This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Efficiency, fairness and incentives in resource allocation

Huzhang, Guangda

2018

Huzhang, G. (2018). Efficiency, fairness and incentives in resource allocation. Doctoral thesis, Nanyang Technological University, Singapore.
https://hdl.handle.net/10356/82541
https://doi.org/10.32657/10220/46645

Efficiency, Fairness and Incentives

in Resource Allocation

Huzhang Guangda

Division of Mathematical Sciences
School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy

Acknowledgements

First of all, I would like to thank my supervisor Bei Xiaohui for his guidance on research. We studied a lot of interesting topics and I learned a lot from his great ideas and suggestions. I also got lots of help in graduate study, academic presentation, academic writing and even future career. It has been my great honor and fortune to work with Xiaohui for several years.

I would like to thank my previous supervisor Chen Ning for providing me the opportunity to get the enrollment from NTU. I acquired basic knowledge from him. The book "Probability and Computing: Randomized Algorithms and Probabilistic Analysis" is one of the best books I've ever read, which is recommended by him.

Thanks to efforts of many different people from different places, I had the chance to produce several publications during the Ph.D. study. Thank Tao Biaoshuai for paper writing and poster design for our cake cutting paper. Thank Huang Xin and Zhang Shengyu for visiting NTU and working for online roommate allocation paper. Thank Warut Suksompong for visiting NTU and sharing us many novel and valuable ideas on cake cutting problem. Thank Zhang Jianfu for heavy programming and long-period experiments for our community detection paper.

I also would like to thank NTU to enroll me as a Ph.D. student, so that I was able to get close to the most forefront research. I received lots of help in both graduate study and daily life from my friends in school, thank all of them for good old days. Thank Chai Yuxi, Tian Yingtao, Xia Bin and Lin Chengyu for their suggestions in writings.

Last but not least, I would like to thank my family for their unconditional love and consistent support; especially to my wife, thanks for waiting so long.

Contents

Acknowledgements

Abstract 4
1 Introduction 6
1.1 Efficiency 8
1.2 Fairness 10
1.3 Incentive 11
1.4 Organization of thesis 12
2 Preliminaries 14
2.1 Divisible resource allocation 14
2.2 Indivisible resource allocation 20
2.3 Online roommate allocation 23
3 Divisible Resource Allocation 25
3.1 Truthful fair mechanism without the free disposal assumption 25
3.1.1 Related works. 26
3.1.2 Anonymous mechanism 27
3.1.3 Connected piece assumption 29
3.1.4 Position oblivious mechanism 31
3.1.5 Pareto optimal mechanism for two agents 32
3.1.6 Pareto optimal mechanism for n agents 36
3.2 Cake cutting with piecewise constant valuation functions 39
3.2.1 Related works 39
3.2.2 Connected piece assumption 39
3.2.3 Non-wasteful mechanism 41
3.2.4 Position oblivious mechanism 42
3.3 Discussion 44
4 Indivisible Resource Allocation 46
4.1 General indivisible resource allocation 46
4.1.1 Related works 47
4.1.2 Contiguous maximin share guarantee 48
4.1.3 EF1 and Pareto optimal allocation 49
4.1.4 Approximate EFX allocation 51
4.1.5 EFX allocation of chores 57
4.2 Online roommate allocation problem 62
4.2.1 Related works 63
4.2.2 Online no-rejection bipartite matching 64
4.2.3 Online algorithm for online roommate allocation 68
4.2.4 Generalization to c-beds 71
4.2.5 Rooms with different capacities 74
4.2.6 Fairness 76
4.3 Discussion 78
5 Summary 80
Bibliography 84

Abstract

Resource allocation aims at allocating scarce resources to strategic agents in an efficient and fair manner. Due to its wide applications in real-life, finding such allocations satisfying specific properties is important for both theoretical research and industrial applications. In this thesis, we study three objectives: efficiency, fairness, and incentives, when allocating both divisible resource and indivisible resource.

First, we consider the fair division of a heterogeneous divisible resource, which is well known as the cake cutting problem. We combine fairness and incentive in this part. We focus on designing truthful and envy-free mechanisms with the presence of strategic agents. Most results established by previous studies in this setting all rely crucially on the free disposal assumption, meaning that the mechanism is allowed to throw away part of the resource at no cost. In the first part, we remove this assumption and focus on mechanisms that always allocate the entire resource. We exhibit a truthful envy-free mechanism for cake cutting and chore division for two agents with piecewise uniform valuations, and we complement our result by showing that such a mechanism does not exist when we further require the mechanism to be either anonymous, connected (the connected piece assumption), or position oblivious. Moreover, we give truthful mechanisms for multiple agents with restricted classes of valuations. In the second part, we explore cake cutting mechanism design with piecewise constant valuations. We again require the mechanism to be either connected, non-wasteful or position oblivious and show impossibility results even in the presence of the free disposal assumption.

Next, we study indivisible resource allocation. We consider three fairness no-
tions with indivisible resources: maximin share guarantee, envy-freeness up to one item, and envy-freeness up to the least item. We study whether a mechanism exists when we combine these fairness notions with the connected piece assumption, Pareto optimality and other moderate conditions. In the last part, we study a specific application, which we call the online roommate allocation problem. It is an online allocation problem under the roommate market model introduced in Chan et al., 2016]. Consider we have a fixed supply of n rooms and a list of $2 n$ arriving agents in an online fashion. We have to assign one room to each agent upon his arrival. We show a polynomial-time online algorithm that achieves constant competitive ratio for social welfare maximization. Finally, we show both positive and negative results on the existence of an allocation satisfying different stability conditions in this online setting.

Chapter 1

Introduction

Resource allocation is the process of distributing a set of resources among a group of agents, such that the outcome is efficient for society [Burk, 1938] and reasonably fair to each participant [Steinhaus, 1948]. It is an interdisciplinary research topic involving mathematics, computer science, and economics. Resource allocation problems can be categorized into two groups: divisible resource allocation and indivisible resources allocation. Divisible resources are called cakes and related resource allocation problems are known cake cutting problems; Indivisible resources are called goods and the each resource is called an item. The related allocation problems are called goods allocation problems. For simplicity, we call a set of goods a bundle. A variant type of resource is a chore, such as workloads or costs. Agents may want to limit such resources. Chore division is an allocation problem that distributes a divisible chore among the agents, and chores allocation is a task that allocates indivisible chores to the agents. Below, we provide several illustrative examples of each type of resource:

- Consider a toy scenario in which a group of guests want to share a cake. Guests may have different preferences. For example, some guests only care about toppings, whereas some guests only care about the size of their pieces. We hope to cut the cake into pieces and allocate these pieces such that no guest thinks another guest's piece is better than his. Sometimes, preferences are
private information, so the mechanism (the protocol which yields the allocation from preferences) should be designed to motivate participants to report their preferences truthfully. This example captures a large class of resource allocation scenarios in which participants want to divide a single heterogeneous resource. The cake cutting problem has been a central topic in resource allocation researches for many decades Brams and Taylor, 1996 Robertson and Webb, 1998]. As Procaccia remarked, Cake cutting is not just child's play [Procaccia, 2013].
- Job scheduling [Graham et al., 1979] is another type of divisible resource allocation problem. An example is a scenario with multiple servers and jobs, in which each job exhibits different efficiencies with different servers and has independent release times and due times. One constraint is that one server can process at most one job and one job can be processed by at most one server anytime. The goal is to assign servers to these jobs to optimise some objectives, such as minimizing total executing time or maximal lateness (completed time minus due time). In this example, we allocate to agents a certain amount of server time. Sometimes, we need to prevent a job from misreporting information to earn more executing time on servers.
- In universities, course allocation is a common problem. We want to design an allocation such that students are able to enrol in the courses they are interested in, but the number of students in each course does not exceed the capacity of the course. In this example, course slots are indivisible resources. There are other similar problems like seat arrangements or room assignments. See an application for courses allocation problem in a previous study [Budish and Cantillon, 2012].
- Organ allocation Rais and Viana, 2011 is another important application of the resource allocation problem. Many patients need organ transplants, but there is a highly limited number of organs available globally. The proper allocation of organs maximizes the efficiency of saving patients, and there are many different
conditions needed to be taken into consideration such as the transit time and the adaptivity of patients. This example also demonstrates that a single patient may have the incentive to misreport information under an improper protocol, with potentially dangerous results for society.

These four examples demonstrate that efficiency, fairness and incentives are three important foci of resource allocation problems. Efficiency benefits the whole society, whereas fairness is related to individuals' perspectives. Given the presence of strategic agents, incentive compatibility is needed to ensure that agents report their private valuations accurately. In the following sections, we introduce these notions separately.

1.1 Efficiency

Efficiency, a major objective of resource allocation problems, is commonly achieved by implementing the Benthamite social welfare function Burk, 1938] (also known as the utilitarian social welfare function). It is defined as the sum of all of the individual utilities. Let $S W(A)$ represent the social welfare of an allocation $A=$ $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ to agents $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, then

$$
S W(A)=\sum_{A_{i} \in A} v_{i}\left(A_{i}\right),
$$

where A_{i} is the allocation to a_{i} and $v_{i}\left(A_{i}\right)$ is the valuation of A_{i} to a_{i}. Allocation to one agent should not have any overlap with any other allocation. Generally we want to allocate all of the resources to agents, so the union of all A_{i} should be the union of all of the resources.

Another popular social welfare function is the Nash social welfare function Kaneko and Nakamura, 1979], which is defined as the product of agents' utilities instead of the sum. Nash social welfare function takes some account of fairness, as intuitively we need to balance the utilities of the agents to obtain a large product. Formally, the

Nash social welfare function has the following form:

$$
S W(A)=\prod_{A_{i} \in A} v_{i}\left(A_{i}\right) .
$$

The third social welfare function we want to consider is the Rawlsian social welfare function (or max-min social welfare function), which aims to maximize the minimal utility among agents. As it provides both efficiency and strong fairness, we consider the max-min allocation (the allocation maximizing Max-Min social welfare function) to be highly fair and efficient. It has the following form:

$$
S W(A)=\min _{A_{i} \in A} v_{i}\left(A_{i}\right) .
$$

The Benthamite social welfare function and Rawlsian social welfare function are located at the two extremes of "the axis of fairness". The Benthamite social welfare function does not consider fairness at all, whereas the Rawlsian social welfare function will maximize the poorest person's happiness. The following interesting characterization connects these two extremes:

$$
S W(A, x)=\sum_{A_{i} \in A} \frac{v_{i}\left(A_{i}\right)^{1-x}}{1-x}
$$

where $x \in[0,+\infty)$ is a parameter. When $x=0$, this becomes the Benthamite social welfare function; when $x \rightarrow \infty$, it becomes the Rawlsian social welfare function. Intuitively, we see that a larger x provides more fairness. Another observation is that the Nash social welfare function is in the middle of this range: when x approaches 1, the above social welfare function is the sum of $\ln \left(v_{i}\left(A_{i}\right)\right)$ over a constant, which implies a Nash social welfare function. In this thesis, we focus on the Benthamite social welfare function. Therefore, when we discuss the social welfare function, we are referring to the Benthamite social welfare function unless stated otherwise.

Pareto optimality (or Pareto efficiency) is an alternative method for representing efficiency. We say an allocation is Pareto optimal if no other allocation makes no agent worse off and at least one agent better off.

1.2 Fairness

Fairness plays a significant role in resource allocation problems. In a fair division problem, we need to find an allocation that all of the agents perceive as fair. The fair cake cutting problem was first discussed as the proportional allocation problem[Steinhaus, 1948], in which an allocation is proportional if and only if every agent believes he can get at least $1 / n$ of the whole cake (n is the number of participants). Formally, we say an allocation is proportional if and only if

$$
v_{i}\left(A_{i}\right) \geq 1 / n, \forall i \in\{1,2, \cdots, n\},
$$

where n is the number of agents. Here the valuation function v_{i} is normalized, which means that $v_{i}(R)=1$ where R is the entire resource.

Finding a proportional allocation is not a difficult task, and we introduce this mechanism in Chapter 2. In addition to proportionality, another stronger fairness notion was proposed, which is called envy-freeness[Gamow and Stern, 1958]. Informally, an allocation is envy-free if all of the agents are satisfied with their assigned pieces, after comparing them with the assigned pieces of the other agents. Formally, an allocation is envy-free if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), \forall i \neq j
$$

Many studies have examined the envy-free cake cutting problem Foley, 1967, Varian, 1974]. The cut-and-choose protocol is one of the most straightforward and most well-known methods for solving the cake cutting problem with two agents. The protocol operates by letting the first agent cut the cake into two parts of equal value, and then letting the second agent choose which part he prefers. However, the cut-and-choose protocol cannot be applied to cases with more than two agents, and many studies have tried to find envy-free mechanisms for scenarios with more agents. Although envy-free discrete mechanisms for three agents were independently found by multiple researchers in the 1960s, no algorithms were developed for scenarios with more than three agents. In 1995, a general cake-cutting mechanism was found [Brams and Taylor, 1995], and the authors developed an algorithm to compute
the allocation among a group of agents. However, the algorithm has no certain bound on the number of steps. Recently, progress has been made in deriving an envy-free algorithm for four or more of agents with bounded steps [Aziz and Mackenzie, 2016b Aziz and Mackenzie, 2016a].

There are also several fairness notions for indivisible resources, some of which are weak forms of proportionality and envy-freeness. For example, the maximin share guarantee (MMS guarantee) requires each agent to get a reasonably large value, which is similar to proportionality, but the value may be less than $1 / n$. Envy-freeness up to one item (EF1) and envy-freeness up to the least valued item (EFX) require agents to be envy-free after removing an item from their opponents.

1.3 Incentive

There is a fundamental incentive issue in computing allocations: each participating agent is self-interested and wants to receive an allocation with as much utility as possible. Therefore, agents may misreport their valuations to increase the value of their allocations. This motivates the study of cake cutting from a game-theoretical point of view: is there a fair mechanism that could incentivize all of the agents to report their valuation truthfully?

Incentive compatibility [Hurwicz, 1972] is a property of mechanisms that ensures truthful reporting is a dominant strategy for all of the agents. Therefore, incentive compatibility is desired by the host, and it is commonly used in economic and game theory models, such as models of voting and auctions, that have strategic agents. We use the term truthfulness instead of incentive compatibility in this thesis. (so we call a mechanism truthful if truthful reporting is a dominant strategy for all of the agents)

As mentioned, the cut-and-choose protocol is a two-agent envy-free cake cutting algorithm. However, the protocol is not truthful. For example, if the first agent values the whole cake equally everywhere, then according to the protocol, he will divide the cake in half and get exactly half of the cake in his valuation. However, if he knows that the second agent only cares about the leftmost quarter of the cake, he
can divide the cake into the leftmost quarter and the rest, knowing that the second agent will choose the leftmost quarter and leave him with three-quarters of the cake. Therefore, he may manipulate to move the cut point and gain more, which suggests the mechanism is not truthful.

The cake cutting problem in the presence of strategic agents was first addressed in [Chen et al., 2013]. The authors developed a truthful cake cutting mechanism for piecewise uniform valuations. In their study, they left an open problem: can we have a truthful envy-free mechanism with piecewise constant valuation functions?

1.4 Organization of thesis

This thesis has two main chapters (Chapter 3 and 4) focusing on divisible and indivisible resource allocation problems, respectively.

Divisible resource allocation We study cake cutting problems in two directions in Chapter 3. In the first part, we study cake cutting problems where we regard the cake as an interval $[0,1]$. We remove the free disposal assumption (which is a commonly used property in related researches) and restrict valuations to be piecewise uniform functions(refer Definition 1). We show that if we add certain requirements for the mechanism on top of being fair and truthful, then no desirable mechanism exists even for two agents. In particular, the impossibility holds when we make one of the following assumptions in addition to truthfulness and envy-freeness: (i) anonymity: the mechanism must treat all agents equally; (ii) the connected piece assumption: the mechanism must allocate a single interval to each agent; and (iii) position obliviousness: the values that the agents receive depend only on the lengths of the pieces desired by various subsets of agents and not on the positions of these pieces. Next, we will exhibit a truthful, envy-free and Pareto optimal cake cutting mechanism for two agents. With a simple reduction from chore division to cake cutting, we also derive a chore division mechanism for two agents with the same set of properties. Last, we consider the more general setting of multiple agents. We
assume that each agent only values a single interval of the form $\left[0, x_{i}\right]$. We present a truthful, envy-free and Pareto optimal cake cutting mechanism and a truthful, proportional and Pareto optimal chore division mechanism for any number of agents with valuations in this class. In the second part, we present a family of impossibility results with piecewise constant functions (refer Definition 1), even if we adopt the free disposal assumption. We again consider three assumptions: (i) the connected piece assumption; (ii) position obliviousness; (iii) non-wastefulness. These results partially answer the open question raised in Chen et al's study [Chen et al., 2013].

Indivisible resource allocation Chapter 4 studies indivisible resource allocation problems. In the first part, we study general indivisible resource allocation problems, which we call goods allocation and chores allocation (or goods/chores assignment). We use noun item and chore to represent one resource in goods and chores allocation. We study several novel fairness notions such as maximin share(MMS) guarantee, envy-freeness up to one item (EF1) and envy-freeness up to any item (EFX). First, we show an efficient algorithm that satisfies a variation of maximin share guarantee. Next, we show an efficient algorithm to find an EF1 and Pareto optimal allocation for two agents. Last, we show algorithms which satisfy different variations of EFX. In the second part, we introduce a real-life application, which is based on the roommate market problem [Chan et al., 2016]. We study the case where agents arrive in an online fashion. We focus on two objectives: (1) maximizing the social welfare, which is defined as the sum of valuations that applicants have for their rooms and the happiness valuation between each pair of roommates; (2) the allocation should satisfy certain stability conditions, such that no group of people would be willing to switch roommates or rooms. We show a polynomial-time online algorithm that achieves constant competitive ratio for social welfare maximization, and then generalize it in several directions. Then we show both positive and negative results in satisfying different stability conditions.

Chapter 2

Preliminaries

A resource allocation problem contains n agents $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and m resources $\left\{R_{1}, R_{2}, \cdots, R_{m}\right\}$ that we need to allocate to agents. An allocation $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is a partition of the resources that satisfies

$$
\bigcup_{1 \leq i \leq n} A_{i}=\bigcup_{1 \leq j \leq m} R_{j},
$$

where $A_{i} \cap A_{j}=\emptyset, \forall i \neq j . A_{i}$ is the resources allocated to a_{i}.
For divisible resources, A_{i} can contain fractions of the resources, and we often assume $\cup R_{j}=[0,1]$. In general, we are allowed to divide the resource into a finite many number of pieces before the allocation. For indivisible resources, A_{i} can either contain all of R_{j} or none of R_{j} for each j. For some concrete applications, the allocation may have specific constraints. For instance, if we want to metch n agents with n items, the agents may be restricted to taking exactly one item each. In some scenarios, we can throw away some resources, and do not have to allocate all of the resources to agents.

2.1 Divisible resource allocation

Under the divisibility condition, if there are two or more divisible resources, we can combine all of the resources into a single heterogeneous resource, producing a single "cake" that can be arbitrarily divided. Therefore, the divisible resource allocation
problem is known as the cake cutting problem. In a cake cutting problem, there are n agents and a heterogeneous divisible cake. For simplicity, we regard the cake as an interval $[0,1]$. As the cake can be divided arbitrarily, we need to use a density function to describe the valuation of agents. Each agent a_{i} has an individual density function f_{i}, where

$$
f_{i}:[0,1] \rightarrow[0, \infty) .
$$

In some cases, we use normalized density functions, which implies that each f_{i} should satisfy

$$
\int_{0}^{1} f_{i}(x) d x=1
$$

With these density functions, an agent's valuation of any cake segment can be computed. Valuation of cake pieces S to a_{i} is $v_{i}(S)=\int_{S} f_{i}(x) d x$. For allocating a cake, we generally have $f_{i} \geq 0$, so getting an additional part does not decrease one's utility. For allocating a chore, f_{i} is always non-negative, and agents may want to get the smallest possible portion of the chore. We will state the class of the resource before we use.

The Robertson-Webb cake cutting model[Robertson and Webb, 1998] is commonly used when the complexity of the mechanism needs to be taken into consideration. It summarizes the ways to acquire information from agents, and it allows the following two kinds of queries:

- EVALUATE (i, x, y), which returns how much a_{i} values an interval $[x, y]$; and
- $\operatorname{CUT}(i, x, w)$, which returns the minimal y such that $v_{i}([x, y])=w$ or reports that y does not exist.

Let us see how this model works if we apply the cut-and-choose protocol. First, we cut the cake at $x=\operatorname{CUT}(1,0,1 / 2)$. If $\operatorname{EVALUATE}(2,0, x) \geq 1 / 2$, let a_{2} take $[0, x]$, otherwise let a_{2} take $[x, 1]$. Then a_{1} takes the other part. We can see the protocol requires only two queries.

In this thesis, we focus on the fairness and incentives of cake cutting mechanisms. Each valuation function is either a piecewise uniform function or a piecewise constant function defined as follows.

Definition 1. A valuation function f is piecewise constant if and only if it is able to partition $[0,1]$ into finite many intervals $\left(I_{1}, I_{2}, \cdots, I_{m}\right)$, and for each I_{i} we have

$$
f(x)=f\left(x^{\prime}\right), \forall x, x^{\prime} \in I_{i} .
$$

A valuation function f is piecewise uniform if and only if f is piecewise constant and there exists a positive number c such that for all $x \in[0,1]$, we have $f(x)=0$ or $f(x)=c$.

Next, we introduce the definitions of fairness and truthfulness used in cake cutting models.

Definition 2. We say an allocation $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is proportional if and only if

$$
v_{i}\left(A_{i}\right) \geq 1 / n, \forall i \in\{1,2, \cdots, n\}
$$

where n is the number of agents.
Similarly, we say an allocation $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is envy-free if and only if

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right), \forall i \neq j
$$

Proportionality and envy-freeness in the chore setting are defined similarly by reversing the direction of the inequality.

A mechanism requires agents to input the valuation functions and it outputs an allocation. A mechanism can be represented by the function

$$
\mathcal{M}:\left(f_{1}, f_{2}, \cdots, f_{n}\right) \rightarrow\left(A_{1}, A_{2}, \cdots, A_{n}\right) .
$$

We say a mechanism is proportional (envy-free) if it always outputs a proportional (envy-free) allocation.

A truthful mechanism ensures that truthfully reporting one's true density function is the best strategy for every agent. The formal definition is as follows.

Definition 3. A mechanism \mathcal{M} is truthful, if the following holds: let

$$
\left(A_{1}, A_{2}, \cdots, A_{i}, \cdots, A_{n}\right)=\mathcal{M}\left(v_{1}, v_{2}, \cdots, v_{i}, \cdots, v_{n}\right),
$$

where all of the agents report their valuations truthfully, and

$$
\left(A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{i}^{\prime}, \cdots, A_{n}^{\prime}\right)=\mathcal{M}\left(v_{1}, v_{2}, \cdots, v_{i}^{\prime}, \cdots, v_{n}\right),
$$

where a_{i} manipulates the valuation function v_{i} to be v_{i}^{\prime} (while other agents remain unchanged). Then we always have

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{i}^{\prime}\right)
$$

According to this definition, a mechanism is truthful if an agent cannot get more by misreporting his valuation, when all of the other agents report their true valuation functions.

Under the free disposal assumption, we can dispose of every part of the cake that does not have a positive value for any agent. Note that in the chore setting, there is no assumption similar to the free disposal assumption, because disposing of parts of a chore does not make sense. We must allocate the whole chore and cannot disposal of any part, even if that part has no value for anyone.

As we mentioned above, Pareto optimality is another popular property in resource allocation problems, and it is intuitively a local optimality. Here, we give the formal definition.

Definition 4. An allocation $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is Pareto optimal, if and only if for any other allocation $A^{\prime}=\left(A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{n}^{\prime}\right)$, we have

$$
\exists i, v_{i}\left(A_{i}\right)<v_{i}\left(A_{i}^{\prime}\right) \Rightarrow \exists j, v_{j}\left(A_{j}\right)>v_{j}\left(A_{j}^{\prime}\right) .
$$

An equivalent statement is that no allocation A^{\prime} exists such that

$$
\forall i, v_{i}\left(A_{i}\right) \leq v_{i}\left(A_{i}^{\prime}\right) \text { and } \exists j, v_{j}\left(A_{j}\right)<v_{j}\left(A_{j}^{\prime}\right) .
$$

Similarly, we define Pareto optimality for chores by reversing the direction of all the inequalities.

Note that we only consider valid allocations: for a divisible resource, an allocation can involve an arbitrary partition of the resource; for indivisible resources, a resource must be entirely allocated to a single agent.

Previous studies There are many useful cake cutting mechanisms. In addition to the cut-and-choose protocol, there are interesting mechanisms that can solve various problems in simple settings.

- The two-agent exact allocation problem. In this task, we need to divide the cake into pieces so that all of the agents have the same certain value for each piece. For example, we want to cut the cake into three pieces that are $0.2,0.3$ and 0.5 of the entire cake for anyone. First, let us see how to divide the cake into two equal parts for two agents. The cut-and-choose protocol will not work in this case: the agent who implements the "choose" operation may feel two pieces are not the same. A possible solution is the Austin moving-knife protocol [Austin, 1982]: let a_{1} hold two knives, k_{1} and k_{2}, which start at $k_{1}=0$ and $k_{2}=x$ such that $v_{1}([0, x])=1 / 2$, Then a_{1} continuously moves the knifes from left to right, maintaining $v_{1}\left(\left[k_{1}, k_{2}\right]\right)=1 / 2$. When a_{2} finds $v_{2}\left(\left[k_{1}, k_{2}\right]\right)=1 / 2$, he shouts "stop" and the cake can be cut at k_{1} and k_{2}. As $v_{2}\left(\left[k_{1}, k_{2}\right]\right)$ changes smoothly and $v_{2}([0, x])+v_{2}([x, 1])=v_{2}([0,1])=1$, we have $v_{2}([0, x]) \leq 1 / 2 \leq v_{2}([x, 1])$ or $v_{2}([0, x]) \geq 1 / 2 \geq v_{2}([x, 1])$. Thus, we can use the intermediate value theorem to prove there must be such a moment. As $v_{1}\left(\left[k_{1}, k_{2}\right]\right)=v_{2}\left(\left[k_{1}, k_{2}\right]\right)=1 / 2$, then $v_{1}\left([0,1] \backslash\left[k_{1}, k_{2}\right]\right)=$ $v_{2}\left([0,1] \backslash\left[k_{1}, k_{2}\right]\right)=1 / 2$. Although the Austin moving-knife protocol provides a valid solution for the exact allocation among two agents, it cannot process a finite number of queries under the Robertson-Webb model. The moving-knife protocol can be generalized to obtain exact allocations in scenarios with multiple parts as follows. Suppose we want to produce pieces with proportions $\left(c_{1}, c_{2}, \cdots, c_{m}\right)$ for two agents. In the i-th round we solve a subproblem that divides the remaining cake into two parts, where one part is valued as exactly c_{i} for two agents.
- The n-agent proportional allocation problem. We use a variation of the cut-andchoose protocol to solve this problem. Let each agent report the least x that he is satisfied with proportionality if he obtains cake $[0, x]$, and then let the agent
who reports the lowest x take $[0, x]$. Then it becomes a subproblem with fewer agents, and we repeat the above step until no agents are left. Proportionality is straightforward: when there are n agents and one agent quits, the remaining agents will value the allocated part as less than $1 / n$, so the proportionality of the subproblem will be stronger than that of the original problem. Everyone will quit eventually, and each agent gets a proportional allocation when he quits.
- The three-agent envy-free allocation problem. One solution is to use the Austin moving-knife protocol to create three parts that are considered equivalent by the first two agents (this is the two-agent exact allocation problem) and then let the last agent pick the part he likes; the first two agents can pick any part because the parts are equivalent. However, this protocol is a continuous process and it does not work well under the Robertson-Webb model. Thus, we introduce the Selfridge-Conway discrete procedure. It was developed by John L. Selfridge about 1960, and independently by John H. Conway in 1993. It works as follows:

1. Let the agents be Alice, Bob and Carol. First, Carol divides the cake into three pieces that he considers to have the same value.
2. Bob trims the largest piece, to make its value equal to the value of the second largest piece (we call the piece that was cut off a trimming). Then, from Bob's perspective, there will be two choices for the largest piece.
3. Let Carol, Bob and Alice, in that order, take the piece that they like the most. An additional constraint is that Bob must take the trimmed piece if Carol does not take it.
4. Then the allocation of the entire cake will be envy-free, except for the trimming. One observation is that Alice will not envy the agent who gets the trimmed piece, even if he gets the whole trimming.
5. (i). If Bob gets the trimmed piece, let Carol divide the trimming into three pieces so that each piece has the same value to her, then let Bob, Alice and

Carol, in that order, choose the piece that they like the most. (ii). If Carol gets the trimmed piece, then let Bob divide the trimming into three pieces so that each piece has the same value to him, then let Carol, Alice and Bob, in that order, choose the piece they want.

We can see from the above process that the Selfridge-Conway discrete procedure involves at most 5 cuts of the cake. In recent studies of fair cake cutting problems [Aziz and Mackenzie, 2016b; Aziz and Mackenzie, 2016a], they use a similar trimming idea.

2.2 Indivisible resource allocation

In indivisible resource allocation problems, we have n agents and m items (or chores) such that $I=\left(I_{1}, I_{2}, \cdots, I_{m}\right)$. We have a valuation function $v_{i}: 2^{I} \rightarrow[0,+\infty)$ for each a_{i}. In this thesis, we assume that the valuation functions are additive; therefore, $v_{i}(S)=\sum_{g \in S} v_{i}(\{g\})$, where S is a subset of I. For an item, we may use $v_{i}(x)$ to represent $v_{i}(\{x\})$.

Classic fairness notions, such as envy-freeness and proportionality, are impossible to satisfy in the worst case when resources are indivisible. They may not be satisfied even in trivial cases; for example, an allocation cannot be envy-free or proportional if we want to allocate one indivisible item to n agents. Therefore, researchers have proposed new fairness notions. The maximin share guarantee ([Budish, 2011]) is a fairness notions that has recently been proposed for indivisible resource allocation problems.

Definition 5. Let $\pi_{n}(I)$ be the set of all n-partitions of goods set I. The n-maximin share(n-MMS) guarantee of a_{i} is computed as:

$$
M M S_{i}^{(n)}(I)=\max _{\left(S_{1}, S_{2}, \cdots, S_{n}\right) \in \pi_{n}(I)} \min _{j \in[n]} v_{i}\left(S_{j}\right) .
$$

The partition that generates the maximal result to a_{i} is called an n-MMS partition to a_{i}.

We say an allocation $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ satisfies the n-MMS guarantee (or A is an $n-M M S$ allocation) if

$$
v_{i}\left(A_{i}\right) \geq M M S_{i}^{(n)}(I),
$$

for each a_{i}.
In other words, the n-MMS of a_{i} is the maximum value a_{i} can get if he partitions all of the goods into n subsets, and he can only get the set with the least value. We note that one recent study [Procaccia and Wang, 2014] has shown that the MMS guarantee cannot be satisfied in the worst case.

We cannot guarantee envy-freeness and proportionality, but we may relax the them: for example, we can assume that envy only occurs when one agent's allocation is worse than another agent's allocation even if the second agent disposes of one item. Budish defined this type of envy-freeness as envy-freeness up to one good Budish, 2011]. In this thesis, we use envy-freeness up to one item instead of the original name, because "good" is not usually a singular proper noun in English.

Definition 6. An allocation $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is envy-free up to one item (EF1 hereafter), if and only if for each pair of agents (i, j), we have

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right), \exists g \in A_{j} .
$$

Similarly, an allocation is envy-free up to one chore if and only if for each (i, j), we have

$$
v_{i}\left(A_{i} \backslash\{g\}\right) \leq v_{i}\left(A_{j}\right), \exists g \in A_{i} .
$$

An agent is EF1 when he does not envy another agent, after that agent disposes of the best item in the first agent's valuation. Another way to achieve EF1 is to let the second agent drop an arbitrary item (in the worst case, it will be the least valued item). Formally, this has the following definition [Caragiannis et al., 2016].

Definition 7. An allocation $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is envy-free up to the least valued item (EFX hereafter), if and only if for each pair of agents (i, j), we have

$$
v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right), \forall g \in A_{j} .
$$

Similarly, an allocation is envy-free up to the least valued chore if and only if for each (i, j), we have

$$
v_{i}\left(A_{i} \backslash\{g\}\right) \leq v_{i}\left(A_{j}\right), \forall g \in A_{i} .
$$

From the definition, we can see that EFX is strictly stronger than EF1. Approximately satisfying EFX is another direction of further research.

Definition 8. For goods, an allocation $A=\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is α-EFX, if and only if for each pair of agents (i, j), we have

$$
v_{i}\left(A_{i}\right) \geq \alpha v_{i}\left(A_{j} \backslash\{g\}\right), \forall g \in A_{j} .
$$

Similarly for chores, an allocation is $\alpha-E F X$ if and only if for each (i, j), we have

$$
v_{i}\left(A_{i} \backslash\{g\}\right) \leq \alpha v_{i}\left(A_{j}\right), \forall g \in A_{i} .
$$

Envy-free graph We introduce an interesting algorithm for EFX allocation of goods, where each agent has an identical order of preference for the items. Several independent studies have found the solution to this problem using an envy-free graph. An envy-free graph is a graph which is generated by an allocation, where an edge (i, j) indicates that a_{i} envies a_{j} in the given allocation. One insight of the envy-free graph is that we can always adjust an allocation to make it acyclic by rotating the agents' allocations. If there is a cycle in the envy-free graph, let every agent take the bundle of resources that is originally allocated to the agent he envies; then, the allocation becomes strictly better. The algorithm works as follows.

1. Sort the items by the value in the non-increasing order (remember that all of the agents have the same order of preference). Maintain the envy-free graph throughout the whole process, such that there is an edge from i to j if and only if $v_{i}\left(A_{i}\right)<v_{i}\left(A_{j}\right)$.
2. Pick any agent who is not envied by anyone (in other words, any vertex in the envy-free graph with zero indegree). Let him take the next item.
3. Repeatedly eliminate cycles by rotating the in-cycle agents' allocations until there is no cycle in the envy-free graph.
4. Go back to Step 2 until all of the items are allocated.

Proof. In an acyclic graph, there is always a vertex with an indegree of 0 . Therefore, we can always find i in Step 2. Below, we show that after every Step 3, the allocation will be EFX. After we add one item to the allocation, the only option that may break EFX is that some a_{j} considers $v_{j}\left(A_{i} \backslash\{g\}\right)>v_{j}\left(A_{j}\right)$, where A_{i} is the allocation to a_{i} and g is the most recently added item (it is also the item with the least value). However, this would contradict the fact that no one envies a_{i} in Step 2, which implies that $v_{j}\left(A_{i} \backslash\{g\}\right) \leq v_{j}\left(A_{j}\right)$. Therefore, EFX is always guaranteed.

This mechanism can also be used to solve the approximate MMS allocation[Amanatidis et al., 2017] in both goods and chores settings.

2.3 Online roommate allocation

In this section, we consider a specific indivisible resource allocation problem: the online resource allocation problem. In a standard roommate market problem Chan et al., 2016], we have a set of $2 n$ agents $I=\{1,2, \ldots, 2 n\}$, a set of n rooms $R=$ $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$, a happiness matrix $H=\left\{h_{i j} \mid i, j \in I, i \neq j\right\}$ in which $h_{i j}$ denotes the happiness of a_{i} when he is assigned to live with a_{j} and a valuation matrix $V=$ $\left\{v_{i r} \mid i \in I, r \in R\right\}$ in which $v_{i r}$ denotes the valuation of a_{i} to room j. We assume that all of the happiness and valuation values are nonnegative. The outcome of the roommate market is an allocation $A=\{(i, j, r)\}$, which consists of n disjoint triples. The triple (i, j, r) indicates that a_{i} and a_{j} are assigned together to room r. We require that every agent be assigned to one room and that every room be assigned to exactly two agents. The social welfare of an allocation A is defined as

$$
S W(A)=\sum_{(i, j, r) \in A}\left(h_{i j}+h_{j i}+v_{i r}+v_{j r}\right) .
$$

We assume an online setting in which all of the agents arrive online in an uniformly random order. When a_{i} arrives, his valuation $v_{i r}$ of every room r, as well as his happiness valuation $h_{i j}$ of all of the agents a_{j} that have already arrived are revealed
to the algorithm. The algorithm needs to assign a_{i} to an available room immediately. As there are exactly $2 n$ agents and n rooms, we are not allowed to leave any agent unassigned. Our goal is to find an allocation A that can maximize $\mathbb{E}[S W(A)]$, such that the expectation is taken over both the randomness of the algorithm and the random arrival order of the agents.

An online algorithm is said to be c-competitive (or to have competitive ratio c), if its output allocation has an expected social welfare of no less than $c \cdot S W\left(A_{\text {opt }}\right)$, where $A_{\text {opt }}$ is the optimal offline allocation.

In addition to efficiency, several other stabilities are considered in this thesis. It is possible to satisfy stabilities due to their bidirectional property. A few stabilities which were introduced in the study by Chan et al.[|Chan et al., 2016].

Definition 9. An allocation is 2-person stable if for each a_{i} and a_{j} in two different rooms, switching their rooms cannot make both of them strictly increase their utility.

An allocation is 4-person stable iffor any a_{i} and a_{j} in two different rooms, switching their rooms cannot make all four people in these two rooms strictly increase their utility.

An allocation is room stable if for any two agents a_{i}, a_{i}^{\prime} in room r_{i} and two agents a_{j}, a_{j}^{\prime} in another room r_{j}, switching their rooms cannot increase the sum of the two roommates' utilities for both rooms.

Chan et al. proved that determining whether a roommate market has a 2-person stable solution is NP-hard, and there are polynomial-time algorithms for satisfying the 4 -person stability and room stability (for details, see their study Chan et al., 2016]). In an online roommate allocation problem, satisfying stability is harder than in the offline model. Therefore, we do not consider the 2-person stability in the online roommate allocation problem. Both the 4-person stability and room stability are studied in this thesis.

Chapter 3

Divisible Resource Allocation

In the previous chapter, we introduce the cut-and-choose protocol and show that it is possible to design an envy-free cake cutting mechanism when there are only two agents. Although computing envy-free allocation for two agents is not complicated, envy-free cake cutting mechanism for three agents (such as the Selfridge-Conway discrete procedure) are not straightforward already. Until recently, there were no discrete envy-free cake cutting mechanisms even for four agents. Recently, an envyfree mechanism was found with a bounded number of cuts for an arbitrary number of agents Aziz and Mackenzie, 2016a], but it is still unknown whether there is an allocation with a polynomial number of queries. In our study, we take truthfulness into consideration, to see whether a truthful fair mechanism exists under specific conditions. In fact, the existence of a solution to the cake cutting problem with two agents is an open question, even if we restrict the valuation functions to piecewise constant functions.

3.1 Truthful fair mechanism without the free disposal assumption

The search for a truthful and fair mechanism without the free disposal assumption for cake cutting problem is relatively new. The first study of truthful and fair cake
cutting was done by Chen et al. [Chen et al., 2013]. One of their most significant contributions is a truthful envy-free mechanism for an arbitrary number of agents with piecewise uniform valuation functions, and the mechanism additively needs the free disposal assumption. Although certain resources, such as cake or machine processing time, may be easy to get rid of, this is not the case for all resources. For instance, when we divide a piece of land among antagonistic agents or countries, we cannot simply throw away part of the land, and any piece of unallocated land constitutes a potential subject of future disputes. The free disposal assumption is even less reasonable when it comes to chore division-indeed, under this assumption, we might as well simply dispose of the whole chore!

With this motivation in mind, in the first section of this chapter we consider the problem of fairly and truthfully dividing heterogeneous resources without the free disposal assumption. Not having the option of throwing away part of the resource makes the task more complicated, as even if the mechanism is only allowed to throw away parts that are not valued by any agent, this still prevents agents from gaining by not reporting parts of the resource that no other agent values, in the hope of getting those parts for free along with a larger share of the remaining parts. Thus, as Chen et al. noted, getting rid of the free disposal assumption adds "significant complexity" to the problem, as under this condition the mechanism has to specify exactly how to allocate parts that no agent desires. The same group of authors also gave an example illustrating how removing the assumption can be problematic, even in the special case of two agents with very simple valuations.

3.1.1 Related works

For easier analysis, many recent studies have restricted the valuation functions to piecewise constant and piecewise uniform functions, which simplifies the description of valuations e.g. [Bei et al., 2012], [Chen et al., 2013], [Aziz and Ye, 2014], [Bei et al., 2017a], [Menon and Larson, 2017]. One study has shown that in the RobertsonWebb model, finding an envy-free allocation with piecewise uniform valuation func-
tions is equivalent to solving the problem without this property Kurokawa et al., 2013].

Chen et al. first studied truthful envy-free mechanisms with restricted valuations [Chen et al., 2013]. They proposed a truthful and envy-free mechanism with piecewise uniform valuation function under the free disposal assumption. Maya and Nisan developed a truthful, proportional and Pareto optimal mechanism for two agents with piecewise uniform valuations [Maya and Nisan, 2012]. With piecewise constant valuations, Kurokawa et al. showed there is no truthful and envy-free mechanism in the Robertson-Webb model with bounded queries Kurokawa et al., 2013], and Aziz and Ye showed there is no truthful, proportional and Pareto optimal mechanism [Aziz and Ye, 2014]. In a setting in which every agent values only one interval, Alijani et al. showed efficient truthful envy-free mechanisms [Alijani et al., 2017].

Most previous studies have adopted the free disposal assumption. In this section, we study the cake cutting problem without the free disposal assumption. This section is reproduced from our published paper [Bei et al., 2018].

3.1.2 Anonymous mechanism

One might consider that "fair" mechanisms should treat the agents equally regardless of their identity.

Definition 10. A mechanism \mathcal{M} is anonymous, if the following holds:
for any density functions $\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ and any permutation σ of $(1,2, \cdots, n)$, if

$$
\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\mathcal{M}\left(f_{1}, f_{2}, \cdots, f_{n}\right)
$$

and

$$
\left(A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{n}^{\prime}\right)=\mathcal{M}\left(f_{\sigma(1)}, f_{\sigma(2)}, \cdots, f_{\sigma(n)}\right)
$$

then

$$
v_{i}\left(A_{i}\right)=v_{i}\left(A_{\sigma(i)}^{\prime}\right)
$$

for every i.

However, the following result shows that anonymity is incompatible with truthfulness and envy-freeness.

Theorem 1. When the valuation functions are piecewise uniform, there is no truthful, envy-free, and anonymous cake cutting mechanism even for only two agents without the free disposal assumption.

Proof. We are going to prove a stronger statement: even we restrict the valued part of valuations to be $\left[0, x_{i}\right]$, there is no truthful envy-free anonymous mechanism. We use $W_{i}=[0, x]$ to denote that a_{i} has value on $[0, x]$, and has no value on the rest part.

Suppose that such a mechanism exists. Let $x \in[0,1)$ and $W_{1}=W_{2}=[0, x]$. Assume without loss of generality that in this instance, a_{1} gets an interval containing point x and ending at point $x+f(x)>x$, possibly among other intervals. By envy-freeness, both agents must get half of the interval $[0, x]$.

If $W_{1}=[0, x+\varepsilon]$ for some $\varepsilon \in[0, f(x)]$ and $W_{2}=[0, x]$, then a_{1} must get the entire interval $[x, x+\varepsilon]$ and half of the interval $[0, x]$. This is because a_{2} must get at least half of the interval $[0, x]$, and if a_{1} gets less than the whole interval $[x, x+\varepsilon]$, he can manipulate by reporting $W_{1}=[0, x]$ and getting the whole interval $[x, x+\varepsilon]$. By anonymity, if $W_{1}=[0, x]$ and $W_{2}=[0, x+\varepsilon]$ for some $\varepsilon \in[0, f(x)]$, a_{2} must also get the whole interval $[x, x+\varepsilon]$ and half of the interval $[0, x]$.

Now suppose that $W_{1}=W_{2}=[0, x+\varepsilon]$ for some $\varepsilon \in[0, f(x)]$. Both agents must get half of the interval $[0, x+\varepsilon]$. If a_{1} gets more than half of the interval $[x, x+\varepsilon]$, then a_{2} gets more than half of the interval $[0, x]$. In this case, if $W_{2}=[0, x], a_{2}$ can manipulate by reporting $W_{2}=[0, x+\varepsilon]$. So a_{1} cannot get more than half of the interval $[x, x+\varepsilon]$. By symmetry, neither can a_{2}. This means that both agents get exactly half of the interval $[x, x+\varepsilon]$. In other words, for any $y \in[x, x+f(x)]$, if $W_{1}=W_{2}=[0, y]$, then both agents get exactly half of the interval $[x, y]$.

Next, consider the set

$$
A:=\left\{(x, y) \in \mathbb{R}_{[0,1)} \times \mathbb{Q}_{[0,1]} \mid x<y<x+f(x)\right\} .
$$

This set is uncountable, since for each of the uncountably many x 's, there is at least one y such that $(x, y) \in A$. If for each y there only exist a finite number of x 's such
that $(x, y) \in A$, this set would be countable, which we know is not the case. Hence there exists a y such that $(x, y) \in A$ for infinitely many x 's. Fix such a y.

Finally, suppose that $W_{1}=W_{2}=[0, y]$. For any of the infinitely many x 's such that $(x, y) \in A$, both agents must receive exactly half of the interval $[x, y]$. However, if the mechanism divides the interval $[0, y]$ into k intervals in the allocation, then there can be at most one value of x per interval, and therefore at most k values in total, with this property. This gives us the desired contradiction that we have to divide the cake into infinite many intervals.

In the rest of this thesis, the class of valuations that form $[0, x]$ appear many times. We say a valuation is prefix valuation, if the agent has the same positive value everywhere on $[0, x]$ for some x, and has no value on $[x, 1]$.

3.1.3 Connected piece assumption

When cutting a real cake, we intuitively know that we do not want to cut the cake into too many pieces. For example, if we are allocating a party cake among n guests, we try to allocate each guest one piece of cake rather than many small pieces of cake. Similarly, for some resources, such as time and land, it is better to have single piece, rather than lots of pieces. In a standard cake cutting model, we define the connected piece assumption as follows.

Definition 11. An allocation satisfies the connected piece assumption if every agent gets a single subinterval of the cake. In other words, the cake will have $n-1$ cutting points, and every agent will get one of these n intervals. A mechanism produces connected pieces if it always outputs allocations that satisfy the connected piece assumption.

With the connected piece assumption, we prove there is no truthful envy-free cake cutting mechanism with piecewise uniform valuation functions for two agents. Similar results of impossibility were presented in previous studies [Menon and Larson, 2017; Bei et al., 2017al, which depend on the free disposal assumption.

Theorem 2. When the valuation functions are piecewise uniform, there does not exist a truthful and envy-free cake cutting mechanism for two agents without the free disposal assumption that satisfies the connected piece assumption, even the valuations are restricted to be prefix valuations.

Proof. Suppose that such a mechanism exists. First, consider the instance where $W_{1}=W_{2}=[0, x]$ for some $x \in(0,1)$. One agent will get the interval $[0, x / 2]$ and the other agent the interval $[x / 2,1]$; assume without loss of generality that a_{1} gets $[0, x / 2]$ and a_{2} gets $[x / 2,1]$. Next, consider the instance where $W_{1}=[0, x]$ and $W_{2}=[0, y]$ for some $y \in(x, 1)$. Then a_{2} must still get the interval $[x / 2,1]$; otherwise he can report $W_{2}=[0, x]$ instead.

Now, consider the instance where $W_{1}=W_{2}=[0, y]$. As before, one agent will get the interval $[0, y / 2]$ and the other agent the interval $[y / 2,1]$. If a_{1} gets $[0, y / 2]$, then in the previous instance a_{1} can gain more by reporting $W_{1}=[0, y]$. Hence it must be that a_{2} gets $[0, y / 2]$ and a_{1} gets $[y / 2,1]$. This means that in the instance where both agents report $[0, y]$, the ordering of the allocated pieces is reversed from the allocation in the instance where both agents report $[0, x]$. Since this holds for any $y>x$, if we take some $z>y$ (obviously $z>x$ also), we find that no allocation works when both agents report $[0, z]$, a contradiction.

A remark is that we will have a mechanism under the free disposal assumption. If we have $W_{1}=\left[0, x_{1}\right]$ and $W_{2}=\left[0, x_{2}\right]$ and $x_{1}<x_{2}$, let a_{1} get $\left[0, x_{2} / 2\right]$ and a_{2} get $\left[x_{2} / 2, x_{2}\right]$. There are four cases:

- a_{1} may manipulate $x_{1}^{\prime}>x_{2}$, then he can get $x_{2}-x_{1}^{\prime} / 2<x_{2} / 2$;
- a_{1} may manipulate $x_{1}^{\prime} \leq x_{2}$, then nothing changes;
- a_{2} may manipulate $x_{2}^{\prime}<x_{2}$, then he can get $x_{2}^{\prime} / 2<x_{2} / 2$;
- a_{2} may manipulate $x_{2}^{\prime}>x_{2}$, then he can get $x_{2}-x_{2}^{\prime} / 2<x_{2} / 2$.

We conclude that the mechanism is truthful and envy-free by checking these four cases.

3.1.4 Position oblivious mechanism

Position obliviousness is another mild assumption, which seems like the anonymity on cake segments. Let us see the formal definition first.

Definition 12. Given a vector of n piecewise constant density functions $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, we define the indicator function $L_{\mathbf{f}}: \mathbb{R}^{n} \mapsto \mathbb{R}$, where

$$
L_{\mathbf{f}}\left(r_{1}, \ldots, r_{n}\right)=\left|\left\{x \mid \forall i, f_{i}(x)=r_{i}\right\}\right|,
$$

where $|S|$ means the summation of length of all intervals in the set S. Similarly, assume $A=\left(A_{1}, \ldots, A_{n}\right)$ is an allocation produced by some mechanism with these density functions, define $L_{\mathrm{f}}^{A_{i}}: \mathbb{R}^{n} \mapsto \mathbb{R}$, where

$$
L_{\mathbf{f}}^{A_{i}}\left(r_{1}, \ldots, r_{n}\right)=\left|\left\{x \mid \forall i, f_{i}(x)=r_{i}\right\} \cap A_{i}\right| .
$$

Definition 13. A mechanism \mathcal{M} is position oblivious if for any two cake cutting instances with density functions $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and $\mathbf{f}^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right)$ such that $L_{\mathbf{f}} \equiv L_{\mathbf{f}^{\prime}}$, the mechanism always outputs two allocations $\mathcal{M}(\mathbf{f})=\left(A_{1}, \ldots, A_{n}\right)$ and $\mathcal{M}\left(\mathbf{f}^{\prime}\right)=\left(A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right)$ such that $L_{\mathbf{f}}^{A_{i}} \equiv L_{\mathbf{f}^{\prime}}^{A_{i}^{\prime}}$ for every i.

Intuitively, a position oblivious mechanism will decide the allocation only based on the set of segments $\left\{X_{t} \mid t=1, \ldots, m\right\}$ and each agent's values on these segments, but not on these segments' relative positions on $[0,1]$.

Because in this section, we are considering piecewise uniform functions, we may use another simpler notation $L_{f}(S)$ to represent the length of segments where agents in S have value on it, while other agents don't have value on it. For example, $L_{f}(1,0,1)$ should be $L_{f}(\{1,3\})$ in the new notation.

Theorem 3. When the valuation functions are piecewise uniform, there does not exist a truthful, proportional, and position oblivious cake cutting mechanism for n agents without the free disposal assumption, where $n=2 k$ for some positive integer k.

Proof. Suppose that such a mechanism exists. Assume that the cake is represented by the interval $\left[0,4 k^{2}+k\right]$.

First, consider the instance where $W_{2 i-1}=W_{2 i}=[i-1, i]$ for $i=1,2, \ldots, k$. Since the interval $\left[k, 4 k^{2}+k\right]$ is of length $4 k^{2}$ and there are $2 k$ agents, some agent gets value more than $2 k-1$ from the interval. Assume without loss of generality that a_{1} is one such agent, and that a_{1} gets the interval $[k, 3 k-1]$. Since the mechanism is proportional, a_{1} must get value at least $1 / 2 k$ from the interval $[0,1]$ as well.

Next, consider the instance where $W_{1}=[0,1] \cup[k, 3 k-1], W_{2}=[0,1]$, and $W_{2 i-1}=W_{2 i}=[i-1, i]$ for $i=2,3, \ldots, k$. Agent a_{1} must still get value at least $1 / 2 k$ from the interval $[0,1]$; otherwise he can report $W_{1}=[0,1]$ instead. This means that a_{2} gets a total value of at most $1-1 / 2 k$ in this instance.

Finally, consider the instance where $W_{1}=W_{2}=[0,1] \cup[k, 3 k-1]$ and $W_{2 i-1}=$ $W_{2 i}=[i-1, i]$ for $i=2,3, \ldots, k$. By proportionality, a_{2} must receive value at least 1 ; let $B_{2} \subseteq[0,1] \cup[k, 3 k-1]$ be a piece of length 1 that a_{2} receives. If $W_{2}=B_{2}$ while the other W_{i} 's remain fixed, then since the mechanism is position oblivious, a_{2} must get a total value of at most $1-1 / 2 k$. However, in that case a_{2} can report $W_{2}=[0,1] \cup[k, 3 k-1]$ and receive value 1 . This implies that the mechanism is not truthful and yields the desired contradiction.

As with the connected piece assumption, Bei et al. showed a similar negative result for position obliviousness under the free disposal assumption but using the larger class of piecewise constant valuations Bei et al., 2017a]. For piecewise uniform valuations, Chen et al.'s mechanism is truthful, envy-free, and position oblivious under the free disposal assumption.

3.1.5 Pareto optimal mechanism for two agents

In this section, we focus on the case of two agents. We show that in this case, there exists a truthful, envy-free, and Pareto optimal mechanism for both cake cutting and chore division, for two agents with arbitrary piecewise uniform valuations.

We first describe the cake cutting mechanism.

Mechanism 1 (for cake cutting between two agents)

Step 1: Find the smallest value of $x \in[0,1]$ such that $v_{1}([0, x])=v_{2}([x, 1])$.

Step 2: Assign to a_{1} the intervals in $[0, x]$ valued by a_{1} and the intervals in $[x, 1]$ not valued by a_{2}, and assign the rest of the cake to a_{2}.

While this is a succinct description of the mechanism, it turns out that the description is somewhat difficult to work with. We next provide an alternative formulation that is more intuitive and will help us in establishing the claimed properties of the mechanism.

Mechanism 1 (alternative formulation)

Phase 1: Let a_{1} start at point 0 of the cake moving to the right and a_{2} start at point 1 of the cake moving to the left. Let both agents "eat" the cake with the same constant speed, jumping over any interval for which they have no value according to their reported valuations. If the agents are at the same point while both are still eating, go to Phase 3. Else, one of the agents has no more valued interval to eat; go to Phase 2.

Phase 2: Assume that a_{i} is the agent who has no more valued interval to eat. Let a_{i} stop and a_{3-i} continue eating. If the agents are at the same point (either while a_{3-i} eats or while a_{3-i} jumps over an interval of zero value), go to Phase 3. Else, both agents have stopped, but there is still unallocated cake between their current points. In this case, let a_{3-i} continue eating the unallocated cake until he is at the same point as a_{i}, and go to Phase 3 .

Phase 3: Assume that both agents are at point x of the cake. (It is possible that
the two agents meet while both of them are jumping. In this case, we let a_{2} jump first.) Assign any unallocated interval to the left of x to a_{2} and any unallocated interval to the right of x to a_{1}.

Theorem 4. When the valuation functions are piecewise uniform, Mechanism 1 is a truthful, envy-free, and Pareto optimal cake cutting mechanism for two agents without the free disposal assumption.

Proof. We begin with truthfulness. Note that there is no incentive for an agent to report an interval that he has no value since this can only result in the agent wasting time eating such intervals. So the only potential deviation is for the agent to report a strict subset of the intervals that he has a positive value. If the agent does not report intervals that he has a positive value, then the intervals that he jumps over before the agents meet will be lost to the other agent, and the agent can use the extra time gained from not reporting these intervals to eat intervals of no more than the same length.

Next, for envy-freeness, it suffices to show that each agent gets at least half of his valued intervals allocated in each phase. In Phase 1, each agent only gains intervals that he has a positive value, and loses intervals that he has a positive value (due to the other agent's eating) at no more than the same speed. In Phase 2, the agent who continues eating can only gain more, while the agent who has stopped eating has no more interval that he has a positive value. In Phase $3, a_{1}$ has no unallocated interval to the left of x that he has a positive value, so he cannot lose any unallocated interval that he has a positive value. The same argument holds for a_{2}.

Finally, our mechanism allocates any interval valued by at least one agent to an agent who has a positive value on it. This establishes Pareto optimality.

Mechanism 1 gives rise to a dual mechanism for two-agent chore division that satisfies the same set of properties.

Mechanism 2 (for chore division between two agents)

Step 1: Use Mechanism 1 to find an initial allocation of the chore, treating the chore valuations as cake valuations.

Step 2: Swap the pieces of the two agents in the allocation from Step 1.

Theorem 5. When the valuation functions are piecewise uniform, Mechanism 2 is a truthful, envy-free, and Pareto optimal chore division mechanism for two agents without the free disposal assumption.

Proof. First, truthfulness holds because minimizing the chore in the swapped allocation is equivalent to maximizing the chore in the initial allocation, and Theorem 4 shows that this is exactly what Mechanism 1 incentivizes the agents to do. Next, envy-freeness holds again by Theorem 4 because getting at most half of the chore in the swapped allocation is equivalent to getting at least half of the chore in the initial allocation. Finally, in the initial allocation any interval of the chore valued by only one agent is allocated to that agent, so in the swapped allocation the interval is allocated to the other agent, implying that the mechanism is Pareto optimal.

Besides truthfulness, envy-freeness, and Pareto optimality, how do Mechanisms 1 and 2 fare with respect to the other previous properties

- Mechanism 1 is not anonymous: If $W_{1}=[0,0.5]$ and $W_{2}=[0,1]$ then both agents get value 0.5 , while if $W_{1}=[0,1]$ and $W_{2}=[0,0.5]$ then a_{1} gets value 0.75 and a_{2} gets value 0.25 .
- It is also not position oblivious: If $W_{1}=[0,0.5]$ and $W_{2}=[0,1]$ then both agents get value 0.5 , while if $W_{1}=[0.5,1]$ and $W_{2}=[0,1]$ then a_{1} gets value 0.25 and a_{2} gets value 0.75 .
- The allocation when $W_{1}=[0,1]$ and $W_{2}=[0,0.5]$ shows that the mechanism does not satisfy the the connected piece assumption.

The same examples demonstrate that Mechanism 2 likewise satisfies none of the three properties.

3.1.6 Pareto optimal mechanism for n agents

In this section, we consider the general setting where we allocate the resource among any number of agents. We assume that each agent i has a prefix valuation (remind it implies that a_{i} only values the interval $\left[0, x_{i}\right]$). Prefix valuations may appear in a scenario where the agents are dividing machine processing time: a_{i} has a deadline x_{i} for his jobs, so he would like to maximize the processing time he gets before x_{i} but has no value for any processing time after x_{i}. We also remark that the example used to illustrate that removing the free disposal assumption can be problematic consists of two agents whose valuations belong to this class [Chen et al., 2013, p. 296]. Hence, designing a fair and truthful algorithm is by no means an easy problem even for this valuation class.

We first describe the cake cutting mechanism.

Mechanism 3 (for cake cutting among n agents)

Step 1: If there is one agent left, the agent gets the entire remaining cake. Else, assume that there are $k \geq 2$ agents and length l of the cake left. Find the maximum $x \in[0, l]$ such that agent i values the entire interval $[(i-1) x, i x]$ for all $i=1,2, \ldots, k$, and allocate the interval $[(i-1) x, i x]$ to agent i.

Step 2: The agent whose right endpoint of his allocated interval coincides with the right endpoint of his valued piece exits the process. (If there are more than one such agent, choose the one with the lowest number.)

Step 3: Renumber the remaining agents in the same order starting from 1, and relabel the left endpoint of the remaining cake as point 0 . Return to Step 1.

Theorem 6. Let n be any positive integer. When the valuation functions are piecewise uniform, Mechanism 3 is a truthful, envy-free, and Pareto optimal cake cutting mechanism for n agents without the free disposal assumption, if valuations are restricted to be prefix valuations.

Proof. First, for truthfulness, there are two types of manipulation: moving x_{i} to the left and to the right. Moving x_{i} to the left can only cause a_{i} to quit the process early when he could have gained more by staying on. On the other hand, if moving x_{i} to the right causes the allocation to change in some round of Step 1, the agent can only get less value from the allocated interval as its right endpoint moves past x_{i}. Moreover, since he has no more valued intervals to the right, he cannot make up for the loss.

Next, for envy-freeness, if an agent is no longer in the process, he has no more part that he has a positive value on it. During the process, all remaining agents receive an interval of the same length in each round. Since each agent values the entire interval that he receives, he does not envy any other agent.

Finally, our mechanism allocates any interval to an agent who has a positive value on it (if at least one agents have a positive value on it). This establishes Pareto optimality.

In the chore setting, prefix valuations may also appear in the case where agent i has another task and will be busy before the deadline x_{i}, therefore he wants to minimize the chore that he takes before x_{i}, and after x_{i} everything will be easy to deal with (so it valued as 0). Unlike in the case of two agents, there is no simple reduction between cake cutting and chore division in the general case. Nevertheless, our next result shows a truthful and proportional chore division mechanism for any number of agents. We were not able to strengthen the proportionality guarantee to envy-freeness and leave it as an interesting open question for future research.

Mechanism 4 (for chore division among n agents)

Step 1: Let a_{1} take the piece $\left[0, x_{1} / n\right] \cup\left[x_{1}, 1\right]$. If some other agent has no value on parts of the interval $\left[0, x_{1} / n\right]$, give those parts to the agent. (If there are several such agents, allocate the parts arbitrarily.)

Step 2: Repeat Step 1 with the next agent up to a_{n-1} and the remaining chore; a_{i} takes the leftmost interval with value x_{i} / n as well as any piece for which he has no value. (If a_{i} has value less than x_{i} / n left, he takes the entire remaining chore.)

Step 3: Agent a_{n} takes all of the remaining chore.

Theorem 7. Let n be any positive integer. When the valuation functions are piecewise uniform, Mechanism 4 is a truthful, proportional, and Pareto optimal chore division mechanism for n agents without the free disposal assumption, if valuations are restricted to be prefix valuations.

Proof. We begin with truthfulness. First, an agent who has no value on some piece that the mechanism initially allocates to another agent has no incentive not to take the piece. Apart from this, agent a_{n} has no control over his allocation, so the mechanism is truthful for his. For any other agent, there are two types of manipulation: moving x_{i} to the left and to the right. Moving x_{i} to the right can only increase the value of the piece that a_{i} has to take. If a_{i} moves x_{i} to the left by an amount y, he can save a value of at most y / n but has to take a piece of value y at the end. So a_{i} does not have a profitable manipulation.

We now consider proportionality. Each agent up to a_{n-1} gets a piece of value at most x_{i} / n. For a_{n}, we consider two cases. Let $x=\min \left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. If $x_{n} \leq x$, then each of the first $n-1$ agents takes at least $1 / n$ of the interval $\left[0, x_{n}\right]$, so at most $1 / n$ of this interval is left for a_{n}. Else, we have $x_{n}>x$. The intervals $[0,(n-1) x / n]$ and $[x, 1]$ will not be left to a_{n}, meaning that a_{n} receives value at
most $x / n<x_{n} / n$.
Finally, our mechanism allocates any interval for which some agent has no value to one such agent. This establishes Pareto optimality.

3.2 Cake cutting with piecewise constant valuation functions

The piecewise constant function is known as the step function in real analysis. It can be used to approximately approach a continuous function for any given accuracy, which provides a way to improve the analysis of the functions. In this section, we follow Chen et al. [Chen et al., 2013] and study fair division with piecewise constant valuation functions instead of piecewise uniform valuation functions.

3.2.1 Related works

There is no truthful, proportional and Pareto optimal mechanisms for piecewise constant piecewise constant valuations [Schummer, 1996; Aziz and Ye, 2014]. Truthful mechanisms for two agents have been characterized [Maya and Nisan, 2012]. A recent work studied non-wastefulness and the connected piece assumption [Menon and Larson, 2017], which are also studied in our paper [Bei et al., 2017a]. Menon and Larson developed an approximation algorithm that is proportional and partially satisfies truthfulness with piecewise uniform valuations. We have already introduced some of the related studies in the previous section, as these two sections significantly overlap.

This section is reproduced from our published paper [Bei et al., 2017a].

3.2.2 Connected piece assumption

In Section 3.1.3, we learn there is no truthful envy-free mechanism that satisfyies the connected piece assumption for two agents without the free disposal assumption when the valuations are piecewise uniform. In this subsection, we have two differ-
ences from the setting in Section 3.1.3: the valuations are piecewise constant and we adopt the free disposal assumption. We are going to prove there is no truthful envyfree mechanism that can satisfy the connected piece assumption for any number of agents.

Theorem 8. Under the free disposal assumption, no truthful envy-free cake cutting mechanism satisfies the connected piece assumption for any number of agents when valuation functions are piecewise constant.

Proof. Let $\varepsilon>0$ be a sufficiently small constant. The cake is represented by $[0,7+$ $n]$. The density functions are defined as follows.

$$
\begin{aligned}
& \begin{aligned}
f_{1}(x)=1, & \text { for } x \in[1,2+\varepsilon] \cup[5,6] \\
& f_{2}(x)=1,
\end{aligned} \\
& \text { for } x \in[3,4] \cup[7-\varepsilon, 8]
\end{aligned}
$$

$$
f_{i}(x)=1, \quad \text { for } x \in[6+i-\varepsilon, 6+i+\varepsilon]
$$

The valuation of all density functions is zero on the unspecified intervals. Notice that the cake is $[0,9]$ when $n=2$, in which case only f_{1} and f_{2} are defined.

Under the connected piece constraint, it is easy to see that either a_{1} or a_{2} will get a value of at most $1+\varepsilon$. Without loss of generality, assume it is a_{1}. Considering the scenario where a_{1} misreports his function to be

$$
f_{1}^{\prime}(x)=\left\{\begin{array}{ll}
1 & x \in[1,2+\varepsilon] \cup[5,6] \\
2 & x \in[8,7+n]
\end{array},\right.
$$

we next show that a_{1} can get an allocation with a value of at least 2 (with respect to f_{1}).

Given the condition that one has to receive a consecutive piece, we know that a_{1} cannot get a value of more than 2 from the interval $[8,7+n]$. For each $x \in[8,7+$ $n-1]$, the interval $[x, x+1]$ will cover at least half of some $[6+i-\varepsilon, 6+i+\varepsilon]$, thus the envy-freeness must be broken. It holds trivially for $n=2$, as a_{1} has value exactly 2 on $[8,7+n]=[8,9]$. However, receiving value 2 is not enough for proportionality
(as $\int_{[0,7+n]} f_{1}^{\prime}(x) d x=2 n+\varepsilon$), and thus, it is not enough for envy-freeness. Also, it can be seen that a_{1} cannot get a superset of $[7-\varepsilon, 8]$ on which a_{2} has more than half of his total valuation. Therefore, to receive a value of more than $2, a_{1}$ has to take almost the entire interval $[1,6]$; this results in a value of more than 2 with respect to the true function f_{1}. Compared with the upper bound $1+\varepsilon$ that a_{1} receives when reporting f_{1} truthfully, his obtained value is increased from manipulation.

Therefore, no truthful mechanism exists, and the theorem follows.

3.2.3 Non-wasteful mechanism

The non-wastefulness implies that we are not willing to allocate a piece to someone who does not like it at all. Formally, we have the following definition.

Definition 14. A mechanism is non-wasteful if and only if an agent will never get a cake segment, where he has no value on this segment.

With this mild assumption, we have the following negative conclusion.

Theorem 9. Under the free disposal assumption, there is no truthful, envy-free, and non-wasteful cake cutting mechanism when valuation functions are piecewise constant.

Proof. Suppose otherwise there is a non-wasteful truthful envy-free mechanism \mathcal{M}. Consider the cake cutting instance with two agents whose density functions are $f_{1}(x)=1$ and $f_{2}(x)=1$ on the whole cake. The allocation $A=\left(A_{1}, A_{2}\right)$ given by \mathcal{M} must satisfy $\left|A_{1}\right|=\left|A_{2}\right|=0.5$. Consider another cake cutting instance with two agents whose valuation density functions are

$$
g_{1}(x)=\left\{\begin{array}{ll}
1 & x \in A_{1} \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad g_{2}(x)=1\right.
$$

For this instance $\left(g_{1}, g_{2}\right), a_{1}$ will get the whole A_{1} if \mathcal{M} is truthful, as otherwise a_{1} can bid $g_{1}^{\prime}(x)=1$ and get A_{1}. Moreover, a_{1} cannot get more than A_{1}, because otherwise a_{2} will envy a_{1}. Thus, $A=\left(A_{1}, A_{2}\right)$ is the only possible allocation generated by \mathcal{M} for the instance $\left(g_{1}, g_{2}\right)$. However, by taking advantage of the non-wasteful
condition, a_{2} can misreport his density function and get a better allocation than A_{2}. For example, a_{2} can bid the following function g_{2}^{\prime} :

$$
g_{2}^{\prime}(x)= \begin{cases}1 & x \in A_{1} \\ 0.5 & \text { otherwise }\end{cases}
$$

For the instance $\left(g_{1}, g_{2}^{\prime}\right), a_{2}$ will receive the entire A_{2} according to the non-wasteful condition. In addition, he will receive some of A_{1} to guarantee envy-freeness. Thus, a_{2} will receive a strictly larger value from manipulation, which implies that \mathcal{M} cannot be truthful.

3.2.4 Position oblivious mechanism

For piecewise constant valuation functions, we cannot use a set of agents to uniquely denote the type of subintervals as we did with piecewise uniform valuation functions. Instead of that, we need to use n real numbers to denote the density of valuation to every agent. Below we show that position oblivious, truthful and envy-free mechanism does not exist.

First, we consider a special piecewise uniform case.
Lemma 1. For any $I_{1}, I_{2} \subseteq[0,1]$ such that $I_{1} \cap I_{2}=\emptyset$ and $\left|I_{1}\right|=\left|I_{2}\right|$, given two density functions

$$
f_{1}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in I_{1} \cup I_{2} \\
0 & \text { otherwise }
\end{array} \text { and } f_{2}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in I_{2} \\
0 & \text { otherwise }
\end{array},\right.\right.
$$

any mechanism \mathcal{M} that is truthful, envy-free and position oblivious would produce an allocation $\mathcal{M}\left(f_{1}, f_{2}\right)=\left(A_{1}, A_{2}\right)$ such that $I_{2} \subseteq A_{2}$.

Proof. First consider the case where both agents have density function f_{1}. By the envy-free condition, both agents will get half of $I_{1} \cup I_{2}$. That is, we have $\mathcal{M}\left(f_{1}, f_{1}\right)=$ $\left(A_{1}, A_{2}\right)$ with $\left|A_{1} \cap\left(I_{1} \cup I_{2}\right)\right|=\left|A_{2} \cap\left(I_{1} \cup I_{2}\right)\right|=\left|I_{1}\right|=\left|I_{2}\right|$.

Next, consider another case where a_{2} has a density function

$$
g_{2}(x)= \begin{cases}1 & \text { if } x \in A_{2} \cap\left(I_{1} \cup I_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Because \mathcal{M} is truthful, one must have $\mathcal{M}\left(f_{1}, g_{2}\right)=\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ with $A_{2} \subseteq A_{2}^{\prime}$, since otherwise a_{2} can bid $g_{2}=f_{1}$ to receive whole A_{2}.

Finally, due to the position oblivious property and the fact that $L_{\left(f_{1}, f_{2}\right)}=L_{\left(f_{1}, g_{2}\right)}$, we know with input $\left(f_{1}, f_{2}\right)$ mechanism should also give the whole I_{2} to a_{2}. This proves the lemma.

Theorem 10. Under the free disposal assumption, there is no truthful, envy-free, and position oblivious mechanism even for two agents when valuation functions are piecewise constant.

Proof. Assume by contradiction that such mechanism \mathcal{M} exists. Consider the cake cutting instance $\left(f_{1}, f_{2}\right)$ with

$$
f_{1}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in\left[0, \frac{1}{3}\right] \\
0 & \text { otherwise }
\end{array} \text { and } f_{2}(x)= \begin{cases}1 & \text { if } x \in\left[0, \frac{1}{3}\right] \\
\varepsilon & \text { if } x \in\left(\frac{1}{3}, 1\right]\end{cases}\right.
$$

with some small $\varepsilon>0$.
Assume that with these inputs \mathcal{M} produces the allocation $A=\left(A_{1}, A_{2}\right)$. By the envy-free condition of a_{1}, we know $\left|A_{1} \cap\left[0, \frac{1}{3}\right]\right| \geq \frac{1}{6}$, which implies $\left|A_{2} \cap\left[0, \frac{1}{3}\right]\right| \leq$ $\frac{1}{6}$, and by the envy-freeness of a_{2} we have $\left.\frac{1}{6} \geq\left|A_{2} \cap\left[0, \frac{1}{3}\right]\right| \geq \frac{1}{6}\left(1-\frac{4}{3} \varepsilon\right)\right)$, and $\left|A_{2} \cap\left(\frac{1}{3}, 1\right]\right| \geq \frac{1}{3}$.

Next, consider another cake cutting instance $\left(g_{1}, g_{2}\right)$ with

$$
g_{1}=f_{1} \text { and } g_{2}(x)= \begin{cases}1 & \text { if } x \in\left[0, \frac{1}{3}\right] \cup I \\ 0 & \text { otherwise }\end{cases}
$$

where we have picked $I \subseteq A_{2} \cap(1 / 3,1]$ such that $|I|=\frac{1}{3}$.
By Lemma 1, when reporting the true valuations, \mathcal{M} would produce the allocation $\mathcal{M}\left(g_{1}, g_{2}\right)=\left(A_{1}, A_{2}\right)$ with $\left[0, \frac{1}{3}\right] \subseteq A_{1}$. Thus a_{2} 's utility will be no more than $|I|=\frac{1}{3}$. On the other hand, by reporting his density function as $g_{2}=f_{2}, a_{2}$ will receive the whole A_{2} (A_{2} is the allocation to a_{2} with instance $\left(f_{1}, f_{2}\right)$), and his utility will be at least $\frac{1}{6}\left(1-\frac{4}{3} \varepsilon\right)+\frac{1}{3}=\frac{1}{2}-\frac{2}{9} \varepsilon$. With ε small enough, this value is strictly larger than $\frac{1}{3}$, which implies that \mathcal{M} cannot be truthful.

3.3 Discussion

There are many possible directions for future study. We could try to approximately satisfy the requirements for a truthful and envy-free mechanism. The approximation could be defined as follows.

Definition 15. An allocation A is α-envy-free iffor each pair of a_{i} and a_{j}, we have $\alpha v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$. Similarly, a mechanism is β-truthful if a manipulation does not increase one's utility to β times. When $\alpha=\beta=1$, the definition is exactly envy-free and truthful.

Bei et al. provided the proof for a mechanism maximizing the Nash social welfare function that is 2-truthful and envy-free [Bei et al., 2017a]. We plot (α, β) to show whether a mechanism can guarantee α-truthful and β-envy-free. Currently, we know that three points exist, namely, $(+\infty, 1)$ and $(2,1)$ and $(1,+\infty)$, where the $+\infty$-truthful and envy-free mechanism is exactly an envy-free mechanism, and the truthful and $+\infty$-envy-free mechanism can be designed by allocating the whole cake to any fixed agent.

Another recent study [Bei et al., 2017b] examined the networked fairness. In reallife scenarios, one agent envies another only if he knows that agent. Networked envyfreeness does not reduce the difficulty of designing mechanism, as a fully connected graph is the same as the general cake cutting problem. The study provided solutions for special cases and left the existence of mechanisms for networks that are directed circles or undirected circles as an open question. We successfully find a networked envy-free mechanism for the directed circle case.

Fact 1. There is a mechanism that can always output an envy-free allocation on a directed circle network.

Proof. Let the first agent divide the cake evenly into n pieces, and let the other agents each pick the preferred piece one by one in the circular order (every agent knows the next agent). After $n-1$ agents are done, let the first agent pick the remaining piece. We can see that every agent except the first agent will choose the piece before the
agent that he might envy. The first agent will not envy any of the others, as the pieces are all the same in his view.

Chapter 4

Indivisible Resource Allocation

In the first part of this chapter, we study the general indivisible resource allocation problem. Several reasonable fairness notions are proposed for the cases of indivisible resources such as the maximin share(MMS) guarantee, envy-freeness up to one item (EF1), and envy-freeness up to the least valued item (EFX) Budish, 2011; Caragiannis et al., 2016]. We present several results related to two open questions: the existence of an EF1 and Pareto optimal mechanism that is computable in polynomial time and the existence of an EFX mechanism.

In the second part, we introduce a real-life application, specifically, the online version of the roommate market problem, which we call the online roommate allocation problem. The online roommate allocation problem is characterized as follows. In the beginning, we have empty double-bed rooms; then agents arrive one by one in an online fashion. As soon as an agent arrives, we need to assign him a room. After all of the agents have arrived, we want our allocation to be efficient and fair. The model can be used, for example, to organize university accommodation or small working groups in companies.

4.1 General indivisible resource allocation

The most general indivisible resource allocation problems is similar to the cake cutting problem, but the resources cannot be cut, and must be allocated to agents based
on the pre-divided pieces (goods). Spliddit [Goldman and Procaccia, 2015] is an application of indivisible resources allocation theories that can help to solve real-life division tasks in several different scenarios, such as allocating goods or chores, or advanced topics such as rent division and taxi fare division.

4.1.1 Related works

If we want to achieve fairness in indivisible resource allocation, we first need new notions of fairness. In this section, we introduce three popular types of fairness notions. In 2011, Budish proposed the maximin share(MMS) guarantee [Budish, 2011], but could not prove the existence of the MMS allocation. A few years later, Ariel and Junxing proved there is no MMS mechanism [Procaccia and Wang, 2014]. In the same paper, they proposed an algorithm that can approximately satisfy the MMS guarantee. More recent studies have improved the approximation ratio, and one has successfully improved the approximation ratio of MMS to $\frac{7}{8}-\varepsilon$ for three agents Amanatidis et al., 2017]. In another strand of research, researchers have studied the MMS guarantee where every agent needs to get a connected component in the goods graph[Bouveret et al., 2017]. As an alternative to the MMS guarantee, envy-freeness up to one item (EF1) has been proposed for solving the indivisible resource allocation problem[Budish, 2011]. Recently, Caragianni el at. showed that, surprisingly, an allocation maximizing the Nash social welfare function would be EF1 and Pareto optimal[Caragiannis et al., 2016]; that study left the open question of whether we can find a polynomially computable allocation that satisfies EF1 and Pareto optimality. In the same paper, they also proposed Envy-freeness up to the least valued item (EFX) as well. Building on this research, Plaut and Roughgarden studied EFX direction and showed a series of results in different classes of valuation functions [Plaut and Roughgarden, 2018].

4.1.2 Contiguous maximin share guarantee

We want to satisfy the MMS guarantee in another way instead of an approximation. In some cases, for convenience, we want to make the allocation contiguous to agents, as in the connected piece assumption in the cake cutting problem. We consider a situation in which every agent can only receive a contiguous sequence from the goods list. As in the cake cutting problems with the connected piece assumption, we can make $n-1$ breakpoints on this list and allocate n bundles of items to n agents. Below, we give a formal definition for contiguous maximin share guarantee.

Definition 16. We say a partition π of a list of goods I is a contiguous partition, if each $S \in \pi$ can be indicated by two numbers i and j, where S will contain item I_{k} for $i \leq k \leq j$ exactly.

The n-contiguous maximin share guarantee of a_{i} is computed as:

$$
C M M S_{i}^{(n)}(I)=\max _{\left(S_{1}, S_{2}, \cdots, S_{n}\right) \in c \pi_{n}(I)} \min _{j \in[n]} v_{i}\left(S_{j}\right),
$$

where $c \pi_{n}(I)$ are the set of all of the contiguous n-partitions. The partition that generates the maximal result to a_{i} is called the n-CMMS partition to a_{i}.

We say an allocation satisfies the n-CMMS guarantee (or an allocation is an n-CMMS allocation) if we have

$$
v_{i}\left(A_{i}\right) \geq C M M S_{i}^{(n)}(I)
$$

Bouveret et al. independently studied a more general case than ours Bouveret $e t$ al., 2017]. The connected fair division problem contains a graph of goods, and each agent needs to acquire a subset of goods that form a connected component in the graph. They showed that when the graph of goods is a tree, it is always possible to find an allocation. The CMMS allocation can be reduced to a connected fair division problem where the goods graph is a path.

Our result after computing the CMMS allocation is as follows.
Theorem 11. There is a polynomial-time algorithm for the indivisible resources allocation problem that can always yield an allocation that satisfies the CMMS guarantee.

Proof. We compute the n-CMMS partition to a_{i}, totally we get n partitions. Let the breakpoints for the i-th partition be $B_{i}=\left(B_{i}^{1}=0, B_{i}^{1}, B_{i}^{2}, \cdots, B_{i}^{n-1}, B_{i}^{n}=\right.$ m), where the j-th set of the partition contains items with indices that are between $B_{i}^{j-1}+1$ and B_{i}^{j}.

Our algorithm works as follows. In the i-th step, we pick the leftmost breakpoint among $\left\{B_{j}^{i}\right\}$ for all of the agents j who have not been allocated. We can see that everyone gets an interval in which the right endpoint is exactly the same breakpoint as in his original CMMS allocation, but the left endpoint may move to the left of the original left endpoint, which means he can get a bundle that satisfies CMMS. Therefore, this algorithm outputs an allocation that meets the CMMS guarantee.

Each B_{i} can be calculated within $O\left(m \log \left(m^{2}\right)\right)$ operations, as there are less than m^{2} different possible sums of intervals. We use a binary search to find n-CMMS, where determining the existence of an allocation in which each bundle should be valued as no less than a fix number can be done in $O(m)$. Therefore, we need $O(n m \log m)$ time to find all values of B_{i} and the time complexity of the main procedure is $O\left(n^{2}\right)$.

4.1.3 EF1 and Pareto optimal allocation

Envy-freeness up to one item is a natural generalization of the envy-freeness. One way to satisfy EF1 is to use a Round Robin protocol that lets each agent choose the item he likes most, finally the allocation will be EF1. Consider a pair of agents, someone of them (call him a_{1}) always pick items before the other (call him a_{2}). a_{1} does not envy a_{2} clearly; if we remove the first chosen item from a_{1} 's items, a_{2} always picks items before a_{1}, thus establishing EF1. Until recently, an open question about EF1 was whether there is an allocation that is simultaneously EF1 and Pareto optimal. A recent study showed the surprising fact that any allocation maximizing the Nash social welfare function will be EF1 and Pareto optimal Caragiannis et al., 2016]. However, finding an allocation that maximizes Nash social welfare func-
tion is NP-hard, so it is unclear whether EF1 and Pareto optimal allocations can be computed in polynomial time.

In our study, we study a small case and show a polynomial-time algorithm to find an EF1 and Pareto optimal allocation for two agents. First, we introduce a notion that is used to make the proofs easier.

Definition 17. A snapshot of an allocation $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ is a point in n dimension space with a coordinate of $\left(S_{1}, S_{2}, \cdots, S_{n}\right)$, where $S_{i}=v_{i}\left(A_{i}\right)$.

Snapshots map allocations onto high dimensional space. The following lemma connects snapshots and Pareto optimality.

Lemma 2. All of the allocations with a snapshot that has the farthest Euclid distance to any plane $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0\left(c_{i}>0\right.$ for all $\left.i\right)$ are Pareto optimal.

Proof. Maximizing the distance from snapshot $\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ to $c_{1} x_{1}+c_{2} x_{2}+$ $\cdots+c_{n} x_{n}=0$ is equivalent to maximizing

$$
S=c_{1} x_{1}^{\prime}+c_{2} x_{2}^{\prime}+\cdots+c_{n} x_{n}^{\prime} .
$$

Suppose the snapshot $\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ has maximized S. As $c_{i}>0$, if there is another snapshot in which all of the x_{i}^{\prime} are not decreasing and some x_{j}^{\prime} are becoming strictly larger, there is the implied contradiction that there is an allocation with a larger S than the maximal one.

With this lemma, we can prove our main result.
Theorem 12. Given two agents and their valuations of m items, an EF1 and Pareto optimal allocation can be found in polynomial time.

Proof. Assume there are m items. We sort all of the items in the non-increasing order of $\frac{v_{2}}{v_{1}}$. For each i, we let $c_{1}=v_{2}\left(g_{i}\right)$ and $c_{2}=v_{1}\left(g_{i}\right)\left(g_{i}\right.$ is the i-th item in the sorted goods list), and let a_{1} take the first i items and let a_{2} take the last $m-i$ items. Each allocation is Pareto optimal by Lemma 2 , as it maximizes the value of $c_{1} x_{1}+c_{2} x_{2}$. Then we choose the smallest k such that when a_{1} gets the first k items, he will not envy a_{2} up to one item. We claim this allocation is EF1 and Pareto optimal.

We first show why a_{2} will not envy a_{1} up to one item. We first take away k th item, so a_{1} gets the first $k-1$ items and a_{2} gets the last $m-k$ items. It is also a Pareto optimal allocation by Lemma 2. As k is the smallest number that a_{1} will not envy a_{2} up to one item, a_{1} must envy a_{2} before he gets k-th item. At this moment, a_{2} must not envy a_{1}, otherwise we swap their allocations and both agents' utilities will strictly increase, which contradicts the Pareto optimality of the allocation. Therefore, after a_{1} receives the k-th item, a_{2} will not envy him after a_{1} disposes of the k-th item. Therefore, EF1 and Pareto optimality holds. The time complexity is $O(m \log m)$.

Although the above algorithm works well for the case of two agents, it is impossible to generalize to more agents as the following result shows.

Fact 2. Although we have Lemma 2] it is NP-hard to determine whether there is an EF1 allocation among the Pareto optimal allocations generated by maximizing $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$.

Proof. The partition problem is a standard NP complete problem where it wants to divide a set of positive integers into two subsets that havethe same sum. We can reduce the partition problem to our task: in a partition problem instance, we have n numbers $\left\{s_{i}\right\}$. Let $c_{1}=c_{2}=c_{3}=1, v_{1}\left(g_{i}\right)=v_{2}\left(g_{i}\right)=s_{i}$ and $v_{3}\left(g_{i}\right)=0$ for $1 \leq i \leq n$. We set up two virtual items:

$$
v_{1}\left(g_{n+j}\right)=v_{2}\left(g_{n+j}\right)=\frac{\sum_{i} s_{i}}{2}, v_{3}\left(g_{n+j}\right)=+\infty, 1 \leq j \leq 2 .
$$

As a result, a_{3} takes items g_{n+1} and g_{n+2}, and a_{1} and a_{2} will take the first n items. If there is an algorithm that can determine whether an EF1 allocation exists in this case, it also solves the partition problem as well, as an EF1 allocation implies $v_{1}\left(A_{1}\right)=$ $v_{1}\left(A_{2}\right)$, where n items with value $v_{1}\left(g_{i}\right)=s_{i}$ are allocated to a_{1} and a_{2}.

4.1.4 Approximate EFX allocation

Unlike EF1 allocations, it is unclear whether EFX allocations exist. There are two possible answers to this open question:

- No EFX allocation exists. Pairwise MMS guarantee is a stronger notion in which each pair of agents satisfies the MMS guarantee with the union of items in their allocations. It is clear that pairwise MMS allocation is EFX. However, it is unclear whether pairwise MMS allocations exist currently.
- An EFX allocation always exists. In our study, we make an attempt on the variations of EFX. We impose some additional conditions, such as approximating or throwing away some resources.

In Chapter 2, we introduce the envy-free graph. It can be used to find EFX allocations efficiently when the agents value the items in the same order. Furthermore, it can also be used to approximate an MMS allocation. There is an algorithm that can achieve $\frac{1}{2}$-EFX [Plaut and Roughgarden, 2018] based on the envy-free graph. However, that algorithm may incur exponential running time in the worst case. In this subsection, we propose a polynomial-time algorithm for three agents. For convenience, we normalize the sum of the valuations of all of the items to 1 .

Theorem 13. There is a polynomial-time algorithm for three agents that can always output an $\frac{1}{2}$-EFX allocation.

We first present several lemmas.
Lemma 3. There is a polynomial-time algorithm to compute an EFX allocation for two agents.

Proof. For two agents, an EFX allocation can be achieved using the cut-and-choose protocol: one agent divides the items into two bundles by repeatedly adding the highest valued item to the least valued bundle (in the beginning, there are two empty bundles), until there is nothing left; after that, the other agent chooses the bundle he prefers. The first agent is EFX whatever he gets, and clearly the second agent does not envy the first agent.

Lemma 4. If one agent gets a subset of items that is valued as no less than $1 / 3$, then no matter how the other items are allocated, he will be $\frac{1}{2}$-EFX.

Proof. As he gets a value of at least $1 / 3$, the total value of all of the other items is at most $2 / 3$, which is no more than twice the value he already has. Therefore, it establishes $\frac{1}{2}$-EFX.

Lemma 5. If there is an item that is valued as no less than $1 / 3$ by some a_{i}, there is an $\frac{1}{2}$-EFX allocation.

Proof. We allocate the item g, which is valued as no less than $1 / 3$, to a_{i}, and then compute an EFX allocation with all items except g for the other two agents by Lemma 3. The other two agents will not envy a_{i} after we have removed the only item a_{i} has. By Lemma $4, a_{i}$ is $\frac{1}{2}$-EFX, so this is is an $\frac{1}{2}$-EFX allocation to all of the agents.

Lemma 6. Assume that each item is valued as at no more than $1 / 3$ by the agents. If there is a subset of items that an agent values as no less than $1 / 3$ and the other two agents values as no more than $1 / 3$, an $\frac{1}{2}$-EFX allocation can be found.

Proof. Assume that a_{1} values a subset of items S as no less than $1 / 3$ then it is $\frac{1}{2}$-EFX to a_{1} by Lemma 4 . We compute an EFX allocation with the remaining items for a_{2} and a_{3} by Lemma 3 , and we claim both a_{2} and a_{3} can get a value of at least $1 / 6$. As every item is valued as no more than $1 / 3$ and the total value of the remaining items is at least $2 / 3$, the valuations of the two bundles in the most unbalanced EFX allocation are $1 / 6$ and $3 / 6$. Finally, $1 / 6 \geq \frac{v_{i}(S)}{2}$ for $i \in\{2,3\}$ implies $\frac{1}{2}$-EFX.

Lemma 7. Assume each item is valued as no more than $1 / 3$ by the agents. If there is a subset of items that two agents value as no less than $1 / 3$ and the other agent values it as no more than $1 / 3$, then an $\frac{1}{2}$-EFX allocation can be found.

Proof. Suppose a_{1} and a_{2} value the subset S as no less than $1 / 3$ and a_{3} values S as no more than $1 / 3$. First, we process a refinement on S, in which we repeatedly remove the least valued item in S until S is valued as less than $1 / 3$ after we apply one more removal. Then, we do the same refinement for a_{2}. After that, there are two possible cases: if one of two agents values S as less than $1 / 3$, then we are done by

Lemma6; otherwise, both agents value S as no less than $1 / 3$ and it must be less than $2 / 3$ (otherwise, the refinement will not stop, as an item is valued as no more than $1 / 3)$.

Next, we let a_{3} divide the $I \backslash S$ into two bundles that both satisfy EFX, which can be done by Lemma 3. Now we have three bundles, which we call b_{1} (it is S), b_{2} and b_{3} (divided by a_{3}), and we want to let every agent take one bundle. We claim that the following events will not disobey $\frac{1}{2}$-EFX:

- $a_{1}\left(\right.$ or $\left.a_{2}\right)$ takes b_{1};
- a_{1} (or a_{2}) takes the better of b_{2} or b_{3};
- a_{3} takes either b_{2} or b_{3}.

By Lemma 4, a_{1} and a_{2} are $\frac{1}{2}$-EFX if they get b_{1}. As b_{1} is valued as no more than $2 / 3$, either b_{2} or b_{3} is valued as no less than $1 / 6$. Due to the refinement, after we remove the least valued item in b_{1}, its value will be less than $1 / 3$, which establishes $\frac{1}{2}$-EFX when a_{1} or a_{2} get a value of at least $1 / 6$.

Finally, we want to prove that a_{3} can take one bundle of b_{2} and b_{3} to satisfy $\frac{1}{2}$ EFX. The least valued bundle is valued as no less than $1 / 6$ (in the worst case, the valuations of three bundles are $v_{3}\left(b_{1}\right)=1 / 3, v_{3}\left(b_{2}\right)=1 / 6$ and $v_{3}\left(b_{3}\right)=1 / 2$), which is at least half of $v_{3}\left(b_{1}\right)=1 / 3$.

Therefore, an $\frac{1}{2}$-EFX allocation can be found: we let a_{1} take b_{1}, let a_{2} choose the better of b_{2} and b_{3}, and then let a_{3} take the last bundle.

Next we prove our theorem. We also illustrate our algorithm in pseudocode.
Proof of Theorem 13. If there is any item that is valued as no less than $1 / 3$ to any agent, by Lemma 5 we are done. Otherwise, each item is valued as less than $1 / 3$. Whenever there is a bundle of items that exactly one agent values as no less than $1 / 3$, by Lemma 6 we are done. Similarly, if there is a bundle that exactly 2 agents who value it as no less than $1 / 3$, by Lemma 7 we are done. Then we only need to consider the cases where each bundle is valued as no less than $1 / 3$ to all or none of

```
Algorithm \(1 \frac{1}{2}\)-EFX Allocation for 3 agents
    function IDENTICALORDERGOODSEFXALLOCATION(goods, \(v, n\) )
        // Any item has the same value to all agents
        Sort the items by the value \(v\) in the non-increasing order
        for \(i \in\) goods do
            Pick \(j\) with the least value \(v\left(A_{j}\right)\)
            \(A_{j} \leftarrow A_{j} \cup\{i\}\)
        end for
        return \(A\)
    end function
    function SATISFYINGGoodsSETFORAGENT1(goods, \(b_{1}, v\) )
        // \(a_{1}\) must be satisfying with \(b_{1}\)
        // \(a_{3}\) values \(b_{1}\) as less than \(1 / 3\)
        // Lemma 6 and Lemma 7 are considered together in this function
        \(\left(b_{2}, b_{3}\right) \leftarrow\) IdENTICALORDERGOodSEFXALLOCATION \(\left(\right.\) goods \(\left./ b_{1}, v_{C}, 2\right)\)
        if \(a_{2}\) prefers \(b_{3}\) to \(b_{2}\) then
            Swap \(b_{2}\) and \(b_{3}\)
        end if
        return \(\left(b_{1}, b_{2}, b_{3}\right)\)
    end function
```

```
function 1/2-EFXGoodsALLOCATIONFORTHREEAGENT(goods, \(v\) )
    if \(i\) and \(g\) exist such that \(v_{i}(g) \geq \frac{1}{3}\) then
            \(b_{1} \leftarrow\{g\}\)
            \(\left(b_{2}, b_{3}\right) \leftarrow \operatorname{IDENTICALORDERGOODSEFXALLOCATION}\left(\right.\) goods \(\left.\backslash\{g\}, v_{C}, 2\right)\)
            if \(a_{2}\) prefers \(b_{3}\) to \(b_{2}\) then
                    Swap \(b_{2}\) and \(b_{3}\)
        end if
        return \(\left(b_{1}, b_{2}, b_{3}\right)\)
    end if
    \(\left(b_{1}, b_{2}, b_{3}\right)=\operatorname{IDENTICALORDERGOODSEFXALLOCATION}\left(\right.\) goods \(\left., v_{1}, 3\right)\)
    if There exists \(S \in\left\{b_{1}, b_{2}, b_{3}\right\}\), such that exactly one agent \(a_{j}\) satisfies \(v_{j}(S) \geq 1 / 3\) then
            Let perm be any permutation that makes \(a_{j}\) become the first agent
            \(\left(b_{1}, b_{2}, b_{3}\right) \leftarrow\) SATISFYingGoodsSetForAgent 1 (goods, \(S, \operatorname{perm}\left(v_{A}, v_{B}, v_{C}\right)\) )
            return perm \(^{-1}\left(b_{1}, b_{2}, b_{3}\right)\)
    end if
    if There exists \(S \in\left\{b_{1}, b_{2}, b_{3}\right\}\), such that exactly two agent \(a_{j}\) and \(a_{k}\) consider \(\left(v_{j}(S) \geq 1 / 3\right.\)
and \(\left.v_{k}(S) \geq 1 / 3\right)\) or \(\left(v_{2}(S \backslash\{g\}) \geq 1 / 3\right.\) or \(v_{3}(S \backslash\{g\}) \geq 1 / 3\) for some \(\left.g \in S\right)\) then
    while There exists \(g \in S\), such that \(v_{j}(S \backslash\{g\}) \geq 1 / 3\) for some \(a_{j}\) do
            \(S \leftarrow S \backslash\{g\}\)
        end while
        if Exactly one agent \(a_{j}\) values \(S\) as \(v_{j}(S) \geq 1 / 3\) then
            Let perm be any permutation that makes \(a_{j}\) become the first agent
            \(\left(b_{1}, b_{2}, b_{3}\right)=\) SATISFYINGGoodsSETFORAGENT \(1\left(\operatorname{goods}, S, \operatorname{perm}\left(v_{1}, v_{2}, v_{3}\right)\right)\)
            return perm \(^{-1}\left(b_{1}, b_{2}, b_{3}\right)\)
        else// It implies that still two agents value this set as no less than \(1 / 3\)
            Assume \(a_{j}\) and \(a_{k}\) value \(S\) as greater than \(1 / 3\)
            Let perm be any permutation that \(a_{j}\) becomes the first agent and \(a_{k}\) becomes the
second agent \(\left(b_{1}, b_{2}, b_{3}\right)=\) SATISFYINGGoodsSETFORAGENT1\(\left(\operatorname{goods}, S, \operatorname{perm}\left(v_{1}, v_{2}, v_{3}\right)\right)\)
            return perm \(^{-1}\left(b_{1}, b_{2}, b_{3}\right)\)
        end if
    end if
    Reorder sets that \(v_{1}\left(b_{1}\right) \leq v_{1}\left(b_{2}\right) \leq v_{1}\left(b_{3}\right)\)
    if \(a_{3}\) prefers \(b_{2}\) more than \(b_{3}\) then
        Swap \(b_{2}\) and \(b_{3}\)
    end if
    return \(\left(b_{1}, b_{2}, b_{3}\right) \quad 56\)
end function
```

the agents. Then, let a_{1} divide the items into b_{1}, b_{2} and b_{3} in any way that achieves EFX for himself. We can do this by repeatedly adding the highest valued item to the least valued bundle, which is almost the same as the two bundles case in Lemma 3 Let b_{1} be the best bundle to a_{1}, then $v_{i}\left(b_{1}\right) \geq 1 / 3$ for $1 \leq i \leq 3$. We claim that the following events will not disobey $\frac{1}{2}$-EFX:

- a_{1} takes any bundle;
- $a_{2}\left(\right.$ or $\left.a_{3}\right)$ takes b_{1}.
- $a_{2}\left(\right.$ or $\left.a_{3}\right)$ takes the better of b_{2} or b_{3};

By Lemma $4, a_{2}$ is $\frac{1}{2}$-EFX if he gets b_{1}. To prove that the better bundle of b_{2} and b_{3} is $\frac{1}{2}$-EFX to a_{2}, we discuss two cases:

- If $v_{2}\left(b_{1} \backslash\{g\}\right) \geq 1 / 3$ where g is the least valued item in b_{1}. As a_{1} first divides the items into three bundles in a way that achieves EFX for himself, $v_{1}\left(b_{1} \backslash\{g\}\right)$ is at most $1 / 3$. Then, it can be done by Lemma 6 or Lemma 7 .
- If $v_{2}\left(b_{1} \backslash\{g\}\right)<1 / 3$. The better bundle of b_{2} and b_{3} is valued as no less than $\frac{1-v_{2}\left(b_{1}\right)}{2} \geq 1 / 6$, implying it is at least half of $v_{2}\left(b_{1} \backslash\{g\}\right)<1 / 3$.

Therefore, we first let a_{3} choose any bundle he prefers, then a_{2} has a choice that satisfies $\frac{1}{2}$-EFX, and finally let a_{1} take the last bundle. Let m be the number of items, the time complexity of our algorithm is $O(m \log m)$, which requires running function IdenticalOrderGoodsEFXAllocation for constant times.

4.1.5 EFX allocation of chores

In this subsection, we consider chores allocation problems. If we are allowed to dispose of a few chores, proportionality can be satisfied as follows.

Fact 3. There is no proportional mechanism when we can dispose of no more than $n-2$ chores. There is a proportional mechanism when we can dispose of $n-1$ chores.

Proof. First, consider a scenario with $n-1$ chores, where each chore is valued as $1 /(n-1)$ by everyone. After we remove $n-2$ chores, there is still a chore with a value of $1 /(n-1)$, which breaks proportionality for whoever takes this chore.

If we can dispose of $n-1$ chores, the result becomes positive. If there are only two agents, let a_{1} divide the chores into two bundles that maximize the least valued bundle. Then let a_{2} choose a bundle and let a_{1} remove one chore from his bundle, which clearly creates a proportional allocation.

We assume that a proportional mechanism exists for $n-1$ agents. It is done by induction if we solve the case for n agents. Let C be the set of all of the chores and let set S be an empty set. We repeatedly add one chore to S until all agents value it as $v_{i}(S) \geq 1 / n$. We dispose of the last added chore L and allocate $S \backslash\{L\}$ to a_{x} who satisfies $v_{x}(S \backslash\{L\}) \leq 1 / n$. Then we are left with $n-1$ agents and $C \backslash S$ chores, which becomes the desired subproblem. As all agents value S as $v_{i}(S) \geq 1 / n$, the proportionality in the subproblem implies $v_{i}\left(A_{i}\right) \leq \frac{1-v_{i}(S)}{n-1} \leq 1 / n$, which finishes our proof.

Next, we consider EFX or proportional as a new fairness notion. The formal definition is as follows.

Definition 18. An allocation is EFX or proportional (EFX or PR hereafter), if every agent satisfies at least one of the following two conditions:

1. the agent's allocated bundle is proportional; or
2. the agent's allocated bundle is EFX.

Our main result in this subsection is as follows.
Theorem 14. In the chores allocation stting, there exists an EFX or PR mechanism for three agents, if it is allowed to dispose of at most one chore. Moreover, the mechanism is polynomially computable.

We first present several lemmas.
Lemma 8. If there is a subset S of chores where exactly one agent values it at most $1 / 3$, then there is an EFX or PR allocation.

Proof. Assume a_{1} values S as no more than $1 / 3$, and a_{2} and a_{3} value S as no less than $1 / 3$. Then let a_{2} divide all of the chores except S into two bundles in a way that achieves EFX for himself (as with goods, this can be done by repeatedly adding the heaviest chore to the least valued bundle). Let a_{1} take S, a_{3} choose the bundle he prefers, and a_{2} take the last bundle. S is proportional to a_{1}, a_{3} takes the bundle he likes the best (the value he gets is at most $1 / 3$). After we remove the least valued chore in a_{2} 's bundle, the value must be less than $\frac{1-v_{2}(S)}{2} \leq 1 / 3$, which is also less than $v_{2}(S) \geq 1 / 3$.

Lemma 9. If there is subset S where exactly two agents value S as no more than $1 / 3$, there is an EFX or PR allocation.

Proof. Assume a_{1} and a_{2} value S as no more than $1 / 3$, and a_{3} values S as no less than $1 / 3$. Let a_{3} divide all of the chores except S into b_{2} and b_{3} in a way that achieves EFX for himself. If we assume $v_{3}\left(b_{2}\right) \geq v_{3}\left(b_{3}\right)$, we have $v_{3}\left(b_{3}\right) \leq \frac{1-v_{3}(S)}{2} \leq 1 / 3$. If a_{1} and a_{2} value b_{3} at least $1 / 3$, then we can find an EFX allocation by Lemma 8 , Otherwise, without loss of generality, we assume that a_{1} values b_{3} at most $1 / 3$, thus he is satisfied to take S or b_{3} by proportionality. Therefore, we let a_{1} take b_{3}, and a_{2} take S, then a_{3} takes $b_{2} . a_{1}$ and a_{2} are satisfied by proportionality, and for a_{3}, we have $v_{3}\left(b_{2} \backslash\{c\}\right) \leq v_{3}\left(b_{3}\right) \leq v_{3}\left(b_{1}\right)$ as well, where c is the least valued chore in b_{2}.

With these two lemmas, the proof for the following theorem can be done. We also provide pseudocode.

Proof of Theorem [14. By Lemma 8 and 9 , if there is a set S that is valued as no more than $1 / 3$ by some agents but not by all agents, then we are done. Otherwise, if any agent values a bundle as no more than $1 / 3$, then all agents will value this bundle no more than $1 / 3$.

Let a_{1} divide the chores into three bundles $\left(b_{1}, b_{2}, b_{3}\right)$ in a way that achieves EFX for himself. Assume $v_{1}\left(b_{1}\right) \leq v_{1}\left(b_{2}\right) \leq v_{1}\left(b_{3}\right)$. As $v_{1}\left(b_{1}\right) \leq 1 / 3$, all of the agents value b_{1} as no more than $1 / 3$. Our algorithm works as follows.

```
Algorithm 2 EFX or PR allocation for 3 agents with disposing of one chore
    function IdenticalchoresEFXALLOCATION(chores, \(v, n\) )
        // Any chore has the same value to all agents
        Sort the chores by the value \(v\) in the non-decreasing order
        for \(i \in\) chores do
            Pick \(j\) with the least value \(v\left(A_{j}\right)\)
            \(A_{j} \leftarrow A_{j} \cup i\)
        end for
        return \(A\)
    end function
    function SATISFYingChoresSetFor Agent 1 (chores, \(b_{1}, v\) )
        \(/ / b_{1}\) is proportional to \(a_{1}\)
        \(/ / b_{1}\) is not proportional to \(a_{2}\) and \(a_{3}\)
        \(\left(b_{2}, b_{3}\right) \leftarrow\) IDENTICALORDERCHORESEFXALLOCATION \(\left(\right.\) chores \(\left./ b_{1}, v_{3}, 2\right)\)
        if \(a_{2}\) prefers \(b_{3}\) more than \(b_{2}\) then
            Swap \(b_{2}\) and \(b_{3}\)
        end if
        return \(\left(b_{1}, b_{2}, b_{3}\right)\)
    end function
    function SATISFYingChoresSetForAgent12(chores, \(b_{1}, v\) )
        \(/ / b_{1}\) is proportional to \(a_{1}\) and \(a_{2}\)
        // \(b_{1}\) is not proportional to \(a_{3}\)
        \(\left(b_{2}, b_{3}\right) \leftarrow\) IDENTICALORDERCHORESEFXALLOCATION \(\left(\right.\) chores \(\left./ b_{1}, v_{3}, 2\right)\)
        Let \(v_{3}\left(b_{2}\right) \leq v_{3}\left(b_{3}\right)\)
        if \(v_{1}\left(b_{2}\right) \leq 1 / 3\) then
            return \(\left(b_{2}, b_{1}, b_{3}\right)\)
        end if
        if \(v_{2}\left(b_{2}\right) \leq 1 / 3\) then
            return \(\left(b_{1}, b_{2}, b_{3}\right)\)
        end if
        Let perm be any permutation that makes \(a_{3}\) become the first agent
        return \(\operatorname{perm}^{-1}\) (SATISFYINGCHORESSETFORAGENT1(chores, \(\left.b_{2}, \operatorname{perm}\left(v_{1}, v_{2}, v_{3}\right)\right)\) )
    end function
```

```
function EFXORPRCHOREALLOCATIONFORTHREEAGENTEXCEPTONECHORE(chores, v)
    \(\left.\left(b_{1}, b_{2}, b_{3}\right)=\operatorname{IDENTICALORDERCHORESEFXALLOCATION(chores,~} v_{1}, 3\right)\)
    if There exists \(S \in\left\{b_{1}, b_{2}, b_{3}\right\}\), such that exactly one agent \(a_{j}\) values \(S\) as \(v_{j}(S) \leq 1 / 3\) then
        Let perm be any permutation that makes \(a_{j}\) become the first agent
        \(\left(b_{1}, b_{2}, b_{3}\right) \leftarrow\) SATISFYINGChoresSetForAgent 1 (chores, \(S\), \(\operatorname{perm}\left(v_{1}, v_{2}, v_{3}\right)\) );
        return perm \(^{-1}\left(b_{1}, b_{2}, b_{3}\right)\)
    end if
    if There exists \(S \in\left\{b_{1}, b_{2}, b_{3}\right\}\), such that exactly two agents \(a_{j}\) and \(a_{k}\) value \(S\) as \(v_{j}(S) \leq\)
\(1 / 3\) and \(v_{k}(S) \leq 1 / 3\) then
    Let perm be any permutation that \(a_{j}\) becomes the first agent, \(a_{k}\) becomes the second agent
    \(\left(b_{1}, b_{2}, b_{3}\right) \leftarrow\) SATISFYINGCHORESSETFORAGENT12(chores, \(S\), \(\operatorname{perm}\left(v_{1}, v_{2}, v_{3}\right)\) );
    return perm \(^{-1}\left(b_{1}, b_{2}, b_{3}\right)\)
    end if
    Reorder \(\left(b_{1}, b_{2}, b_{3}\right)\) such that \(v_{1}\left(b_{1}\right) \leq v_{1}\left(b_{2}\right) \leq v_{1}\left(b_{3}\right)\)
    Let leastChore \({ }_{B}\) and leastChore \({ }_{C}\) be the least valued chore in \(b_{2}\) and \(b_{3}\) to agent \(A\)
    if Agent \(A\) prefers \(b_{2} \backslash\left\{\right.\) leastChore \(\left._{2}\right\}\) more than \(b_{3} \backslash\left\{\right.\) leastChore \(\left._{3}\right\}\) then
            Swap \(b_{2}\) and \(b_{3}\), so leastChore \({ }_{2}\) and leastChore \({ }_{3}\) are also swapped
        end if
        \(b_{2} \leftarrow b_{2} \backslash\left\{\right.\) leastChore \(\left._{2}\right\}\), remove leastChore \({ }_{2}\) from chores
        if \(v_{2}\left(b_{2}\right) \leq 1 / 3\) then
            return \(\left(b_{3}, b_{2}, b_{1}\right)\)
    end if
    if \(v_{3}\left(b_{2}\right) \leq 1 / 3\) then
        return \(\left(b_{3}, b_{1}, b_{2}\right)\)
    end if
    // Then, only \(a_{1}\) values \(b_{2}\) at most \(1 / 3\)
    \(\left(b_{1}, b_{2}, b_{3}\right) \leftarrow\) SATISFYINGCHORESSETFORAGENT 1 (chores, \(b_{2}, v\) );
    return \(\left(b_{1}, b_{2}, b_{3}\right)\)
end function
```

1. If $v_{1}\left(b_{2}\right) \leq 1 / 3$, let a_{2} take b_{2}, a_{3} take b_{1} and a_{1} take b_{3}, and our algorithm stops.
2. If $v_{1}\left(b_{2} \backslash\left\{c_{2}\right\}\right) \geq v_{1}\left(b_{3} \backslash\left\{c_{3}\right\}\right)$ where c_{i} is the least valued chore in b_{i}, dispose of c_{2} from the set of chores; otherwise, dispose of c_{3} from the set of chores and swap b_{2} and b_{3}.
3. If b_{2} is valued at least $1 / 3$ by all or none of the agents, go to Step 4 ; otherwise output an allocation based on Lemma 8 or 9 .
4. Let a_{2} take b_{2}, a_{3} take b_{1} and a_{1} take b_{3}, and our algorithm stops.

If the algorithm stops at Step $1, b_{1}$ and b_{2} are valued as no more than $1 / 3$ by all of the agents, and b_{3} is EFX to a_{1}; therefore, the allocation is EFX or PR. In Step 3, only b_{1} is valued at most $1 / 3$ in the beginning. Due to EFX, $v_{1}\left(b_{2} \backslash\left\{c_{2}\right\}\right) \leq v_{1}\left(b_{1}\right) \leq$ $1 / 3$, where c_{2} is the least valued chore in b_{2} (it also holds for b_{3}). Therefore, b_{2} is proportional to a_{2} and b_{1} is proportional to a_{3}; otherwise the case will break the property that one bundle is valued at least $1 / 3$ by all or none of the agents, which can be solved in Step 3 by Lemma 8 or 9 Last, a_{1} is EFX when he takes b_{3}, as $v_{1}\left(b_{2} \backslash\left\{c_{2}\right\}\right) \geq v_{1}\left(b_{3} \backslash\left\{c_{3}\right\}\right)$ in Step 2, which finishes our proof.

4.2 Online roommate allocation problem

The roommate market problem is highly relevant to real life. In this problem, we expect to know all of the agents' valuations of rooms and other agents. However, in many practical scenarios, we may not be able to gather all of the information from all of the agents. We study the case where agents arrive in an online fashion. In this section, we propose an algorithm for online roommate allocation and promise a good constant competitive ratio of optimal social welfare. Moreover, we study generalizations of our model, such as some rooms can have a larger capacity than two agents, and rooms have an individual capacity. In addition to efficiency, we study several kinds of stability.

4.2.1 Related works

The roommate market is a generalization of the matching problem. In this sense, there are two strands of research related to our work: the stable matching and the online bipartite matching. The stable matching is a classic problem in graph theory, in which we need to find a match and satisfy some stability requirement. In the stable marriage problem, we need to select pairs of ladies and gentlemen and let them have a stable marriage. Similarly, our roommate matching model needs to assign two people to live in a room and to provide some stability. This problem has been studied for about 60 years. It was first proposed in 1962 Gale and Shapley, 1962. Several surveys of the history of stable matching are available Knuth, 1997, Iwama and Miyazaki, 2008]. The basic stable matching problem has been extended in many dimensions. One direction is to consider general matchings [Irving, 1985; Irving and Manlove, 2002] and higher dimensional matchings [Ng and Hirschberg, 1991; Eriksson et al., 2006; Huang, 2007]. Different stability notions have also been proposed, such as exchange stability [Cechlárová and Manlove, 2005] and popular matching [Biró et al., 2010].

Online matching is another generalization of the secretary problem, see Ferguson and others, 1989] for more details about the secretary problem. In 1990, Karp et al. provided an algorithm with the optimal competitive ratio for unweighted bipartite graph matching problems [Karp et al., 1990]. In 2013, the algorithm was extended to the weighted bipartite matching [Kesselheim et al., 2013]. Many variants have been proposed and analyzed, such as vertex-weighted matching Aggarwal et al., 2011] and online packing [Kesselheim et al., 2014].

In a roommate matching scenario, we need to match two agents to one room, and the type of edge is different: an edge between people may indicate an interpersonal relation or an edge between a person and a room may denote the degree to which the person favours the room. Previous studies have developed complete answers to the roommate market problem[Chan et al., 2016]. This thesis focus on the generalization of the online model.

This section is reproduced from our published paper[Huzhang et al., 2017].

4.2.2 Online no-rejection bipartite matching

We are going to show our online algorithm for the online roommate allocation problem with a constant competitive ratio. To sketch our proof, we first introduce an special online bipartite matching problem: no-rejection online bipartite matching problem. In a no-rejection online bipartite matching problem, we have a weighted complete bipartite graph $G=(L, R, E)$, where $|L|=|R|=n$ and all (i, j) will be in E where $i \in L$ and $j \in R$. Node in L will come in an uniformly random order. Every time a node in L arrives, and we need to determine which node in R it should match. After all nodes in L arrived, we want to maximize the weight of matching in expectation. In comparison with the original online bipartite matching problem, we cannot dispose of any node here.

Our algorithm is similar to the original problem's solution provided by [Kesselheim et al., 2013], and our proof also follows a similar analysis in that work. To understand it better, we present the algorithm below.

Lemma 10. Algorithm 3 has approximation ratio c_{b} for online no-rejection bipartite graph matching problem, where $c_{b}=\ln (3) / 8$ is a constant.

Proof. We apply two steps:

1. We prove that if a vertex is matched according to the local maximum matching, then the expected weight of this matching is $1 / n$ of maximum matching.
2. We lower bound the probability of successful matching by local maximum matching in each round.

Let $M_{\text {opt }}$ be the weight of maximum matching between L and R. Let random variable w_{k} denote the weight of the edge chosen by a maximum matching in round k, i.e. the matching among first k left vertices and all right vertices. Now we prove the following claim.

Claim 1. For $k>n / 5, \mathbb{E}\left[w_{k}\right] \geq M_{\text {opt }} / n$.

```
Algorithm 3 OnLineMATCHING \((n, R)\)
    counter \(\leftarrow 0\)
    \(L \leftarrow \emptyset\)
    \(A \leftarrow \emptyset\)
    for every person \(v\) that arrives do
        \(L \leftarrow L \cup\{v\}\)
        counter \(\leftarrow\) counter +1
        if counter \(\geq n / 5\) then
            \(M^{v} \leftarrow\) Optimal matching on \(G[L \cup R]\)
            \(e^{v} \leftarrow\) The matching edge that contains \(v\) in \(M^{v}\)
            if \(A \cup e^{v}\) is a matching then
                \(A \leftarrow A \cup e^{v}\)
            else
                Randomly choose an available vertex \(v^{\prime}\).
                    \(A \leftarrow A \cup\left(v, v^{\prime}\right)\)
            end if
        else
            Randomly choose an available vertex \(v^{\prime}\).
            \(A \leftarrow A \cup\left(v, v^{\prime}\right)\)
        end if
    end for
    return A
```

Proof. Roughly speak, we need to prove that expected weight of matching will be increased by $M_{\text {opt }} / n$ when we successfully add one edge to matching.

The k-th vertex can be viewed as picking by the following process:

1. First, choose k vertices uniformly random from n vertices;
2. Second, choose one vertex uniformly random from those k vertices.

Let M^{k} be the maximum matching between the first k vertices and R. Due to the property that left vertices are uniformly coming, the expected weight of M^{k} is at least $\frac{k}{n} M_{o p t}$. Since the k-th left vertex is picked randomly, the expected weight of w_{k} is $1 / k$ of M^{k}. Thus, we have

$$
\mathbb{E}\left[w_{k}\right] \geq \frac{1}{k} \frac{k}{n} M_{o p t}=\frac{1}{n} M_{o p t} .
$$

Let B_{k} be the event that the k-th left vertex is matched according to the maximum matching in the k-th round, which means the right vertex it wants to match is unmatched. The following claim gives a lower bound of the probability $\operatorname{Pr}\left[B_{k}\right]$.

Claim 2. For $k>n / 5, \operatorname{Pr}\left[B_{k}\right] \geq \frac{n / 5}{k-1} \cdot \frac{n-k+1}{n}$.
Proof. Above claim indicates that the probability of successfully adding one edge to matching is large enough.

Let l be the k-th left vertex. Let r be the vertex matching with l in M^{k}. We first analysis the probability that r does not match to any previous vertex by a maximum matching.

Let e^{v} be the right vertex which is matched to v in previous rounds as in algorithm . In any of the preceding rounds $j \in\left\{\left\lceil\frac{n}{5}\right\rceil, \ldots, k\right\}$, the vertex r was matched only if r is $e^{l^{\prime}}$ for some l^{\prime} which comes before l. We define E_{k} be the event that r becomes matched in round k. The last vertex in the order can be seen as being chosen uniformly at random from the j participating vertices on the left-hand side. Hence, the probability of r being matched in step j is at most $1 / j$, i.e. $\operatorname{Pr}\left[E_{j}\right] \leq \frac{1}{j}$. The order
of the vertices $1, \ldots, j-1$ is irrelevant for this event. Therefore, also the respective events if some vertex $j^{\prime}<j$ was matched to r can be regarded as independent.

For an easier analysis, we consider the following new model: we first label $k-1$ right vertices to be forbidden for matching, and when we want to randomly pick an edge for matching, we can randomly select a vertex in the forbidden set to match it. Thus it can be considered that we first randomly pick $k-1$ vertices and throw away them before considering the maximum matching edges, the probability, that one vertex is matched by a random picking step, will be easy to bound. Let B_{k}^{\prime} be the event same as B_{k} in the new model. Because we will make more vertices forbidden for matching by this changing order operation, any vertices will have more probability to lose their maximum matching edge and also for k-th vertex, therefore $\operatorname{Pr}\left[B_{k}^{\prime}\right] \leq \operatorname{Pr}\left[B_{k}\right]$.

We define C_{k} be the event that r is not matched by previous maximum matching edge in round k, we have

$$
\operatorname{Pr}\left[B_{k}\right] \geq \operatorname{Pr}\left[B_{k}^{\prime}\right]=\operatorname{Pr}\left[C_{k}\right] * \frac{n-k+1}{n} .
$$

Because of independent of E_{k}, we have

$$
\begin{aligned}
\operatorname{Pr}\left[C_{k}\right] & =\operatorname{Pr}\left[\wedge_{j=\left\lceil\frac{n}{5}\right\rceil}^{k-1} \bar{E}_{j}\right] \\
& \geq \prod_{j=\left\lceil\frac{n}{5}\right\rceil}^{k-1} \frac{j-1}{j} \\
& =\frac{\left\lceil\frac{n}{5}\right\rceil-1}{k-1} .
\end{aligned}
$$

Combining them together, the probability is

$$
\operatorname{Pr}\left[B_{k}\right] \geq \frac{n / 5}{k-1} \cdot \frac{n-k+1}{n} .
$$

(back to Lemma 10) Let random variable M denote the weight of resulting match-
ing. By two claims, we have

$$
\begin{aligned}
\mathbb{E}[M] & \geq \sum_{k=\lceil n / 5\rceil}^{n} \mathbb{E}\left[w_{k}\right] \cdot \operatorname{Pr}\left[B_{k}\right] \\
& \geq \frac{M_{\text {opt }}}{n} \cdot \sum_{k=\lceil n / 5\rceil}^{n} \frac{n / 5}{k-1} \cdot \frac{n-k+1}{n} \\
& =\frac{M_{\text {opt }}}{n} \cdot \sum_{k=\lceil n / 5\rceil}^{n} \frac{1}{5}\left(\frac{n}{k-1}-1\right) \\
& =\frac{M_{\text {opt }}}{5} \cdot\left(\sum_{k=\lceil n / 5\rceil}^{n} \frac{1}{k-1}-\sum_{k=\lceil n / 5\rceil}^{n} \frac{1}{n}\right) \\
& \geq \frac{\ln (5)-0.8}{5} \cdot M_{\text {opt }} \\
& \geq 0.1618 M_{\text {opt }} .
\end{aligned}
$$

4.2.3 Online algorithm for online roommate allocation

We look at the happiness first. In the online roommate market problem, the relations between agents form a general graph instead of a bipartite graph. Because the incoming order is uniformly random, it is natural to pick up first half agents to be the left-hand side nodes and last half to be the right-hand side nodes, and then the social welfare will not be lost by a lot in expectation. With this idea, we introduce the following lemma.

Lemma 11. In a complete general graph with $2 n$ vertices and weight matrix W, we make it be a bipartite graph by randomly picking n vertices to be left vertices and other n vertices to be right vertices (so only the crossing edges will be considered in the new bipartite graph). Then, the maximum weight bipartite matching will be $\frac{1}{2}$ approximation for original maximum weight matching in expectation.

Proof. Look at the edges that appear in original maximum weight matching. One edge will have probability $\frac{1}{2}$ that two vertices of it will be in opposing sides, so by
linearity of expectation, the weight of maximum weight bipartite matching will be at least $\frac{1}{2}$ approximation to original maximum weight matching.

Because of the uniformly random arriving order, we see that we can get a good approximation if we divide the agents into two groups directly by the incoming order. Fortunately, the strategy to partition agents into groups can also make the value between person and room kept in a large approximation in expectation.

We now present our constant competitive ratio algorithm for the online roommate market problem. It uses the online no-rejection bipartite matching algorithm as a key ingredient. The high-level idea is that we first apply Algorithm OnlineMatching on the first n agents arrived. After this stage, each room contains exactly one agent. Then we combine each room-person pair as one new "room", and apply Algorithm OnlineMatching again on the last n agents with adjusted valuations to match them to the n room-person pairs.

```
Algorithm 4 OnlineRoommate \((n, H, V)\)
    Run OnlineMatching on the first \(n\) agents arrived.
    Let \(M_{1}\) be the output matching.
    for every agent \(a_{i}\) arrived after the first \(n\) agents do
        for each room \(r \in R\) do
            Set \(v_{i r}^{\prime} \leftarrow v_{i r}+\left(h_{i j}+h_{j i}\right)\) where \((j, r) \in M_{1}\)
        end for
    end for
    Run OnLineMatching on the last \(n\) agents with valuation matrix \(V^{\prime}\).
    Let \(M_{2}\) be the returned matching.
    return \(M_{1} \cup M_{2}\)
```

Theorem 15. Algorithm OnLINEROOMMATE is a polynomial-time and $\frac{c_{b}}{4}$-competitive algorithm for the online roommate market problem, where $c_{b}=\frac{\ln 5-0.8}{5} \approx 0.1618$.

Proof. Let $A_{\text {opt }}$ denote the optimal offline allocation with maximum social welfare. Let $M_{p p}$ denote the maximum weight general graph matching between the $2 n$ agents, where the weight between a_{i} and a_{j} is $h_{i j}+h_{j i}$. Let $M_{p r}$ denote the maximum weight
matching between $2 n$ agents and n rooms where each room is duplicated into two vertices. By slight abuse of notations, in the following we use $S W(M)$ to denote the summation of the edge weights in matching M.

We can divide the social welfare $S W\left(A_{o p t}\right)$ into two parts: the first part is the happiness between roommates, which will not exceed $S W\left(M_{p p}\right)$; the other part is the valuations between agents and the rooms, which will not exceed $S W\left(M_{p r}\right)$. Hence we have

$$
S W\left(M_{p p}\right)+S W\left(M_{p r}\right) \geq S W\left(A_{o p t}\right) .
$$

Next we bound $S W\left(M_{p p}\right)$ and $S W\left(M_{p r}\right)$. Fix a particular agents arriving order. Let A_{1} be the set of first n agents, A_{2} be the set of last n agents, and E_{12} be the set of weighted edges between A_{1} and A_{2} (where again the weight of edge (i, j) between a_{i} and a_{j} is $h_{i j}+h_{j i}$). We further define the following notations:

- $M_{p b}$: the maximum weight matching in bipartite graph $\left(A_{1}, A_{2}, E_{12}\right)$.
- $M_{p r 1}$: the maximum weight matching between the first n agents and n rooms
- $M_{p r 2}$: the maximum weight matching between the last n agents and n rooms.

We will show in the following that

$$
\begin{aligned}
& 2 \mathbb{E}\left[S W\left(M_{p r 1}\right)+S W\left(M_{p r 2}\right)+S W\left(M_{p b}\right)\right] \\
\geq & S W\left(M_{p p}\right)+S W\left(M_{p r}\right),
\end{aligned}
$$

where the expection is over the random arriving order of the agents.
First we bound $S W\left(M_{p b}\right)$. Since agents arrive in an uniformly random order, every edge in $M_{p p}$ will be present in E_{12} with probability at least $\frac{1}{2}$, and these edges together form a matching. We therefore have

$$
\mathbb{E}\left[S W\left(M_{p b}\right)\right] \geq \sum_{(i, j) \in M_{p p}} \frac{1}{2}\left(h_{i j}+h_{j i}\right)=\frac{1}{2} S W\left(M_{p p}\right) .
$$

Now we bound $S W\left(M_{p r}\right)$ by $S W\left(M_{p r 1}\right)$ and $S W\left(M_{p r 2}\right)$. Let $M_{p r 0}$ be the maximum weight bipartite matching between $2 n$ people and n rooms and each room only
has one slot. We have

$$
S W\left(M_{p r 1}\right)+S W\left(M_{p r 2}\right) \geq S W\left(M_{p r 0}\right) \geq \frac{1}{2} S W\left(M_{p r}\right) .
$$

The first inequality is because the edges in $M_{p r 1} \cup M_{p r 2}$ can at least cover all edges in $M_{p r 0}$.

Together with

$$
\mathbb{E}\left[S W\left(M_{p b}\right)\right] \geq \frac{1}{2} S W\left(M_{p p}\right),
$$

we have

$$
\begin{aligned}
& 2 \mathbb{E}\left[S W\left(M_{p r 1}\right)+S W\left(M_{p r 2}\right)+S W\left(M_{p b}\right)\right] \\
\geq & S W\left(M_{p p}\right)+S W\left(M_{p r}\right) \\
\geq & S W\left(A_{o p t}\right) .
\end{aligned}
$$

Back to our algorithm, the first call to OnlineMatching gives us a matching with expected social welfare no less than $c_{b} \cdot S W\left(M_{p r 1}\right)$; the second call to OnLineMatching gives us a matching with expected social welfare no less than $c_{b} \cdot \max \left\{S W\left(M_{p b}\right), S W\left(M_{p r 2}\right)\right\}$. Let A denote the allocation output by our algorithm. Together we have

$$
\begin{aligned}
& \mathbb{E}[S W(A)] \\
\geq & c_{b} \cdot \mathbb{E}\left[S W\left(M_{p r 1}\right)\right]+c_{b} \cdot \max \left\{\mathbb{E}\left[S W\left(M_{p b}\right)\right], \mathbb{E}\left[S W\left(M_{p r 2}\right)\right]\right\} \\
\geq & c_{b} \cdot \mathbb{E}\left[S W\left(M_{p r 1}\right)\right]+\frac{c_{b}}{2} \mathbb{E}\left[S W\left(M_{p b}\right)+S W\left(M_{p r 2}\right)\right] \\
\geq & \frac{c_{b}}{2} \mathbb{E}\left[S W\left(M_{p r 1}\right)+S W\left(M_{p b}\right)+S W\left(M_{p r 2}\right)\right] \\
\geq & \frac{c_{b}}{4} S W\left(A_{\text {opt }}\right) .
\end{aligned}
$$

4.2.4 Generalization to c-beds

In real-life situations, one room may contain more than two agents sometimes. We consider the case where a room can contain $c>2$ people, and take the advantage of our algorithm's flexibility, an algorithm can be developed for c-bed rooms.

Definition 19. In online roommate matching with c-beds rooms, there will be cn agents and n rooms, we need to assign c agents per room. It need to maximize

$$
\sum_{\left(i_{1}, i_{2}, \ldots, i_{c}, r\right) \in A}\left(\sum_{1 \leq j<k \leq c} H_{i_{j} i_{k}}+\sum_{j=1}^{c} v_{i_{j} r}\right)
$$

For this kind of generalization, the idea is similar: we partition the agents into c groups and every group will match to the set of one slot of the rooms. But the analysis is harder because of more edges involved in the proof.

```
Algorithm 5 OnlineCBedRoommate \((n, H, V)\)
    \(V^{\prime} \leftarrow V\)
    for \(g=1,2, \ldots, c\) do
        Run OnLineMatching on the next \(n\) arriving agents with valuation matrix \(V^{\prime}\).
        Let \(M_{g}\) be the returned matching.
        for every \(a_{i}\) that is yet to arrive do
            \(v_{i r}^{\prime} \leftarrow v_{i r}^{\prime}+h_{i j}+h_{j i}\) where \((j, r) \in M_{g}\)
        end for
    end for
    return \(\cup M_{g}\)
```

Theorem 16. OnlineCBedRoommate has competitive ratio $\frac{c_{b}(c-1)}{c^{3}}$ for the generalized online roommate market problem, where $c_{b}=\frac{\ln 5-0.8}{5} \approx 0.1618$.

Proof. The proof is along similar lines of that for Theorem 15 .
Let $A_{\text {opt }}$ denote the optimal offline allocation with maximum social welfare. Let $A_{p p}$ denote the allocation of $c n$ agents into n rooms that with maximum total happiness valuation between agents, and let $M_{p r}$ denote the maximum bipartite matching between $c n$ agents and n rooms where each room is duplicated into c copies. Again it is straightforward to see that $S W\left(A_{o p t}\right) \leq S W\left(A_{p p}\right)+S W\left(M_{p r}\right)$.

Note that for each room r, the c agents in this room will have total happiness contributed by $\frac{c(c-1)}{2}$ pairs of relations. Let C_{r} be the general graph matching with maximum total happiness among the c agents allocated to room r in allocation $A_{p p}$. Because each clique of c vertices can always be covered by c matchings via the
round-robin tournament algorithm, we can see that $S W\left(A_{p p}^{r}\right) \leq c \cdot S W\left(C_{r}\right)$, where $A_{p p}^{r}$ is the sum of happiness of all agents in room r in allocation $A_{p p}$.

Now go back to the online random arrival order. We call every n consecutively arriving vertices a block. The probability of any two vertices arrive in different blocks is $\frac{c n-n}{c n-1}$. Let $M_{p p}^{i j}$ represent the maximum weight bipartite matching between agents in the i-th block and j-th block, and we can assume $c>2$. We can distribute all matching edges in each C_{r} into some $M_{p p}^{i j}$ if the two vertices of the edge are in different blocks, and every vertex will be involved in at most one matching edge. Hence by linearity, we have

$$
\begin{aligned}
\sum_{1 \leq i<j \leq c} \mathbb{E}\left[S W\left(M_{p p}^{i j}\right)\right] & \geq \frac{c n-n}{c n-1} \sum_{r=1}^{n} S W\left(C_{r}\right) \\
& >\frac{c-1}{c} \sum_{r=1}^{n} S W\left(C_{r}\right) .
\end{aligned}
$$

Put everything together, we have

$$
\begin{aligned}
S W\left(A_{p p}\right) & =\sum_{r=1}^{n} S W\left(A_{p p}^{r}\right) \leq \sum_{r=1}^{n} c \cdot S W\left(C_{r}\right) \\
& \leq \sum_{1 \leq i<j \leq c} \frac{c^{2}}{c-1} \cdot \mathbb{E}\left[S W\left(M_{p p}^{i j}\right)\right] .
\end{aligned}
$$

Next we look at $M_{p r}$. Let $M_{p r}^{1}$ be the matching induced from $M_{p r}$ such that each room connects with only one agent who has the largest matching value. We have $S W\left(M_{p r}\right) \leq c \cdot S W\left(M_{p r}^{1}\right)$. Let $M_{i r}$ be the maximum weight matching between agents in i-th block and one slot of each room.

We also have $S W\left(M_{p r}^{1}\right) \leq \sum_{i=1}^{c} S W\left(M_{i r}\right)$. Combing these two inequalities gives us

$$
S W\left(M_{p r}\right) \leq c \sum_{i=1}^{c} S W\left(M_{i r}\right)<\frac{c^{2}}{c-1} \sum_{i=1}^{c} S W\left(M_{i r}\right) .
$$

Together with $A_{p p}$, we have

$$
\begin{aligned}
& S W\left(A_{\text {opt }}\right) \leq S W\left(A_{p p}\right)+S W\left(M_{p r}\right) \\
& \leq \frac{c^{2}}{c-1} \cdot \mathbb{E}\left[\sum_{1 \leq i<j \leq c} S W\left(M_{p p}^{i j}\right)+\sum_{i=1}^{c} S W\left(M_{i r}\right)\right] .
\end{aligned}
$$

Finally, let M_{i} be the maximum weight matching between the agents in i-th block and aggregated agent-room combinations according to the algorithm. We have

$$
S W\left(M_{i}\right) \geq \max \left\{S W\left(M_{i r}\right), \max _{1 \leq j \leq i-1} S W\left(M_{p p}^{i j}\right)\right\}
$$

Since there are at most c items in the max bracket, we have $c \cdot S W\left(M_{i}\right) \geq S W\left(M_{i r}\right)+$ $\sum_{j=1}^{i-1} S W\left(M_{p p}^{i j}\right)$. Thus,

$$
\begin{aligned}
& \frac{c^{2}}{c-1} \cdot \mathbb{E}\left[\sum_{i=1}^{c} c \cdot S W\left(M_{i}\right)\right] \\
& \geq \frac{c^{2}}{c-1} \cdot \mathbb{E}\left[\sum_{1 \leq i<j \leq c} S W\left(M_{p p}^{i j}\right)+\sum_{i=1}^{c} S W\left(M_{i r}\right)\right] \\
& \geq S W\left(A_{p p}\right)+S W\left(M_{p r}\right) \geq S W\left(A_{o p t}\right) .
\end{aligned}
$$

By Lemma 10, the algorithm computes M_{i}^{*} which satisfies $\mathbb{E}\left[S W\left(M_{i}^{*}\right)\right] \geq c_{b}$. $S W\left(M_{i}\right)$. Therefore, we have

$$
\mathbb{E}\left[\sum_{i=1}^{c} S W\left(M_{i}^{*}\right)\right] \geq \frac{c_{b}(c-1)}{c^{3}} S W\left(A_{o p t}\right) .
$$

This finishes the proof of this theorem.

4.2.5 Rooms with different capacities

The model can be further generalized to allow rooms to have different capacities. Assume we have n agents and k rooms with capacities $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ such that $\sum_{i} c_{i}=n$.

Corollary 12. OnLINEGENCBEDROOMMATE achieves constant competitive ratio for the generalized online roommate market problem where every room has constant capacity.

```
Algorithm 6 OnLInEGENCBEDRoommate \((\vec{c}, H, V)\)
    \(c \leftarrow \max \left\{c_{1}, \ldots, c_{k}\right\}\)
    \(V^{\prime} \leftarrow V\)
    for \(g=1,2, \ldots, c\) do
        Let \(n_{g}\) be the number of available rooms.
        Run OnLINEMATCHING on the next \(n_{g}\) arriving agents with valuation matrix \(V^{\prime}\) (only rooms
    with open capacities are used).
        Let \(M_{g}\) be the returned matching.
        for every \(a_{i}\) that is yet to arrive do
            \(v_{i r}^{\prime} \leftarrow v_{i r}^{\prime}+h_{i j}+h_{j i}\) where \((j, r) \in M_{g}\)
        end for
        for every room \(i\) with \(c_{i}>0\) do
            \(c_{i} \leftarrow c_{i}-1\)
        end for
    end for
    return \(\cup M_{i}\)
```

Proof. We use a similar algorithm as for generalized online roommate market. In fact, the algorithm also worked for regular rooms, it is a kind of generalized for original version: every time we pick all rooms with available slot, say r rooms in total, then let next r agents match with the rooms with the weight that sum up all happiness of agents who are already in the room and room valuation.

For the happiness, we calculate the maximal happiness without considering about room valuation, and we also divide every clique of agents by matching and select the maximum matching in every clique. Same as before, we have each sum of a clique is still not more than c times of maximal happiness sum by matching in the same clique, and combine all the matching we will have a constant competitive ratio for it in expectation.

For the valuation of rooms, we look at the first matching which is from n agents to n rooms. In expectation, it is $1 / c$ of the maximum matching between all agents and all slots of rooms. As before, this matching is $1 / c$ of optimal allocation which has maximum room valuation between all agents and rooms, notice here we will lose
by $1 / c$. So the ratio will still be a constant.

4.2.6 Fairness

We will meet some cases that need to consider the individual mind, and the stable marriage problem is a good example. Previous study about roommate market also works with different kinds of stabilities. In the online setting, stability is harder to guarantee, and it is a challenge to have stability. In this section, we discuss different stability conditions in the online roommate market model.

In our work, we will only discuss stability notions that guarantee to exist in the offline setting, which are the 4-person stability and room stability. In addition, we will also consider a new notion - weak room-stability.

Our goal is to design online algorithms that can satisfy certain stability conditions, and further can gain high social welfare. We summarize our results in the following table.

Stability type	Achievable	Social welfare competitive ratio
4-person stable	no	-
Room stable	yes	unknown
Weakly room-stable	yes	constant

In the offline setting, Chan et al. gave an algorithm that can find a 4 -person stable solution in $O\left(n^{2}\right)$ time [Chan et al., 2016]. However, no algorithm can always guarantee a 4 -person stable solution in the online setting.

Lemma 13. No algorithm can always find a 4-person stable allocation in the online roommate market setting.

Proof. We prove this lemma by a simple example with four agents and two rooms. Assume that every agent has value 0 for every room. Hence we only need to consider the happiness values between them. We also assume that happiness values are symmetric, i.e., $h_{i j}=h_{j i}$ for every a_{i} and a_{j}. Consider the following sequence of
agents' arrival: let 1 and 2 be the first and second arriving agents with $h_{12}=1$. When a_{2} arrives, any algorithm needs to make one of two choices:

- Assign a_{1} and a_{2} to the same room. In this case, assume that the next two arriving a_{3} and a_{4} have happiness values $h_{13}=h_{24}=100$. All other unspecified happiness values are 0 . It is easy to check that this already breaks the 4 -person stable condition because swapping a_{1} and a_{3} would make every agent better off.
- Assign a_{1} and a_{2} to different rooms. In this case, assume that the next two arriving a_{3} and a_{4} have $h_{34}=1$ and all other happiness values are 0 . Here moving a_{1} and a_{2} to the same room can improve the utility of every agent.

Note that an online algorithm needs to make an assignment decision at each moment some agent arrives. This means regardless of what one algorithm does, it must be failed to output a 4-person stable solution in one of above two situations.

When discussing this condition, the happiness valuation between roommates can be ignored because the roommate relation will not be changed. It turns out that this room-stable condition can be satisfied by an online algorithm.

Lemma 14. There is an online algorithm that always gives a room-stable allocation.
Proof. The simple serial dictatorship algorithm works as follows: For every arriving agent, assign this agent to his most preferred room.

Now we show that the simple dictatorship algorithm that assigns every arriving agent his most preferred available room can produce a room- stable allocation. Fixing any two rooms r_{1} and r_{2}. Suppose the arriving order among them is $a_{1}, a_{2}, a_{3}, a_{4}$. If a_{1} and a_{2} both choose the same room, then they would not want to move to the other room. If a_{1} and a_{2} choose different rooms, without loss of generality, assume a_{1} chooses room r_{1} and a_{2} chooses room r_{2}. If a_{3} chooses room r_{1}, then a_{1} and a_{3} both prefer room r_{1} more than r_{2}; If a_{3} chooses r_{2}, both a_{2} and a_{3} prefer room r_{2} to r_{1}. In either case, there is a room in which the two tenants do not want to switch.

We comment that the above dictatorship algorithm, while always preserving the room stability, does not have any competitive ratio guarantees on social welfare. It remains an open question to design an algorithm that can achieve both room stability and constant competitive ratio on social welfare. However, as we will show below, if we are willing to weaken the room stability condition, such goal indeed becomes achievable.

Definition 20. An allocation is weakly room-stable if for any two agents i, i^{\prime} in room r_{i} and two agents j, j^{\prime} in another room r_{j}, switching their rooms cannot increase all four agents' utilities.

Theorem 17. There is an online algorithm that can always produce a weakly roomstable allocation with competitive ratio $c_{b} / 8$ on social welfare, where $c_{b}=\frac{\ln 5-0.8}{5} \approx$ 0.1618.

Proof. Recall in the proof of Theorem 15, we showed

$$
2 \mathbb{E}\left[S W\left(M_{p r 1}\right)+S W\left(M_{p b}\right)+S W\left(M_{p r 2}\right)\right] \geq S W\left(A_{o p t}\right) .
$$

Note that we also have $\mathbb{E}\left[S W\left(M_{p r 1}\right)\right]=\mathbb{E}\left[S W\left(M_{p r 2}\right)\right]$. This means we can ignore $\mathbb{E}\left[S W\left(M_{p r 1}\right)\right.$ and still get a constant competitive ratio solution. Thus we modify algorithm OnlineRoommate as follows: in the first step, we easily let the first n arriving agents choose the best empty room as they want. For the next n agent we still follow algorithm ONLINEMATCHING. After this change, our new algorithm will have competitive ratio $c_{b} / 8$. In addition, the output solution also satisfies weak room stability. This is because if we want to swap room r_{i} and r_{j}, and the first slot of r_{i} is assigned before r_{j}. Then the agent who is assigned to r_{i} will not want to switch because he prefers room r_{i} to r_{j}. Thus the output allocation is always weakly room-stable.

4.3 Discussion

In this chapter, we first introduce general indivisible resource allocation problems. The existence of the polynomially computable, EF1 and Pareto optimal mechanism
and the existence of an EFX allocation are two challenging open questions in this area. For the EF1 and Pareto optimal mechanism design, we show an efficient mechanism for two agents, but fail to generalize it to more agents. To approximate EFX mechanisms, we introduce a mechanism (which is not polynomially computable) that can satisfy $\frac{1}{2}$-EFX, and we believe there are better mechanisms with the better approximation ratio. For two agents, we provide an efficient $\frac{1}{2}$-EFX algorithm, and offer a possible direction for generalizing it to cases with more agents. For the chores setting, we present an EFX or proportional allocation that can be found in the polynomial time for three agents, where we are allowed to dispose of one chore. We are curious whether we can remove some of the conditions from our EFX or proportional mechanism.

There are a few directions for further research on the online roommate allocation problem. Finding a better competitive ratio is one possible direction. Although we currently have a constant competitive ratio, it could be improved, and we do not have a lower bound for the ratio. Another direction is to determine whether we can guarantee more stabilities. In the future, we may also run experiments with real data to test the performance of the mechanisms.

Chapter 5

Summary

In this thesis, we introduce many topics on divisible and indivisible resource allocation problems.

Chapter 3 introduces a set of divisible resource allocation problems. We classify them into cake cutting problems and chore division problems. We study them by restricting the valuation functions to piecewise uniform and piecewise constant functions. This chapter is divided into two parts. In the first part, we consider piecewise uniform valuations and do not adopt the free disposal assumption, which has been widely used in recent studies of truthful and fair cake cutting problems. We obtain several negative results when we add some mild assumptions (Theorem 1, 2 and 3) and show that a fair allocation can be found when the number of agents is small(Theorem 4, 5) or when more constraints are added to the valuation functions (Theorem 6, 7). In the second part of the chapter, we generalize the previous reserch [Chen et al., 2013] and relax the piecewise uniform valuations to the piecewise constant valuations. We obtain some negative results when we add similar mild assumptions(Theorem 8, 9 and 10). We identify the following remaining open questions as interesting directions for further research.

- Do truthful envy-free anonymous mechanisms with piecewise uniform valuation functions for more than two agents without the free disposal assumption exist? In our study, we prove that no anonymous mechanism exists, as such a
mechanism needs an infinite number of cuts (Theorem 1). However, our proof is difficult to generalize to cases with more agents, so we do not know whether there is an anonymous mechanism for even three agents. To have a complete proof, we need to prove the case for an arbitrary number of agents.
- Do truthful envy-free position oblivious mechanisms with piecewise uniform valuation functions for an odd number of agents without the free disposal assumption exist? We have shown a constructive proof that no position oblivious mechanism exists for an even number of agents (Theorem 3). In the proof, we need to partition agents into several pairs. If there are an odd number of agents, then the constructive proof no longer works. We cannot find a position oblivious mechanism for three agents, and cannot prove there is no such mechanism as well.
- Do truthful envy-free cake cutting (chore division) mechanisms with piecewise uniform valuation functions for n agents where every agent has a positive value on an interval of the cake, without the free disposal assumption, exist? In our study, we design mechanisms for a special case of this open question, i.e. the case in which valuations are prefix valuations (Theorem 6 and 7). We hope to relax this constraint to get closer to the setting of the general cake cutting problem.
- Do truthful envy-free cake cutting mechanisms with piecewise constant valuation functions for n agents exist under the free disposal assumption? For this open question, we prove some negative results with some natural assumptions added (Theorem 8, 9 and 10). Another direction is to allow the mechanism to throw away some parts of the cake and the resulting allocation should be envy-free and proportional (prevent too much cake from throwing away);
- Is there a mechanism that can approximate truthfulness and envy-freeness? Real-life application of indivisible resource allocation tasks may require us to weaken prefect fairness into "good enough" fairness. We have introduced no-
tions such as approximately truthfulness and approximately envy-freeness, and this may be a potential direction for future research that aims to apply these mechanisms to real scenarios where reasonably good approximation of fairness are needed.

In Chapter 4, we first introduce standard indivisible resource allocation problems with the maximin share guarantee, envy-freeness up to one item (chore), envyfreeness up to the least valued item (chore) and Pareto optimality. We propose CMMS (Theorem 11) and several mechanisms, most of them based on cases with a small number of agents (Theorem 12, 13 and 14). Then we introduce a real-life application of indivisible resource allocation, which we call the online roommate allocation problem. We present an efficient online algorithm (Theorem 15) and generalize it to many situations (Theorem 16 and Corollary 12). We consider stabilities at the same time (Theorem 17 and Lemma 13, 14). We list the open questions that we want to examine in future studies below.

- Do polynomial-time algorithms to find EF1 and Pareto optimal allocations exist? Currently, we know that the allocation that maximizes Nash social welfare is EF1 and Pareto optimal, but no polynomial-time mechanism can be found. This could potentially be applied in many real-life situations.
- Do EFX allocations for goods or chores exist? EFX represents strong fairness, but we can neither find an EFX mechanism nor prove it does not exist for either the goods or chores settings. It is an open question, even for cases with only three agents.
- Is there a better competitive ratio and achievable stability in the online roommate allocation problem? Our polynomial-time online algorithm is not proved to have a tight constant competitive ratio, so it is possible that there is a better algorithm for this problem.

List of work Below is a list of works that have been done during my Ph.D. study.

- Cake Cutting: Envy and Truth with Xiaohui Bei, Ning Chen, Biaoshuai Tao, and Jiajun Wu.
- Online Roommate Allocation Problem ${ }^{2}$, with Xin Huang, Shengyu Zhang, and Xiaohui Bei.
- Truthful Fair Division without Free Disposa ${ }^{3}$ with Xiaohui Bei and Warut Suksompong.

[^0]
Bibliography

[Aggarwal et al., 2011] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1253-1264. SIAM, 2011.
[Alijani et al., 2017] Reza Alijani, Majid Farhadi, Mohammad Ghodsi, Masoud Seddighin, and Ahmad S Tajik. Envy-free mechanisms with minimum number of cuts. In AAAI, pages 312-318, 2017.
[Amanatidis et al., 2017] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approximation algorithms for computing maximin share allocations. ACM Transactions on Algorithms (TALG), 13(4):52, 2017.
[Austin, 1982] AK Austin. Sharing a cake. The Mathematical Gazette, 66(437):212-215, 1982.
[Aziz and Mackenzie, 2016a] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for any number of agents. FOCS, 2016.
[Aziz and Mackenzie, 2016b] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for four agents. STOC, 2016.
[Aziz and Ye, 2014] Haris Aziz and Chun Ye. Cake cutting algorithms for piecewise constant and piecewise uniform valuations. In WINE, 2014.
[Bei et al., 2012] Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong Yang. Optimal proportional cake cutting with connected pieces. In AAAI, 2012.
[Bei et al., 2017a] Xiaohui Bei, Ning Chen, Guangda Huzhang, Biaoshuai Tao, and Jiajun Wu. Cake cutting: envy and truth. In IJCAI, pages 3625-3631. AAAI Press, 2017.
[Bei et al., 2017b] Xiaohui Bei, Youming Qiao, and Shengyu Zhang. Networked fairness in cake cutting. 2017.
[Bei et al., 2018] Xiaohui Bei, Guangda Huzhang, and Warut Suksompong. Truthful fair division without free disposal. In IJCAI, 2018.
[Biró et al., 2010] Péter Biró, Robert W Irving, and David F Manlove. Popular matchings in the marriage and roommates problems. In Algorithms and Complexity, pages 97-108. Springer, 2010.
[Bouveret et al., 2017] Sylvain Bouveret, Katarína Cechlárová, Edith Elkind, Ayumi Igarashi, and Dominik Peters. Fair division of a graph. In IJCAI, 2017.
[Brams and Taylor, 1995] Steven J Brams and Alan D Taylor. An envy-free cake division protocol. American Mathematical Monthly, 102(1), 1995.
[Brams and Taylor, 1996] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge University Press, 1996.
[Budish and Cantillon, 2012] Eric Budish and Estelle Cantillon. The multi-unit assignment problem: Theory and evidence from course allocation at harvard. American Economic Review, 102(5):2237-71, 2012.
[Budish, 2011] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. Journal of Political Economy, 119(6):1061-1103, 2011.
[Burk, 1938] Abram Burk. A reformulation of certain aspects of welfare economics. The Quarterly Journal of Economics, 52(2):310-334, 1938.
[Caragiannis et al., 2016] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and Junxing Wang. The unreasonable fairness
of maximum nash welfare. In Proceedings of the 2016 ACM Conference on Economics and Computation. ACM, 2016.
[Cechlárová and Manlove, 2005] Katarína Cechlárová and David F Manlove. The exchange-stable marriage problem. Discrete Applied Mathematics, 152(1):109122, 2005.
[Chan et al., 2016] Pak Hay Chan, Xin Huang, Zhengyang Liu, Chihao Zhang, and Shengyu Zhang. Assignment and pricing in roommate market. In Thirtieth AAAI Conference on Artificial Intelligence, pages 446-452, 2016.
[Chen et al., 2013] Yiling Chen, John Lai, David Parkes, and Ariel D. Procaccia. Truth, justice, and cake cutting. Games and Economic Behavior, 77:284-297, 2013.
[Eriksson et al., 2006] Kimmo Eriksson, Jonas Sjöstrand, and Pontus Strimling. Three-dimensional stable matching with cyclic preferences. Mathematical Social Sciences, 52(1):77-87, 2006.
[Ferguson and others, 1989] Thomas S Ferguson et al. Who solved the secretary problem? Statistical science, pages 282-289, 1989.
[Foley, 1967] Duncan Foley. Resource allocation and the public sector. Yale Econ Essays, 7(1):45-98, 1967.
[Gale and Shapley, 1962] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. American mathematical monthly, pages 9-15, 1962.
[Gamow and Stern, 1958] George Gamow and Marvin Stern. Puzzle-math. Viking Press, 1958.
[Goldman and Procaccia, 2015] Jonathan Goldman and Ariel D Procaccia. Spliddit: Unleashing fair division algorithms. ACM SIGecom Exchanges, 13(2):41-46, 2015.
[Graham et al., 1979] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics, volume 5, pages 287-326. Elsevier, 1979.
[Huang, 2007] Chien-Chung Huang. Two's company, three'sa crowd: Stable family and threesome roommates problems. In Algorithms-ESA 2007, pages 558-569. Springer, 2007.
[Hurwicz, 1972] Leonid Hurwicz. On informationally decentralized systems. Decision and organization, 1972.
[Huzhang et al., 2017] Guangda Huzhang, Xin Huang, Shengyu Zhang, and Xiaohui Bei. Online roommate allocation problem. In IJCAI, 2017.
[Irving and Manlove, 2002] Robert W Irving and David F Manlove. The stable roommates problem with ties. Journal of Algorithms, 43(1):85-105, 2002.
[Irving, 1985] Robert W Irving. An efficient algorithm for the "stable roommates" problem. Journal of Algorithms, 6(4):577-595, 1985.
[Iwama and Miyazaki, 2008] Kazuo Iwama and Shuichi Miyazaki. A survey of the stable marriage problem and its variants. In Informatics Education and Research for Knowledge-Circulating Society, 2008. ICKS 2008. International Conference on, pages 131-136. IEEE, 2008.
[Kaneko and Nakamura, 1979] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Econometrica: Journal of the Econometric Society, pages 423-435, 1979.
[Karp et al., 1990] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line bipartite matching. In Proceedings of the twentysecond annual ACM symposium on Theory of computing, pages 352-358. ACM, 1990.
[Kesselheim et al., 2013] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In Algorithms-ESA 2013, pages 589600. Springer, 2013.
[Kesselheim et al., 2014] Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and Berthold Vöcking. Primal beats dual on online packing lps in the random-order model. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 303-312. ACM, 2014.
[Knuth, 1997] Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems: An introduction to the mathematical analysis of algorithms, volume 10. American Mathematical Soc., 1997.
[Kurokawa et al., 2013] David Kurokawa, John K Lai, and Ariel D Procaccia. How to cut a cake before the party ends. In AAAI, 2013.
[Maya and Nisan, 2012] Avishay Maya and Noam Nisan. Incentive compatible two player cake cutting. In WINE, 2012.
[Menon and Larson, 2017] Vijay Menon and Kate Larson. Deterministic, strategyproof, and fair cake cutting. In IJCAI, 2017.
[Ng and Hirschberg, 1991] Cheng Ng and Daniel S Hirschberg. Three-dimensional stable matching problems. SIAM Journal on Discrete Mathematics, 4(2):245-252, 1991.
[Plaut and Roughgarden, 2018] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In SIAM, 2018.
[Procaccia and Wang, 2014] Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate maximin shares. In Proceedings of the 2014 ACM conference on Economics and computation. ACM, 2014.
[Procaccia, 2013] Ariel D Procaccia. Cake cutting: Not just child's play. Communications of the ACM, 2013.
[Rais and Viana, 2011] Abdur Rais and Ana Viana. Operations research in healthcare: a survey. International transactions in operational research, 18(1):1-31, 2011.
[Robertson and Webb, 1998] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK Peters/CRC Press, 1998.
[Schummer, 1996] James Schummer. Strategy-proofness versus efficiency on restricted domains of exchange economies. Social Choice and Welfare, 14(1), 1996.
[Steinhaus, 1948] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101-104, 1948.
[Varian, 1974] Hal R Varian. Equity, envy, and efficiency. Journal of economic theory, 9(1):63-91, 1974.

[^0]: ${ }^{1}$ |Bei et al., 2017a|, copyright holder IJCAI's link: http://www.ijcai.org/
 ${ }^{2}$ Huzhang et al., 2017|, copyright holder IJCAI's link: http://www.ijcai.org/
 $3 / \overline{\text { Bei et al., } 2018}$ copyright holder IJCAI's link: http://www.ijcai.org/

