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Abstract: Accurate and reliable state-of-charge (SOC) estimation is an important task for battery management system in a

satellite. Ambient temperature is one of the significant fac  tors that affect SOC estimatio n. Since satellite operates at
different temperatures throughout the orbit, it must be taken care of accordingly to safeguard the battery performance 85
and reliability. Moreover, SOC estimation depends on battery model accuracy as well. The battery parameters are

affected by temperature, SOC, charging and discharging rates. Hence, the parameters need to be updated accordingly

to improve the battery model and the SOC estimation accu  racy. In this study, a SOC estimation method and online
parameter updating using a dual square root unscented Ka Iman filter based on unit spherical unscented transform is
proposed. The proposed method has been validated experi mentally and the results are compared with extended %
Kalman filter and unscented Kalman filter based on unit s  pherical unscented transfor m. Experimental results have

shown that the proposed method has better performance in terms of lower root mean square error and absolute

maximum error.

95

1 Introduction become more common in recent years. The EKF method requires
the linearisation process of Jacobian matrix derivation and its
Lithium ion battery has become increasingly popular in satellite derivation is not trivial [1]. Computational intelligence methods
power applications because of its high energy density and weighsuch as articial neural networks have been used in SOC and statg,
ratio. Unlike other applications, servicing of hardware is infeasible of health (SOH) estimation [2Q3]. Their accuracy depends on
once the satellite is launched. Consequently, the safety andhe quality of the training data sets and the computational
reliability of the battery is of paramount important in satellite requirement is high. In previous methods, the SOC estimations are
applications. Over charging or discharging can cause irreversibleperformed at room temperature [7, 12, 17] and using constant
damage to the battery which would fail the satellite mission. battery parameters [12, 19]. In practice, the battery parameters are
Proper control in terms of reliable and accurate state-of-chargeaffected by many factors such as SOC and ambient temperaturé
(SOC) estimation is necessary to safeguard the batteryin satellite application, the temperature varies at different orbital
performance and operation of a satellite. SOC indicates the preseritme and it has a signcant effect on battery parameters and SOC.
available charge to its rated nominal charge capacity. It is used in In this paper, a dual square root unscented Kalrnitanusing unit
mission planning of a satellite. However, SOC cannot be measuregpherical unscented transform (DUKFST) is proposed to estimate
directly and it is estimated from measurable quantity such asSOC and update the battery parameters for a VELOX-|;,
batterys current and voltage. The operational requirement atnanosatellite from Satellite Research Center of Nanyang
different temperatures for satellite applications is one vital factorTechnological University. The unscented Kalmalier takes
that affects the accuracy of SOC estimation and battery parameter@dvantage of deterministic sampling method with a higher
Many SOC estimation methods have been presenteti]1 accuracy of second order than thst order EKF in estimating the
Among them, Coulomb counting is one of the most commonly mean and covariance of the state vector [12]. It avoids the
used methods. However, its accuracy is highly dependent on sensdferivation of Jacobian matrix to linearise a non-linear proces3l>
accuracy and it also suffers from unknown initial error [3, 4]. As it which is one of the major drawbacks of EKF. With spherical
is an open loop estimator, the accumulated error causes a drift andnscented transform, it uses fewer sigma points than the typical
results in poor estimation accuracy. Open circuit voltage (OCV)unscented transform and requires only one weighted tuning
method is another commonly used method. However, it needs th@parameter instead of three parameters required by the regular UKF
battery to be rested for a long period to estimate the bat&@V [12, 13]. The square root aspect of thdéter improves the ,,
[5]. As such, it is not practical for applications such as satellite numerical stability by ensuring the state covariance is always
whereby the battery is being used all the time. Hybrid method semi-positive denite [24]. However, all the Kalmanlter based
using the Coulomb counting and battery voltage has been used tenethods require the knowledge of process and measurement noise
overcome the shortfalls of Coulomb counting and OCV methods.which could affect Iter convergence and performance if not
One such example is using charging and discharging end voltagegetermined properly [12]. The noise covariance of the Kalman
[6, 7]. However, these voltages are highly dependent on the current lter has been adaptively updated through the scaling factor usidg®
and operating temperature. The needs of full charge and dischargeovariance matching in this paper. The proposed method has been
cycles shorten the battery lifespan which is not desirable for manyveri ed experimentally using the nanosatellite payload lprand
applications. Battery impedance has been used to estimate SOC &snchmarked with unscented Kalmdter based on unit spherical
well but it is more suitable for ofne purposes [8, 9]. unscented transform (UKFST) and EKF methods. It is shown that
Model-based SOC estimators using extended Kalrtan(EKF) the proposed method has a better performance in terms of lowgy,
[10-14], H [15, 16] and observer-based HIB] methods have  root mean square error (RMSE) across different temperatures at 0,
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25 and 50°C. The three temperatures are selected based on the Fig. 3, it is observed tha¥oc of the battery with a 50% SOC
internal satellite operating temperature range in the orbit. dropped to a lower value when the temperature is decreased figm
The outline of this paper is as follows. In Section 2, the lithiumion 25 to 0°C. Moreover, th&cc moves back to the original value
battery model and its state space system are presented. Sectionwhen the temperature rises back to 25°C. FigsiBows the case
presents the proposed DUKFST for SOC estimation and thethat the temperature is increased from 25 to 50°C.
updating of battery parameters. Section 4 presents the experimental To study the relationship betwe®¥gc and SOC, the open circuit
setup and results of the proposed method. Section 5 concludes thiest is performed [12, 32]. In this study, the hysteresis effect of
paper. battery is neglected. The hysteresis can be included if 28n
additional voltage source is connected in parallel Wight in
Fig. 1 with increased complexity [335]. For this experiment, the
2 Lithium-ion battery model battery is rst fully charged using constant current and constant
voltage (CC-CV) method. It is then rested for an hour to aNew
Different circuit models have been used to describe the internalto reach the equilibrium voltage an is recorded a%/oc. The 210
dynamics of a battery. Commonly used approaches include ondattery is subsequently discharged at 10% SOC level interval by
RC network [25, 26] and two RC networks [27, 28]. Multiple constant discharge current of 0.58 A followed by 1 hour rest
branches of RC networks can be added depending on the requiregieriod beforeVoc is measured. The experiment is repeated until
accuracy and the computational complexities [29, 30]. Doublethe battery is fully discharged/oc at different temperatures (0
polarisation model using the two RC networks as shown in Fig. 1and 50°C) are subsequently conducted in the same manner usiqg a

is used in this paper [27, 28]. thermal chamber. Fig. 4 shows tfgc and SOC relationship at 0,2
In Fig. 1, Voc represents the battery OCV and it is a function of 25 and 50°C. In Fig. 4, th¥oc at the fully discharged stage is
battery SOC and temperatur®)(lg is the battery current ard around 3.2 V and is different from the maximum discharge voltage

is the battery terminal voltagdg, Vi and T are the available 0f 2.5V. The 2.5V is the maximum discharge voltage and the
measurements for monitoring of battery in a battery managemenVoc is obtained after resting the battery for an hour after it is
system R, represents the instantaneous voltage drop to model thedischarged till the maximum discharge voltage. Similaio
resistance from electrolyte and RC networks are used to represergharacteristics in terms of voltage difference between the discharge
the relaxation effects of the battery during the charging andcurve and the OCV-SOC relationship can also be found in [32].
discharging process. The battery parameters are affected by Using Fig. 4, the relationship ¥ocand SOC () can be described
ambient temperatures, SOC, current and ageing factors. Amony @ 7th order polynomial using a polynomial cunténg method
them, the ambient temperature is one of the main factors that

affects battery parameters [31]. In this study, Li-ion (NCR18650) 225
battery with a nominal capacity of 2.9 Ah is used. It has a
maximum charge voltage of 4.2V and a discharge voltage of 2.5
V. Fig. 2a shows the experimental battery response at different 418 ; T T T ;
temperatures when a 1.45 A discharge pulse with 10 s duration is 4 4 : : : : :
applied on the battery. The detail of the experimental setup is 230
explained later in Section 4. Figb Bllustrates the performance of 4.14
battery having different released capacity at different temperatures 4,
when the battery is discharged from the fully charged state to the
fully discharged state by a constant 1.45A discharge current. & 41
From Fig. 2, it is observed that the internal dynamic response of & 43
the battery varies at different temperatures. As such, online g 235
identi cation and updating of battery parameters are necessary to > 40 : : ; : :
improve the battery model accuracy if it is expected to operate at  4.04f oo b LAY [ R SUSU .............. o]
different temperatures. : : : : :
402
. 4t 240
2.1 OCV against SOC at 0, 25 and 50°C
3.98 T i i L L
It is well-known that theVoc and SOC have a non-linear 0 10 20 3 40 >0
relationship. TheVoc is also affected by ambient temperature as T“nz(s)
shown in Fig. 3. To illustrate the temperature effectVeg, the
battery ambient temperature is varied from 25 to 0°C (cold 42 245
temperature) and 25 to 50°C (hot temperature). Fig. 3 shows how
the batteryVoc changes at different (hot and cold) temperatures.
Rp Rk — :
Ry fVsooT)  f(VsooT) N ISR ST Do S e S-S SO 20
V.4 AN ) :
f(Vsoc, T) [~V ol Is b "
/,A,i' Vo Vk == ) I Cmm g N \\ """ 1
Q + 78 - + -8 . : . : : : -
e Co Cx i : : 1 255
8 L ‘ Is A f(VSOC;T) f(Vsoc,T) v 2.8 AAAAAAAAAAAAAA AAAAAAAAAAAAAA AAAAAAAAAAAAAA AAAAAAAAAAAA }i AAAAAA
ol _ ' o SR O S . na
3 Voc i i i i |
N f(Vsoc, T) 0 0.5 1 15 2 25 3
Released Capacity (Ah)
b 260
= = Fig. 2 Experimental battery response at different temperatures Q2
al1l.45A (0.5C) 10 s discharge pulse response at 100% SOC
Fig. 1 Temperature dependent double polarisation model b 1.45 A constant current discharge curves at different temperatures (0, 25 and 50°C)
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o p e measurement functiokl, can then be derived as HI4] 350
S
zk+l 1 0 O Zk
O E 3 F(zVp, Vi, T)= Vo, = 0 e 0 Vo,
: 0 Dt/Rk C
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Fig. 3 Response of 3 at 50% SOC when temperature changes from Re(1 e PPRxCa) 260
a25to 0°C . .. M
b 25 to 50°C V= HX 2zl T)= ¥oclf (Vsoc T)) ¥o(Vsoc T)
@K(VSOO T |B§0(Vsoo T
as follows 3)
365

Vooz T)= mZ' + mZP+ ...+ mZ+ mz+mg (1)

where the coefients are m;=3520.553, m,=80.694, my=

$120.81,m, = 83.352,ms = $22.502,m = $1.542,m; = 2.418 and
mg = 3.124 for the case of 25°C.

2.2 Modelling of battery

Let be the battery SOG/p andVy be the voltages across the two

where t represents the sampling time dadandV; are the battery
current and terminal voltage measurements. Let the battery
. . 1 . 1 T

R foog Rog
Battery parameters need to be idead to estimate battery state 370
variables. To extract the battery parameters, various charge and
discharge pulses are injected into the battery at different SOC
intervals. Within the short observation time window, the battery
system can be considered as time invariant system and the transfer
function method can be used to identify the battery parameters

parameters be deed as z=

RC networks in Fig. 1. The dynamics of the voltage across the two[12]. To obtain the transfer function, Laplace transform is carrie

RC networks b andVy) and SOC are given by [£24]

out on (2). Thev; in frequency domain is then written as

AV | | I5(9)
Vo= 2 - Rolg(s) Rcls
s0d = o V9= Vocl® eOR R TrRoes @ o
o VD IB
Vo = Roz TICo@ T) . Coz T) @ By considering/—~Voc as output and the currely as the input, the
vV | transfer functiorG(s) can be obtained as (see (5))
W, = K B

RGZTCET) Tz

To extract the battery parameters, various charge and discharge
pulses are injected into the battery at different SOC intervals arsg5

whereQ, represents the battery nominal capacity from the batterythe corresponding voltage responses are measured. Using the
datasheet after ignoring the temperature and cycle dependencig®ltage responses and the corresponding injected current pulses,
[17, 25] andT is the battery temperature. The battery internal statethe transfer function coefients @, a1, a, by andby) of G(s) can

: be obtained. The battery parametdts, (Rp, Cp, R« andCy) can

a
- Using then be obtained by solving the transfer function cciefts.

9k+l \pD @K

variables, x, is de ned agx= o1 e

Fig. 1 and (2), the battery state process functién,and Different set of transfer functions and parameters are idehti 390
G VO Vocld @t ast a_ R+ (Ro/RoCo) * (Ro/RcCi) + (UCp)+ (U C)s+ ((Ro+ R+ Ry RoCoRcCr)
lg(s) §+ bys+ by &+ (URyCp) + (VRCy))s+ (U RpCpRc Cy)
395

®)
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Table 1 Identified initial battery parameters The error covariance @ andR can affect the Iter performance.
To further improve thelter performance, different adaptivitering

E;’ ig:ggm methods: maximum likelihood, Bayesian estimation and covariapge
Re 40.16 m matching have been used to adaptively up@eaadR [37]. One of

Co 330F the adaptive Kalman ltering techniques is covariance matching
Ck 1020 F which makes the elements of the innovation or residual-based

covariance matrix consistent with the theoretical values. The
estimated covariance matrix of the innovations or residuals should

with respect to each measure voltage at each SOC level. Then, th@ich with its theoretical form. Based on this assumption, e

average of all idented parameters is taken as the initial battery Philosophy of estimatin@ andR matrices takes place
parameters. The detail process to extract the initial battery

parameters can be found in [12]. The ideed initial battery Vi = Ve HiX

parameters are shown in Table 1.

However, these batter [ E v = HBH+ R

, y parameters vary at different temperature kVk Kk Pk ) 475
and SOC. They are updated through spherical square root K

unscented Kalman lter, which will be explained in the next C\‘f*N = 1 vl

section, to improve the battery model accuracy across different N =k N+1 I

SOC and ambient temperature.

However, the simultaneous adaptation of b@hand R¢ is not 4so
considered robust as discussed in [38, 39]. It is the state process

3 Dual spherical square-root unscented Kalman noise, which is unknown. Based on this assumpt@n.can be
filter-based SOC estimation adapted using the adaptive factoff40, 41].

Model-based estimation using EKF has been extensively used in trace@, R, 485
SOC and SOH estimation. However, there are a few drawbacks in a= trace H.P.HT

the EKF. One of the drawbacks is the need to linearise state KTk k

functions as part of the calculation of Jacobian matrices. This _trace H(Fy 1Py 1Fp 1+ G DHY (8)

could lead to divergence and instability of thiker. When the = = T T

state transition and measurement functions are highly non-linear, trace H(Fyc 1P 1F i 1+ Qe Hy

EKF could give a poor performance. To overcome the drawbacks, & = ad 490
L . . K k 1

UKF uses a deterministic sampling approach. Using unscented

transform, a minimal set of points called sigma points are used t

propagate the state mean and covariance. These points ar, | It b d for stat d " timation 110
propagated through the non-linear functions thus avoiding the nee frgzn Thers can be us?DUOIEISSaTe' an pafaﬁ"egs (_?_s tl)r;wazlon [10,
to linearise the functions. There are different types of unscented ™ 1. The summary o IS summarised in taole 2. 495

transforms for sigma points selection. In this paper, the spherical
transform is proposed which has the advantages of fewer sigma . .
points and tuning parameters thae regular unscented transform [36]. 4  EXperimental setup and analysis

In standard UKF, the state covariarRgis recursively updated . )
and propagated by decomposing into matrix square-S¥otr To validate the proposed method, a battery test bench as shown in
sigma point mapping at each time step wHaye SSL. P matrix Fig. 5 has be(_an set up. It consists of a power supply (Agiless
is then reconstructed from all propagated sigma points for E3631A) to simulate the charging from solar power, a DC
updating purpose. On the other hand, the Sqrt-UKFST direc“yelectronlc load (Prodigit 3311F) to simulate the loading effects of
propagates and updats without the need of decomposing and satellite subsystems and a thermal chamber (SE-300) for
reconstructing matriR,. This avoids the need of refactorisation on {€mperature control. The thermal chamber is used to maintain at
P« at each time step. Thus positive semittteness of thePy different temperatures to smulate the different operating range of
could be guaranteed which results in improved numerical stabilitythe battery at different orbits. The temperatures used for
[24]. The square root UKF makes use of three linear a|gebraexper|ment are at 0,_ 25 and 50°C following _the satellite expected
techniques for square-root covariance updates and propagaion: emperature operation range. The experimental results were

decomposition dr), Cholesky factor updatingcifolupdatg and collected with a data acquisition board (NI PXI-1036) via a
ef cient least squares. general purpose interface bus communication for reference SOC

Given an-dimensional state space model of a non-linear systemestimation. The reference SOC is obtained using the calibraied
and output equations as follows ampere hour counting via the high precision current sensors from
the power supply and the DC electronics load with the sensor
B - accuracy of 0.2 and 0.1%, respectively. All the hardware
B 1= F&, W)+ gw ©) equipment are controlled by LABVIEW software.

W = h(®, u) + v The setup is then used to perform VELOX-I nanosatellite payload
mission experiment as shown in Fig. 6 to validate the propoS&d
method. There are two different loading pes for the
enanosatellite: normal operation and payload operation. For the
normal operation, the load prie does not have many dynamic
load change. The VELOX-I payload operation dynamic loading
pattern is similar to the urban dynamometer driving schedkgg
Wwhich is used as the standard benchmark loadl@rm battery
testing [9, 11].

ith the adaptive process noise, dual estimation with two separate

whereuy is the system input variableg,is the system state variables
and y, is the state output variables. The state-space and th
measurement models aféx, u) and h(x, u), respectively. Let
Q« N (0, cow) and Rc N (0, cow) represent the Gaussian
process and measurement noises, respectively. Through th
spherical transform, thestate variables can be transformed imto
+2 sigma points ; with the weightw;. The approach to select
weights (v) and sigma points () is presented in [36]. The sigma
points are propagated through the state fundifgn u) and these 4.1 Robustness and convergence analysis in terms of
propagated sigma points are used to estimate the system gutputinitial SOC error 505
using h(x, uy) in (5). The Kalman lter gain K is calculated

throughS, and the cross covariané,. Then the state mean and The proposed method igst veri ed for its robustness in terms of
covariance are updated using the computed Kalman i§ain, initial SOC error. Assuming that there is an error in the initial



530

535

540

545

550

555

560

565

570

575

580

585

590

Table 2 Summary of DUKFST

Stepl: Set the initial state ¥, = & W, P, T parameter

b= Ry, Ry = Ry 3 and covariance S, and S;:
& S
%= E X, S =chol E[(X, ¥g)Xo %p)']
B=Ez, S,=chol El(zg B)z #)']

Step 2: Compute the sigma points  ;,

R n
Xik 1= B 1+ Sy 1%

Step 3: State estimates propagation,

Xk

1= F(X 11k 1)
n+1

X = 2< \¢D \¢K T= » OWx.iXk|k 1

Sx,k =

S,k = cholupdate{ S, , Xokk 1
Step 4: Calculation of estimated measurement

qr Wm0 %) Q

+

) 1
Yk 1= HX 10 lax 1] ¥ = W = UWx,iY\

i=0,1,...,n+1

)dx 1 Wx,o}
Y, and mean ¥,

Klk 1

i=
Step 5: Compute the measurement covariance S, and its update

Sy = ar{l Wi (Yimeiwk 1 ﬂ) R}
Sy, = cholupdate{ Sy, Yoy 1 ¥, Wy o}

Step 6: Calculation of cross covariance matrix

P. =

Xk Yk

n+1

P,

Xk Yk

DWx,i(Xifk|k 1 B)Mikk 1 \¢x,k)T

Step 7: Calculation of Kalman gain K, and state estimate update %/
through measurement V,

1 . .. &
Kx,k = kaw< S;k Sy‘kl ﬁ: =X+ Kx,k(vt,k \th)
Step 8: Covariance matrix update

Uy = Ky 1Sy,

S,k = cholupdate{ S, ,, U, 1}
Step 9: Time update and sigma-points calculation (parameter)

Sy = Inis’S

B =12

o1

Zyg1=8 ,+S, 7', i=0,1,..,n+1

Sq, =

szdk =

Dy 1
&,

= HX 2 101k 1)

n+1

= W,iDik 1
0

qr W, @ik 1 &) Q,
Sq, = cholupdate{ Sy, , Doy 1 &, W, 0}
Step 10: Calculation of cross covariance matrix

n+1 ..
_DWz,i(Z:Mk 1 B)Diwk 1 @k)T

P.

ZYk

Step 11: Calculation of Kalman gain K, and parameter estimate update
Z; through measurement ( y,=V,)

1 L. " i
K, = P,q,Sd, So. & = & + K, (Ve &)
Step 12: Covariance matrix update

S, =ch

Uz = KzSdk
olupdate{ S, , U,, 1}

First, the initial covariance and state estimates are selected. Then,  Steps 2
to 12 are recursively processed until end of the experiment (or input data).
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Fig. 5 Block diagram of battery test bench
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Fig. 6 VELOX-I nanosatellite payload current pte
SOC, the SOC estimation is performed with the load lpras

shown in Fig. 6. The battery isrst fully charged using CC-CV
method. Owing to the high initial charging current (1.45 A) of the
load prole, the battery charging voltage exceeds the absolute
limit of 4.2 V. To safeguard the charged safety limit voltage when
using the load prde, the battery is discharged to 80% SOC by a
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Fig. 7 Initial SOC error analysis of 80% reference SOC at 25°C
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Table 3

Initial SOC error analysis at 0 and 50°C

Reference SOC

80%

60%

with the maximum estimation error of 2.4% at 25°C. Table 3
summarises the performance at 0 and 50°C. The results show that
the initial estimation error does not impact the convergence of the
SOC estimation using the proposed DUKFST.

40% 730
iniial SOC,% 100 057 037 412 447 031 0.4 N

90 038 008 392 414 005 11 4.2 SOC Estimation at 0, 25 and 50°C

80 024 013 376 389 031 148

70 011 035 361 367 058 179 For a given initial SOC and battery parameters in Table 1, SOC

60 006 058 344 343 088 21 estimation is performed using the load geoin Fig. 6 at three ;55

50 022 078 325 222 121 239 ; i i

10 040 092 305 304 156 264 different temperatures: 0, 25 and 50°C. The performance of the

30 055 1.05 2.87 289 187 286 proposed method is then compared against UKFST and EKF. For

20 067 12 272 271 213  3.09 performance evaluation, the following RMSE and absolute

10 079 138 258 251 236 337 ;

0 0.88 156 246 228 257  3.67 maximum errors are used

0°C  50°C  0°C  50°C 0°C  50°C 240
temperature 1N )
RMSE= = 2z 5
M= ©

discharge current of 0.29 A (0.1 C). Different initial SOC errors in Maximum= Max z, %,

terms of 10% SOC intervals from 0 to 100% are considered for 745

the proposed method at three different temperatures: 0, 25 and 5%y g presents the SOC estimation comparison with the reference
C. Fig. 7 shows the convergence of initial error analysis at 25°C Q¢ and its absolute error between the estimated and reference
when the reference SOC is 80%. It can be observed that th%OC from DUKFST, UKFST and EKF at 50°C. From Fig. 9, it

proposed method converges to the actual SOC within 20 s. Tc‘)fan be observed that DUKFST and UKFST follow more closely to

further validate the convergence performance of the proposeqnhe reference SOC than the EKF. Figh $hows that DUKFST
method, different reference SOCs, that is, 40, 60 and 80%, ar%roduces the least estimation error. 750

performed at 0, 25 and 50°C. From Fig. 8, the DUKFST is able to = ygjng the same load prte, the experiment is conducted at 0 and
converge to the reference SOC across the entire operation ranggsec. Fig. 10 shows the corresponding absolute SOC estimation
error, respectively. From Fig. 10, it can be seen that the proposed

method outperforms the UKFST and EKF especially at 0 and 50°C.
100 . . : . : : ; :

The improvement in performance is because of the updatingsgf
ool Reference | | battery parameters by the proposed method. Fig. 11 shows the
— BEESFTST values ofRo, tp andtk at 0, 25 and 50°C. These estimated values
g during the experiment are plotted against SOC to have a clearer
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Table 4 Performance comparison between DUKST, UKFST and EKF

DUKFST UKFST, % EKF, % 860
0°C RMSE 1.96% 3.78 6.3
% increase w.r.t DUKST - 93 221
maximum 3.36% 6.66 13.5
% increase w.r.t DUKST 98 302

25°C RMSE 0.58% 0.62 4.1 865

% increase w.r.t DUKST - 6.9 607
maximum 2.86% 2.9 12.2
% increase w.r.t DUKST 1.4 321

50°C RMSE 0.36% 0.83 5.3

% increase w.r.t DUKST - 131 1372
maximum 1.93% 2.73 10.8
% increase w.r.t DUKST - 41 460 870

Table 5 Multiplication comparison analysis between DUKST, UKFST

and EKF
- - 875

Multiplication required
Operation DUKFST UKFST EKF
Prx (n+2)n? (n+2)n? -
Pyy (n+2)(nL) (n+2)(nL)
Py (n+2)L? (n+2)L? - 880
PH'(HPH™ +R) - - L3+2nL2

+2n°L
K(y-9) L¥+nL2+nL L3+nL?+ nL +Ln?
nL

P—KPy K Ln? Ln? nL+n?
total multiplication 253(z=5,L=1)+81 81(n=3, 73(n=3,
required (n=3,L=1)=334 L=1) L=1) 885

4.3 Computational requirement

Table 5 compares the number of multiplication required in each
operation for the DUKST, UKFST and EKF. In Table'B, ‘Z and

‘L’ denotes the number of states, the number of parameters and the
number of measurements, respectively. From the table, it is observed
that DUKFST has the most number of multiplication required as
expected. For the comparison between DUKFST and UFKST, the
total number of multiplication increased from 81 to 334. Howevesos
this also resulted in the improved performance of 93 and 98% for
RMSE and absolute maximum error, respectively, at 0°C. For
comparison with EKF at 0°C, it represents 221 and 302%
improvement for the RMSE and absolute maximum error, respectively.

900
5 Conclusion

Operating temperature of the satellite varies siganitly in one orbit
(about 100 minutes) which affects its battery parameters and SOC.
Most of the observer based methods useed battery parameters 905
obtained ofine at room temperature. The SOC estimation
accuracy is therefore degraded if the temperatuctuates. In this
paper, a new SOC estimation method and an online parameter
updating algorithm using a DUKFST with unit spherical unscented
transform is presented. It takes advantage of Jacobian free
Ef;’and unscented Kalmanlter and updates the parameters to improve th
¢ ty at 0, 25 and 50°C accuracy of battery model. Moreover, the spherical transform uses
fewer sigma points than the normal unscented transform. The
experimental results demonstrate that the proposed DUKFST

understanding how the battery parameters changes across differe ytperforms _the UKFST and EKF V.Vith the lowest _RMSE *’?‘”d the
west maximum errors. The improvement is particularlyois

SOC level and at different temperatures. It can be observed that: ™™ o . ; d
the parameters of battery vary across different temperature ang9ni cant at 0 and 50°C. For the computational analysis, this
SOC. From Fig. 14, Ro is higher in cold temperature and lower 'MmProvement —in  performance comes from the increased
in hot temperature as expected. However, these upd(,ﬂed:omputatlonal requirement compared with UKFST and EKF.
parameters might not rect the actual battery parameters values.
Still, it is able to represent thé used for the SOC estimation in
this paper. Table 4 shows the performance comparison betwee
the proposed DUKFST, UKFST and EKF. From T.able 4, it can be 1 Waag, W., Fleischer, C., Sauer, D.UCritical review of the methods for
seen that DUKFST has lower RMSE and maximum error than monitoring of lithium-ion batteries in electric and hybrid vehiclds Power
UKFST and EKF across different temperatures. Sources2014,258, pp. 321339

Fig. 11 Estimated battery parameters
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