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Abstract: Accurate and reliable state-of-charge (SOC) estimation is an important task for battery management system in a
satellite. Ambient temperature is one of the significant fac tors that affect SOC estimatio n. Since satellite operates at
different temperatures throughout the orbit, it must be taken care of accordingly to safeguard the battery performance
and reliability. Moreover, SOC estimation depends on battery model accuracy as well. The battery parameters are
affected by temperature, SOC, charging and discharging rates. Hence, the parameters need to be updated accordingly
to improve the battery model and the SOC estimation accu racy. In this study, a SOC estimation method and online
parameter updating using a dual square root unscented Ka lman filter based on unit spherical unscented transform is
proposed. The proposed method has been validated experi mentally and the results are compared with extended
Kalman filter and unscented Kalman filter based on unit s pherical unscented transfor m. Experimental results have
shown that the proposed method has better performance in terms of lower root mean square error and absolute
maximum error.
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1 Introduction

Lithium ion battery has become increasingly popular in sate
power applications because of its high energy density and w
ratio. Unlike other applications, servicing of hardware is infeas
once the satellite is launched. Consequently, the safety
reliability of the battery is of paramount important in sate
applications. Over charging or discharging can cause irreve
damage to the battery which would fail the satellite miss
Proper control in terms of reliable and accurate state-of-ch
(SOC) estimation is necessary to safeguard the ba
performance and operation of a satellite. SOC indicates the p
available charge to its rated nominal charge capacity. It is us
mission planning of a satellite. However, SOC cannot be mea
directly and it is estimated from measurable quantity suc
battery’s current and voltage. The operational requiremen
different temperatures for satellite applications is one vital fa
that affects the accuracy of SOC estimation and battery param

Many SOC estimation methods have been presented [1–16].
Among them, Coulomb counting is one of the most commo
used methods. However, its accuracy is highly dependent on s
accuracy and it also suffers from unknown initial error [3, 4]. A
is an open loop estimator, the accumulated error causes a dr
results in poor estimation accuracy. Open circuit voltage (O
method is another commonly used method. However, it need
battery to be rested for a long period to estimate the battery’s OCV
[5]. As such, it is not practical for applications such as sate
whereby the battery is being used all the time. Hybrid me
using the Coulomb counting and battery voltage has been us
overcome the shortfalls of Coulomb counting and OCV meth
One such example is using charging and discharging end vo
[6, 7]. However, these voltages are highly dependent on the cu
and operating temperature. The needs of full charge and disc
cycles shorten the battery lifespan which is not desirable for m
applications. Battery impedance has been used to estimate S
well but it is more suitable for of� ine purposes [8, 9].

Model-based SOC estimators using extended Kalman� lter (EKF)
[10–14], H� [15, 16] and observer-based [17–19] methods have
t

d
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d
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become more common in recent years. The EKF method req
the linearisation process of Jacobian matrix derivation and
derivation is not trivial [1]. Computational intelligence metho
such as arti� cial neural networks have been used in SOC and
of health (SOH) estimation [20–23]. Their accuracy depends o
the quality of the training data sets and the computati
requirement is high. In previous methods, the SOC estimation
performed at room temperature [7, 12, 17] and using con
battery parameters [12, 19]. In practice, the battery paramete
affected by many factors such as SOC and ambient tempera
In satellite application, the temperature varies at different or
time and it has a signi� cant effect on battery parameters and SO

In this paper, a dual square root unscented Kalman� lter using unit
spherical unscented transform (DUKFST) is proposed to est
SOC and update the battery parameters for a VELO
nanosatellite from Satellite Research Center of Nany
Technological University. The unscented Kalman� lter takes
advantage of deterministic sampling method with a hig
accuracy of second order than the� rst order EKF in estimating th
mean and covariance of the state vector [12]. It avoids
derivation of Jacobian matrix to linearise a non-linear proc
which is one of the major drawbacks of EKF. With spher
unscented transform, it uses fewer sigma points than the ty
unscented transform and requires only one weighted tu
parameter instead of three parameters required by the regula
[12, 13]. The square root aspect of the� lter improves the
numerical stability by ensuring the state covariance is alw
semi-positive de� nite [24]. However, all the Kalman� lter based
methods require the knowledge of process and measurement
which could affect � lter convergence and performance if n
determined properly [12]. The noise covariance of the Kal
� lter has been adaptively updated through the scaling factor
covariance matching in this paper. The proposed method has
veri� ed experimentally using the nanosatellite payload pro� le and
benchmarked with unscented Kalman� lter based on unit spheric
unscented transform (UKFST) and EKF methods. It is shown
the proposed method has a better performance in terms of
root mean square error (RMSE) across different temperatures
1
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25 and 50°C. The three temperatures are selected based
internal satellite operating temperature range in the orbit.

The outline of this paper is as follows. In Section 2, the lithium
battery model and its state space system are presented. Se
presents the proposed DUKFST for SOC estimation and
updating of battery parameters. Section 4 presents the experim
setup and results of the proposed method. Section 5 conclude
paper.
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2 Lithium-ion battery model

Different circuit models have been used to describe the int
dynamics of a battery. Commonly used approaches include
RC network [25, 26] and two RC networks [27, 28]. Multip
branches of RC networks can be added depending on the re
accuracy and the computational complexities [29, 30]. Do
polarisation model using the two RC networks as shown in F
is used in this paper [27, 28].

In Fig. 1,VOC represents the battery OCV and it is a function
battery SOC and temperature (T). IB is the battery current andVt
is the battery terminal voltage.IB, Vt and T are the available
measurements for monitoring of battery in a battery manage
system.RO represents the instantaneous voltage drop to mode
resistance from electrolyte and RC networks are used to rep
the relaxation effects of the battery during the charging
discharging process. The battery parameters are affecte
ambient temperatures, SOC, current and ageing factors. A
them, the ambient temperature is one of the main factors
affects battery parameters [31]. In this study, Li-ion (NCR186
battery with a nominal capacity of 2.9 Ah is used. It ha
maximum charge voltage of 4.2 V and a discharge voltage of
V. Fig. 2a shows the experimental battery response at diffe
temperatures when a 1.45 A discharge pulse with 10 s durat
applied on the battery. The detail of the experimental setu
explained later in Section 4. Fig. 2b illustrates the performance
battery having different released capacity at different tempera
when the battery is discharged from the fully charged state t
fully discharged state by a constant 1.45 A discharge cur
From Fig. 2, it is observed that the internal dynamic respons
the battery varies at different temperatures. As such, o
identi� cation and updating of battery parameters are necess
improve the battery model accuracy if it is expected to opera
different temperatures.

2.1 OCV against SOC at 0, 25 and 50°C

It is well-known that theVOC and SOC have a non-line
relationship. TheVOC is also affected by ambient temperature
shown in Fig. 3. To illustrate the temperature effect onVOC, the
battery ambient temperature is varied from 25 to 0°C (
temperature) and 25 to 50°C (hot temperature). Fig. 3 shows
the batteryVOC changes at different (hot and cold) temperatu
Fig. 1 Temperature dependent double polarisation model
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In Fig. 3a, it is observed thatVOC of the battery with a 50% SOC
dropped to a lower value when the temperature is decreased
25 to 0°C. Moreover, theVOC moves back to the original valu
when the temperature rises back to 25°C. Fig. 3b shows the cas
that the temperature is increased from 25 to 50°C.

To study the relationship betweenVOC and SOC, the open circu
test is performed [12, 32]. In this study, the hysteresis effec
battery is neglected. The hysteresis can be included i
additional voltage source is connected in parallel withVOC in
Fig. 1 with increased complexity [33–35]. For this experiment, th
battery is� rst fully charged using constant current and cons
voltage (CC-CV) method. It is then rested for an hour to allowVt
to reach the equilibrium voltage andVt is recorded asVOC. The
battery is subsequently discharged at 10% SOC level interv
constant discharge current of 0.58 A followed by 1 hour
period beforeVOC is measured. The experiment is repeated u
the battery is fully discharged.VOC at different temperatures (
and 50°C) are subsequently conducted in the same manner u
thermal chamber. Fig. 4 shows theVOC and SOC relationship at 0
25 and 50°C. In Fig. 4, theVOC at the fully discharged stage
around 3.2 V and is different from the maximum discharge vol
of 2.5 V. The 2.5 V is the maximum discharge voltage and
VOC is obtained after resting the battery for an hour after
discharged till the maximum discharge voltage. Sim
characteristics in terms of voltage difference between the disc
curve and the OCV-SOC relationship can also be found in [32

Using Fig. 4, the relationship ofVOC and SOC (�) can be described
by a 7th order polynomial using a polynomial curve-� tting method
Fig. 2 Experimental battery response at different temperatures Q2
a 1.45 A (0.5 C) 10 s discharge pulse response at 100% SOC
b 1.45 A constant current discharge curves at different temperatures (0, 25 and 50°C)
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Fig. 3 Response of VOC at 50% SOC when temperature changes from
a 25 to 0°C
b 25 to 50°C

Fig. 4 VOC against SOC at 0, 25 and 50°C
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as follows

VOC(z, T) = m1z7 + m2z6 + . . . + m6z2 + m7z + m8 (1)

where the coef� cients are m1 = Š20.553, m2 = 80.694, m3 =
Š120.81,m4 = 83.352,m5 = Š22.502,m6 = Š1.542,m7 = 2.418 and
m8 = 3.124 for the case of 25°C.
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2.2 Modelling of battery

Let � be the battery SOC,VD andVK be the voltages across the tw
RC networks in Fig. 1. The dynamics of the voltage across the
RC networks (VD andVK) and SOC are given by [12–14]

úz( úVSOC) = �
IB

Qb

úVD = �
VD

RD(z, T)CD(z, T)
+

IB

CD(z, T)

úVK = �
VK

RK(z, T)CK(z, T)
+

IB

CK(z, T)

(2)

whereQb represents the battery nominal capacity from the ba
datasheet after ignoring the temperature and cycle depend
[17, 25] andT is the battery temperature. The battery internal s

variables, x, is de� ned asx = özk+ 1
öVD

k+1

öVK
k+1

� � T
. Using

Fig. 1 and (2), the battery state process function,F and
G(s) =
Vt(s) � VOC(s)

IB(s)
= �

a2s2 + a1s+ a0

s2 + b1s+ b0
= �

ROs2 + ((RO/ RDCD) +
s2
es

measurement function,H, can then be derived as [12–14]

F(z, VD, VK, T) =

zk+ 1

VDk+ 1

VKk+ 1

�

�
�

�

�
	 =

1 0 0

0 e� Dt/RDCD 0

0 0 e� Dt/RK CK

�

�
�

�

�
	

zk

VDk

VKk

�

�
�

�

�
	

+

�
Dt
Qb

RD(1� e� Dt/RDCD)

RK(1� e� Dt/RK CK )

�

�
�
�
�

�

�
�
�
	

[IB]

öVt = H(x, z, IB, T) = öVOC(f (VSOC, T)) � öVD(VSOC, T)

� öVK(VSOC, T) � IB
öRO(VSOC, T)

(3)

where� t represents the sampling time andIB andVt are the battery
current and terminal voltage measurements. Let the ba

parameters be de� ned as z = öRO
öRD

1
öCD

öRK
1
öCK


 � T

.

Battery parameters need to be identi� ed to estimate battery sta
variables. To extract the battery parameters, various charg
discharge pulses are injected into the battery at different
intervals. Within the short observation time window, the bat
system can be considered as time invariant system and the tr
function method can be used to identify the battery param
[12]. To obtain the transfer function, Laplace transform is car
out on (2). TheVt in frequency domain is then written as

Vt(s) = VOC(s) � IB(s)RO �
RDIB(s)

1 + RDCDs
�

RKIB(s)
1 + RKCKs

(4)

By consideringVt–VOC as output and the currentIB as the input, the
transfer functionG(s) can be obtained as (see (5))

To extract the battery parameters, various charge and disc
pulses are injected into the battery at different SOC intervals
the corresponding voltage responses are measured. Usin
voltage responses and the corresponding injected current p
the transfer function coef� cients (a2, a1, a0, b1 andb0) of G(s) can
be obtained. The battery parameters (RO, RD, CD, RK andCK) can
then be obtained by solving the transfer function coef� cients.
Different set of transfer functions and parameters are iden� ed
(RO/ RKCK) + (1/ CD) + (1/ CK))s+ ((RO + R1 + R2)/ RDCDRKCK)
+ ((1/ RDCD) + (1/ RKCK))s+ (1/ RDCDRKCK)

(5)

3

395



n, th
tery
ttery

ratur
roo

xt
eren

.

ance

ing
ased
The
ould
the

Table 1 Identified initial battery parameters

RO 54.28 m�
RD 10.58 m�
RK 40.16 m�
CD 330 F
CK 1020 F
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with respect to each measure voltage at each SOC level. The
average of all identi� ed parameters is taken as the initial bat
parameters. The detail process to extract the initial ba
parameters can be found in [12]. The identi� ed initial battery
parameters are shown in Table 1.

However, these battery parameters vary at different tempe
and SOC. They are updated through spherical square
unscented Kalman� lter, which will be explained in the ne
section, to improve the battery model accuracy across diff
SOC and ambient temperature.
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3 Dual spherical square-root unscented Kalman
filter-based SOC estimation

Model-based estimation using EKF has been extensively us
SOC and SOH estimation. However, there are a few drawbac
the EKF. One of the drawbacks is the need to linearise
functions as part of the calculation of Jacobian matrices.
could lead to divergence and instability of the� lter. When the
state transition and measurement functions are highly non-l
EKF could give a poor performance. To overcome the drawb
UKF uses a deterministic sampling approach. Using unsce
transform, a minimal set of points called sigma points are us
propagate the state mean and covariance. These point
propagated through the non-linear functions thus avoiding the
to linearise the functions. There are different types of unsce
transforms for sigma points selection. In this paper, the sph
transform is proposed which has the advantages of fewer s
points and tuning parameters thanthe regular unscented transform [3

In standard UKF, the state covariancePk is recursively update
and propagated by decomposing into matrix square-rootSkfor
sigma point mapping at each time step wherePk = SkSk

T. Pk matrix
is then reconstructed from all propagated sigma points
updating purpose. On the other hand, the Sqrt-UKFST dir
propagates and updatesSk without the need of decomposing a
reconstructing matrixPk. This avoids the need of refactorisation
Pk at each time step. Thus positive semi-de� niteness of thePk
could be guaranteed which results in improved numerical sta
[24]. The square root UKF makes use of three linear alg
techniques for square-root covariance updates and propagatioQR
decomposition (qr), Cholesky factor updating (cholupdate) and
ef� cient least squares.

Given an-dimensional state space model of a non-linear sy
and output equations as follows

öxk+ 1 = f (öxk, uk) + gkwk

öyk = h(öxk, uk) + vk
(6)

whereuk is the system input variables,xk is the system state variabl
and yk is the state output variables. The state-space and
measurement models aref(x, u) and h(x, u), respectively. Le
Qk� N (0, covQ) and Rk � N (0, covR) represent the Gaussia
process and measurement noises, respectively. Through
spherical transform, then state variables can be transformed inton
+ 2 sigma points� i with the weightwi. The approach to sele
weights (wi) and sigma points (� i) is presented in [36]. The sigm
points are propagated through the state functionf(xk, uk) and these
propagated sigma points are used to estimate the system ou÷y
using h(xk, uk) in (5). The Kalman� lter gain K is calculated
throughSk and the cross covariancePxy. Then the state mean an
covariance are updated using the computed Kalman gain,K.
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The error covariance ofQ andRcan affect the� lter performance
To further improve the� lter performance, different adaptive� ltering
methods: maximum likelihood, Bayesian estimation and covari
matching have been used to adaptively updateQ andR [37]. One of
the adaptive Kalman� ltering techniques is covariance match
which makes the elements of the innovation or residual-b
covariance matrix consistent with the theoretical values.
estimated covariance matrix of the innovations or residuals sh
match with its theoretical form. Based on this assumption,
philosophy of estimatingQ andR matrices takes place

vk = yk � Hk�xk

E vkvT
k

� 

= Hk

öP�
k HT

k + Rk

Ck,N
v =

1
N

� k

j= k� N+ 1

vjv
T
j

(7)

However, the simultaneous adaptation of bothQk and Rk is not
considered robust as discussed in [38, 39]. It is the state pr
noise, which is unknown. Based on this assumption,Qk can be
adapted using the adaptive factor,� [40, 41].

a =
trace öCv � Rk

� 


trace Hk
�PkHT

k

� 


a =
trace Hk(F k� 1

÷Pk� 1F T
k� 1 + öQk� 1)HT

k

� 


trace Hk(F k� 1
öPk� 1F T

k� 1 + Qk� 1)HT
k

� 


öQk = a öQk� 1

(8)

With the adaptive process noise, dual estimation with two sep
Kalman� lters can be used for state and parameters estimation
11, 24]. The summary of DUKFST is summarised in Table 2.
a

e

e

4 Experimental setup and analysis

To validate the proposed method, a battery test bench as sho
Fig. 5 has been set up. It consists of a power supply (Ag
E3631A) to simulate the charging from solar power, a
electronic load (Prodigit 3311F) to simulate the loading effect
satellite subsystems and a thermal chamber (SE-300)
temperature control. The thermal chamber is used to mainta
different temperatures to simulate the different operating rang
the battery at different orbits. The temperatures used for
experiment are at 0, 25 and 50°C following the satellite expe
temperature operation range. The experimental results
collected with a data acquisition board (NI PXI-1036) via
general purpose interface bus communication for reference
estimation. The reference SOC is obtained using the calib
ampere hour counting via the high precision current sensors
the power supply and the DC electronics load with the se
accuracy of 0.2 and 0.1%, respectively. All the hardw
equipment are controlled by LABVIEW software.

The setup is then used to perform VELOX-I nanosatellite pay
mission experiment as shown in Fig. 6 to validate the prop
method. There are two different loading pro� les for the
nanosatellite: normal operation and payload operation. For
normal operation, the load pro� le does not have many dynam
load change. The VELOX-I payload operation dynamic load
pattern is similar to the urban dynamometer driving sche
which is used as the standard benchmark load pro� le in battery
testing [9, 11].

4.1 Robustness and convergence analysis in terms of
initial SOC error

The proposed method is� rst veri� ed for its robustness in terms
initial SOC error. Assuming that there is an error in the in
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Table 2 Summary of DUKFST

Step1: Set the initial state öxo = öz öV D
öV K

� � T
, parameter

özo = öRO
öRD

1
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öRK
1
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 � T

and covariance Sx and Sz:

öx0 = E x0

� �
, Sx0

= chol E[(x0 � öx 0)(x0 � öx 0)T]
� �

öz0 = E z0

� �
, Sz0

= chol E[(z0 � öz0)(z0 � öz0)T ]
� �

Step 2: Compute the sigma points � i,
xi ,k� 1 = öxk� 1 + Sx,k� 1xn

i , i = 0, 1, ...., n + 1

Step 3: State estimates propagation,
xk|k� 1 = F(xk� 1, IB,k� 1)

öx �
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k
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D
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K

� � T
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�n+ 1
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S�
x ,k = qr
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k )
����
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�� �� �

S�
x ,k = cholupdate{ S�

x ,k , x0,k|k� 1 � öx �
k , Wx,0}

Step 4: Calculation of estimated measurement Yk and mean öy �
k

Yk|k� 1 = H[xk|k� 1, IB,k� 1] öy �
k = öV �

t =
�n+ 1

i= 0
Wx,i Yi ,k|k� 1

Step 5: Compute the measurement covariance S÷y k
and its update

S÷y k
= qr {[

������
Wx ,i

�
(Y1:n+ 1,k|k� 1 � öy �

k )
��
R

�
]}

S÷y k
= cholupdate{ S÷y k

, Y0,k|k� 1 � öy �
k , Wx ,0}

Step 6: Calculation of cross covariance matrix Pxk yk

Pxk yk
=

�n+ 1

i= 0
Wx ,i (x

+
i ,k|k� 1 � öx �

k )(Yi ,k|k� 1 � öV �
t ,k )

T

Step 7: Calculation of Kalman gain Kx and state estimate update öx +
k

through measurement Vt

Kx ,k = Pxk yk
ST � 1

÷y k
S� 1

÷y k
öx +

k = öx �
k + Kx ,k (Vt ,k � öV �

t ,k )

Step 8: Covariance matrix update
Ux = Kx ,k S÷y k

Sx ,k = cholupdate{ S�
x ,k , Ux , � 1}

Step 9: Time update and sigma-points calculation (parameter)

öz�
k = özk� 1

S�
zk

= l � 1/ 2
RLS Szk� 1

zi ,k� 1 = özk� 1 + Szk� 1
Zn

i , i = 0, 1, ...., n + 1

Dk|k� 1 = H(xk , zk� 1, IB,k� 1)
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i= 0
Wz,i Di ,k|k � 1

Sdk
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Sdk
= cholupdate{ Sdk

, D0,k|k� 1 � ödk , Wz,0}

Step 10: Calculation of cross covariance matrix Pzk yk

Pzk dk
=

�n+ 1

i= 0
Wz,i (Z

+
i ,k|k � 1 � öz�

k )(Di ,k|k � 1 � öd k )
T

Step 11: Calculation of Kalman gain Kz,k and parameter estimate update
öz+
k through measurement ( yk = Vt)

Kz = Pzk dk
ST � 1

dk
S� 1

dk
öz+
k = öz�

k + Kz(Vt,k � öd �
k )

Step 12: Covariance matrix update

Uz = KzSdk

Szk
= cholupdate{ S�

zk
, Uz, � 1}

First, the initial covariance and state estimates are selected. Then, Steps 2
to 12 are recursively processed until end of the experiment (or input data).

Fig. 6 VELOX-I nanosatellite payload current pro� le

Fig. 5 Block diagram of battery test bench
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SOC, the SOC estimation is performed with the load pro� le as
shown in Fig. 6. The battery is� rst fully charged using CC-CV
method. Owing to the high initial charging current (1.45 A) of
load pro� le, the battery charging voltage exceeds the abs
limit of 4.2 V. To safeguard the charged safety limit voltage w
using the load pro� le, the battery is discharged to 80% SOC b
Fig. 7 Initial SOC error analysis of 80% reference SOC at 25°C

Fig. 8 SOC estimation error under unknown initial SOC at 25°C
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Table 3 Initial SOC error analysis at 0 and 50°C

Reference SOC

80% 60% 40%

initial SOC, % 100 0.57 0.37 4.12 4.47 0.31 0.64
90 0.38 0.08 3.92 4.14 0.05 1.1
80 0.24 0.13 3.76 3.89 0.31 1.48
70 0.11 0.35 3.61 3.67 0.58 1.79
60 0.06 0.58 3.44 3.43 0.88 2.1
50 0.22 0.78 3.25 2.22 1.21 2.39
40 0.40 0.92 3.05 3.04 1.56 2.64
30 0.55 1.05 2.87 2.89 1.87 2.86
20 0.67 1.2 2.72 2.71 2.13 3.09
10 0.79 1.38 2.58 2.51 2.36 3.37
0 0.88 1.56 2.46 2.28 2.57 3.67

0°C 50°C 0°C 50°C 0°C 50°C
temperature
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discharge current of 0.29 A (0.1 C). Different initial SOC error
terms of 10% SOC intervals from 0 to 100% are considered
the proposed method at three different temperatures: 0, 25 an
C. Fig. 7 shows the convergence of initial error analysis at 2
when the reference SOC is 80%. It can be observed tha
proposed method converges to the actual SOC within 20 s
further validate the convergence performance of the prop
method, different reference SOCs, that is, 40, 60 and 80%
performed at 0, 25 and 50°C. From Fig. 8, the DUKFST is ab
converge to the reference SOC across the entire operation
Fig. 9 SOC
a Estimation
b Absolute error comparison against reference SOC by DUKFST, UKFST and EKF at
50°C

6

with the maximum estimation error of 2.4% at 25°C. Tabl
summarises the performance at 0 and 50°C. The results sho
the initial estimation error does not impact the convergence o
SOC estimation using the proposed DUKFST.
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0°C.
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4.2 SOC Estimation at 0, 25 and 50°C

For a given initial SOC and battery parameters in Table 1, S
estimation is performed using the load pro� le in Fig. 6 at three
different temperatures: 0, 25 and 50°C. The performance o
proposed method is then compared against UKFST and EKF
performance evaluation, the following RMSE and abso
maximum errors are used

RMSE=

������������������
1
n

� n

k= 1

zk � özk

� � 2

�

Maximum= Max zk � özk

�
�

�
�

(9)

Fig. 9 presents the SOC estimation comparison with the refe
SOC and its absolute error between the estimated and refe
SOC from DUKFST, UKFST and EKF at 50°C. From Fig. 9
can be observed that DUKFST and UKFST follow more closel
the reference SOC than the EKF. Fig. 9b shows that DUKFST
produces the least estimation error.

Using the same load pro� le, the experiment is conducted at 0 a
25°C. Fig. 10 shows the corresponding absolute SOC estim
error, respectively. From Fig. 10, it can be seen that the prop
method outperforms the UKFST and EKF especially at 0 and 5

The improvement in performance is because of the updatin
battery parameters by the proposed method. Fig. 11 show
values ofRO, t D andt K at 0, 25 and 50°C. These estimated val
during the experiment are plotted against SOC to have a cl
Fig. 10 SOC estimation error comparison at
a 0°C
b 25°C
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Fig. 11 Estimated battery parameters
a RO

b t D and
c t K at 0, 25 and 50°C

Table 5 Multiplication comparison analysis between DUKST, UKFST
and EKF

Multiplication required

Operation DUKFST UKFST EKF

Pxx (n + 2)n2 (n + 2)n2 –
Pxy (n + 2)(nL) (n + 2)(nL) –
Pyy (n + 2)L2 (n + 2)L2 –
PHT(HPHT + R) – – L3 + 2nL2

+ 2n2L
K(y–y^) L3 + nL2 + nL L3 + nL2 +

nL
nL + Ln2

P–KPyyK Ln2 Ln2 n2L + n3

total multiplication
required

253(z= 5, L = 1) + 81
(n = 3, L = 1) = 334

81(n = 3,
L = 1)

73(n = 3,
L = 1)

Table 4 Performance comparison between DUKST, UKFST and EKF

DUKFST UKFST, % EKF, %

0°C RMSE 1.96% 3.78 6.3
% increase w.r.t DUKST – 93 221

maximum 3.36% 6.66 13.5
% increase w.r.t DUKST – 98 302

25°C RMSE 0.58% 0.62 4.1
% increase w.r.t DUKST – 6.9 607

maximum 2.86% 2.9 12.2
% increase w.r.t DUKST – 1.4 321

50°C RMSE 0.36% 0.83 5.3
% increase w.r.t DUKST – 131 1372

maximum 1.93% 2.73 10.8
% increase w.r.t DUKST – 41 460
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understanding how the battery parameters changes across d
SOC level and at different temperatures. It can be observed
the parameters of battery vary across different temperature
SOC. From Fig. 11a, RO is higher in cold temperature and low
in hot temperature as expected. However, these up
parameters might not re� ect the actual battery parameters valu
Still, it is able to represent theVt used for the SOC estimation
this paper. Table 4 shows the performance comparison be
the proposed DUKFST, UKFST and EKF. From Table 4, it can
seen that DUKFST has lower RMSE and maximum error
UKFST and EKF across different temperatures.
4.3 Computational requirement

Table 5 compares the number of multiplication required in e
operation for the DUKST, UKFST and EKF. In Table 5,‘n’, ‘z’ and
‘L’ denotes the number of states, the number of parameters a
number of measurements, respectively. From the table, it is obs
that DUKFST has the most number of multiplication required
expected. For the comparison between DUKFST and UFKST
total number of multiplication increased from 81 to 334. Howe
this also resulted in the improved performance of 93 and 98%
RMSE and absolute maximum error, respectively, at 0°C.
comparison with EKF at 0°C, it represents 221 and 30
improvement for the RMSE and absolute maximum error, respect
nt
t
d

d

5 Conclusion

Operating temperature of the satellite varies signi� cantly in one orbit
(about 100 minutes) which affects its battery parameters and
Most of the observer based methods used� xed battery paramete
obtained of� ine at room temperature. The SOC estima
accuracy is therefore degraded if the temperature� uctuates. In this
paper, a new SOC estimation method and an online para
updating algorithm using a DUKFST with unit spherical unscen
transform is presented. It takes advantage of Jacobian
unscented Kalman� lter and updates the parameters to improve
accuracy of battery model. Moreover, the spherical transform
fewer sigma points than the normal unscented transform.
experimental results demonstrate that the proposed DUK
outperforms the UKFST and EKF with the lowest RMSE and
lowest maximum errors. The improvement is particula
signi� cant at 0 and 50°C. For the computational analysis,
improvement in performance comes from the increa
computational requirement compared with UKFST and EKF.
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