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Abstract

Reynolds stress budgets for both Couette and boundary layer flows
are evaluated and presented. Data are taken from direct numerical sim-
ulations of rotating and non-rotating plane turbulent Couette flow and
turbulent boundary layer with and without adverse pressure gradient.
Comparison of the total shear stress for the two types of flows suggests
that the Couette case may be regarded as the high Reynolds number
limit for the boundary layer flow close to the wall. The limit values of
turbulence statistics close to the wall for the boundary layer for increasing
Reynolds number approach the corresponding Couette flow values. The
direction of rotation is chosen so that it has a stabilizing effect, whereas
the adverse pressure gradient is destabilizing. The pressure-strain rate
tensor in the Couette flow case is presented for a split into slow, rapid
and Stokes terms. Most of the influence from rotation is located to the
region close to the wall, and both the slow and rapid parts are affected.
The anisotropy for the boundary layer decreases for higher Reynolds num-
ber, reflecting the larger separation of scales, and becomes close to that
for Couette flow. The adverse pressure gradient has a strong weakening
effect on the anisotropy. All of the data presented here are available on
the web [36].

1 Introduction

The development of cheap, powerful, computers has lead to wide use of CFD
codes for the prediction of turbulent flows. These codes almost always use
turbulence models to try to capture the characteristics of the turbulent flow,
and the prediction is no better than the weakest link in the computational
chain. Often the weakest link is the turbulence model. But to develop better
turbulence models one must have data to compare them against. In the early
days of turbulence modelling one had to rely on indirect methods to test the
various closure models. Experimental difficulties in measuring pressure and
velocity with sufficient resolution did not make direct comparisons possible.

With the development of high-speed supercomputers, and new algorithms,
[28, 29, 19, 4], it became possible to simulate turbulent flows directly without
resorting to large eddy simulations or turbulence models. Now it became possi-
ble to evaluate any desirable quantity and use them to test turbulence models.
The channel flow simulation by Kim et al. [16] was the first fully resolved sim-

1



ulation of a pressure-driven channel flow, and the database from the simulation
has been used extensively to evaluate various turbulence models, see Mansour
et al. [23].

There are few experimental studies of Couette flow with reports of turbulence
statistics. In their study of Couette flow at a Reynolds number of 1300, Bech et
al. [8] report both second and higher order statistics from both experiments and
simulations. The agreement between the experiments and the simulation is good
for the statistics, but their simulations do not fully capture the very large scale
structures of the experiments. This is e.g. seen from the two-point correlations
which are lower in the simulation than in the experiment. In the study by Bech
and Andersson [7] they used three different sizes of their computational domain
and observed large structures in one box, but not in the other two. The reason
behind this is unclear.

Bech [6] presented Reynolds stress budgets from the simulation of Bech et
al. [8], and they look very similar to the ones presented here, despite the higher
Reynolds number in their simulation.

Bech and Andersson [5] made simulations with both positive and negative
rotation with the same magnitude as in the present study, (Ro = ±0.01). For the
positive rotation they decomposed the flow into secondary and turbulent flow
and analyzed them. Their main conclusion was that the turbulence was damped
for negative rotation. This was also found in the investigation by Komminaho
et al. [17].

In the present paper the budget data for the Reynolds stresses in the Couette
flow case are evaluated from flow fields of the plane Couette flow simulation by
Komminaho et al. [17].

Data are also presented from three different turbulent boundary layers. One
is a zero pressure gradient (ZPG) boundary layer, and two are boundary layers
subject to an adverse pressure gradient (APG). Data from the ZPG boundary
layer have not previously been presented. The simulation with a moderate
APG (APG1) has been analyzed in Skote et al. [33], while the strong APG case
(APG2) has been presented in Skote and Henningson [35].

The ZPG turbulent boundary layer flow has been studied in a large number
of investigations, see e.g. the assessment of data by Fernholz [10]. Turbulent
statistics close to the wall were obtained through DNS by Spalart [37], and were
confirmed later in the experiment of a low Reynolds number ZPG turbulent
boundary layer by Ching et al. [9]. Various Reynolds stress budgets from DNS
of both ZPG and APG boundary layers were presented by Na and Moin [26].
Near-wall limit values of an APG boundary layer were also investigated in the
DNS of Spalart and Watmuff [38] and in the experiment of Nagano et al. [27].

The results from the simulations of [17], [33] and [35] are documented here
for future use in turbulence model development, in particular for near-wall mod-
elling. The present plane Couette flow data are well suited for this purpose since
the condition of a constant total shear is, unlike the situation in the boundary
layer, fulfilled for all Reynolds numbers. The boundary layer data can be used
for the development of low Reynolds number turbulence models.
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2 Data analysis

One can write (see e.g. [12]) the Navier–Stokes and continuity equations in a
rotating reference frame as,

∂u′
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+

∂

∂xj

(u′

iu
′

j) = −
1

ρ

∂p′

∂xi

+ ν
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i
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+ 2ǫijku
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jΩk (1)
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The effect of the system rotation can be seen as a volume force in the fluid,
also known as the Coriolis force and the centrifugal force. The Coriolis force is
the last term in the momentum equation (1), and the centrifugal force has been
included in the pressure. In the following we will use u, v, w for u1, u2, u3, and
x, y, z for the downstream, wall normal and spanwise directions.

Divide the flow into a mean and a fluctuating part, u′

i = Ui + ui, where the
mean part is defined as an ensemble average over N different times, and also an
average over the homogeneous directions (x and z in the Couette flow and z in
the boundary layer)

u′
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1
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∑
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The Reynolds-average Navier–Stokes equation is now obtained as
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where Rij = uiuj is the velocity correlation tensor, and will here be referred to
as the ’Reynolds stress tensor’.

The first term in the equation above is zero for time-independent flows.
The statistics from our simulations were carefully shown to be stationary. The
resolution of the simulations were checked by repeating the simulation on a finer
grid in some cases. For all simulations the size of the computational box were
shown to be sufficient. The velocity spectra showed that the resolution was
adequate. For further information about the simulations see [17, 33, 35].

2.1 Couette data

Plane Couette flow is the flow between two parallel planes, moving in opposite
directions with velocity ±Uw in the x-direction, at a distance 2h. The system ro-
tation Ω3 applied in the present work is around the z axis. The non-dimensional
rotation number is defined as,

Ro ≡
2Ω3h

Uw

. (5)

The various statistical quantities have been evaluated and averaged from 12
different velocity fields, and the average was taken in both x and z direction.
The time between the samples was T = 40, where T is based on the wall velocity
Uw and half channel height h. They are statistically independent for all but the
very largest scales, see [17] where the time scale for the integral length scale
(Λuux defined as

∫

Ruu(∆x)dx, Ruu being the two-point velocity correlation)
was found to be more than 50.
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Case Reδ∗ ReΘ uτ U∞ β
ZPG 920 606 0.048 1.0 0.0
APG1 1064 655 0.036 0.76 0.65
APG2 2573 1309 0.020 0.60 5.0

Table 1: Reynolds number, friction velocity, freestream velocity and pressure
gradient at the streamwise position where the Reynolds stress budgets have
been evaluated.

2.2 Boundary layer data

The statistics have been produced in the same manner as in the Couette case,
except for the important difference that the flow is not homogeneous in the
streamwise (x) direction. The boundary layer is growing and developing in the
x−direction due to the increasing Reynolds number. Thus, the statistics are
unique for each streamwise position. However, here we are only dealing with
the near-wall statistics, which in the viscous scaling should be independent of
the Reynolds number. But in the low Reynolds number flows simulated with
DNS, there is a small influence of the increasing Reynolds number. This effect
is confined to the part very close to the wall (y+ < 3). In the ZPG simulation
e.g., the boundary layer undergoes a doubling of the Reynolds number, but the
budgets fall on top of each other for different streamwise positions, except for
the small increase of the values at the wall. The statistics are therefore shown
for one streamwise position in all three cases.

The simulations APG1 and APG2 were performed with a pressure distribu-
tion leading to a self-similar boundary layer at high Reynolds numbers. The
pressure gradient parameter β,

β ≡
δ∗
τw

dP

dx
, (6)

defines the APG in these two simulations.
The Reynolds number at the position where the budgets have been evalu-

ated is shown in table 1, together with the local value of the friction velocity,
freestream velocity and pressure gradient parameter.

Another effect of the Reynolds number is the increasing length of the region
with constant shear stress (τ+). This is illustrated in figure 1, which shows
the total shear stress at two Reynolds numbers for the ZPG case, as well as
for Couette flow. From figure 1 it is clear that the total shear stress for the
boundary layer becomes more constant when the Reynolds number is increased.
Since τ+ is constant for the Couette flow, it might be argued that this flow
approximates a high Reynolds number boundary layer close to the wall.

2.3 Reynolds stress budget

The transport equations for the Reynolds stress tensor are obtained by multi-
plying (1) (after subtracting the mean equation (4)) with uj , adding the cor-
responding equation with switched indices i, j and ensemble averaging. The
resulting equations read

DRij

Dt
≡

(

∂

∂t
+ Uj

∂

∂xj

)

Rij = Pij − εij +Dij +Πij +Gij + Tij + Cij (7)

4



0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

τ+

y+

Figure 1: Total shear stress. Couette (· · ·). Boundary layer: (- -) Reδ∗ = 539,
(—) Reδ∗ = 920.
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, (8)

εij ≡ 2νui,kuj,k, (9)
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∂
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ρ
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1

ρ
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)

, (12)

Tij ≡ −
∂

∂xk

uiujuk, (13)

Cij ≡ −2Ωk (Rljǫikl +Rilǫjkl) . (14)

Here Pij is the production due to mean field gradients, whose trace (Pii) repre-
sents twice the production of turbulent energy, the transfer of energy from the
mean flow to the turbulent fluctuations.

εij is the dissipation rate tensor, and Dij is the diffusion tensor. They both
represent viscous effects, but whereas Dij is a molecular diffusion term acting to
even out the turbulent stresses by spatial redistribution, εij act as a destruction
term of turbulent energy (and stresses).

Πij is the pressure-strain rate correlation tensor, which is traceless and rep-
resents inter-component transfer between Reynolds stress terms. Gij is the
divergence of the pressure-velocity correlation, and represents transport driven
by pressure fluctuations. This split in the above two terms is not unique, there
are several different ways in which one may separate the pressure-velocity term
when deriving the RST equations, but as the investigation by Groth [13] shows
the above separation seems to make most physical sense.

Tij is the divergence of the triple correlation tensor, acting as a spatial
redistribution term.

Cij is the traceless Coriolis tensor, which acts as a redistributive term among
the stress components.
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Figure 2: Reynolds longitudal and shear stress. Couette: (—) and (−−).
Boundary layer: (− · −) and (· · ·).

The transport equation for the kinetic energy, K ≡
1
2Rii is

DK

Dt
= P − ε+D, (15)

where P = 1
2Pii is the turbulent energy production, ε = 1

2εii is the viscous dis-
sipation, and D = 1

2 (Tii +Gii +Dii) is the sum of the molecular and turbulent
diffusion of K. This term acts as a spatial redistribution of K.

In a fully developed plane Couette flow, the flow is homogeneous in the x
and z directions, and the relevant non-zero stresses are R11, R12, R22 and R33.
The simulation flow fields represent a plane Couette flow at a Reynolds number
Reτ = uτh/ν = 52 (Reτ = 48 for the rotating case) based on friction velocity uτ

and channel half-height h. This corresponds to a Reynolds number 750 based
on wall-velocity and h. Despite this very low Reynolds number it is twice that
of the transition Reynolds number of 360, see [22, 39, 18]. For the rotating case
the rotation is as low as Ro = −0.01.

The budgets for the Reynolds stresses in the ZPG case are essentially the
same as in the simulation by Spalart [37]. The moderate APG case, APG1, show
very similar profiles in the Reynolds stress budgets as the APG simulation of Na
and Moin [26]. The effects of the APG is stronger in the APG2 case, which has
a skin friction approximately 60% of that in APG1. In this work, in contrast
to the budgets in [37] and [26], the pressure term is divided into pressure-strain
rate and pressure-velocity diffusion, for comparison with the Couette data.

The Reynolds stresses R11 and R12 are shown in figure 2 for the non-rotating
Couette flow and the ZPG boundary layer flow. The maximum of R11 is larger
in the Couette flow, otherwise the profiles are similar. In figure 3, the streamwise
velocity profiles for the same two flows are shown in a semilogarithmic plot. Here
one can see that the Couette flow has a very small logarithmic region, while the
boundary layer has developed such a region. Both flows obey the linear profile
in the viscous sub-layer.

In figures 4 and 5 the budgets for the longitudal Reynolds stress are shown.
The figures include both non-rotating and rotating Couette flow as well as all
three boundary layer cases and the profiles from the ZPG case can be compared
with the Couette case with zero rotation.

In figures 6 to 8 the budgets for the rest of the Reynolds stresses are shown for
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Figure 3: Mean streamwise velocity profiles. Couette: (—). Boundary layer: (-
-). The dotted lines are the profiles U+ = y+ and U+ = 2.5 ln y+ + 5.1.

the non-rotating Couette flow and ZPG boundary layer flow. The rotating and
APG flows are just briefly discussed for these Reynolds stresses, and pictures of
the budgets can be viewed on the web, see [36].

The terms in the budgets are shown as functions of the wall-normal distance
y+ = yuτ/ν, where uτ =

√

τw/ρ is the friction velocity. Note that in the non-
rotating case the Coriolis term, Cij , is zero. All quantities are shown in +-units,
non-dimensionalized with u4

τ/ν.

2.3.1 Longitudal Reynolds stress

One may note that the maximum of the production term P11 is 0.5. This is
easily obtained by integrating the stream-wise momentum equation once, and

multiplying with dU+

dy+ . The advection term is zero in the Couette flow case
and negligible in the near-wall region for boundary layers. By neglecting the
advection term and assuming wall similarity, we obtain the following relation
for the turbulence production:

P11 ≡ −2
uv

u2
τ

dU+

dy+
= 2

dU+

dy+

(

1−
dU+

dy+
+

ν

ρu3
τ

dP

dx
y+

)

, (16)

where the pressure gradient term is non-zero only in the adverse pressure gra-
dient (APG) cases. The last term within the parenthesis can be rewritten as
βy+/δ+

∗
. From the above relation it follows that the maximum of P11 is 0.5

occurring at a position where dU+/dy+ = 0.5 for Couette flow and ZPG bound-
ary layer. This holds irrespective of the value of the Reynolds number and the
system rotation and was shown to accurately describe also the low-Reynolds
number plane Couette flow simulation of Komminaho et al. [18] where the
Reynolds number was as low as 375.

The overall character of the different terms in the Reynolds stress budget
for Rij is the same as for the channel flow in [23]. Figure 4 shows that the
production term P11 is the dominant positive term in the range y+ > 5, and
has a maximum of 0.5 in the buffer region, at y+ = 11, falling to 0.10 in the
centre of the channel. The location of the peak production can be found to be
y+ ≈ 11 also in channel and pipe flow, see [31]. The non-zero production in the
central region is a consequence of the non-zero mean shear in this region.
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Figure 4: Terms in the Couette flow R11-budget for (a) the non-rotating case
and (b) the rotating case, Ro = −0.01. The different terms are: (· · ·) P11,
(- -) −ε11, (- · -) D11, (- · · -) Π11, (—) T11, (+) C11.

Π11 is negative throughout the channel, thereby transferring energy from
R11 to R22 and R33. We will in section 2.3.2 see that R22 receives energy only
in a region away from the wall.

Despite the very low rotation rate for the Couette flow case the effects on
some terms in the budgets are significant, away from the wall. The production
P11 is about 60% larger in the centre of the channel for the rotating case. The
dissipation ε11 and the pressure-strain rate Π11 are both 30% larger for the
rotating case, whereas the redistributive term T11 is about 20% smaller. Near
the walls the non-rotating and rotating cases are very similar, as can be expected
since the maximum production is 0.5 in both cases.

In figure 5a the budget for the longitudal Reynolds stress is shown for the
ZPG case. The maximum of the production term P11 is 0.5 as in the Couette
case. The other terms in the budget for R11 corresponds very closely to those in
the Couette case. The adverse pressure gradient increases the production P11

as seen in figures 5b and c. For APG1 it is 0.6 and APG2 0.9. The increase of
the maximum is not explained by the contribution from the streamwise velocity
gradient since that part of the production term is negligible close to the wall.

The increased value of P11 is thus explained from the contribution from the
pressure gradient in equation (16). For the case APG2 we have a δ+

∗
of 86 so

that the last term within the parenthesis in equation (16) βy+/δ+
∗
is about 0.58

at y+ = 10, i.e. near the maximum in production. It can, hence, be seen to be
of the order one influence. Since βy+/δ+

∗
= βy+ U∞

uτ

/Reδ∗ we can see that the
effect of the pressure gradient term decreases with increasing Reynolds number.

The position of the maximum of the production is shifted towards the wall,
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Figure 5: Terms in the R11-budget for boundary layer flow (a) ZPG. (b) APG1.
(c) APG2. The different terms are: (· · ·) P11, (- -) −ε11, (- · -) D11, (- · · -) Π11,
(- - · ·) G11, (—) T11.
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most notably in the APG2 case (figure 5c).
Also the rest of terms show more extreme values in the APG cases, even

though the shape of the profiles remain roughly the same. The enhanced values
in the near-wall region are partly due to the decrease in the friction velocity
(which all the terms in the budget are scaled with). The lower value of uτ is a
consequence of the adverse pressure gradient. One might argue that uτ is not
the correct scaling in an APG flow, since the total shear stress is not constant
in this scaling. Alternative scalings, including a velocity scale dependent on
the wall normal distance that produce a constant shear stress, are discussed by
Skote and Henningson [34, 35].

Note that the term G11, which is identically zero in the Couette case due
to the homogeneous streamwise (x) direction, is zero also in the ZPG boundary
layer. In the APG1 case the pressure gradient is not strong enough to affect this
transport term. However, in the APG2 case a clear difference can be seen. Here
G11 contributes to the budget significantly. Another observation is that the
collective contribution from G11 and Π11 to the budget remains constant since
Π11 decreases the same amount as G11 increases. The two terms are parts of
the original term including the pressure fluctuations in the budget, but have two
different physical interpretations, which makes it difficult to draw conclusions
from this observation. However, the split of the original pressure fluctuations
term is important since the effects of the pressure gradient otherwise may not
be observed.

2.3.2 Normal Reynolds stress

In figure 6a the budget for R22 in the Couette flow case is shown. Π22 is negative
close to the wall, and positive towards the centre. Thus it transfers energy
from the wall-normal component to the spanwise component (Π33 is positive
everywhere) near the wall, and receives energy from the longitudal component
(Π11 is negative everywhere) away from the wall. This reversal of the sign in
Π22 was attributed to the splatting effect in the LES study of turbulent channel
flow by Moin and Kim [24] (see also the work by Hunt and Graham [15]). In
the turbulence modelling context this effect is normally referred to as the wall-
reflection contribution to the pressure strain. The attempts to model this (see
[11]) typically assumes a variation on a length-scale of the order of the macro-
scale. The present results and those of Aronson et al. [3] and Perot and Moin
[30] however show that the effect is confined to a thin region near the wall.
In some recent model development (see e.g.[32]) this effect is only indirectly
accounted for through realizable models.

In figure 6b the budget for R22 in the ZPG case is shown. All the terms show
slightly lower values than in the Couette case, while the shapes of the profiles
are similar.

For a figure of the rotating and APG flows, the reader is referred to [36].
There is only a small effect on the budget from the C22 term in the rotating
Couette flow, while all terms are increased in the APG boundary layer flow,
particularly the pressure-strain rate (Π22). The production term P22 is identi-
cally zero in the Couette flow due to the homogeneous streamwise direction. It
is essentially zero also in the non-homogeneous boundary layer flow, even in the
strong APG flow case, see figure of R22 budget for APG2 in [36].

10



0 5 10 15 20 25 30 35 40 45 50

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(a)

0 5 10 15 20 25 30 35 40 45 50

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b)

Figure 6: Terms in the R22-budget for (a) the non-rotating Couette flow and
(b) the ZPG boundary layer flow. The different terms are: (· · ·) P22, (- -) −ε22,
(- · -) D22, (- · · -) Π22, (- - · ·) G22, (—) T22.

2.3.3 Spanwise Reynolds stress

In the ZPG budget for the spanwise Reynolds stress, shown in figure 7b, the
values of the different terms are, as in the R22 budget, lower than in the Couette
flow shown in figure 7a. The shapes of the profiles are similar to those in the
Couette case.

No effect of the rotation could be seen close to the wall. The pressure
gradient enhances the values (see [36]), but nothing else seems to be affected
in the APG1 case. In APG2 however, the turbulent transport is of the same
magnitude as the pressure-strain rate.

2.3.4 Reynolds shear stress

The budget for the Reynolds shear stress in Couette flow is presented in figure
8a. The pressure-strain rate (Π12) and pressure diffusion (G12) balance each
other at the wall. This was also the case in channel flow simulation of Mansour
et al. [23]. The value of Π12 at the wall in Couette flow is more than twice the
value found in [23].

The budget for the Reynolds shear stress in boundary layer flow is presented
in figure 8b. The profiles are approximately the same as in the Couette case,
except for the pressure-strain rate and pressure diffusion at the wall which shows
larger values in the Couette case. The outer (y+ > 5) values are however the
same in the two flows.

The effect of rotation is to reduce the values of Π12 and G12 at the wall,
and the budget resembles more the ZPG flow budget, see [36]. The term C12 is
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Figure 7: Terms in the R33-budget for (a) the non-rotating Couette flow and (b)
the ZPG boundary layer flow. The different terms are: (- -) −ε33, (- · -) D33,
(- · · -) Π33, (—) T33.

small and has a limited effect on the budget.
The values at the wall in the boundary layer flow are increased by the APG.

In the stronger APG2 case, also the region away from the wall is affected, [36].

2.4 Near-wall behavior

There is a balance between dissipation and viscous diffusion on the wall. From
the data in figures 4–7 we may also compute the dissipation rate anisotropies,
eij = εij/ε−

2
3δij . The limiting values of these (along with the stress anisotro-

pies aij = Rij/K−
2
3δij) are given in table 2 and compared with the predictions

obtained by the algebraic dissipation rate anisotropy models of Hallbäck et al.
[14] and Sjögren and Johansson [32].

Table 2: Couette data: Limiting values for the stress anisotropies aij and dissi-
pation rate anisotropies eij , and comparison with models.

component 1,1 2,2 3,3

aij 0.72 −
2
3 −0.05

eij 0.73 −
2
3 −0.06

(eij)Hallbäck 0.67 −
2
3 0.00

(eij)Sjögren 0.72 −
2
3 −0.05

The agreement is quite satisfactory for both models in the Couette case,
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Figure 8: Terms in the R12-budget for (a) the non-rotating Couette flow and
(b) the ZPG boundary layer flow. The different terms are: (· · ·) P12, (- -) −ε12,
(- · -) D12, (- · · -) Π12, (- - · ·) G12, (—) T12.

component 1,1 2,2 3,3

aij 0.76 −
2
3 −0.09

eij 0.76 −
2
3 −0.09

(eij)Hallbäck 0.50 −
2
3 0.17

(eij)Sjögren 0.76 −
2
3 −0.09

Table 3: Boundary layer data: Limiting values for the stress anisotropies aij
and dissipation rate anisotropies eij , and comparison with models.

while the Sjögren and Johansson model is in better agreement with DNS data
for the ZPG boundary layer. In the Hallbäck et al. model eij is given by

eij =

[

1 + α(
1

2
IIa −

2

3
)

]

aij − α(aikakj −
1

3
IIaδij), α =

3

4
, (17)

whereas in the Sjögren and Johansson model we have

eij = (1−
1

2
F )aij , F = 1−

9

8
(IIa − IIIa). (18)

In the above expressions we have introduced the two nonzero invariants of the
anisotropy tensor,

IIa = aijaji, (19)

IIIa = aijajkaki. (20)

13



Case Reδ∗ u+
rms/y

+ v+rms/y
+2

w+
rms/y

+ −uv+/y+
3

ε+

ZPG 539 0.385 0.0112 0.232 0.00099 0.203
ZPG 920 0.398 0.0119 0.252 0.00102 0.223
Couette 0.414 0.0135 0.268 0.00121 0.246

Channel [25] 0.397 0.0113 0.250 0.00095 0.221
Channel [1] 0.409 0.012 0.261 0.0011 0.227

Table 4: Limit values for y+ → 0.

Case u+
rms/y

+ v+rms/y
+2

w+
rms/y

+ −uv+/y+
3

ε+

APG1 β = 0.65 0.476 0.0177 0.344 0.00181 0.346
APG2 β = 5.0 0.728 0.0470 0.764 0.00598 1.35

Couette Ro = −0.01 0.387 0.0124 0.243 0.00093 0.238

Table 5: Limit values for y+ → 0.

The latter model gives eij = aij as limiting value in the two-component limit,
such as on a solid wall. This describes the situation very accurately in both flow
cases. Note that the Sjögren and Johansson model is a higher order model than
the Hallbäck et al. model, and both satisfy the rapid distortion theory (RDT)
limit of eij = aij/2, whereas only the former model satisfy the near-wall limit
of eij = aij .

For this extremely low Reynolds number the dissipation rate is highly anisotropic
also at the centreline in the Couette case.

Some important limiting values at the wall are given in table 4 and 5. The
dependence of the Reynolds number in the boundary layer is strong as seen in
table 4. All the values increase for higher Reynolds number, but they do not
reach the values of the Couette flow. Hence, one might argue that the Couette
data constitute a high Reynolds number limit for the boundary layer. The
channel flow data is taken from a recent DNS at Reτ = 590 by Moser et al. [25],
and at Reτ = 640 by Abe et al. [1]. All the limiting values for these quite high
Reynolds number channel flows are lower than the ones from the Couette data,
and close to the values for the boundary layer at Reδ∗ = 920.

We have here shown that the boundary layer limiting values approach the
Couette data when the Reynolds number increases. However, the limiting values
in the Couette data may be Reynolds number dependent and increase with
Reynolds number. Higher Reynolds number Couette flow simulations are needed
to clarify this issue.

The effect of the APG on the boundary layer is quite severe as seen from
table 5. All limit values are increased when the boundary layer is subject to an
APG. The rotation in the Couette case has the opposite effect; all limit values
decreases.

2.5 Anisotropy tensor

The Reynolds stress anisotropy tensor aij has, as already mentioned above, two
nonzero invariants, IIa and IIIa. All anisotropic states can be represented in
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Figure 9: The anisotropy invariant map. a) AIM paths for the non-rotating (+)
and rotating (·) case. b) AIM paths for ZPG (+) ; APG1 (·); APG2 (�).

the anisotropy invariant map (see [21]) which are bounded by the lines 8/9 +
IIIa = IIa and 6III2a = II3a. They represent two-component and axisymmetric
turbulence, respectively.

In figure 9a the AIM paths for both the non-rotating and rotating Couette
cases are shown. Their main characteristics are the same as for the channel
flow simulations of Moser et al. [25] and the Couette flow simulation with
Ro = −0.01 of Bech and Andersson [5]. Close to the wall the turbulence is
very near the two-component limit, approaching the one-component limit near
the edge of the viscous sub-layer. At y+ ≈ 8 the AIM path turns towards the
isotropic state. For the present cases the Reτ is so low that there is nearly no
real log-layer in the profiles with corresponding agglomeration of points in the
AIM, as observed in the higher-Re channel flow simulations. One may note that
this absence of a developed log-layer is also clear from the mean velocity profile
in figure 3.

The AIM paths for the boundary layer flows are shown in figure 9b. The
ZPG case is very similar to the Couette flow. There is some agglomeration of
points at the end of the path which is y+ ≈ 150 (for ZPG). The path for APG1
starts at a lower value of IIIa and represents a lower degree of anisotropy than
in the ZPG case. The end of the APG1-path is at y+ ≈ 100. The differences
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Case Reδ∗ max IIa
ZPG 539 1.77
ZPG 920 1.70
APG1 1.51
APG2 0.80
Couette 1.71

Channel [25] 1.72
Channel [1] 1.69

Table 6: Maximum values for IIa.

between ZPG and APG1 are not so large in comparison with the APG2 case,
where the path starts in the lower left corner and represents much lower degrees
of anisotropy than in the other cases. This is explained by the less structured
turbulence in a strong APG boundary layer. The path for APG3 was terminated
at y+ ≈ 50, and is similar to the anisotropy states from a backward-facing step,
see the investigation by Sjögren and Johansson [32] of the data from a backward-
facing step simulation by Le and Moin [20].

The maximum anisotropy occurs at y+ ∼ 8 (IIa and IIIa reach maxima
at this point). The maximum decreases with increasing Reynolds number, see
table 6 for values of IIa. This reflects the increasing scale separation for higher
Reynolds numbers, which leads to a more isotropic state. The same effect was
reported by in the investigation of turbulent boundary layer and channel flow
by Antonia et al. [2].

A similar scenario can be seen when the APG is increasing, the pressure
gradient seems to have a large effect on the magnitude of the anisotropy. The
location of the maximum of IIa moves slightly towards the wall with increasing
APG.

The maximum IIa for the Couette flow is close to the ZPG boundary value
at the higher Reynolds number. The value is the same for the rotating and
non-rotating cases.

For comparison we also show the maximum IIa for the highest Reynolds
number (Reτ = 590) channel flow of Moser et al. [25] and (Reτ = 640) by Abe
et al. [1]. The value for the latter case is a little lower, but still close to the
Couette flow value.

2.6 Pressure-strain rate split

The results from a split of the pressure-strain rate is here presented for the Cou-
ette flow. The result from taking the divergence of the Navier–Stokes equation
is a Poisson equation for the pressure,

∂2p

∂xi∂xi

= −
∂

∂xi

∂

∂xj

(u′

iu
′

j)− 2ǫijkΩj

∂u′

k

∂xi

(21)

with the wall boundary condition,

∂p

∂y
=

1

Re

∂2v′

∂y2
− 2UΩ3. (22)
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Figure 10: The Π11-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
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Figure 11: The Π22-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
(tot)
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(s)
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(r)
22 , (△) Π

(St)
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By splitting the source term in the Poisson equation into one part containing
the mean velocity gradient and one part containing only gradients of the fluc-
tuating part, we may derive equations for the rapid, slow and Stokes pressure,
respectively.

∇
2p(r) = −2

(

∂Ui

∂xk

+ ǫijkΩj

)

∂uk

∂xi

,
∂p(r)

∂y
= 0 (23)

∇
2p(s) = −

∂ui

∂xj

∂uj

∂xi

,
∂p(s)

∂y
= 0 (24)

∇
2p(St) = 0,

∂p(St)

∂y
=

1

Re

∂2v

∂y2
− 2UΩ3. (25)

The Stokes pressure is solely due to the inhomogeneous boundary condition, and
may be added to either the rapid or the slow pressure. Note that the last term
in the boundary condition for the Stokes pressure is non-zero only for a moving
wall, e.g. Couette flow. Restricting ourself to the present case of a channel with
two homogeneous directions the rapid part simplifies further,

∇
2p(r) = −2

dU

dy

∂v

∂x
− 2Ω3ω3. (26)

The split into rapid, slow and Stokes pressure-strain rate can be seen in
figure 10–13 for Π11–Π12. The slow part of Π11 is larger than the rapid except
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Figure 13: The Π12-split for (a) the non-rotating case and (b) the rotating case,

Ro = −0.01. The different terms are: (+) Π
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near the wall, y+ < 10, where the mean velocity gradient is large. The rapid
part is more affected by the rotation than the slow part.

Also for the Π22-term the slow part is larger than the rapid part, and con-
tribute most to the pressure-strain rate. Here the slow part is more affected by
the rotation.

For the Π33-term the rapid part contributes most, except for y+ < 10, and
is also most affected by the rotation.

Both the slow and rapid parts are significantly affected by the rotation for
the Π12-term in the region close to the wall. The total effect on the Π12-term is
not as great as on the individual terms, but results in lower values of Π12 close
to the wall.

The Stokes part for Π22, Π33 and Π12 is significant only in the region y+ <
10, and for Π11 it is negligible throughout the channel.

The general character and amplitude of the various pressure-strain rate terms
are almost identical even for Re = 375, despite the low Reynolds number.

3 Summary

We have used the Couette flow simulation data of Komminaho et al. [17] and
the boundary layer data of Skote et al. [33] and Skote and Henningson [35]
to compute terms in the transport equation for the Reynolds stresses. For the
Couette flow we have also presented data for a split of the pressure-strain rate
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term in rapid, slow and Stokes. Data were presented for both rotating (slow
stabilizing rotation) and non-rotating Couette flow. One can see a small effect
of the rotation on the limiting values at the wall in the Couette flow, but it is
small as could be expected, since it is a very slow rotation. In the centre of the
channel the budgets were strongly influenced by the rotation.

Boundary layer data were presented for one zero pressure gradient flow and
two adverse pressure gradient flows. Strong influence on the budgets from the
adverse pressure gradient were detected.

The Couette data we have presented here fulfill some important character-
istics of high Reynolds number flow close to the wall. These are constant shear
stress and a maximum production of turbulent kinetic energy of 1/4. How-
ever, other important properties of turbulence, such as scale separation, are not
fulfilled.

The near-wall limits of turbulence statistics were shown to increase with
Reynolds number in the zero pressure gradient boundary layer, but they did
not reach the values obtained from the Couette flow. The hypothesis that
the Couette flow is the high Reynolds number limit close to the wall cannot
be verified with the present data. Also, the limiting values in the Couette
data may be Reynolds number dependent and increase with Reynolds number.
Higher Reynolds number Couette flow simulations are needed to clarify this
issue. With the super-computers available in the near future, simulations of
higher Reynolds number flows in simple geometries will be a feasible task. It
would be interesting to compare the limit values presented here with a simulation
for higher Reynolds number.

Two algebraic models of the dissipation rate anisotropies were investigated.
For the Couette and ZPG boundary layer flows, the higher order model showed
better agreement with DNS data. More challenging cases for models are the
rotating Couette and APG boundary layer flows. With the data presented here,
one can compare turbulence models which include rotation or APG.

The maximum anisotropy was shown to decrease with increasing Reynolds
number for the ZPG flow. The APG has a strong dampening effect on the
anisotropy, both regarding the maximum value and in the anisotropy invariant
map. The maximum anisotropy in the Couette flow has approximately the same
value as in the ZPG flow at the highest Reynolds number.

The pressure-strain rate split in the Couette case showed that both the slow
and rapid parts are affected by the rotation, while the Stokes part remained
unaffected. The strongest influence of the rotation could be detected for the
non-diagonal term (Π12).
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