two sources, w.r.t. the respective estimator function e2.

V. IMPLEMENTATION AND EXTENSIONS

In this section, we describe in detail the implementation of the JSD algorithm, in which (E2, e2) is
chosen to be either the joint Jordan center estimator (E2

J , e
2
J) or the joint rumor centrality estimator

(E2
RC , e

2
RC). Let T be a quasi-regular tree and I ⊂ T be the observed infected subtree.

Suppose the degree of each vertex of T is at least 3. Then an easy calculation gives the following
bound on the size of a disc T ′ = DT (x, r) with radius r: |T ′| ≥ 1 + 3(2r−1 − 1), which implies that its
height `(T ′) = 2r = O(ln |T ′|). If we assume that I is made up of two discs, then the size of `(I) is of
order O(ln |I|). This simple observation is used in computing the complexity of the covering step.

A. The Joint Jordan Center Estimator (E2
J , e

2
J)

The covering step. According to the last section, we first enlarge hli to heavy centers of I . We check
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Fig. 9. An illustration of the JSD algorithm with the (E2
J , e

2
J)-estimator. Suppose I contains node 1 to node 8 connected by solid line

segments and v01 = 1, v02 = 7 (top). In the covering step (bottom left), we first identify h1
1 = conv({1, 3, 7, 8}) and h1

2 = conv({1, 2, 3, 4}).
The remaining nodes 5 and 6 are assign to hs12, forming T 1

2 = conv({1, 2, 3, 4, 5, 6}). On the other hand, T 1
1 = h1

1. In the re-optimization
step (bottom right), in T 1

1 and T 1
2 , node 3 and node 2 are heavy Jordan centers respectively. Therefore v11 = 2 and v12 = 3. It is easy to

check that no more changes occur in the next iteration.

whether all the children of ∂hli are in I or not. If not, stop the procedure; otherwise enlarge the radius of
hli by 1 and repeat this procedure. Clearly, the complexity is O(|I|).

If we follow the covering step described in the previous section strictly, we need to assign the nodes
between hl1 and hl2 to the two heavy centers so that e2J is maximized. To simplify the algorithm heuristically,
we are content in assigning the nodes to the nearest heavy center, either hl1 or hl2. We achieve this by
broadcasting a message from each heavy center, and assigning each of the remaining vertices of I\(h1∪h2)
to a nearest heavy center. The complexity is again O(|I|). Notice that the main difference of this algorithm
with the one given in [30] is that when the two heavy centers are of unequal size, the one with larger
radius is given significantly more vertices, instead of a symmetric partition.

The re-optimization step. In each T l
i , according to the theory, we should find a heavy Jordan center

v ∈ hJ (T l
i ). By Lemma 2 and the remarks below the lemma, there is a member of hJ (T l

i ) that is also a
Jordan center and stays at most distance 1 away from any other Jordan center. Therefore in this step, we
find a Jordan center instead. We can apply the algorithm described in [30], which we briefly recall.

Let each vertex in T l
i broadcast a message containing its own identity. The first vertex that receives the

message from each vertex is the Jordan center vl+1
i selected by the algorithm. The complexity of going

through the algorithm for both T l
1 and T l

2 once is O(|I|).
Finally, hl+1

i is obtained by expanding vl+1
i to a heavy center in T l

i . The complexity is again O(|I|),
and so is the complexity of the entire algorithm. A simple example is given in Figure 9.
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Fig. 10. An illustration of Case 2 of the covering step when using the (E2
RC , e

2
RC)-estimator. Suppose at some iteration l, we have

hl
1 = {6} and hl

2 = conv({2, 5}) (the red nodes). In this case, P = (6, 2) (the green path together with node 3 and node 1). Therefore
TP = conv({1, 3, 4, 7}) (the blue nodes). A simple calculation shows that node 3 and node 7 should be assigned to hl

1, giving T l+1
1 =

conv({3, 6, 7}). Node 1 and node 4 should be assigned to hl
2, giving T l+1

2 = conv({1, 2, 4, 5}).

B. The Joint Rumor Centrality Estimator (E2
RC , e

2
RC)

One can always first perform the message-passing algorithm of [12] to obtain |T v
u | for each pair u, v ∈ I

with complexity O(|I|). Therefore we assume this step has been performed.
The covering step. Suppose hli, i = 1, 2 are both heavy centers of I . Let P be the unique open path

connecting hl1 and hl2. By open we mean the intersection of the path with hl1 and hl2 removed. There are
two cases to consider.

Case 1: P is empty. In this case, each vertex v ∈ I is connected to one of the two heavy centers,
say hli, by a direct path without passing through the other heavy center. Place v in T l+1

i (i is the index
of the heavy center determined as in the previous line). A message-passing algorithm as in the previous
subsection will work. The complexity is O(|I|).

Case 2: P is non-empty (see Figure 10 for a simple example). We first find P with complexity O(|I|)
(briefly, this can be done by expanding hl1 until it reaches hl2). Write TP for the union of all the subtrees
of I rooted at a vertex of P , pointing away (see Example 1(iii) for the meaning) from both hl1 and hl2.

For the vertices in I\{hl1 ∪ hl2 ∪ TP}, they are assigned to T l+1
i the same as the steps in case 1, with

O(|I|) complexity.
For convenience, call the vertices of P as v0, v1, . . . , vn. For each vertex vj ∈ P, 0 ≤ j ≤ n, we record

the size T hl
1

vi and T
hl
2

vi . If n = 2, just set j0 = v1. Otherwise, for each vj, 1 ≤ j ≤ n − 2, compute the
product

εvj =
∏

1≤k≤j

1

|T hl
1

vk | − |T
hl
1

vj+1|

∏
j+1≤k≤n−1

1

|T hl
2

vk | − |T
hl
2

vj |
.

Let j0 be the index j with the largest εvj value. According to (9), all the vertices vj, 1 ≤ j ≤ j0 and their
rooted subtrees are placed in T l+1

1 and T l+1
2 = {I\T l+1

1 } ∪ hl2 and the algorithm is complete. In this final
stage, the complexity is O(`(I)2).

In summary, the overall complexity is O(max{|I|, `(I)2}). According to our remark at the beginning
of this section, in many cases (for example, the degree of each vertex is at least 3), this is just O(|I|).

The re-optimization step. For simplicity, we apply the most straightforward algorithm. For each vertex
v ∈ T l

i , we first let v grow to become a heavy center hv. The complexity is O(|I|).
Apply the (first half of) the message-passing algorithm of [12] to T l

i /hv to find eRC(T l
i /hv, hv). The

complexity is again O(|I|). Therefore the overall complexity is O(|I|2) if we make a comparison over all
vertices.
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The overall complexity is therefore O(|I|2). The re-optimization step is the dominating step.

C. Heuristic Extension and Generalization
In this subsection, we show how our two-source JSD framework can be extended to general graphs

and more than two sources. We also discuss some possible further generalizations.
1) Heuristic extension to general graphs: When we have a general graph, there are various possible

ways to extend our method using the breadth-first search (BFS) tree heuristic (see [12]). We propose the
following way.

For the covering step of the JSD algorithm, in each iteration l, given vli, i = 1, 2 from the previous
iteration, we first find the BFS trees rooted at these centers by starting expanding from them simultaneously.
In doing so, we obtain two connected components C l

i , i = 1, 2 with vli ∈ C l
i . Choose any edge el ∈ G

such that the two end nodes of e are in C l
1 and C l

2 respectively. We can perform the covering step on the
union C l

1 ∪ C l
2 ∪ e, which is a connected tree.

For the re-optimization step, we perform the optimization on the BFS trees constructed in the covering
step. For a general single-source estimator (E2, e2), we follow the idea of [12, Section 2.7]. To be more
precise, suppose T l

i is given and v ∈ T l
i . We first find the BFS tree of T l

i at v, denoted by T l
i,v. After

which, we can find the heavy center hv of T l
i,v; and compute e(T l

i,v/hv, hv). The vertex v with the largest
e(T l

i,v/hv, hv) is used in the next iteration. The procedure can be modified and simplified on a case by
case basis. For example, if we use the Jordan center estimator (E2

J , e
2
J), we can follow [30, Section V]

in view of Lemma 3 and the discussion thereafter.
2) Generalization to k > 2 sources: If there are k sources for a fixed k > 2, we replace the two-source

estimator e2 by a k-source estimator ek. The only essential change one has to make is to replace the
two-variable function f in Definition 7 by the corresponding k-variable function. For example, in the
case of the (E2

RC , e
2
RC)-estimator, we let f be the product function on k-variables, i.e., f((x1, . . . , xk)) =

x1x2 · · ·xk. If we use the (E2
J , e

2
J)-estimator, we can still let f be the max function, i.e., f((x1, . . . , xk)) =

max({x1, . . . , xk}).
Our algorithm is divide-and-conquer in nature and therefore can be generalized, mutatis mutandis, to the

k-source situation. We only need to replace the 2-covering step by a k-covering step, which maximizes ek

instead of e2. The re-optimization step remains the same since it is performed w.r.t. each cover. Theorem
1 generalized to ek again holds.

3) Further generalizations: There is potential to generalize our method to an even broader scheme.
First of all, the combinatorial estimator (E2

J , e
2
J) or (E2

RC , e
2
RC) can be replaced by a general statistical

estimator, by the same procedure described in the paper, as long as all requirements for an abstract
estimator are satisfied (cf. Definition 7 and Theorem 1). Such estimators may include those that utilize
observations of timestamps or prior information about possible suspects for the sources (for example, [20]
and the follow-up works [25] and [27]).

In this paper, our proposed heavy center hv at a vertex v ∈ I is the largest disc contained fully in
I centered at v. However, one can arbitrarily define hv to be a connected subgraph of I containing v
satisfying a few given conditions. Once such a general notion of “heavy center" is given, we can apply
the same procedure described in the paper (using covering and contraction) to develop an associated joint
source detection algorithm. For example,4 instead of requiring hv to be the largest disc, one can require
hv to be the largest disc of I with at most 1 − Γ fraction of nodes not in I , where Γ ∈ (0, 1]. Such
a generalization adds more flexibility and may yield better results in specific cases. On the other hand,
it may also require case-by-case study of the specific spreading pattern on a given network. Simulation
results on this generalization are provided in Section VI-D.

4This example is suggested to us by one of the reviewers.
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VI. SIMULATION RESULTS

In this section, we present simulation results to verify the performance of the JSD algorithm for the
(E2

J , e
2
J) and (E2

RC , e
2
RC) estimators. We compare its performance with the Multiple Jordan Center (MJC)

algorithm described in [30], and the Clustering and Localization/Clustering and Reverse Infection (CL-
CRI) algorithm described in [34].

In our simulations, we adopt either a continuous-time or discrete-time spreading model. For the continuous-
time model, we assume that the propagation time of the rumor across each edge in the graph is distributed
independently according to an exponential distribution with unit rate. To simulate an infection subgraph,
we randomly generate a permitted permutation using the exponential spreading model with unit rate (as
defined in Section II.C of [12]) of a fixed size starting from different sources at different times. For the
discrete-time model, we assume that at each discrete time slot, a susceptible node (i.e., a node that has
at least one infected neighbor) has probability 1/2 of being infected by each of its infected neighbors
independently. Moreover, multiple nodes can become infected in the same time slot.

In general, the gradient descent style algorithm can be sensitive to the initialization. There are several
initialization schemes one can choose. One can use the scheme developed in [34], which chooses the initial
nodes as far away from each other as possible. For fairness, we shall use this scheme when we compare
performance among different algorithms. To mention some other possible schemes, we can choose a node
v near the center of the infected graph, and the second one between v and a node furthest away from v.
Another approach is to perform a rough source estimation using the method in [38], which also estimates
the number of sources. We terminate the algorithm once a fixed number of iterations are completed.

A. Comparison between the errors on different sources
In the first set of simulations, we apply our JSD algorithm on a 3-regular tree with 766 nodes (9 layers),

synthetic scale-free graphs [41] with 750 nodes, and synthetic small world graphs [42] with 750 nodes.
We run the algorithm for both the (E2

J , e
2
J)-estimator and the (E2

RC , e
2
RC)-estimator, which we label as

JSD-J and JSD-RC, respectively.
In each of the random network ensembles, we generate a connected infected subgraph containing 20%

of vertices of a full graph using the continuous-time model, and two of them are the sources. As we do
not assume the two sources start the infection process at the same time, and we record this time difference
as a reference (the horizontal axis in Figure 11).

Once the infected subgraph is generated, we record the positions of the two sources as s1 and s2.
Applying the JSD algorithm described in Section V, we obtain the positions of the two estimated sources
ŝ1 and ŝ2. The true sources s1, s2 are optimally paired with the estimated sources ŝ1, ŝ2 to get a minimum
total estimation error. This procedure is repeated 100 times, and the average estimation error is then
computed and plotted against the difference in infection start times of the two sources. In the graphs,
we plot the average error of the two sources for both the JSD-J algorithm (green curves) and JSD-RC
algorithm (black curves). For the algorithm that performs better, we also include the blue and red curves
giving the errors of the two sources respectively.

Simulation results of a reasonable algorithm should have the following properties.
(a) The error/time difference graph should display an increasing trend. If the time difference is large, the

second source has a very small impact on the final outcome; therefore it may be hard to distinguish
the second source from a probabilistic fluctuation.

(b) The average estimation error of the first source should be smaller than that of the second source.
The obvious reason is that the first source is more influential than the second source. Therefore the
first source is easier to identify.

Our simulation results (Figure 11) display these features. Moreover, in all three cases, the errors of the
algorithm are always within 20% of the average diameters of the observed infected graph I .
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Fig. 11. Performance of the JSD algorithm for the (E2
J , e

2
J) and (E2

RC , e
2
RC) estimators.

The JSD-RC algorithm does not perform as well as the JSD-J algorithm for regular and scale-free
graphs. In these cases, there are many local optimums and the JSD-RC algorithm may be converging to
nodes further away from the true sources.

B. Comparison with MJC and CL-CRI; and varying time difference
We also compare the performance of the JSD algorithm with the MJC algorithm [30] and the CL-CRI

algorithm [34]. The MJC algorithm and the CL-CRI algorithm are among the most successful algorithms
in multiple sources detection when the sources have the same infection starting time. As we commented
earlier, if the time difference is large, it is hard to differentiate infection from the second source. We
therefore make comparisons only for time differences that are not too large in each of the three graph
types.

In the regular and scale-free cases, we use the JSD-J algorithm; while in the small world case, we
apply the JSD-RC algorithm. For convenience, we just call both the JSD algorithm in the following. The
results are summarized in Figure 12. We see that in the case of 3-regular tree, the JSD algorithm performs
significantly better than both the MJC algorithm and the CL-CRI algorithm. In the case of small world
graphs, the JSD algorithm performs much better than the MJC algorithm and slightly better than the CL-
CRI algorithm. While in the scale-free case, the JSD performs much better than the CL-CRI algorithm
and slightly better than the MJC algorithm.
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Fig. 12. The red curves depict the average estimation error of the MJC algorithm; the green curves depict the average estimation error of
the JSD algorithm; and the blue curves depict the average estimation error of the CL-CRI algorithm.

C. More than two sources on large networks
In the next set of simulations, we consider more than two sources. The networks we use include

regular tree, synthetic scale-free graphs, as well as Facebook and email networks from the Stanford
Network Analysis Project, [43], [44]. Each graph contains 3000−5000 nodes and 20%−25% of them are
infected, depending on the type of graph. Moreover, we choose the time difference between two successive
infections uniformly with mean d; and randomly over a small time interval of size s (the values of d and
s are displayed in Figure 13). In each plot in Figure 13, we use a to denote the average distance between
pairs of vertices for the corresponding graph. Except for the difference in diffusion models, we keep all
the rest of the settings unchanged for the same graph type.

For the first set of simulations, we use the continuous-time model. The simulations show that our method
performs better in many cases. For the real-world graphs, we see that the average error trends lower with
more sources. This is because these real-world networks are more dense than the synthetic networks (as
evidenced by the smaller average pairwise distance). The error distance for each source is thus smaller,
and adding more sources actually increases the chance that an estimated source is close to one of the true
sources. In the synthetic cases where the average pairwise distances are larger (in particular for the regular
tree), sources with later infection times incur a larger error distance. In conducting the simulations, we
also monitor the rate of convergence of the algorithm. Although we do not have theoretical results on the
convergence rate, experiments suggest that our method converges within 5 iterations on average.

We next test our algorithms on the same networks as above using a discrete-time diffusion model. From
Figure 14, we see that our JSD-J algorithm again outperforms both the MJC and CL-CRI methods in
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Fig. 13. The continuous-time model. The red curves depict the average estimation error of the MJC algorithm; the green curves depict the
average estimation error of the JSD algorithm; and the blue curves depict the average estimation error of the CL-CRI algorithm.

most situations.

D. Γ-heavy centers
As we mentioned in Section V-C, we can further generalize the notion of heavy center by considering

hv with at most 1− Γ fraction of nodes not in I , where Γ ∈ (0, 1]. We call such an hv a Γ-heavy center.
The heavy center considered in Definition 5(a) is the special case when Γ = 1. Although we do not have
theoretical results for this generalized heavy center, we run simulations to test the performance for various
values of Γ on both the Facebook and Email networks, and under the continuous-time and discrete-time
models. We use the same simulation settings as Section VI-C. The results are summarized in Figures 15.

From Figure 15, we see that the dependency of the estimation error performance on the Γ-value depends
on the type of network and the number of sources. In general, Γ = 1 does not guarantee the best
performance, although the performance in terms of average estimation error is comparable across different
values of Γ. In some cases however, smaller Γ values can produce noticeable improvements. The question
of how to choose Γ requires further investigation.

VII. CONCLUSION

We have proposed a general framework and algorithm to perform multiple-sources identification based
on estimators that have been developed for single-source identification. Our algorithm is designed to
perform estimation when the sources may start their infections at different times. We showed that our
proposed algorithm converges if the underlying network is a quasi-regular tree. We also showed specifically
how to construct the proposed multiple-source estimator based on the single-source Jordan center estimator
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Fig. 14. The discrete-time model. The red curves depict the average estimation error of the MJC algorithm; the green curves depict the
average estimation error of the JSD algorithm; and the blue curves depict the average estimation error of the CL-CRI algorithm.

and rumor centrality estimator. Simulations suggest that our proposed framework improves the estimation
accuracy compared to other multiple-sources identification methods when sources have different infection
start times.
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