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THE EXCLUDED MINORS FOR ISOMETRIC REALIZABILITY IN
THE PLANE∗

SAMUEL FIORINI† , TONY HUYNH† , GWENAËL JORET‡ , AND

ANTONIOS VARVITSIOTIS§

Abstract. Let G be a graph and p ∈ [1,∞]. The parameter fp(G) is the least integer k such
that for all m and all vectors (rv)v∈V (G) ⊆ Rm, there exist vectors (qv)v∈V (G) ⊆ Rk satisfying
‖rv − rw‖p = ‖qv − qw‖p for all vw ∈ E(G). It is easy to check that fp(G) is always finite and that
it is minor monotone. By the graph minor theorem of Robertson and Seymour [J. Combin. Theory
Ser. B, 92 (2004), pp. 325–357], there are a finite number of excluded minors for the property
fp(G) 6 k. In this paper, we determine the complete set of excluded minors for f∞(G) 6 2. The two
excluded minors are the wheel on five vertices and the graph obtained by gluing two copies of K4

along an edge and then deleting that edge. We also show that the same two graphs are the complete
set of excluded minors for f1(G) 6 2. In addition, we give a family of examples that show that f∞
is unbounded on the class of planar graphs and f∞ is not bounded as a function of tree-width.
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1. Introduction. Let X be a finite set and d : X × X → R>0. We say that
(X, d) is a metric space if d satisfies the following properties: (i) d(i, j) = d(j, i) for
all i, j ∈ X, (ii) d(i, j) = 0 if and only if i = j, and (iii) d(i, j) 6 d(i, k) + d(k, j) for
all i, j, k ∈ X. For x ∈ Rm define ‖x‖p := (

∑m
i=1 |xi|p)1/p and ‖x‖∞ := maxm

i=1 |xi|.
Recall that ‖ · ‖p is a norm for all p ∈ [1,∞]. Throughout this paper we denote by `mp
the metric space (Rm, dp) where dp(x, y) = ‖x− y‖p.

A natural way to compare two metric spaces (X, d) and (X ′, d′) is through
the use of distance preserving maps from one space to the other. Formally, an
isometric embedding of (X, d) into (X ′, d′) is a function φ : X → X ′ such that
d(x, y) = d′(φ(x), φ(y)) for all x, y ∈ X.

Typically, the requirement that all pairwise distances be preserved exactly is
too restrictive to be useful in practice. To cope with this, a successful theory of
embeddings with distortion has been developed, where the requirement that distances
be preserved exactly is relaxed to the requirement that no distance shrink or stretch
excessively. In this direction, the celebrated theorem of Bourgain [6] asserts that
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every n-point metric space can be embedded into an `
O(log2 n)
p space with O(log n)

distortion. Moreover, this is best possible up to a constant factor.
Another popular approach is to only require a subset of the distances to be

preserved exactly. This viewpoint is very graph theoretical and is the approach that
we take in this paper.

All graphs in this paper are finite and do not contain loops or parallel edges. A
graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting some edges. When taking minors, we always suppress parallel edges and
loops.

Let G be a graph and p ∈ [1,∞]. We define fp(G) to be the least integer k such
that for all m and all vectors (rv)v∈V (G) ⊆ Rm, there exist vectors (qv)v∈V (G) ⊆ Rk

satisfying
‖rv − rw‖p = ‖qv − qw‖p for all vw ∈ E(G).

It is not obvious that this parameter is always finite, but from the conic version of
Carathéodory’s theorem, it follows that fp(G) 6

(
n
2

)
for all p ∈ [1,∞] and all n-vertex

graphs G (see [2] and [7, Proposition 11.2.3]). For p = 2, Barvinok [3] showed the
better bound f2(G) 6 (

√
8m+ 1− 1)/2 for graphs G with m edges.

Let Kn denote the complete graph on n vertices. The study of fp(Kn) for varying
values of p ∈ [1,∞] is a fundamental problem in the theory of metric embeddings. For
the case p =∞, Holsztynski [9] (and subsequently Witsenhausen [19]) showed that⌊

2n

3

⌋
6 f∞(Kn) 6 n− 2 for n > 4.

Furthermore, Witsenhausen [19] showed that f1(Kn) > n − 2 for n > 3, which was
later improved to

f1(Kn) >

(
n− 2

2

)
for n > 3

by Ball [2]. Lastly, Ball [2] also showed that

fp(Kn) >

(
n− 1

2

)
for all 1 < p < 2 and n > 3

and that there is a constant c such that

f∞(Kn) > n− cn3/4 for all n.

The lower bound of n − cn3/4 uses the biclique covering number, which is the
minimum number of complete bipartite subgraphs needed to cover the edges of a
graph. Rödl and Ruciński [14] have since shown that there is a constant c such that
for every n there exists an n-vertex graph that cannot be covered with n − c log n
complete bipartite subgraphs. This implies that there is a constant c such that

f∞(Kn) > n− c log n for all n.

The parameters fp(G) are also widely studied in rigidity theory. We refer the
interested reader to Kitson [10] and Sitharam and Gao [16] and the references therein.

It is easy to show that for all p ∈ [1,∞], the parameter fp(G) is minor monotone.
By the graph minor theorem of Robertson and Seymour [12], there are a finite number
of minor-minimal graphs G with fp(G) > k. We call these graphs the excluded minors
for fp(G) 6 k.

The excluded minors for f2(G) 6 1, f2(G) 6 2, and f2(G) 6 3 were determined
by Belk and Connelly [4, 5].
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440 FIORINI, HUYNH, JORET, AND VARVITSIOTIS

Theorem 1.1 (see [4, 5]). For every graph G,
(i) f2(G) 6 1 if and only if G has no K3 minor;

(ii) f2(G) 6 2 if and only if G has no K4 minor;
(iii) f2(G) 6 3 if and only if G has no K5 minor and no K2,2,2 minor.

In this paper we mainly focus on the case p =∞. The `∞-spaces are particularly
interesting due to their “universal” nature in terms of isometric embeddings, as
illustrated by the following theorem of Fréchet.

Theorem 1.2 (see [8]). Every n-point metric space can be isometrically embedded
in `n−1∞ .

Theorem 1.2 allows us to rephrase the condition f∞(G) 6 k as follows. Let G be
a graph and d : E(G)→ R>0. The length of a path P in G is defined as

∑
e∈E(P ) de.

Throughout this work we call d : E(G)→ R>0 a distance function on G if for all edges
xy ∈ E(G), every path from x to y has length at least dxy (in other words, the path
consisting of the edge xy is a shortest path). We remark that dxy = 0 is allowed in
this definition and that d defines a corresponding metric space X on at most |V (G)|
points as follows. First contract all edges xy with dxy = 0, and then consider the
shortest path lengths between pairs of vertices. Hence, by Theorem 1.2, f∞(G) 6 k
if and only if for all distance functions d on G, there exist vectors (qv)v∈V (G) ⊆ Rk

satisfying

‖qx − qy‖∞ = dxy for all xy ∈ E(G).

Note that for all p, q ∈ [1,∞], `1p = `1q. Thus, by Theorem 1.1, f∞(G) 6 1 if and
only if G has no K3 minor. In this paper we determine the complete set of excluded
minors for f∞(G) 6 2. Let W4 denote the wheel on five vertices and K4 +e K4 be
the graph obtained by gluing two copies of K4 along an edge e and then deleting e;
see Figure 1. Using techniques from rigidity matroids, Sitharam and Willoughby [17]
determined f∞(G) for all graphs G with at most five vertices, except for W4. They
conjectured that W4 is an excluded minor for f∞(G) 6 2, and that W4 is the only
excluded minor for f∞(G) 6 2. We verify their first conjecture but disprove the
second by showing that K4 +e K4 is also an excluded minor for f∞(G) 6 2.

The following is our main result.

Theorem 1.3 (Main Theorem). The excluded minors for f∞(G) 6 2 are W4 and
K4 +e K4.

The proof of Theorem 1.3 is given in section 6. Note that unlike the p = 2
case, given points x, y, x′, y′ ∈ Rm with ‖x − y‖∞ = ‖x′ − y′‖∞ there does not
necessarily exist an isometry of `m∞ which maps x to x′ and y to y′. For example,
take x = x′ = (0, 0) and y = (0, 1), y′ = (1, 1) in `2∞. Indeed, the isometries of `m∞
correspond to signed permutation matrices. Therefore, our proof technique for the
p =∞ case is quite different from the p = 2 case. For example, we will show that the
property f∞(G) 6 2 is not closed under taking 2-sums.

We also prove the following result, which follows from Theorem 1.3 with a little
extra work.

Corollary 1.4. The excluded minors for f1(G) 6 2 are W4 and K4 +e K4.

Robertson and Seymour [13] proved that testing for a fixed minor can be done
in cubic time. Therefore, our results give an explicit cubic-time algorithm to test if
f1(G) 6 2 (equivalently, f∞(G) 6 2). We simply have to test if our input graph
contains a W4 minor or a K4 +e K4 minor.

D
ow

nl
oa

de
d 

07
/2

7/
17

 to
 1

55
.6

9.
24

.1
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ISOMETRIC REALIZABILITY IN THE PLANE 441

K4 +e K4W4

Fig. 1. The excluded minors for f∞(G) 6 2.

In a previous version of this paper, we asked whether f∞ is bounded on the class
of planar graphs. We also asked whether f∞ is bounded as a function of tree-width.
We now have found an example that shows that the answer to both of these questions
is negative.

Theorem 1.5. For every k there exists a planar graph G with tree-width 3 such
that f∞(G) > k.

Paper organization. In section 2 we present a few equivalent ways to think
about f∞(G) and prove some upper and lower bounds. In section 3, we show
f∞(K7) = 5. In section 4 we show that we can suppress degree-2 vertices when
computing f∞(G). In section 5 we show that W4 and K4+eK4 are excluded minors for
f∞(G) 6 2. In section 6 we show that W4 and K4 +eK4 are the only excluded minors
for f∞(G) 6 2 and explain how to deduce Corollary 1.4 from the Main Theorem. We
conclude the paper in section 7 by proving Theorem 1.5 and discussing some open
problems.

2. Potentials and implicit realizations. In this section we present several
equivalent ways to think about the parameter f∞(G).

Consider an n-vertex graph G, a distance function d on G, and a realization of
(G, d) in `k∞, that is, a collection of points (qv)v∈V (G) ∈ Rk such that ||qv−qw||∞ = dvw
for all vw ∈ E(G). We can write a k×n matrix whose columns are the vectors qv for
v ∈ V (G). In this section we analyze this matrix by looking at its rows, which turn
out to be potentials of a natural directed graph associated to (G, d).

Let D be an edge-weighted directed graph, and let l : A(D) → R be the
length function on the arcs of D. Note that negative lengths are allowed. A
function p : V (D) → R is called a potential on D if p(v) − p(u) 6 l(a) for all
arcs a = (u, v) ∈ A(D). We recall the following well-known result characterizing the
existence of a potential.

Theorem 2.1. A weighted directed graph (D, l) admits a potential if and only if
it does not contain any negative length directed cycle.

Now let D = D(G, d) be the weighted directed graph obtained from (G, d) as
follows. First, we bidirect all edges of G. For every edge uv ∈ E(G), we define the
length of both (u, v) and (v, u) to be duv. That is, the length function l on D is given
by

(1) l(u, v) = l(v, u) := duv for all uv ∈ E(G).

Note that p : V (D)→ R is a potential on D if and only if |p(v)− p(u)| 6 duv for all
uv ∈ E(G). An edge uv ∈ E(G) is tight for a potential p on D if |p(v)− p(u)| = duv.

Let (qv)v∈V (G) be a realization of (G, d) in `k∞. Clearly, if we define pi(v) := qv(i)
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1 2

34

5

d12

d23

d34

d14

d15 d25

d35d45

0

d15 d25

d35d45

d45

d14 ∗

d340

d25

d12 0

d23∗

Fig. 2. If G denotes the 5-vertex wheel W4, then (G, d) admits a realization in `3∞ for all
distance functions d, as shown by these three potentials. (The two values labeled ∗ are not used to
realize any edge, so they can be set to any value that is feasible.)

for i ∈ [k] and v ∈ V (G), we have that pi is a potential for all i ∈ [k]. Moreover, every
edge of G is tight in some pi. It is easy to see that the converse also holds.

Lemma 2.2. Let G be a graph. A distance function d on G admits a realization
(qv)v∈V (G) in `k∞ if and only if the directed graph D = D(G, d) with lengths as in (1)
admits a collection of potentials (pi)i∈[k] such that every edge uv ∈ E(G) is tight in
some pi. Moreover, in this equivalence we can take qv(i) = pi(v) for all i ∈ [k] and
v ∈ V (G).

In view of Lemma 2.2, we get a combinatorial approach to constructing and

analyzing realizations. For F ⊆ E(G), let
−→
F denote some orientation of F . We say

that
−→
F is a feasible orientation (with respect to d) if there exists a potential p on

D(G, d) such that p(v)−p(u) = duv for all (u, v) ∈
−→
F . See Figure 2 for an illustration.

We say that F ⊆ E(G) is feasible if it admits a feasible orientation. If a set of edges

is not feasible, we say that it is infeasible. Notice that
−→
F is a feasible orientation if

and only if the opposite orientation
←−
F is a feasible orientation. Furthermore, note

that a subset of a feasible set is also feasible.
The notion of feasible sets allows us to reformulate Lemma 2.2 as follows.

Lemma 2.3. Let G be a graph and d be a distance function on G. The pair (G, d)
admits a realization in `k∞ if and only if there exist feasible sets (Fi)i∈[k] such that

∪ki=1Fi = E(G).

Given an orientation
−→
F , we define a modification of the length function l(d) as

follows:

(2) l(u, v) :=

{
duv if uv ∈ E(G), (u, v) /∈

−→
F ,

−duv if (u, v) ∈
−→
F .
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We denote this length function by l(d,
−→
F ). Note that

−→
F is a feasible orientation if and

only if (G, l(d,
−→
F )) admits a potential. By Theorem 2.1, this happens if and only if

the weighted digraph (G, l(d,
−→
F )) does not contain a directed cycle of negative length.

We demonstrate the usefulness of Lemma 2.3 by quickly deriving some nontrivial
upper and lower bounds for f∞(G).

Note that for every distance function d on G and every vertex v of G, the star
centered at v is always feasible with respect to d, as can be seen by orienting all the
edges of the star outward (as in Figure 2). From this we obtain the following upper
bound.

Lemma 2.4. For every graph G,

f∞(G) 6 τ(G),

where τ(G) denotes the minimum size of a vertex cover of G.

We say that a distance function d is generic with respect to G if for every cycle
C in G and S ⊆ E(C), we have

∑
e∈S de 6=

∑
e∈E(C)\S de. Every distance function

d on G can be perturbed to a nearby generic distance function d′. Furthermore, we
have f∞(G) 6 k if and only if (G, d) can be realized in `k∞ for every generic distance
function d.

Observe that if d is generic, every feasible set is acyclic. Therefore, we immediately
obtain the following lemma.

Lemma 2.5. For every graph G,

f∞(G) > Υ(G),

where Υ(G) denotes the minimum number of forests required to partition E(G).

Our next result implies that, if d is generic, every maximal feasible set is a
spanning forest.

Lemma 2.6. Let G be a graph and d be a distance function on G. Then every
maximal feasible set F ⊆ E(G) contains a spanning forest.

Proof. Toward a contradiction, suppose that F ⊆ E(G) is a maximal feasible set
that does not contain a spanning forest of G. Let X be the vertex set of a component
of (V (G), F ) such that G contains at least one edge with exactly one end in X. Let
p be any potential that makes all the edges of F tight but no other edges. Let ∆ be
as large as possible with the property that p′ := p+ ∆

∑
v∈X ev is a potential, where

ev denotes the characteristic vector for the vertex v. Then the set of edges that are
tight with respect to p′ is a proper superset of F , which is a contradiction.

3. f∞(K7) = 5. Since b 2n3 c = n−2 for n ∈ {4, 5, 6}, it follows that f∞(K3) = 2,
f∞(K4) = 2, f∞(K5) = 3, and f∞(K6) = 4. Thus, n = 7 is the smallest value for
which f∞(Kn) is unknown. In this section we show that f∞(K7) = 5. This result is
not needed for our Main Theorem but may be of independent interest.

Proposition 3.1. f∞(K7) = 5.

Proof. We already know that f∞(K7) 6 5; let us prove that f∞(K7) > 5. To this
aim, enumerate the vertices of K7 as v1, . . . , v7, and define a linear ordering L on its
edges by letting, for i < j and k < `,

vivj >L vkv`
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if i < k, or i = k and j < `. Let m := 21 be the number of edges. Define a distance
function d on the graph by letting d(e) := 2m + 2r for each edge e, where r is the
rank of e in the ordering L. (Thus v1v2 has rank m and v6v7 has rank 1.) It is easy
to check that d is a generic distance function.

We claim that (K7, d) cannot be realized in `4∞. Arguing by contradiction, assume
it can. Consider a partition of the edges into four feasible forests F1, . . . , F4. Before
analyzing these, let us note a few properties of a feasible forest F (the easy proofs are
left to the reader).

1. A feasible orientation
−→
F of F cannot contain a length-2 directed path; hence−→

F is uniquely determined (up to reversing all arcs).
2. If i < j < k < `, then at most one of the two edges vivj and vkv` is in F .
3. If i < j < k < `, then at most two of the three edges vivk, vjvk, vjv` are in
F .

Now color each edge e of the graph with the index i of the forest Fi in which it
is included. By property 2 we may assume without loss of generality that v1v2, v3v4,
and v5v6 are colored 1, 2, and 3, respectively. By the same property, none of the
two edges v5v7, v6v7 are colored 1 or 2, and they cannot both be colored 3 (otherwise
v5v6v7 would be a triangle in F3); thus there exists a ∈ {5, 6} such that vav7 is colored
4.

Next consider the four edges between the sets {v1, v2} and {v3, v4}. None of these
is colored 3 by property 2 (because of the edge v5v6) or 4 (because of the edge vav7), so
each of them is colored 1 or 2. Moreover, in order to avoid monochromatic triangles,
the four edges are split into two matchings M1 and M2 of size 2, colored 1 and 2,
respectively.

Let X be the set of edges vivj with i, j > 3 that are distinct from v3v4. (Thus
|X| = 9.) No edge in X is colored 1 (because of v1v2). We claim that no edge in X
is colored 2 either. This is clear for those not incident to v3, thanks to the edge of
M2 that is incident to v3. Now, suppose for a contradiction that f ∈ X is incident to
v3 and is colored 2. Then letting e be the edge of M2 incident to v4, we see that the
edges e, v3v4, f are all in F2, contradicting property 3.

All edges in X are colored 3 or 4, but X has size 9 and spans only five vertices.
Therefore, there is a monochromatic cycle in X. This final contradiction concludes
the proof.

4. Degree-2 vertices. In this section we show that we can essentially ignore
degree-2 vertices when computing f∞(G).

Let G1 and G2 be graphs that each contain a clique K of size k. A k-sum of G1

and G2 along K is a graph obtained by gluing G1 and G2 along K and then deleting
some of the edges of K. In the special case of 2-sums, we use the notation G1 ⊕e G2

if we keep the edge e, and G1 +e G2 if we delete the edge e.

Lemma 4.1. Let H be a graph, and let e ∈ E(H). If f∞(H) > 2, then
f∞(H) = f∞(H ⊕e K3).

Proof. Set G := H ⊕e K3, let e = uv, and let w be the newly added vertex in
G. Clearly f∞(G) > f∞(H), so it suffices to show that f∞(G) 6 f∞(H). Let d be
any distance function on G. The restriction of d to H is also a distance function.
Let (Fi)i∈[k] be a collection of k := f∞(H) > 2 feasible sets of (H, d) such that

∪ki=1Fi = E(H).
First, note that each Fi is feasible in G. Indeed, since d is a distance function, and

in particular duw + dwv > duv, we can extend any potential on D(H, d) to a potential
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Fig. 3. W4 and a distance function that cannot be realized in `2∞.

on D(G, d) by carefully choosing the potential value at w between the value at u and
that at v. Without loss of generality, we may assume that uv ∈ F1. Now extend F2

to a maximal feasible set F ′2 ⊆ E(G). By Lemma 2.6, F ′2 contains a spanning forest.
Hence, F ′2 contains either wu or wv. Without loss of generality, assume that wu ∈ F ′2.

Now let
−→
F1 be a feasible orientation of F1. By reversing all the arcs of

−→
F1 if

necessary, we may assume that (u, v) ∈
−→
F1. We claim that

−→
F ′1 :=

−→
F1 ∪ {(w, v)} is

a feasible orientation. Indeed, let C be a negative directed cycle in D = D(G, d)

with respect to l := l(d,
−→
F ′1). Since

−→
F1 is a feasible orientation, we may assume that

(u,w), (w, v) ∈ A(C). Now l(u,w) + l(w, v) = duw − dwv > −duv = l(u, v), which

means that the length of C does not increase if we shortcut it from u to v. Since
−→
F1 is a

feasible orientation, the length of the shortcut cycle is nonnegative, which contradicts

our assumption that C has negative length. Hence,
−→
F ′1 is a feasible orientation, and

the corresponding edge set F ′1 is feasible.
We have found k feasible sets F ′1, F ′2, F3, . . . , Fk that cover each edge of G. Thus

(G, d) can be realized in `k∞. The lemma follows.

We note that the assumption that f∞(H) > 2 in Lemma 4.1 is necessary. This
can easily be seen by taking H = K2 and G = K3.

We say that G is obtained from H by subdividing an edge e if G = H +e K3.

Lemma 4.2. Let G and H be graphs such that G is obtained from H by subdividing
an edge. Then f∞(G) = f∞(H).

Proof. Clearly f∞(G) > f∞(H) since H is a minor of G. It remains to prove
f∞(G) 6 f∞(H). If f∞(H) = 1, then H is a forest, and so is G, implying f∞(G) = 1.
Hence we may assume that f∞(H) > 2. Say that G is obtained from H by subdividing
an edge uv with a new vertex w. Let G′ := G + uv. Since G′ is obtained from
H by adding a new vertex w adjacent to the ends of the edge uv, we have that
f∞(G′) = f∞(H) by Lemma 4.1. The graph G being a minor of G′, it follows that
f∞(G) 6 f∞(G′) = f∞(H).

5. The graphs W4 and K4 +e K4. In this section we show that W4 and
K4 +e K4 are excluded minors for f∞(G) 6 2.

Lemma 5.1. We have that f∞(W4) = 3.

Proof. By Lemma 2.4, f∞(W4) 6 3. Toward a contradiction suppose f∞(W4) 6
2. Let d be the distance function on W4 given in Figure 3, and let q1, . . . , q5 be an
isometric embedding of (G, d) in `2∞. Note that q1, . . . , q4 all lie on two consecutive
sides of a square centered at q5 with side length 400. By symmetry we may assume
that q5 = (200,−200), that q1 = (x, 0) where 0 6 x 6 200, and that qi(1) = 0 or
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qi(2) = 0 for i ∈ {2, 3, 4}. We say that (a, 0) is directly right of (b, 0) if b < a (in this
case (b, 0) is directly left of (a, 0)), (0, c) is directly below (0, d) if c < d, and (a, 0) and
(0, c) are diagonal.

We first consider the case that q4 is directly right of q1. This implies that q3 must
be directly left of q4 as q2 would be too far from q1 (if q3 is directly right of q4) or q3
would be too far from q4 (if q3 and q4 are diagonal). Now, q2 cannot be directly right
of q3 as q2 would be too far from q1, and q2 cannot be directly left of q3 as q2 would
be too close to q1. Thus, q2 and q3 are diagonal. But now ‖q1 − q2‖∞ 6 ‖q3 − q2‖∞,
which is a contradiction.

We next consider the case that q4 is directly left of q1. Again, q3 cannot be
directly left of q4. Suppose that q3 is directly right of q4. Again, q2 cannot be directly
right of or left of q3. Thus, q2 and q3 are diagonal. But now ‖q2 − q3‖∞ > 20,
which is a contradiction. Thus, q3 and q4 must be diagonal. If q2 is directly above
or directly below q3, then ‖q2 − q1‖∞ > 24, which is a contradiction. Thus, q2 and
q3 are diagonal. Since d3,4 = 20, we must have q3 = (−20, 0) or q4 = (0, 20). In the
first case, ‖q2 − q3‖∞ > 20, and in the second case ‖q2 − q1‖∞ > 27, both of which
are contradictions.

The remaining case is that q1 and q4 are diagonal. Thus, q1 = (24, 0) or
q4 = (0,−24). Suppose q1 = (24, 0). If q2 and q1 are diagonal, then ‖q1 − q2‖∞ > 24,
which is a contradiction. If q2 is directly right of q1, then q3 is too far away from q4.
Thus, q2 = (6, 0). Evidently, q3 cannot be directly left of q2. If q3 is directly right of
q2, we have ‖q3− q4‖∞ > 23, which is a contradiction. If q3 and q2 are diagonal, then
q3 and q4 are too close. We finish with the subcase that q4 = (0,−24). Again, we
must have q3 = (0,−4). If q2 is directly below q3, then ‖q2 − q1‖∞ > 21, which is a
contradiction. If q2 and q3 are diagonal, then q2 = (17, 0) and is too close to q1. This
completes the subcase and the proof.

Lemma 5.2. The graph W4 is an excluded minor for f∞(G) 6 2. Moreover, W4

is the only excluded minor for f∞(G) 6 2 among all graphs with at most five vertices.

Proof. By the previous lemma, f∞(W4) = 3, so to prove that W4 is an excluded
minor it suffices to show that every proper minor H of W4 satisfies f∞(H) 6 2. If
|V (H)| 6 4, then f∞(H) 6 2 since f∞(K4) 6 2. Now, say H is obtained from W4 by
only deleting edges. Deleting an edge yields a degree-2 vertex, which we can suppress
by either Lemma 4.2 or Lemma 4.1. Again, we get a graph with at most four vertices,
so we are done.

For the second part, let H be an excluded minor for f∞(G) 6 2 with |V (H)| 6 5.
If H has a W4 minor, then H = W4. So we may assume that H has no W4

minor. Let e = ab and f = ac be edges of K5. By Lemma 4.1 we have that
f∞(K5 − {e, f}) = f∞(K4) = 2. Since H has no W4 minor, this implies that H
is a minor of K5 − {e, f}. But then, f∞(H) 6 f∞(K5 − {e, f}) = 2, which is a
contradiction.

Lemma 5.3. We have that f∞(K4 +e K4) = 3.

Proof. To simplify notation, throughout this proof we set G := K4 +e K4.
Furthermore, we use the labeling of the nodes of G given in Figure 4.

We first show that f∞(G) 6 3. Let d be an arbitrary distance function on G.
Note that F0 = {02, 03, 04, 05} and F1 = {12, 13, 14, 15} are feasible sets because
they are stars. Thus, if {23, 45} is feasible, then (G, d) can be realized in `3∞ by
Lemma 2.3. To conclude the proof, assume that {23, 45} is not feasible. Note that
F3 = {30, 31, 32} and F5 = {50, 51, 54} are feasible because they are stars. Let F ′3
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Fig. 4. K4 +e K4 and a distance function that cannot be realized in `2∞.

and F ′5 be maximal feasible sets containing F3 and F5, respectively. By Lemma 2.6,
F ′3 and F ′5 each span all the vertices of G. Therefore, since {23, 45} is not feasible, we
must have {02, 12} ∩F ′5 6= ∅ and {04, 14} ∩F ′3 6= ∅. Let F := E(G) \ (F ′3 ∪F ′5). Thus,
F is a subset of {02, 04}, {12, 14}, {02, 14}, or {12, 04}. In the first two cases, F is
feasible since it is a subset of a star. In the last two cases, note that {(0, 2), (4, 1)} and
{(1, 2), (4, 0)} are feasible orientations of {02, 14} and {12, 04}, respectively. Hence,
F is also feasible in the last two cases. Since F ′3, F ′5, and F are feasible sets covering
all the edges of G, Lemma 2.3 yields f∞(G) 6 3.

To show that f∞(G) = 3, it remains to exhibit a distance function d on G such
that (G, d) is not realizable in `2∞. We exhibit such a distance function in Figure 4.
Toward a contradiction, suppose that E(G) can be partitioned into two feasible sets
T1 and T2. It is easy to check that d is a generic distance function, and so T1 and
T2 are both forests.1 Thus, |T1|, |T2| 6 |V (G)| − 1 = 5 edges. Since |E(G)| = 10, we
conclude that T1 and T2 are both spanning trees. Let TL and TR be the subgraphs
of T1 induced by {0, 1, 2, 3} and {0, 1, 4, 5}, respectively. By interchanging T1 and T2,
we may assume that |E(TL)| = 3. Therefore, there are six possibilities for each of TL
and TR, and these are shown in Figure 6. The six possibilities for TL are shown in the
first column of the table, and the six possibilities for TR are shown in the first row.

We rule out each of the 36 possibilities for T1 by showing that at least one of T1
or T2 is infeasible. To do this, we show that for all orientations

−→
T1 and

−→
T2 of T1 and

T2, at least one of
−→
T1 or

−→
T2 contains an infeasible orientation.

If abc forms a triangle in G, note that {(a, b), (b, c)} is an infeasible orientation.
Indeed, the triangle inequality combined with the fact that d is generic implies that the
directed cycle (a, b, c) is negative. We denote this infeasible orientation as ∆(a, b, c).
In Figure 5, we list more infeasible orientations that do not come from triangles. These
infeasible orientations consist only of the oriented arcs in each picture. However, for
the benefit of the reader, we have included dashed edges to indicate the negative cycle
in D(G, d).

The remainder of the proof is summarized in Figure 6. Each entry in the table
gives the infeasible orientations to apply in order to obtain a contradiction. For
example, consider the fourth row of the table. For this entire row, it suffices to

only consider the edges in E(TL). By symmetry, we may assume that (0, 2) ∈
−→
TL.

Next, ∆(3, 0, 2) implies that (0, 3) ∈
−→
TL. Then, A2 implies (1, 3) ∈

−→
TL. Since

(1, 3), (0, 2) ∈
−→
TL, we contradict A1. Thus, ∆(3, 0, 2), A1, and A2 are sufficient

to derive a contradiction. Sometimes the infeasible orientations need to be applied to

1If one does not want to check genericity, simply perturb d to a nearby generic distance function.
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Fig. 5. Infeasible orientations A0–A21.

T2 instead of to T1, in which case we have specified so.

Lemma 5.4. The graph K4 +e K4 is an excluded minor for f∞(G) 6 2.

Proof. By the previous lemma, f∞(K4 +e K4) = 3, so it suffices to show that
every proper minor H of K4 +e K4 satisfies f∞(H) 6 2. Contracting an edge of
K4 +eK4 yields a five-vertex graph which is not 3-connected. In particular, the latter
graph does not have W4 as a minor. We are done in this case, since by Lemma 5.2,
W4 is the only excluded minor for f∞(G) 6 2 among graphs on at most five vertices.
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Fig. 6. Proofs for all 36 possibilities for T1.

Deleting an edge from K4 +eK4 creates a degree-2 vertex, which we can suppress
by either Lemma 4.2 or Lemma 4.1. We then conclude as above, since the resulting
five-vertex graph is not 3-connected and thus does not contain a W4 minor.

6. Proof of the Main Theorem. The wheel on n+ 1 vertices, denoted by Wn,
is the graph obtained by adding a universal vertex to an n-cycle. If G and G′ are
graphs such that G = G′\e, we say that G′ is obtained from G by adding an edge. Let
v ∈ V (G) with degG(v) > 4. By splitting v, we mean the operation of first deleting
v and then adding two new adjacent vertices v1 and v2, where each neighbor of v in
G is adjacent to exactly one of v1 and v2, and v1 and v2 have degree at least three in
the new graph.

We require the following classic theorem of Tutte [18].

Theorem 6.1 (Tutte’s wheel theorem). Every 3-connected graph is obtained from
a wheel by adding edges and splitting vertices.
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The following characterization of graphs without a W4 minor is well known. For
the convenience of the reader, we give a quick proof via Theorem 6.1.

Theorem 6.2. The only 3-connected graph with no W4 minor is K4.

Proof. Let G be a 3-connected graph with no W4 minor. By Tutte’s wheel
theorem, G is obtained from some Wn by adding edges and splitting vertices. Since
G has no W4 minor, we must have n = 3. If G 6= W3, then we get a contradiction,
since there is no way to add an edge to W3 and stay simple, and there is no way to
split a vertex (W3 is cubic). Thus, G = W3 = K4, as required.

We also need the following two technical lemmas.

Lemma 6.3. Let G be a 2-connected graph and u and v be distinct vertices of G.
If G has a K4 minor, then G has a K4 minor K where u and v are contracted to
distinct vertices of K.

Proof. Let u and v be distinct vertices of G. Since G has a K4 minor and K4 is
cubic, G also has a subgraph H which is a subdivision of K4. By Menger’s theorem,
there are two disjoint paths from {u, v} to V (H). By contracting these paths onto
V (H), we may assume that u, v ∈ V (H). But now in H we can contract u and v onto
distinct branch vertices of K4.

We let K4 − e denote the graph obtained from K4 by removing an edge e.

Lemma 6.4. Let G be a 2-connected graph with distinct vertices u and v such that
deg(w) > 3 for all w ∈ V (G) \ {u, v}. Then G has a K4− e minor where u and v are
contracted to the endpoints of e.

Proof. Note that G + uv has a K4 minor since it has minimum degree 3. Thus,
the result follows by applying Lemma 6.3 to G+ uv.

Note that for all p ∈ [1,∞] and m ∈ N, the property fp(G) 6 m is closed under
0- and 1-sums. However, the graph K4 +e K4 shows that the property f∞(G) 6 2 is
not closed under taking 2-sums.

We are now ready to prove our main result.

Theorem 1.3. The excluded minors for f∞(G) 6 2 are W4 and K4 +e K4.

Proof. Let G be a minor-minimal graph with f∞(G) > 3. By minimality and the
preceding discussion, G is 2-connected. By Lemmas 4.1 and 4.2 we may assume that
G has minimum degree 3. By Lemmas 5.2 and 5.4 we may assume that G does not
have a W4 or K4 +e K4 minor. If G is 3-connected, then by Theorem 6.2, G = K4,
which is a contradiction since f∞(K4) = 2. Thus, G = G1 +f G2 or G = G1 ⊕f G2

for some graphs G1 and G2 with f := ab ∈ E(G1)∩E(G2) and |E(G1)|, |E(G2)| > 1.
Since f ∈ E(G1) ∩ E(G2) and G is 2-connected, it follows that G1 and G2 are both
2-connected. By Lemma 6.4, G1 has a K4 − e minor where a and b are contracted to
the endpoints of e, and G2 has a K4 − e minor where a and b are contracted to the
endpoints of e. Combining these two minors, we get a K4 +f K4 minor in G, which
is a contradiction.

Finally, we prove Corollary 1.4.

Corollary 1.4. The excluded minors for f1(G) 6 2 are W4 and K4 +e K4.

Proof. Note that the map φ : R2 → R2 given by (x, y) → (x−y
2 , x+y

2 ) is an
isometry between the metric spaces `2∞ and `21. Thus for every graph G and distance
function d on G, (G, d) is realizable in `2∞ if and only if it is realizable in `21. Therefore,
f∞(G) 6 2 implies f1(G) 6 2.
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Moreover, it follows from the equivalence between `1-embeddability and
membership in the cut cone [1] and Seymour’s linear description of the cut cone
of K5-minor free graphs [15] that every distance function d on a graph G can be
realized in some `m1 if G is K5-minor free. Hence for all K5-minor free graphs G, we
have f∞(G) 6 2 if and only if f1(G) 6 2.

We claim that in fact f∞(G) 6 2 if and only if f1(G) 6 2 for all graphs G. Indeed,
otherwise there would exist a graph G such that f∞(G) > 2 and f1(G) 6 2. Then G
would have a K5 minor, and thus f1(G) > f1(K5) > 3 (the last inequality is proved
in [19]), which is a contradiction. The result follows.

7. The example and some open problems. A tree-decomposition of a graph
G is a pair (T,B) where T is a tree and B := {Bt | t ∈ V (T )} is a collection of subsets
of vertices of G satisfying the following:

• G =
⋃

t∈V (T )G[Bt], and

• for each v ∈ V (G), the set of all w ∈ V (T ) such that v ∈ Bw induces a
connected subtree of T .

The width of (T,B) is max{|Bt| − 1 | t ∈ V (T )}. The tree-width of G is the
minimum width taken over all tree-decompositions of G. The path-width of G is
defined analogously, except we insist that T is a path instead of an arbitrary tree.

Fix any tree T with at least two vertices. Let V + := {v+ | v ∈ V (T )} and
V − := {v− | v ∈ V (T )} be two disjoint copies of V (T ). We construct a planar
graph T ◦K4 from T by replacing each vertex v of T by a pair of vertices v+, v− in
T ◦K4 and each edge vw of T by the 4-clique {v+, v−, w+, w−} in T ◦K4. Formally,
V (T ◦ K4) = {v+ | v ∈ V (T )} ∪ {v− | v ∈ V (T )} and E(T ◦ K4) = {v+v− | v ∈
V (T )} ∪ {v+w−, v+w+, v−w+, v−w− | vw ∈ E(T )}. We now prove the following
strengthened form of Theorem 1.5.

Theorem 1.5. For every tree T with at least two vertices, T ◦K4 is planar with
tree-width 3 and f∞(T ◦K4) > |V (T )|.

Proof. Clearly, T ◦K4 is planar since K4 is planar and planarity is closed under
taking 2-sums. It is also easy to see that T ◦K4 has tree-width 3. For the last part, we
order the edges of T arbitrarily and define a function d : E(T ◦K4)→ R>0 by letting
dv+v− := 1 for v ∈ V (T ), and dv+w+ = dv−w− := 2−i, dv+w− = dv−w+ := 1− 2−i for
the ith edge vw ∈ E(T ).

Claim 7.1. The function d : E(T ◦K4)→ R>0 is a distance function on T ◦K4.

Proof. We have to check that d(P ) > de for all edges e and all paths P
between the endpoints of e, where d(P ) :=

∑
f∈E(P ) df . Clearly, the inequality is

satisfied if P contains the edge e. Similarly, if P contains the edge v+v− for some
v ∈ V (T ), then d(P ) > dv+v− = 1 > de. Thus we may assume that P is a path in
T ◦K4 − ({e} ∪ {v+v− | v ∈ V (T )}).

Every edge f in the cut δ(V +) has df > 1 − 2−1 = 1
2 . Hence, if P contains at

least two edges in the cut δ(V +), then d(P ) > 1
2 + 1

2 = 1 > de. So we may further
assume that P contains at most one edge in δ(V +).

Since P does not contain the edge e, and T ◦K4[V +] and T ◦K4[V −] are both
isomorphic to the tree T , the path P cannot be completely contained in either of these
induced subgraphs. Thus P crosses δ(V +) exactly once, and e = u+z− for some u+

and z−. Let f = v+w− denote the unique edge of P in δ(V +), where vw ∈ E(T ). Then
P consists of a path in T ◦K4[V +] from u+ to v+, followed by the edge v+w−, followed
by a path in T ◦K4[V −] from w− to z−. Thus P contains v+w+ or v−w−. Without loss
of generality, P contains v+w+ and d(P ) > dv+w+ + dv+w− = 2−i + 1− 2−i = 1 > de,
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where i is the index of the edge vw ∈ E(T ).

Claim 7.2. For all distinct v, w ∈ V (T ), no feasible set of (T ◦K4, d) can contain
both v+v− and w+w−.

Proof. Let e := v+v− and f := w+w−. There are only two possible feasible
orientations of {e, f} (up to reversing both edges). Therefore, to prove the claim, it
suffices to exhibit paths P1, P2, Q1, Q2 such that

• P1 has ends v+ and w+ and P2 has ends v− and w−,
• Q1 has ends v+ and w− and Q2 has ends v− and w+, and
• d(P1) + d(P2) < de + df = 2 and d(Q1) + d(Q2) < de + df = 2.

Consider the unique path P = u1 · · ·uk in T from u1 := v to uk := w.
We take P1 := u+1 · · ·u

+
k and P2 := u−1 · · ·u

−
k . Then d(P1) = d(P2) is a

sum of distinct powers of two of the form 2−i, where i > 1 is an integer. Thus
d(P1) = d(P2) <

∑∞
i=1 2−i = 1 and in particular d(P1) + d(P2) < 1 + 1 = 2.

Pick j in {1, . . . , k − 1} such that in the ordering of E(T ), ujuj+1 ∈ E(T ) is the
minimum. We take Q1 := u+1 · · ·u

+
j u
−
j+1 · · ·u

−
k and Q2 := u−1 · · ·u

−
j u

+
j+1 · · ·u

+
k . Then

d(Q1) = d(Q2) < 1− 2−i +

∞∑
`=i+1

2−` = 1− 2−i + 2−i = 1.

Thus d(Q1) + d(Q2) < 1 + 1 = 2, as required.

Any realization of (T ◦K4, d) into `m∞ implies a partition of the edges of T ◦K4 into
m feasible sets. By the previous claim, no two of the edges of the form v+v−, where
v ∈ V (T ), can be put in the same feasible set. Thus we have f∞(T ◦K4) > |V (T )|.

Note that by a classic result of Nash-Williams [11], every planar graph can be
partitioned into three forests. Thus, Theorem 1.5 shows that f∞(G) − Υ(G) can be
arbitrarily large. Furthermore, by taking T to be a path or a star in Theorem 1.5, we
see that f∞ is not bounded as a function of path-width or as a function of diameter.

As promised, we finish the paper with a couple of open problems. One natural
question is to try to extend Theorem 1.3 to higher dimensions.

Question 7.3. What are the excluded minors for f∞(G) 6 3?

Let P4 be a path with four vertices and S3 be a star with three leaves. By
Theorem 1.5, f∞(P4 ◦K4) > 4 and f∞(S3 ◦K4) > 4. Thus, P4 ◦K4 and S3 ◦K4 each
contain an excluded minor for f∞(G) 6 3.

Finally, it is also interesting to ask how the excluded minors for fp(G) 6 k change
for p ∈ [1,∞]. Let G be the set of all finite graphs, and define ex : [1,∞] × N → 2G

by letting ex(p, k) be the set of excluded minors for fp(G) 6 k. Fix k, and define
p1 ≡k p2 if ex(p1, k) = ex(p2, k). Note that ≡k is an equivalence relation on [1,∞]. It
may be possible to prove something about the structure of the equivalence classes of
≡k without knowing the function ex(p, k). For example, by the graph minor theorem,
there are only countably many minor-closed properties. Thus, some equivalence class
of ≡k is necessarily uncountable.

Question 7.4. If C is an equivalence class of ≡k such that |C| is uncountable,
does C necessarily contain an interval?

Acknowledgment. We thank the two anonymous referees for their helpful
comments and in particular for pointing out a gap in the proof of Corollary 1.4 in a
previous version of the paper.
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[14] V. Rödl and A. Ruciński, Bipartite coverings of graphs, Combin. Probab. Comput., 6 (1997),

pp. 349–352, https://doi.org/10.1017/S0963548397003064.
[15] P. D. Seymour, Matroids and multicommodity flows, European J. Combin., 2 (1981), pp. 257–

290, https://doi.org/10.1016/S0195-6698(81)80033-9.
[16] M. Sitharam and H. Gao, Characterizing graphs with convex and connected Cayley

configuration spaces, Discrete Comput. Geom., 43 (2010), pp. 594–625, https://doi.org/
10.1007/s00454-009-9160-8.

[17] M. Sitharam and J. Willoughby, On Flattenability of Graphs, preprint, https://arxiv.org/
abs/1503.01489, 2015.

[18] W. T. Tutte, A theory of 3-connected graphs, Indag. Math., 23 (1961), pp. 441–455.
[19] H. S. Witsenhausen, Minimum dimension embedding of finite metric spaces, J. Combin.

Theory Ser. A, 42 (1986), pp. 184–199.

D
ow

nl
oa

de
d 

07
/2

7/
17

 to
 1

55
.6

9.
24

.1
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/BF02574037
https://doi.org/10.1007/s00454-015-9706-x
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1017/S0963548397003064
https://doi.org/10.1016/S0195-6698(81)80033-9
https://doi.org/10.1007/s00454-009-9160-8
https://doi.org/10.1007/s00454-009-9160-8
https://arxiv.org/abs/1503.01489
https://arxiv.org/abs/1503.01489

	Introduction
	Potentials and implicit realizations
	f(K7) = 5
	Degree-2 vertices
	The graphs W4 and K4 +e K4
	Proof of the Main Theorem
	The example and some open problems
	References

