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Abstract: Accurate and reliable state-of-charge (SOC) estimation is an important task for battery management system in a
satellite. Ambient temperature is one of the significant factors that affect SOC estimation. Since satellite operates at
different temperatures throughout the orbit, it must be taken care of accordingly to safeguard the battery performance
and reliability. Moreover, SOC estimation depends on battery model accuracy as well. The battery parameters are
affected by temperature, SOC, charging and discharging rates. Hence, the parameters need to be updated accordingly
to improve the battery model and the SOC estimation accuracy. In this study, a SOC estimation method and online
parameter updating using a dual square root unscented Kalman filter based on unit spherical unscented transform is
proposed. The proposed method has been validated experimentally and the results are compared with extended
Kalman filter and unscented Kalman filter based on unit spherical unscented transform. Experimental results have
shown that the proposed method has better performance in terms of lower root mean square error and absolute
maximum error.
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1 Introduction

Lithium ion battery has become increasingly popular in satellite
power applications because of its high energy density and weight
ratio. Unlike other applications, servicing of hardware is infeasible
once the satellite is launched. Consequently, the safety and
reliability of the battery is of paramount important in satellite
applications. Over charging or discharging can cause irreversible
damage to the battery which would fail the satellite mission.
Proper control in terms of reliable and accurate state-of-charge
(SOC) estimation is necessary to safeguard the battery
performance and operation of a satellite. SOC indicates the present
available charge to its rated nominal charge capacity. It is used in
mission planning of a satellite. However, SOC cannot be measured
directly and it is estimated from measurable quantity such as
battery’s current and voltage. The operational requirement at
different temperatures for satellite applications is one vital factor
that affects the accuracy of SOC estimation and battery parameters.

Many SOC estimation methods have been presented [1–16].
Among them, Coulomb counting is one of the most commonly
used methods. However, its accuracy is highly dependent on sensor
accuracy and it also suffers from unknown initial error [3, 4]. As it
is an open loop estimator, the accumulated error causes a drift and
results in poor estimation accuracy. Open circuit voltage (OCV)
method is another commonly used method. However, it needs the
battery to be rested for a long period to estimate the battery’s OCV
[5]. As such, it is not practical for applications such as satellite
whereby the battery is being used all the time. Hybrid method
using the Coulomb counting and battery voltage has been used to
overcome the shortfalls of Coulomb counting and OCV methods.
One such example is using charging and discharging end voltages
[6, 7]. However, these voltages are highly dependent on the current
and operating temperature. The needs of full charge and discharge
cycles shorten the battery lifespan which is not desirable for many
applications. Battery impedance has been used to estimate SOC as
well but it is more suitable for offline purposes [8, 9].

Model-based SOC estimators using extended Kalman filter (EKF)
[10–14], H∞ [15, 16] and observer-based [17–19] methods have
become more common in recent years. The EKF method requires
the linearisation process of Jacobian matrix derivation and its
derivation is not trivial [1]. Computational intelligence methods
such as artificial neural networks have been used in SOC and state
of health (SOH) estimation [20–23]. Their accuracy depends on
the quality of the training data sets and the computational
requirement is high. In previous methods, the SOC estimations are
performed at room temperature [7, 12, 17] and using constant
battery parameters [12, 19]. In practice, the battery parameters are
affected by many factors such as SOC and ambient temperatures.
In satellite application, the temperature varies at different orbital
time and it has a significant effect on battery parameters and SOC.

In this paper, a dual square root unscented Kalman filter using unit
spherical unscented transform (DUKFST) is proposed to estimate
SOC and update the battery parameters for a VELOX-I
nanosatellite from Satellite Research Center of Nanyang
Technological University. The unscented Kalman filter takes
advantage of deterministic sampling method with a higher
accuracy of second order than the first order EKF in estimating the
mean and covariance of the state vector [12]. It avoids the
derivation of Jacobian matrix to linearise a non-linear process,
which is one of the major drawbacks of EKF. With spherical
unscented transform, it uses fewer sigma points than the typical
unscented transform and requires only one weighted tuning
parameter instead of three parameters required by the regular UKF
[12, 13]. The square root aspect of the filter improves the
numerical stability by ensuring the state covariance is always
semi-positive definite [24]. However, all the Kalman filter based
methods require the knowledge of process and measurement noise
which could affect filter convergence and performance if not
determined properly [12]. The noise covariance of the Kalman
filter has been adaptively updated through the scaling factor using
covariance matching in this paper. The proposed method has been
verified experimentally using the nanosatellite payload profile and
benchmarked with unscented Kalman filter based on unit spherical
unscented transform (UKFST) and EKF methods. It is shown that
the proposed method has a better performance in terms of lower
root mean square error (RMSE) across different temperatures at 0,
1
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25 and 50°C. The three temperatures are selected based on the
internal satellite operating temperature range in the orbit.

The outline of this paper is as follows. In Section 2, the lithium ion
battery model and its state space system are presented. Section 3
presents the proposed DUKFST for SOC estimation and the
updating of battery parameters. Section 4 presents the experimental
setup and results of the proposed method. Section 5 concludes this
paper.
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2 Lithium-ion battery model

Different circuit models have been used to describe the internal
dynamics of a battery. Commonly used approaches include one
RC network [25, 26] and two RC networks [27, 28]. Multiple
branches of RC networks can be added depending on the required
accuracy and the computational complexities [29, 30]. Double
polarisation model using the two RC networks as shown in Fig. 1
is used in this paper [27, 28].

In Fig. 1, VOC represents the battery OCV and it is a function of
battery SOC and temperature (T ). IB is the battery current and Vt

is the battery terminal voltage. IB, Vt and T are the available
measurements for monitoring of battery in a battery management
system. RO represents the instantaneous voltage drop to model the
resistance from electrolyte and RC networks are used to represent
the relaxation effects of the battery during the charging and
discharging process. The battery parameters are affected by
ambient temperatures, SOC, current and ageing factors. Among
them, the ambient temperature is one of the main factors that
affects battery parameters [31]. In this study, Li-ion (NCR18650)
battery with a nominal capacity of 2.9 Ah is used. It has a
maximum charge voltage of 4.2 V and a discharge voltage of 2.5
V. Fig. 2a shows the experimental battery response at different
temperatures when a 1.45 A discharge pulse with 10 s duration is
applied on the battery. The detail of the experimental setup is
explained later in Section 4. Fig. 2b illustrates the performance of
battery having different released capacity at different temperatures
when the battery is discharged from the fully charged state to the
fully discharged state by a constant 1.45 A discharge current.
From Fig. 2, it is observed that the internal dynamic response of
the battery varies at different temperatures. As such, online
identification and updating of battery parameters are necessary to
improve the battery model accuracy if it is expected to operate at
different temperatures.

2.1 OCV against SOC at 0, 25 and 50°C

It is well-known that the VOC and SOC have a non-linear
relationship. The VOC is also affected by ambient temperature as
shown in Fig. 3. To illustrate the temperature effect on VOC, the
battery ambient temperature is varied from 25 to 0°C (cold
temperature) and 25 to 50°C (hot temperature). Fig. 3 shows how
the battery VOC changes at different (hot and cold) temperatures.
Fig. 1 Temperature dependent double polarisation model

2

In Fig. 3a, it is observed that VOC of the battery with a 50% SOC
dropped to a lower value when the temperature is decreased from
25 to 0°C. Moreover, the VOC moves back to the original value
when the temperature rises back to 25°C. Fig. 3b shows the case
that the temperature is increased from 25 to 50°C.

To study the relationship between VOC and SOC, the open circuit
test is performed [12, 32]. In this study, the hysteresis effect of
battery is neglected. The hysteresis can be included if an
additional voltage source is connected in parallel with VOC in
Fig. 1 with increased complexity [33–35]. For this experiment, the
battery is first fully charged using constant current and constant
voltage (CC-CV) method. It is then rested for an hour to allow Vt

to reach the equilibrium voltage and Vt is recorded as VOC. The
battery is subsequently discharged at 10% SOC level interval by
constant discharge current of 0.58 A followed by 1 hour rest
period before VOC is measured. The experiment is repeated until
the battery is fully discharged. VOC at different temperatures (0
and 50°C) are subsequently conducted in the same manner using a
thermal chamber. Fig. 4 shows the VOC and SOC relationship at 0,
25 and 50°C. In Fig. 4, the VOC at the fully discharged stage is
around 3.2 V and is different from the maximum discharge voltage
of 2.5 V. The 2.5 V is the maximum discharge voltage and the
VOC is obtained after resting the battery for an hour after it is
discharged till the maximum discharge voltage. Similar
characteristics in terms of voltage difference between the discharge
curve and the OCV-SOC relationship can also be found in [32].

Using Fig. 4, the relationship of VOC and SOC (ζ) can be described
by a 7th order polynomial using a polynomial curve-fitting method
Fig. 2 Experimental battery response at different temperatures Q2

a 1.45 A (0.5 C) 10 s discharge pulse response at 100% SOC
b 1.45 A constant current discharge curves at different temperatures (0, 25 and 50°C)
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Fig. 3 Response of VOC at 50% SOC when temperature changes from

a 25 to 0°C
b 25 to 50°C

Fig. 4 VOC against SOC at 0, 25 and 50°C
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as follows

VOC(z, T ) = m1z
7 + m2z

6 + . . .+ m6z
2 + m7z+ m8 (1)

where the coefficients are m1 =−20.553, m2 = 80.694, m3 =
−120.81, m4 = 83.352, m5 =−22.502, m6 =−1.542, m7 = 2.418 and
m8 = 3.124 for the case of 25°C.
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2.2 Modelling of battery

Let ζ be the battery SOC, VD and VK be the voltages across the two
RC networks in Fig. 1. The dynamics of the voltage across the two
RC networks (VD and VK) and SOC are given by [12–14]

ż(V̇ SOC) = − IB
Qb

V̇ D = − VD

RD(z, T )CD(z, T )
+ IB

CD(z, T )

V̇ K = − VK

RK (z, T )CK (z, T )
+ IB

CK (z, T )

(2)

where Qb represents the battery nominal capacity from the battery
datasheet after ignoring the temperature and cycle dependencies
[17, 25] and T is the battery temperature. The battery internal state

variables, x, is defined asx = ẑ k+1 V̂ D
k+1

V̂ K
k+1

[ ]T
. Using

Fig. 1 and (2), the battery state process function, F and
G(s) = Vt(s)− VOC(s)

IB(s)
= − a2s

2 + a1s+ a0
s2 + b1s+ b0

= − ROs
2 + ((RO/RDCD)+

s2
measurement function, H, can then be derived as [12–14]

F(z, VD, VK , T )=
zk+1

VDk+1

VKk+1

⎡
⎢⎣

⎤
⎥⎦=

1 0 0

0 e−Dt/RDCD 0

0 0 e−Dt/RKCK

⎡
⎢⎣

⎤
⎥⎦

zk
VDk

VKk

⎡
⎢⎣

⎤
⎥⎦

+
−Dt

Qb

RD(1− e−Dt/RDCD )

RK (1− e−Dt/RKCK )

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦[IB]

V̂ t =H(x, z, IB, T )= V̂OC(f (VSOC, T ))− V̂D(VSOC, T )

− V̂ K (VSOC, T )− IBR̂O(VSOC, T )

(3)

where Δt represents the sampling time and IB and Vt are the battery
current and terminal voltage measurements. Let the battery

parameters be defined as z = R̂O R̂D
1

ĈD

R̂K
1

ĈK

[ ]T
.

Battery parameters need to be identified to estimate battery state
variables. To extract the battery parameters, various charge and
discharge pulses are injected into the battery at different SOC
intervals. Within the short observation time window, the battery
system can be considered as time invariant system and the transfer
function method can be used to identify the battery parameters
[12]. To obtain the transfer function, Laplace transform is carried
out on (2). The Vt in frequency domain is then written as

Vt(s) = VOC(s)− IB(s)RO − RDIB(s)

1+ RDCDs
− RKIB(s)

1+ RKCKs
(4)

By considering Vt–VOC as output and the current IB as the input, the
transfer function G(s) can be obtained as (see (5))

To extract the battery parameters, various charge and discharge
pulses are injected into the battery at different SOC intervals and
the corresponding voltage responses are measured. Using the
voltage responses and the corresponding injected current pulses,
the transfer function coefficients (a2, a1, a0, b1 and b0) of G(s) can
be obtained. The battery parameters (RO, RD, CD, RK and CK) can
then be obtained by solving the transfer function coefficients.
Different set of transfer functions and parameters are identified
(RO/RKCK )+ (1/CD)+ (1/CK ))s+ ((RO + R1 + R2)/RDCDRKCK )
+ ((1/RDCD)+ (1/RKCK ))s+ (1/RDCDRKCK )

(5)

3
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Table 1 Identified initial battery parameters

RO 54.28 mΩ
RD 10.58 mΩ
RK 40.16 mΩ
CD 330 F
CK 1020 F
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with respect to each measure voltage at each SOC level. Then, the
average of all identified parameters is taken as the initial battery
parameters. The detail process to extract the initial battery
parameters can be found in [12]. The identified initial battery
parameters are shown in Table 1.

However, these battery parameters vary at different temperature
and SOC. They are updated through spherical square root
unscented Kalman filter, which will be explained in the next
section, to improve the battery model accuracy across different
SOC and ambient temperature.
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3 Dual spherical square-root unscented Kalman
filter-based SOC estimation

Model-based estimation using EKF has been extensively used in
SOC and SOH estimation. However, there are a few drawbacks in
the EKF. One of the drawbacks is the need to linearise state
functions as part of the calculation of Jacobian matrices. This
could lead to divergence and instability of the filter. When the
state transition and measurement functions are highly non-linear,
EKF could give a poor performance. To overcome the drawbacks,
UKF uses a deterministic sampling approach. Using unscented
transform, a minimal set of points called sigma points are used to
propagate the state mean and covariance. These points are
propagated through the non-linear functions thus avoiding the need
to linearise the functions. There are different types of unscented
transforms for sigma points selection. In this paper, the spherical
transform is proposed which has the advantages of fewer sigma
points and tuning parameters than the regular unscented transform [36].

In standard UKF, the state covariance Pk is recursively updated
and propagated by decomposing into matrix square-root Skfor
sigma point mapping at each time step where Pk = SkSk

T. Pk matrix
is then reconstructed from all propagated sigma points for
updating purpose. On the other hand, the Sqrt-UKFST directly
propagates and updates Sk without the need of decomposing and
reconstructing matrix Pk. This avoids the need of refactorisation on
Pk at each time step. Thus positive semi-definiteness of the Pk

could be guaranteed which results in improved numerical stability
[24]. The square root UKF makes use of three linear algebra
techniques for square-root covariance updates and propagation: QR
decomposition (qr), Cholesky factor updating (cholupdate) and
efficient least squares.

Given a n-dimensional state space model of a non-linear system
and output equations as follows

x̂k+1 = f (x̂k , uk )+ gkwk

ŷk = h(x̂k , uk )+ vk
(6)

where uk is the system input variables, xk is the system state variables
and yk is the state output variables. The state-space and the
measurement models are f(x, u) and h(x, u), respectively. Let
Qk∼N (0, covQ) and Rk∼N (0, covR) represent the Gaussian
process and measurement noises, respectively. Through the
spherical transform, the n state variables can be transformed into n
+ 2 sigma points χi with the weight wi. The approach to select
weights (wi) and sigma points (χi) is presented in [36]. The sigma
points are propagated through the state function f(xk, uk) and these
propagated sigma points are used to estimate the system output ỹ
using h(xk, uk) in (5). The Kalman filter gain K is calculated
through Sk and the cross covariance Pxy. Then the state mean and
covariance are updated using the computed Kalman gain, K.
4

The error covariance of Q and R can affect the filter performance.
To further improve the filter performance, different adaptive filtering
methods: maximum likelihood, Bayesian estimation and covariance
matching have been used to adaptively update Q and R [37]. One of
the adaptive Kalman filtering techniques is covariance matching
which makes the elements of the innovation or residual-based
covariance matrix consistent with the theoretical values. The
estimated covariance matrix of the innovations or residuals should
match with its theoretical form. Based on this assumption, the
philosophy of estimating Q and R matrices takes place

vk = yk − Hk�xk

E vkv
T
k

{ } = HkP̂
−
k H

T
k + Rk

Ck,N
v = 1

N

∑k
j=k−N+1

vjv
T
j

(7)

However, the simultaneous adaptation of both Qk and Rk is not
considered robust as discussed in [38, 39]. It is the state process
noise, which is unknown. Based on this assumption, Qk can be
adapted using the adaptive factor, α [40, 41].

a = trace Ĉv − Rk

{ }
trace Hk

�PkH
T
k

{ }
a = trace Hk (Fk−1P̃k−1F

T
k−1 + Q̂k−1)H

T
k

{ }
trace Hk (Fk−1P̂k−1F

T
k−1 + Qk−1)H

T
k

{ }
Q̂k = aQ̂k−1

(8)

With the adaptive process noise, dual estimation with two separate
Kalman filters can be used for state and parameters estimation [10,
11, 24]. The summary of DUKFST is summarised in Table 2.
4 Experimental setup and analysis

To validate the proposed method, a battery test bench as shown in
Fig. 5 has been set up. It consists of a power supply (Agilent
E3631A) to simulate the charging from solar power, a DC
electronic load (Prodigit 3311F) to simulate the loading effects of
satellite subsystems and a thermal chamber (SE-300) for
temperature control. The thermal chamber is used to maintain at
different temperatures to simulate the different operating range of
the battery at different orbits. The temperatures used for the
experiment are at 0, 25 and 50°C following the satellite expected
temperature operation range. The experimental results were
collected with a data acquisition board (NI PXI-1036) via a
general purpose interface bus communication for reference SOC
estimation. The reference SOC is obtained using the calibrated
ampere hour counting via the high precision current sensors from
the power supply and the DC electronics load with the sensor
accuracy of 0.2 and 0.1%, respectively. All the hardware
equipment are controlled by LABVIEW software.

The setup is then used to perform VELOX-I nanosatellite payload
mission experiment as shown in Fig. 6 to validate the proposed
method. There are two different loading profiles for the
nanosatellite: normal operation and payload operation. For the
normal operation, the load profile does not have many dynamic
load change. The VELOX-I payload operation dynamic loading
pattern is similar to the urban dynamometer driving schedule
which is used as the standard benchmark load profile in battery
testing [9, 11].

4.1 Robustness and convergence analysis in terms of
initial SOC error

The proposed method is first verified for its robustness in terms of
initial SOC error. Assuming that there is an error in the initial



Table 2 Summary of DUKFST

Step1: Set the initial state x̂o = ẑ V̂ D V̂ K

[ ]T, parameter

ẑo = R̂O R̂D

1

ĈD

R̂K

1

ĈK

[ ]T
and covariance Sx and Sz:

x̂0 = E x0
[ ]

, Sx0
= chol E[(x0 − x̂0)(x0 − x̂0)

T]
{ }

ẑ0 = E z0
[ ]

, Sz0
= chol E[(z0 − ẑ0)(z0 − ẑ0)

T ]
{ }

Step 2: Compute the sigma points χi,
xi ,k−1 = x̂k−1 + Sx ,k−1x

n
i , i = 0, 1, ...., n + 1

Step 3: State estimates propagation,
xk |k−1 = F (xk−1, IB,k−1)

x̂−
k = ẑ−

k V̂−
D V̂−

K

[ ]T = ∑n+1

i=0
Wx ,ixk |k−1

S−
x ,k = qr

������
Wx ,i

√
(x1:n+1,k |k−1 − x̂−

k )
����
Qx

√[ ]{ }
S−
x ,k = cholupdate{S−

x ,k , x0,k |k−1 − x̂−
k , Wx ,0}

Step 4: Calculation of estimated measurement Yk and mean ŷ−
k

Yk |k−1 = H[xk |k−1, IB,k−1] ŷ−
k = V̂−

t = ∑n+1

i=0
Wx ,iYi ,k |k−1

Step 5: Compute the measurement covariance Sỹk
and its update

Sỹk
= qr{[

������
Wx ,i

√
(Y1:n+1,k |k−1 − ŷ−

k )
��
R

√
]}

Sỹk
= cholupdate{Sỹk

, Y0,k |k−1 − ŷ−
k , Wx ,0}

Step 6: Calculation of cross covariance matrix Pxk yk

Pxk yk
= ∑n+1

i=0
Wx ,i (x

+
i ,k |k−1 − x̂−

k )(Yi,k |k−1 − V̂−
t ,k )

T

Step 7: Calculation of Kalman gain Kx and state estimate update x̂+
k

through measurement Vt

Kx ,k = Pxk yk
ST−1

ỹk
S−1
ỹk

x̂+
k = x̂−

k + Kx ,k (Vt ,k − V̂−
t ,k )

Step 8: Covariance matrix update
Ux = Kx ,kSỹk

Sx ,k = cholupdate{S−
x ,k , Ux , − 1}

Step 9: Time update and sigma-points calculation (parameter)

ẑ−k = ẑk−1

S−
zk

= l−1/2
RLS Szk−1

zi ,k−1 = ẑk−1 + Szk−1
Zn
i , i = 0, 1, ...., n + 1

Dk |k−1 = H(xk , zk−1, IB,k−1)

d̂k = ∑n+1

i=0
Wz ,iDi,k |k−1

Sdk
= qr

�����
Wz ,i

√
(Z1:n+1,k |k−1 − ẑ−k )

����
Qz

√[ ]{ }
Sdk

= cholupdate{Sdk
, D0,k |k−1 − d̂k , Wz ,0}

Step 10: Calculation of cross covariance matrix Pzk yk

Pzk dk
= ∑n+1

i=0
Wz ,i (Z

+
i,k |k−1 − ẑ−k )(Di,k |k−1 − d̂k )

T

Step 11: Calculation of Kalman gain Kz,k and parameter estimate update
ẑ+k through measurement (yk =Vt)

Kz = Pzk dk
ST−1

dk
S−1
dk

ẑ+k = ẑ−k + Kz (Vt,k − d̂−
k )

Step 12: Covariance matrix update

Uz = KzSdk

Szk
= cholupdate{S−

zk
, Uz , − 1}

First, the initial covariance and state estimates are selected. Then, Steps 2
to 12 are recursively processed until end of the experiment (or input data).

Fig. 6 VELOX-I nanosatellite payload current profile

Fig. 5 Block diagram of battery test bench
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SOC, the SOC estimation is performed with the load profile as
shown in Fig. 6. The battery is first fully charged using CC-CV
method. Owing to the high initial charging current (1.45 A) of the
load profile, the battery charging voltage exceeds the absolute
limit of 4.2 V. To safeguard the charged safety limit voltage when
using the load profile, the battery is discharged to 80% SOC by a
Fig. 7 Initial SOC error analysis of 80% reference SOC at 25°C

Fig. 8 SOC estimation error under unknown initial SOC at 25°C
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Table 3 Initial SOC error analysis at 0 and 50°C

Reference SOC

80% 60% 40%

initial SOC, % 100 0.57 0.37 4.12 4.47 0.31 0.64
90 0.38 0.08 3.92 4.14 0.05 1.1
80 0.24 0.13 3.76 3.89 0.31 1.48
70 0.11 0.35 3.61 3.67 0.58 1.79
60 0.06 0.58 3.44 3.43 0.88 2.1
50 0.22 0.78 3.25 2.22 1.21 2.39
40 0.40 0.92 3.05 3.04 1.56 2.64
30 0.55 1.05 2.87 2.89 1.87 2.86
20 0.67 1.2 2.72 2.71 2.13 3.09
10 0.79 1.38 2.58 2.51 2.36 3.37
0 0.88 1.56 2.46 2.28 2.57 3.67

0°C 50°C 0°C 50°C 0°C 50°C
temperature
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730
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discharge current of 0.29 A (0.1 C). Different initial SOC errors in
terms of 10% SOC intervals from 0 to 100% are considered for
the proposed method at three different temperatures: 0, 25 and 50°
C. Fig. 7 shows the convergence of initial error analysis at 25°C
when the reference SOC is 80%. It can be observed that the
proposed method converges to the actual SOC within 20 s. To
further validate the convergence performance of the proposed
method, different reference SOCs, that is, 40, 60 and 80%, are
performed at 0, 25 and 50°C. From Fig. 8, the DUKFST is able to
converge to the reference SOC across the entire operation range
Fig. 9 SOC

a Estimation
b Absolute error comparison against reference SOC by DUKFST, UKFST and EKF at
50°C

6

with the maximum estimation error of 2.4% at 25°C. Table 3
summarises the performance at 0 and 50°C. The results show that
the initial estimation error does not impact the convergence of the
SOC estimation using the proposed DUKFST.
755
4.2 SOC Estimation at 0, 25 and 50°C

For a given initial SOC and battery parameters in Table 1, SOC
estimation is performed using the load profile in Fig. 6 at three
different temperatures: 0, 25 and 50°C. The performance of the
proposed method is then compared against UKFST and EKF. For
performance evaluation, the following RMSE and absolute
maximum errors are used

RMSE =
������������������
1

n

∑n
k=1

zk − ẑ k

( )2√

Maximum = Max zk − ẑ k

∣∣ ∣∣
(9)

Fig. 9 presents the SOC estimation comparison with the reference
SOC and its absolute error between the estimated and reference
SOC from DUKFST, UKFST and EKF at 50°C. From Fig. 9, it
can be observed that DUKFST and UKFST follow more closely to
the reference SOC than the EKF. Fig. 9b shows that DUKFST
produces the least estimation error.

Using the same load profile, the experiment is conducted at 0 and
25°C. Fig. 10 shows the corresponding absolute SOC estimation
error, respectively. From Fig. 10, it can be seen that the proposed
method outperforms the UKFST and EKF especially at 0 and 50°C.

The improvement in performance is because of the updating of
battery parameters by the proposed method. Fig. 11 shows the
values of RO, tD and tK at 0, 25 and 50°C. These estimated values
during the experiment are plotted against SOC to have a clearer
Fig. 10 SOC estimation error comparison at

a 0°C
b 25°C
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Fig. 11 Estimated battery parameters

a RO

b tD and
c tK at 0, 25 and 50°C

Table 5 Multiplication comparison analysis between DUKST, UKFST
and EKF

Multiplication required

Operation DUKFST UKFST EKF

Pxx (n + 2)n2 (n + 2)n2 –
Pxy (n + 2)(nL) (n + 2)(nL) –
Pyy (n + 2)L2 (n + 2)L2 –
PHT(HPHT + R) – – L3 + 2nL2

+ 2n2L
K(y–y^) L3 + nL2 + nL L3 + nL2 +

nL
nL + Ln2

P–KPyyK Ln2 Ln2 n2L + n3

total multiplication
required

253(z = 5, L = 1) + 81
(n = 3, L = 1) = 334

81(n = 3,
L = 1)

73(n = 3,
L = 1)

Table 4 Performance comparison between DUKST, UKFST and EKF

DUKFST UKFST,% EKF, %

0°C RMSE 1.96% 3.78 6.3
% increase w.r.t DUKST – 93 221

maximum 3.36% 6.66 13.5
% increase w.r.t DUKST – 98 302

25°C RMSE 0.58% 0.62 4.1
% increase w.r.t DUKST – 6.9 607

maximum 2.86% 2.9 12.2
% increase w.r.t DUKST – 1.4 321

50°C RMSE 0.36% 0.83 5.3
% increase w.r.t DUKST – 131 1372

maximum 1.93% 2.73 10.8
% increase w.r.t DUKST – 41 460
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understanding how the battery parameters changes across different
SOC level and at different temperatures. It can be observed that
the parameters of battery vary across different temperature and
SOC. From Fig. 11a, RO is higher in cold temperature and lower
in hot temperature as expected. However, these updated
parameters might not reflect the actual battery parameters values.
Still, it is able to represent the Vt used for the SOC estimation in
this paper. Table 4 shows the performance comparison between
the proposed DUKFST, UKFST and EKF. From Table 4, it can be
seen that DUKFST has lower RMSE and maximum error than
UKFST and EKF across different temperatures.
4.3 Computational requirement

Table 5 compares the number of multiplication required in each
operation for the DUKST, UKFST and EKF. In Table 5, ‘n’, ‘z’ and
‘L’ denotes the number of states, the number of parameters and the
number of measurements, respectively. From the table, it is observed
that DUKFST has the most number of multiplication required as
expected. For the comparison between DUKFST and UFKST, the
total number of multiplication increased from 81 to 334. However
this also resulted in the improved performance of 93 and 98% for
RMSE and absolute maximum error, respectively, at 0°C. For
comparison with EKF at 0°C, it represents 221 and 302%
improvement for the RMSE and absolute maximum error, respectively.
5 Conclusion

Operating temperature of the satellite varies significantly in one orbit
(about 100 minutes) which affects its battery parameters and SOC.
Most of the observer based methods used fixed battery parameters
obtained offline at room temperature. The SOC estimation
accuracy is therefore degraded if the temperature fluctuates. In this
paper, a new SOC estimation method and an online parameter
updating algorithm using a DUKFST with unit spherical unscented
transform is presented. It takes advantage of Jacobian free
unscented Kalman filter and updates the parameters to improve the
accuracy of battery model. Moreover, the spherical transform uses
fewer sigma points than the normal unscented transform. The
experimental results demonstrate that the proposed DUKFST
outperforms the UKFST and EKF with the lowest RMSE and the
lowest maximum errors. The improvement is particularly
significant at 0 and 50°C. For the computational analysis, this
improvement in performance comes from the increased
computational requirement compared with UKFST and EKF.
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