
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Efficiency, fairness and incentives in resource
allocation

Huzhang, Guangda

2018

Huzhang, G. (2018). Efficiency, fairness and incentives in resource allocation. Doctoral
thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/82541

https://doi.org/10.32657/10220/46645

Downloaded on 09 Apr 2024 12:27:43 SGT

Efficiency, Fairness and Incentives

in Resource Allocation

Huzhang Guangda

Division of Mathematical Sciences
School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University

in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

2018

Acknowledgements

First of all, I would like to thank my supervisor Bei Xiaohui for his guidance on

research. We studied a lot of interesting topics and I learned a lot from his great ideas

and suggestions. I also got lots of help in graduate study, academic presentation,

academic writing and even future career. It has been my great honor and fortune to

work with Xiaohui for several years.

I would like to thank my previous supervisor Chen Ning for providing me the

opportunity to get the enrollment from NTU. I acquired basic knowledge from him.

The book “Probability and Computing: Randomized Algorithms and Probabilistic

Analysis” is one of the best books I’ve ever read, which is recommended by him.

Thanks to efforts of many different people from different places, I had the chance

to produce several publications during the Ph.D. study. Thank Tao Biaoshuai for

paper writing and poster design for our cake cutting paper. Thank Huang Xin and

Zhang Shengyu for visiting NTU and working for online roommate allocation paper.

Thank Warut Suksompong for visiting NTU and sharing us many novel and valuable

ideas on cake cutting problem. Thank Zhang Jianfu for heavy programming and

long-period experiments for our community detection paper.

I also would like to thank NTU to enroll me as a Ph.D. student, so that I was able

to get close to the most forefront research. I received lots of help in both graduate

study and daily life from my friends in school, thank all of them for good old days.

Thank Chai Yuxi, Tian Yingtao, Xia Bin and Lin Chengyu for their suggestions in

writings.

Last but not least, I would like to thank my family for their unconditional love

and consistent support; especially to my wife, thanks for waiting so long.

1

Contents

Acknowledgements 1

Abstract 4

1 Introduction 6

1.1 Efficiency . 8

1.2 Fairness . 10

1.3 Incentive . 11

1.4 Organization of thesis . 12

2 Preliminaries 14

2.1 Divisible resource allocation . 14

2.2 Indivisible resource allocation . 20

2.3 Online roommate allocation . 23

3 Divisible Resource Allocation 25

3.1 Truthful fair mechanism without the free disposal assumption 25

3.1.1 Related works . 26

3.1.2 Anonymous mechanism . 27

3.1.3 Connected piece assumption 29

3.1.4 Position oblivious mechanism 31

3.1.5 Pareto optimal mechanism for two agents 32

3.1.6 Pareto optimal mechanism for n agents 36

2

3.2 Cake cutting with piecewise constant valuation functions 39

3.2.1 Related works . 39

3.2.2 Connected piece assumption 39

3.2.3 Non-wasteful mechanism . 41

3.2.4 Position oblivious mechanism 42

3.3 Discussion . 44

4 Indivisible Resource Allocation 46

4.1 General indivisible resource allocation 46

4.1.1 Related works . 47

4.1.2 Contiguous maximin share guarantee 48

4.1.3 EF1 and Pareto optimal allocation 49

4.1.4 Approximate EFX allocation 51

4.1.5 EFX allocation of chores . 57

4.2 Online roommate allocation problem 62

4.2.1 Related works . 63

4.2.2 Online no-rejection bipartite matching 64

4.2.3 Online algorithm for online roommate allocation 68

4.2.4 Generalization to c-beds . 71

4.2.5 Rooms with different capacities 74

4.2.6 Fairness . 76

4.3 Discussion . 78

5 Summary 80

Bibliography 84

3

Abstract

Resource allocation aims at allocating scarce resources to strategic agents in an ef-

ficient and fair manner. Due to its wide applications in real-life, finding such allo-

cations satisfying specific properties is important for both theoretical research and

industrial applications. In this thesis, we study three objectives: efficiency, fairness,

and incentives, when allocating both divisible resource and indivisible resource.

First, we consider the fair division of a heterogeneous divisible resource, which is

well known as the cake cutting problem. We combine fairness and incentive in this

part. We focus on designing truthful and envy-free mechanisms with the presence of

strategic agents. Most results established by previous studies in this setting all rely

crucially on the free disposal assumption, meaning that the mechanism is allowed to

throw away part of the resource at no cost. In the first part, we remove this assump-

tion and focus on mechanisms that always allocate the entire resource. We exhibit

a truthful envy-free mechanism for cake cutting and chore division for two agents

with piecewise uniform valuations, and we complement our result by showing that

such a mechanism does not exist when we further require the mechanism to be ei-

ther anonymous, connected (the connected piece assumption), or position oblivious.

Moreover, we give truthful mechanisms for multiple agents with restricted classes

of valuations. In the second part, we explore cake cutting mechanism design with

piecewise constant valuations. We again require the mechanism to be either con-

nected, non-wasteful or position oblivious and show impossibility results even in the

presence of the free disposal assumption.

Next, we study indivisible resource allocation. We consider three fairness no-

4

tions with indivisible resources: maximin share guarantee, envy-freeness up to one

item, and envy-freeness up to the least item. We study whether a mechanism ex-

ists when we combine these fairness notions with the connected piece assumption,

Pareto optimality and other moderate conditions. In the last part, we study a specific

application, which we call the online roommate allocation problem. It is an online

allocation problem under the roommate market model introduced in [Chan et al.,

2016]. Consider we have a fixed supply of n rooms and a list of 2n arriving agents

in an online fashion. We have to assign one room to each agent upon his arrival. We

show a polynomial-time online algorithm that achieves constant competitive ratio for

social welfare maximization. Finally, we show both positive and negative results on

the existence of an allocation satisfying different stability conditions in this online

setting.

5

Chapter 1

Introduction

Resource allocation is the process of distributing a set of resources among a group of

agents, such that the outcome is efficient for society [Burk, 1938] and reasonably fair

to each participant [Steinhaus, 1948]. It is an interdisciplinary research topic involv-

ing mathematics, computer science, and economics. Resource allocation problems

can be categorized into two groups: divisible resource allocation and indivisible

resources allocation. Divisible resources are called cakes and related resource allo-

cation problems are known cake cutting problems; Indivisible resources are called

goods and the each resource is called an item. The related allocation problems are

called goods allocation problems. For simplicity, we call a set of goods a bundle. A

variant type of resource is a chore, such as workloads or costs. Agents may want to

limit such resources. Chore division is an allocation problem that distributes a divis-

ible chore among the agents, and chores allocation is a task that allocates indivisible

chores to the agents. Below, we provide several illustrative examples of each type of

resource:

• Consider a toy scenario in which a group of guests want to share a cake. Guest-

s may have different preferences. For example, some guests only care about

toppings, whereas some guests only care about the size of their pieces. We

hope to cut the cake into pieces and allocate these pieces such that no guest

thinks another guest’s piece is better than his. Sometimes, preferences are

6

private information, so the mechanism (the protocol which yields the allo-

cation from preferences) should be designed to motivate participants to re-

port their preferences truthfully. This example captures a large class of re-

source allocation scenarios in which participants want to divide a single het-

erogeneous resource. The cake cutting problem has been a central topic in

resource allocation researches for many decades [Brams and Taylor, 1996;

Robertson and Webb, 1998]. As Procaccia remarked, Cake cutting is not just

child’s play [Procaccia, 2013].

• Job scheduling [Graham et al., 1979] is another type of divisible resource al-

location problem. An example is a scenario with multiple servers and jobs, in

which each job exhibits different efficiencies with different servers and has in-

dependent release times and due times. One constraint is that one server can

process at most one job and one job can be processed by at most one server

anytime. The goal is to assign servers to these jobs to optimise some objec-

tives, such as minimizing total executing time or maximal lateness (completed

time minus due time). In this example, we allocate to agents a certain amount

of server time. Sometimes, we need to prevent a job from misreporting infor-

mation to earn more executing time on servers.

• In universities, course allocation is a common problem. We want to design an

allocation such that students are able to enrol in the courses they are interested

in, but the number of students in each course does not exceed the capacity

of the course. In this example, course slots are indivisible resources. There

are other similar problems like seat arrangements or room assignments. See

an application for courses allocation problem in a previous study [Budish and

Cantillon, 2012].

• Organ allocation [Rais and Viana, 2011]is another important application of the

resource allocation problem. Many patients need organ transplants, but there is

a highly limited number of organs available globally. The proper allocation of

organs maximizes the efficiency of saving patients, and there are many different

7

conditions needed to be taken into consideration such as the transit time and the

adaptivity of patients. This example also demonstrates that a single patient may

have the incentive to misreport information under an improper protocol, with

potentially dangerous results for society.

These four examples demonstrate that efficiency, fairness and incentives are three

important foci of resource allocation problems. Efficiency benefits the whole soci-

ety, whereas fairness is related to individuals’ perspectives. Given the presence of

strategic agents, incentive compatibility is needed to ensure that agents report their

private valuations accurately. In the following sections, we introduce these notions

separately.

1.1 Efficiency

Efficiency, a major objective of resource allocation problems, is commonly achieved

by implementing the Benthamite social welfare function[Burk, 1938] (also known

as the utilitarian social welfare function). It is defined as the sum of all of the in-

dividual utilities. Let SW (A) represent the social welfare of an allocation A =

(A1, A2, · · · , An) to agents {a1, a2, · · · , an}, then

SW (A) =
∑
Ai∈A

vi(Ai),

where Ai is the allocation to ai and vi(Ai) is the valuation of Ai to ai. Allocation to

one agent should not have any overlap with any other allocation. Generally we want

to allocate all of the resources to agents, so the union of all Ai should be the union

of all of the resources.

Another popular social welfare function is the Nash social welfare function[Kaneko

and Nakamura, 1979], which is defined as the product of agents’ utilities instead of

the sum. Nash social welfare function takes some account of fairness, as intuitively

we need to balance the utilities of the agents to obtain a large product. Formally, the

8

Nash social welfare function has the following form:

SW (A) =
∏
Ai∈A

vi(Ai).

The third social welfare function we want to consider is the Rawlsian social wel-

fare function (or max-min social welfare function), which aims to maximize the min-

imal utility among agents. As it provides both efficiency and strong fairness, we

consider the max-min allocation (the allocation maximizing Max-Min social wel-

fare function) to be highly fair and efficient. It has the following form:

SW (A) = min
Ai∈A

vi(Ai).

The Benthamite social welfare function and Rawlsian social welfare function are

located at the two extremes of “the axis of fairness”. The Benthamite social wel-

fare function does not consider fairness at all, whereas the Rawlsian social welfare

function will maximize the poorest person’s happiness. The following interesting

characterization connects these two extremes:

SW (A, x) =
∑
Ai∈A

vi(Ai)
1−x

1− x
,

where x ∈ [0,+∞) is a parameter. When x = 0, this becomes the Benthamite social

welfare function; when x → ∞, it becomes the Rawlsian social welfare function.

Intuitively, we see that a larger x provides more fairness. Another observation is that

the Nash social welfare function is in the middle of this range: when x approaches

1, the above social welfare function is the sum of ln(vi(Ai)) over a constant, which

implies a Nash social welfare function. In this thesis, we focus on the Benthamite

social welfare function. Therefore, when we discuss the social welfare function, we

are referring to the Benthamite social welfare function unless stated otherwise.

Pareto optimality (or Pareto efficiency) is an alternative method for representing

efficiency. We say an allocation is Pareto optimal if no other allocation makes no

agent worse off and at least one agent better off.

9

1.2 Fairness

Fairness plays a significant role in resource allocation problems. In a fair divi-

sion problem, we need to find an allocation that all of the agents perceive as fair.

The fair cake cutting problem was first discussed as the proportional allocation

problem[Steinhaus, 1948], in which an allocation is proportional if and only if ev-

ery agent believes he can get at least 1/n of the whole cake (n is the number of

participants). Formally, we say an allocation is proportional if and only if

vi(Ai) ≥ 1/n,∀i ∈ {1, 2, · · · , n},

where n is the number of agents. Here the valuation function vi is normalized, which

means that vi(R) = 1 where R is the entire resource.

Finding a proportional allocation is not a difficult task, and we introduce this

mechanism in Chapter 2. In addition to proportionality, another stronger fairness

notion was proposed, which is called envy-freeness[Gamow and Stern, 1958]. Infor-

mally, an allocation is envy-free if all of the agents are satisfied with their assigned

pieces, after comparing them with the assigned pieces of the other agents. Formally,

an allocation is envy-free if

vi(Ai) ≥ vi(Aj),∀i 6= j.

Many studies have examined the envy-free cake cutting problem [Foley, 1967;

Varian, 1974]. The cut-and-choose protocol is one of the most straightforward and

most well-known methods for solving the cake cutting problem with two agents.

The protocol operates by letting the first agent cut the cake into two parts of equal

value, and then letting the second agent choose which part he prefers. However, the

cut-and-choose protocol cannot be applied to cases with more than two agents, and

many studies have tried to find envy-free mechanisms for scenarios with more a-

gents. Although envy-free discrete mechanisms for three agents were independently

found by multiple researchers in the 1960s, no algorithms were developed for sce-

narios with more than three agents. In 1995, a general cake-cutting mechanism was

found [Brams and Taylor, 1995], and the authors developed an algorithm to compute

10

the allocation among a group of agents. However, the algorithm has no certain bound

on the number of steps. Recently, progress has been made in deriving an envy-free al-

gorithm for four or more of agents with bounded steps [Aziz and Mackenzie, 2016b;

Aziz and Mackenzie, 2016a].

There are also several fairness notions for indivisible resources, some of which

are weak forms of proportionality and envy-freeness. For example, the maximin

share guarantee (MMS guarantee) requires each agent to get a reasonably large value,

which is similar to proportionality, but the value may be less than 1/n. Envy-freeness

up to one item (EF1) and envy-freeness up to the least valued item (EFX) require

agents to be envy-free after removing an item from their opponents.

1.3 Incentive

There is a fundamental incentive issue in computing allocations: each participating

agent is self-interested and wants to receive an allocation with as much utility as

possible. Therefore, agents may misreport their valuations to increase the value of

their allocations. This motivates the study of cake cutting from a game-theoretical

point of view: is there a fair mechanism that could incentivize all of the agents to

report their valuation truthfully?

Incentive compatibility [Hurwicz, 1972] is a property of mechanisms that ensures

truthful reporting is a dominant strategy for all of the agents. Therefore, incentive

compatibility is desired by the host, and it is commonly used in economic and game

theory models, such as models of voting and auctions, that have strategic agents. We

use the term truthfulness instead of incentive compatibility in this thesis. (so we call

a mechanism truthful if truthful reporting is a dominant strategy for all of the agents)

As mentioned, the cut-and-choose protocol is a two-agent envy-free cake cutting

algorithm. However, the protocol is not truthful. For example, if the first agent

values the whole cake equally everywhere, then according to the protocol, he will

divide the cake in half and get exactly half of the cake in his valuation. However, if

he knows that the second agent only cares about the leftmost quarter of the cake, he

11

can divide the cake into the leftmost quarter and the rest, knowing that the second

agent will choose the leftmost quarter and leave him with three-quarters of the cake.

Therefore, he may manipulate to move the cut point and gain more, which suggests

the mechanism is not truthful.

The cake cutting problem in the presence of strategic agents was first addressed

in [Chen et al., 2013]. The authors developed a truthful cake cutting mechanism for

piecewise uniform valuations. In their study, they left an open problem: can we have

a truthful envy-free mechanism with piecewise constant valuation functions?

1.4 Organization of thesis

This thesis has two main chapters (Chapter 3 and 4) focusing on divisible and indi-

visible resource allocation problems, respectively.

Divisible resource allocation We study cake cutting problems in two directions in

Chapter 3. In the first part, we study cake cutting problems where we regard the

cake as an interval [0, 1]. We remove the free disposal assumption (which is a com-

monly used property in related researches) and restrict valuations to be piecewise

uniform functions(refer Definition 1). We show that if we add certain requirements

for the mechanism on top of being fair and truthful, then no desirable mechanis-

m exists even for two agents. In particular, the impossibility holds when we make

one of the following assumptions in addition to truthfulness and envy-freeness: (i)

anonymity: the mechanism must treat all agents equally; (ii) the connected piece

assumption: the mechanism must allocate a single interval to each agent; and (iii)

position obliviousness: the values that the agents receive depend only on the lengths

of the pieces desired by various subsets of agents and not on the positions of these

pieces. Next, we will exhibit a truthful, envy-free and Pareto optimal cake cutting

mechanism for two agents. With a simple reduction from chore division to cake cut-

ting, we also derive a chore division mechanism for two agents with the same set

of properties. Last, we consider the more general setting of multiple agents. We

12

assume that each agent only values a single interval of the form [0, xi]. We present

a truthful, envy-free and Pareto optimal cake cutting mechanism and a truthful, pro-

portional and Pareto optimal chore division mechanism for any number of agents

with valuations in this class. In the second part, we present a family of impossibility

results with piecewise constant functions (refer Definition 1), even if we adopt the

free disposal assumption. We again consider three assumptions: (i) the connected

piece assumption; (ii) position obliviousness; (iii) non-wastefulness. These results

partially answer the open question raised in Chen et al’s study [Chen et al., 2013].

Indivisible resource allocation Chapter 4 studies indivisible resource allocation prob-

lems. In the first part, we study general indivisible resource allocation problems,

which we call goods allocation and chores allocation (or goods/chores assignment).

We use noun item and chore to represent one resource in goods and chores allocation.

We study several novel fairness notions such as maximin share(MMS) guarantee,

envy-freeness up to one item (EF1) and envy-freeness up to any item (EFX). First,

we show an efficient algorithm that satisfies a variation of maximin share guarantee.

Next, we show an efficient algorithm to find an EF1 and Pareto optimal allocation

for two agents. Last, we show algorithms which satisfy different variations of EFX.

In the second part, we introduce a real-life application, which is based on the room-

mate market problem [Chan et al., 2016]. We study the case where agents arrive in

an online fashion. We focus on two objectives: (1) maximizing the social welfare,

which is defined as the sum of valuations that applicants have for their rooms and

the happiness valuation between each pair of roommates; (2) the allocation should

satisfy certain stability conditions, such that no group of people would be willing

to switch roommates or rooms. We show a polynomial-time online algorithm that

achieves constant competitive ratio for social welfare maximization, and then gen-

eralize it in several directions. Then we show both positive and negative results in

satisfying different stability conditions.

13

Chapter 2

Preliminaries

A resource allocation problem contains n agents {a1, a2, · · · , an} and m resources

{R1, R2, · · · , Rm} that we need to allocate to agents. An allocation (A1, A2, · · · , An)

is a partition of the resources that satisfies⋃
1≤i≤n

Ai =
⋃

1≤j≤m

Rj,

where Ai ∩ Aj = ∅,∀i 6= j. Ai is the resources allocated to ai.

For divisible resources, Ai can contain fractions of the resources, and we often

assume ∪Rj = [0, 1]. In general, we are allowed to divide the resource into a finite

many number of pieces before the allocation. For indivisible resources, Ai can either

contain all of Rj or none of Rj for each j. For some concrete applications, the

allocation may have specific constraints. For instance, if we want to metch n agents

with n items, the agents may be restricted to taking exactly one item each. In some

scenarios, we can throw away some resources, and do not have to allocate all of the

resources to agents.

2.1 Divisible resource allocation

Under the divisibility condition, if there are two or more divisible resources, we can

combine all of the resources into a single heterogeneous resource, producing a single

“cake” that can be arbitrarily divided. Therefore, the divisible resource allocation

14

problem is known as the cake cutting problem. In a cake cutting problem, there are

n agents and a heterogeneous divisible cake. For simplicity, we regard the cake as

an interval [0, 1]. As the cake can be divided arbitrarily, we need to use a density

function to describe the valuation of agents. Each agent ai has an individual density

function fi, where

fi : [0, 1]→ [0,∞).

In some cases, we use normalized density functions, which implies that each fi

should satisfy ∫ 1

0

fi(x)dx = 1.

With these density functions, an agent’s valuation of any cake segment can be

computed. Valuation of cake pieces S to ai is vi(S) =
∫
S
fi(x)dx. For allocating a

cake, we generally have fi ≥ 0, so getting an additional part does not decrease one’s

utility. For allocating a chore, fi is always non-negative, and agents may want to

get the smallest possible portion of the chore. We will state the class of the resource

before we use.

The Robertson-Webb cake cutting model[Robertson and Webb, 1998] is com-

monly used when the complexity of the mechanism needs to be taken into consider-

ation. It summarizes the ways to acquire information from agents, and it allows the

following two kinds of queries:

• EVALUATE(i, x, y), which returns how much ai values an interval [x, y]; and

• CUT(i, x, w), which returns the minimal y such that vi([x, y]) = w or reports

that y does not exist.

Let us see how this model works if we apply the cut-and-choose protocol. First, we

cut the cake at x = CUT(1, 0, 1/2). If EVALUATE(2, 0, x) ≥ 1/2, let a2 take [0, x],

otherwise let a2 take [x, 1]. Then a1 takes the other part. We can see the protocol

requires only two queries.

In this thesis, we focus on the fairness and incentives of cake cutting mechanism-

s. Each valuation function is either a piecewise uniform function or a piecewise

constant function defined as follows.

15

Definition 1. A valuation function f is piecewise constant if and only if it is able to

partition [0, 1] into finite many intervals (I1, I2, · · · , Im), and for each Ii we have

f(x) = f(x′),∀x, x′ ∈ Ii.

A valuation function f is piecewise uniform if and only if f is piecewise constant

and there exists a positive number c such that for all x ∈ [0, 1], we have f(x) = 0 or

f(x) = c.

Next, we introduce the definitions of fairness and truthfulness used in cake cutting

models.

Definition 2. We say an allocation (A1, A2, · · · , An) is proportional if and only if

vi(Ai) ≥ 1/n,∀i ∈ {1, 2, · · · , n},

where n is the number of agents.

Similarly, we say an allocation (A1, A2, · · · , An) is envy-free if and only if

vi(Ai) ≥ vi(Aj),∀i 6= j.

Proportionality and envy-freeness in the chore setting are defined similarly by

reversing the direction of the inequality.

A mechanism requires agents to input the valuation functions and it outputs an

allocation. A mechanism can be represented by the function

M : (f1, f2, · · · , fn)→ (A1, A2, · · · , An).

We say a mechanism is proportional (envy-free) if it always outputs a proportional

(envy-free) allocation.

A truthful mechanism ensures that truthfully reporting one’s true density function

is the best strategy for every agent. The formal definition is as follows.

Definition 3. A mechanismM is truthful, if the following holds: let

(A1, A2, · · · , Ai, · · · , An) =M(v1, v2, · · · , vi, · · · , vn),

16

where all of the agents report their valuations truthfully, and

(A′1, A
′
2, · · · , A′i, · · · , A′n) =M(v1, v2, · · · , v′i, · · · , vn),

where ai manipulates the valuation function vi to be v′i (while other agents remain

unchanged). Then we always have

vi(Ai) ≥ vi(A
′
i).

According to this definition, a mechanism is truthful if an agent cannot get more

by misreporting his valuation, when all of the other agents report their true valuation

functions.

Under the free disposal assumption, we can dispose of every part of the cake that

does not have a positive value for any agent. Note that in the chore setting, there is

no assumption similar to the free disposal assumption, because disposing of parts of

a chore does not make sense. We must allocate the whole chore and cannot disposal

of any part, even if that part has no value for anyone.

As we mentioned above, Pareto optimality is another popular property in resource

allocation problems, and it is intuitively a local optimality. Here, we give the formal

definition.

Definition 4. An allocation A = (A1, A2, · · · , An) is Pareto optimal, if and only if

for any other allocation A′ = (A′1, A
′
2, · · · , A′n), we have

∃i, vi(Ai) < vi(A
′
i)⇒ ∃j, vj(Aj) > vj(A

′
j).

An equivalent statement is that no allocation A′ exists such that

∀i, vi(Ai) ≤ vi(A
′
i) and ∃j, vj(Aj) < vj(A

′
j).

Similarly, we define Pareto optimality for chores by reversing the direction of all

the inequalities.

Note that we only consider valid allocations: for a divisible resource, an allo-

cation can involve an arbitrary partition of the resource; for indivisible resources, a

resource must be entirely allocated to a single agent.

17

Previous studies There are many useful cake cutting mechanisms. In addition to

the cut-and-choose protocol, there are interesting mechanisms that can solve various

problems in simple settings.

• The two-agent exact allocation problem. In this task, we need to divide the

cake into pieces so that all of the agents have the same certain value for each

piece. For example, we want to cut the cake into three pieces that are 0.2, 0.3

and 0.5 of the entire cake for anyone. First, let us see how to divide the cake

into two equal parts for two agents. The cut-and-choose protocol will not work

in this case: the agent who implements the “choose” operation may feel t-

wo pieces are not the same. A possible solution is the Austin moving-knife

protocol [Austin, 1982]: let a1 hold two knives, k1 and k2, which start at

k1 = 0 and k2 = x such that v1([0, x]) = 1/2, Then a1 continuously moves

the knifes from left to right, maintaining v1([k1, k2]) = 1/2. When a2 find-

s v2([k1, k2]) = 1/2, he shouts “stop” and the cake can be cut at k1 and k2.

As v2([k1, k2]) changes smoothly and v2([0, x]) + v2([x, 1]) = v2([0, 1]) = 1,

we have v2([0, x]) ≤ 1/2 ≤ v2([x, 1]) or v2([0, x]) ≥ 1/2 ≥ v2([x, 1]).

Thus, we can use the intermediate value theorem to prove there must be such

a moment. As v1([k1, k2]) = v2([k1, k2]) = 1/2, then v1([0, 1]\[k1, k2]) =

v2([0, 1]\[k1, k2]) = 1/2. Although the Austin moving-knife protocol provides

a valid solution for the exact allocation among two agents, it cannot process a

finite number of queries under the Robertson-Webb model. The moving-knife

protocol can be generalized to obtain exact allocations in scenarios with mul-

tiple parts as follows. Suppose we want to produce pieces with proportions

(c1, c2, · · · , cm) for two agents. In the i-th round we solve a subproblem that

divides the remaining cake into two parts, where one part is valued as exactly

ci for two agents.

• The n-agent proportional allocation problem. We use a variation of the cut-and-

choose protocol to solve this problem. Let each agent report the least x that he

is satisfied with proportionality if he obtains cake [0, x], and then let the agent

18

who reports the lowest x take [0, x]. Then it becomes a subproblem with fewer

agents, and we repeat the above step until no agents are left. Proportionality

is straightforward: when there are n agents and one agent quits, the remaining

agents will value the allocated part as less than 1/n, so the proportionality of the

subproblem will be stronger than that of the original problem. Everyone will

quit eventually, and each agent gets a proportional allocation when he quits.

• The three-agent envy-free allocation problem. One solution is to use the Austin

moving-knife protocol to create three parts that are considered equivalent by

the first two agents (this is the two-agent exact allocation problem) and then

let the last agent pick the part he likes; the first two agents can pick any part

because the parts are equivalent. However, this protocol is a continuous process

and it does not work well under the Robertson-Webb model. Thus, we intro-

duce the Selfridge-Conway discrete procedure. It was developed by John L.

Selfridge about 1960, and independently by John H. Conway in 1993. It works

as follows:

1. Let the agents be Alice, Bob and Carol. First, Carol divides the cake into

three pieces that he considers to have the same value.

2. Bob trims the largest piece, to make its value equal to the value of the

second largest piece (we call the piece that was cut off a trimming). Then,

from Bob’s perspective, there will be two choices for the largest piece.

3. Let Carol, Bob and Alice, in that order, take the piece that they like the

most. An additional constraint is that Bob must take the trimmed piece if

Carol does not take it.

4. Then the allocation of the entire cake will be envy-free, except for the

trimming. One observation is that Alice will not envy the agent who gets

the trimmed piece, even if he gets the whole trimming.

5. (i). If Bob gets the trimmed piece, let Carol divide the trimming into three

pieces so that each piece has the same value to her, then let Bob, Alice and

19

Carol, in that order, choose the piece that they like the most. (ii). If Carol

gets the trimmed piece, then let Bob divide the trimming into three pieces

so that each piece has the same value to him, then let Carol, Alice and Bob,

in that order, choose the piece they want.

We can see from the above process that the Selfridge-Conway discrete proce-

dure involves at most 5 cuts of the cake. In recent studies of fair cake cutting

problems [Aziz and Mackenzie, 2016b; Aziz and Mackenzie, 2016a], they use

a similar trimming idea.

2.2 Indivisible resource allocation

In indivisible resource allocation problems, we have n agents andm items (or chores)

such that I = (I1, I2, · · · , Im). We have a valuation function vi : 2I → [0,+∞) for

each ai. In this thesis, we assume that the valuation functions are additive; therefore,

vi(S) =
∑

g∈S vi({g}), where S is a subset of I . For an item, we may use vi(x) to

represent vi({x}).

Classic fairness notions, such as envy-freeness and proportionality, are impossible

to satisfy in the worst case when resources are indivisible. They may not be satisfied

even in trivial cases; for example, an allocation cannot be envy-free or proportional

if we want to allocate one indivisible item to n agents. Therefore, researchers have

proposed new fairness notions. The maximin share guarantee ([Budish, 2011]) is a

fairness notions that has recently been proposed for indivisible resource allocation

problems.

Definition 5. Let πn(I) be the set of all n-partitions of goods set I . The n-maximin

share(n-MMS) guarantee of ai is computed as:

MMS
(n)
i (I) = max

(S1,S2,··· ,Sn)∈πn(I)
min
j∈[n]

vi(Sj).

The partition that generates the maximal result to ai is called an n-MMS partition

to ai.

20

We say an allocation A = (A1, A2, · · · , An) satisfies the n-MMS guarantee (or

A is an n-MMS allocation) if

vi(Ai) ≥MMS
(n)
i (I),

for each ai.

In other words, the n-MMS of ai is the maximum value ai can get if he partitions

all of the goods into n subsets, and he can only get the set with the least value. We

note that one recent study [Procaccia and Wang, 2014] has shown that the MMS

guarantee cannot be satisfied in the worst case.

We cannot guarantee envy-freeness and proportionality, but we may relax the

them: for example, we can assume that envy only occurs when one agent’s allocation

is worse than another agent’s allocation even if the second agent disposes of one item.

Budish defined this type of envy-freeness as envy-freeness up to one good [Budish,

2011]. In this thesis, we use envy-freeness up to one item instead of the original

name, because “good” is not usually a singular proper noun in English.

Definition 6. An allocation A = (A1, A2, · · · , An) is envy-free up to one item (EF1

hereafter), if and only if for each pair of agents (i, j), we have

vi(Ai) ≥ vi(Aj\{g}),∃g ∈ Aj.

Similarly, an allocation is envy-free up to one chore if and only if for each (i, j), we

have

vi(Ai\{g}) ≤ vi(Aj), ∃g ∈ Ai.

An agent is EF1 when he does not envy another agent, after that agent disposes

of the best item in the first agent’s valuation. Another way to achieve EF1 is to let

the second agent drop an arbitrary item (in the worst case, it will be the least valued

item). Formally, this has the following definition[Caragiannis et al., 2016].

Definition 7. An allocationA = (A1, A2, · · · , An) is envy-free up to the least valued

item (EFX hereafter), if and only if for each pair of agents (i, j), we have

vi(Ai) ≥ vi(Aj\{g}),∀g ∈ Aj.

21

Similarly, an allocation is envy-free up to the least valued chore if and only if for

each (i, j), we have

vi(Ai\{g}) ≤ vi(Aj),∀g ∈ Ai.

From the definition, we can see that EFX is strictly stronger than EF1. Approxi-

mately satisfying EFX is another direction of further research.

Definition 8. For goods, an allocation A = (A1, A2, · · · , An) is α-EFX, if and only

if for each pair of agents (i, j), we have

vi(Ai) ≥ αvi(Aj\{g}),∀g ∈ Aj.

Similarly for chores, an allocation is α-EFX if and only if for each (i, j), we have

vi(Ai\{g}) ≤ αvi(Aj),∀g ∈ Ai.

Envy-free graph We introduce an interesting algorithm for EFX allocation of goods,

where each agent has an identical order of preference for the items. Several indepen-

dent studies have found the solution to this problem using an envy-free graph. An

envy-free graph is a graph which is generated by an allocation, where an edge (i, j)

indicates that ai envies aj in the given allocation. One insight of the envy-free graph

is that we can always adjust an allocation to make it acyclic by rotating the agents’

allocations. If there is a cycle in the envy-free graph, let every agent take the bundle

of resources that is originally allocated to the agent he envies; then, the allocation

becomes strictly better. The algorithm works as follows.

1. Sort the items by the value in the non-increasing order (remember that all of

the agents have the same order of preference). Maintain the envy-free graph

throughout the whole process, such that there is an edge from i to j if and on-

ly if vi(Ai) < vi(Aj).

2. Pick any agent who is not envied by anyone (in other words, any vertex in the

envy-free graph with zero indegree). Let him take the next item.

3. Repeatedly eliminate cycles by rotating the in-cycle agents’ allocations until there

is no cycle in the envy-free graph.

22

4. Go back to Step 2 until all of the items are allocated.

Proof. In an acyclic graph, there is always a vertex with an indegree of 0. Therefore,

we can always find i in Step 2. Below, we show that after every Step 3, the allocation

will be EFX. After we add one item to the allocation, the only option that may break

EFX is that some aj considers vj(Ai\{g}) > vj(Aj), where Ai is the allocation

to ai and g is the most recently added item (it is also the item with the least value).

However, this would contradict the fact that no one envies ai in Step 2, which implies

that vj(Ai\{g}) ≤ vj(Aj). Therefore, EFX is always guaranteed.

This mechanism can also be used to solve the approximate MMS allocation[A-

manatidis et al., 2017] in both goods and chores settings.

2.3 Online roommate allocation

In this section, we consider a specific indivisible resource allocation problem: the

online resource allocation problem. In a standard roommate market problem[Chan

et al., 2016], we have a set of 2n agents I = {1, 2, ..., 2n}, a set of n rooms R =

{r1, r2, ..., rn}, a happiness matrix H = {hij | i, j ∈ I, i 6= j} in which hij denotes

the happiness of ai when he is assigned to live with aj and a valuation matrix V =

{vir | i ∈ I, r ∈ R} in which vir denotes the valuation of ai to room j. We assume

that all of the happiness and valuation values are nonnegative. The outcome of the

roommate market is an allocationA = {(i, j, r)}, which consists of n disjoint triples.

The triple (i, j, r) indicates that ai and aj are assigned together to room r. We require

that every agent be assigned to one room and that every room be assigned to exactly

two agents. The social welfare of an allocation A is defined as

SW (A) =
∑

(i,j,r)∈A

(hij + hji + vir + vjr).

We assume an online setting in which all of the agents arrive online in an uniform-

ly random order. When ai arrives, his valuation vir of every room r, as well as his

happiness valuation hij of all of the agents aj that have already arrived are revealed

23

to the algorithm. The algorithm needs to assign ai to an available room immediate-

ly. As there are exactly 2n agents and n rooms, we are not allowed to leave any

agent unassigned. Our goal is to find an allocation A that can maximize E[SW (A)],

such that the expectation is taken over both the randomness of the algorithm and the

random arrival order of the agents.

An online algorithm is said to be c-competitive (or to have competitive ratio c),

if its output allocation has an expected social welfare of no less than c · SW (Aopt),

where Aopt is the optimal offline allocation.

In addition to efficiency, several other stabilities are considered in this thesis. It

is possible to satisfy stabilities due to their bidirectional property. A few stabilities

which were introduced in the study by Chan et al.[Chan et al., 2016].

Definition 9. An allocation is 2-person stable if for each ai and aj in two different

rooms, switching their rooms cannot make both of them strictly increase their utility.

An allocation is 4-person stable if for any ai and aj in two different rooms, switch-

ing their rooms cannot make all four people in these two rooms strictly increase their

utility.

An allocation is room stable if for any two agents ai, a′i in room ri and two agents

aj, a
′
j in another room rj , switching their rooms cannot increase the sum of the two

roommates’ utilities for both rooms.

Chan et al. proved that determining whether a roommate market has a 2-person

stable solution is NP-hard, and there are polynomial-time algorithms for satisfying

the 4-person stability and room stability (for details, see their study [Chan et al.,

2016]). In an online roommate allocation problem, satisfying stability is harder than

in the offline model. Therefore, we do not consider the 2-person stability in the

online roommate allocation problem. Both the 4-person stability and room stability

are studied in this thesis.

24

Chapter 3

Divisible Resource Allocation

In the previous chapter, we introduce the cut-and-choose protocol and show that it

is possible to design an envy-free cake cutting mechanism when there are only two

agents. Although computing envy-free allocation for two agents is not complicated,

envy-free cake cutting mechanism for three agents (such as the Selfridge-Conway

discrete procedure) are not straightforward already. Until recently, there were no

discrete envy-free cake cutting mechanisms even for four agents. Recently, an envy-

free mechanism was found with a bounded number of cuts for an arbitrary number

of agents [Aziz and Mackenzie, 2016a], but it is still unknown whether there is an

allocation with a polynomial number of queries. In our study, we take truthfulness

into consideration, to see whether a truthful fair mechanism exists under specific

conditions. In fact, the existence of a solution to the cake cutting problem with two

agents is an open question, even if we restrict the valuation functions to piecewise

constant functions.

3.1 Truthful fair mechanism without the free disposal assump-

tion

The search for a truthful and fair mechanism without the free disposal assumption

for cake cutting problem is relatively new. The first study of truthful and fair cake

25

cutting was done by Chen et al. [Chen et al., 2013]. One of their most significant

contributions is a truthful envy-free mechanism for an arbitrary number of agents

with piecewise uniform valuation functions, and the mechanism additively needs the

free disposal assumption. Although certain resources, such as cake or machine pro-

cessing time, may be easy to get rid of, this is not the case for all resources. For

instance, when we divide a piece of land among antagonistic agents or countries, we

cannot simply throw away part of the land, and any piece of unallocated land con-

stitutes a potential subject of future disputes. The free disposal assumption is even

less reasonable when it comes to chore division—indeed, under this assumption, we

might as well simply dispose of the whole chore!

With this motivation in mind, in the first section of this chapter we consider the

problem of fairly and truthfully dividing heterogeneous resources without the free

disposal assumption. Not having the option of throwing away part of the resource

makes the task more complicated, as even if the mechanism is only allowed to throw

away parts that are not valued by any agent, this still prevents agents from gaining by

not reporting parts of the resource that no other agent values, in the hope of getting

those parts for free along with a larger share of the remaining parts. Thus, as Chen et

al. noted, getting rid of the free disposal assumption adds “significant complexity”

to the problem, as under this condition the mechanism has to specify exactly how to

allocate parts that no agent desires. The same group of authors also gave an example

illustrating how removing the assumption can be problematic, even in the special

case of two agents with very simple valuations.

3.1.1 Related works

For easier analysis, many recent studies have restricted the valuation functions to

piecewise constant and piecewise uniform functions, which simplifies the description

of valuations e.g. [Bei et al., 2012], [Chen et al., 2013], [Aziz and Ye, 2014], [Bei et

al., 2017a], [Menon and Larson, 2017]. One study has shown that in the Robertson-

Webb model, finding an envy-free allocation with piecewise uniform valuation func-

26

tions is equivalent to solving the problem without this property [Kurokawa et al.,

2013].

Chen et al. first studied truthful envy-free mechanisms with restricted valua-

tions [Chen et al., 2013]. They proposed a truthful and envy-free mechanism with

piecewise uniform valuation function under the free disposal assumption. Maya and

Nisan developed a truthful, proportional and Pareto optimal mechanism for two a-

gents with piecewise uniform valuations [Maya and Nisan, 2012]. With piecewise

constant valuations, Kurokawa et al. showed there is no truthful and envy-free mech-

anism in the Robertson-Webb model with bounded queries [Kurokawa et al., 2013],

and Aziz and Ye showed there is no truthful, proportional and Pareto optimal mecha-

nism [Aziz and Ye, 2014]. In a setting in which every agent values only one interval,

Alijani et al. showed efficient truthful envy-free mechanisms [Alijani et al., 2017].

Most previous studies have adopted the free disposal assumption. In this section,

we study the cake cutting problem without the free disposal assumption. This section

is reproduced from our published paper [Bei et al., 2018].

3.1.2 Anonymous mechanism

One might consider that “fair” mechanisms should treat the agents equally regardless

of their identity.

Definition 10. A mechanismM is anonymous, if the following holds:

for any density functions (f1, f2, · · · , fn) and any permutation σ of (1, 2, · · · , n),

if

(A1, A2, · · · , An) =M(f1, f2, · · · , fn)

and

(A′1, A
′
2, · · · , A′n) =M(fσ(1), fσ(2), · · · , fσ(n)),

then

vi(Ai) = vi(A
′
σ(i))

for every i.

27

However, the following result shows that anonymity is incompatible with truth-

fulness and envy-freeness.

Theorem 1. When the valuation functions are piecewise uniform, there is no truthful,

envy-free, and anonymous cake cutting mechanism even for only two agents without

the free disposal assumption.

Proof. We are going to prove a stronger statement: even we restrict the valued part

of valuations to be [0, xi], there is no truthful envy-free anonymous mechanism. We

use Wi = [0, x] to denote that ai has value on [0, x], and has no value on the rest part.

Suppose that such a mechanism exists. Let x ∈ [0, 1) and W1 = W2 = [0, x].

Assume without loss of generality that in this instance, a1 gets an interval containing

point x and ending at point x + f(x) > x, possibly among other intervals. By

envy-freeness, both agents must get half of the interval [0, x].

If W1 = [0, x + ε] for some ε ∈ [0, f(x)] and W2 = [0, x], then a1 must get the

entire interval [x, x+ ε] and half of the interval [0, x]. This is because a2 must get at

least half of the interval [0, x], and if a1 gets less than the whole interval [x, x + ε],

he can manipulate by reporting W1 = [0, x] and getting the whole interval [x, x+ ε].

By anonymity, if W1 = [0, x] and W2 = [0, x + ε] for some ε ∈ [0, f(x)], a2 must

also get the whole interval [x, x+ ε] and half of the interval [0, x].

Now suppose thatW1 = W2 = [0, x+ε] for some ε ∈ [0, f(x)]. Both agents must

get half of the interval [0, x + ε]. If a1 gets more than half of the interval [x, x + ε],

then a2 gets more than half of the interval [0, x]. In this case, if W2 = [0, x], a2 can

manipulate by reporting W2 = [0, x + ε]. So a1 cannot get more than half of the

interval [x, x + ε]. By symmetry, neither can a2. This means that both agents get

exactly half of the interval [x, x + ε]. In other words, for any y ∈ [x, x + f(x)], if

W1 = W2 = [0, y], then both agents get exactly half of the interval [x, y].

Next, consider the set

A := {(x, y) ∈ R[0,1) ×Q[0,1] | x < y < x+ f(x)}.

This set is uncountable, since for each of the uncountably many x’s, there is at least

one y such that (x, y) ∈ A. If for each y there only exist a finite number of x’s such

28

that (x, y) ∈ A, this set would be countable, which we know is not the case. Hence

there exists a y such that (x, y) ∈ A for infinitely many x’s. Fix such a y.

Finally, suppose that W1 = W2 = [0, y]. For any of the infinitely many x’s such

that (x, y) ∈ A, both agents must receive exactly half of the interval [x, y]. However,

if the mechanism divides the interval [0, y] into k intervals in the allocation, then

there can be at most one value of x per interval, and therefore at most k values in

total, with this property. This gives us the desired contradiction that we have to

divide the cake into infinite many intervals.

In the rest of this thesis, the class of valuations that form [0, x] appear many

times. We say a valuation is prefix valuation, if the agent has the same positive value

everywhere on [0, x] for some x, and has no value on [x, 1].

3.1.3 Connected piece assumption

When cutting a real cake, we intuitively know that we do not want to cut the cake

into too many pieces. For example, if we are allocating a party cake among n guests,

we try to allocate each guest one piece of cake rather than many small pieces of cake.

Similarly, for some resources, such as time and land, it is better to have single piece,

rather than lots of pieces. In a standard cake cutting model, we define the connected

piece assumption as follows.

Definition 11. An allocation satisfies the connected piece assumption if every agent

gets a single subinterval of the cake. In other words, the cake will have n− 1 cutting

points, and every agent will get one of these n intervals. A mechanism produces

connected pieces if it always outputs allocations that satisfy the connected piece

assumption.

With the connected piece assumption, we prove there is no truthful envy-free cake

cutting mechanism with piecewise uniform valuation functions for two agents. Sim-

ilar results of impossibility were presented in previous studies [Menon and Larson,

2017; Bei et al., 2017a], which depend on the free disposal assumption.

29

Theorem 2. When the valuation functions are piecewise uniform, there does not ex-

ist a truthful and envy-free cake cutting mechanism for two agents without the free

disposal assumption that satisfies the connected piece assumption, even the valua-

tions are restricted to be prefix valuations.

Proof. Suppose that such a mechanism exists. First, consider the instance where

W1 = W2 = [0, x] for some x ∈ (0, 1). One agent will get the interval [0, x/2]

and the other agent the interval [x/2, 1]; assume without loss of generality that a1

gets [0, x/2] and a2 gets [x/2, 1]. Next, consider the instance where W1 = [0, x]

and W2 = [0, y] for some y ∈ (x, 1). Then a2 must still get the interval [x/2, 1];

otherwise he can report W2 = [0, x] instead.

Now, consider the instance where W1 = W2 = [0, y]. As before, one agent will

get the interval [0, y/2] and the other agent the interval [y/2, 1]. If a1 gets [0, y/2],

then in the previous instance a1 can gain more by reporting W1 = [0, y]. Hence it

must be that a2 gets [0, y/2] and a1 gets [y/2, 1]. This means that in the instance

where both agents report [0, y], the ordering of the allocated pieces is reversed from

the allocation in the instance where both agents report [0, x]. Since this holds for any

y > x, if we take some z > y (obviously z > x also), we find that no allocation

works when both agents report [0, z], a contradiction.

A remark is that we will have a mechanism under the free disposal assumption.

If we have W1 = [0, x1] and W2 = [0, x2] and x1 < x2, let a1 get [0, x2/2] and a2 get

[x2/2, x2]. There are four cases:

• a1 may manipulate x′1 > x2, then he can get x2 − x′1/2 < x2/2;

• a1 may manipulate x′1 ≤ x2, then nothing changes;

• a2 may manipulate x′2 < x2, then he can get x′2/2 < x2/2;

• a2 may manipulate x′2 > x2, then he can get x2 − x′2/2 < x2/2.

We conclude that the mechanism is truthful and envy-free by checking these four

cases.

30

3.1.4 Position oblivious mechanism

Position obliviousness is another mild assumption, which seems like the anonymity

on cake segments. Let us see the formal definition first.

Definition 12. Given a vector of n piecewise constant density functions

f = (f1, f2, . . . , fn), we define the indicator function Lf : Rn 7→ R, where

Lf (r1, . . . , rn) = |{x | ∀i, fi(x) = ri}|,

where |S| means the summation of length of all intervals in the set S. Similarly,

assume A = (A1, . . . , An) is an allocation produced by some mechanism with these

density functions, define LAi
f : Rn 7→ R, where

LAi
f (r1, . . . , rn) = |{x | ∀i, fi(x) = ri} ∩ Ai|.

Definition 13. A mechanism M is position oblivious if for any two cake cutting

instances with density functions f = (f1, f2, ..., fn) and f ′ = (f ′1, f
′
2, ..., f

′
n) such that

Lf ≡ Lf ′ , the mechanism always outputs two allocationsM(f) = (A1, . . . , An) and

M(f ′) = (A′1, . . . , A
′
n) such that LAi

f ≡ L
A′

i

f ′ for every i.

Intuitively, a position oblivious mechanism will decide the allocation only based

on the set of segments {Xt | t = 1, . . . ,m} and each agent’s values on these seg-

ments, but not on these segments’ relative positions on [0, 1].

Because in this section, we are considering piecewise uniform functions, we may

use another simpler notation Lf (S) to represent the length of segments where a-

gents in S have value on it, while other agents don’t have value on it. For example,

Lf (1, 0, 1) should be Lf ({1, 3}) in the new notation.

Theorem 3. When the valuation functions are piecewise uniform, there does not

exist a truthful, proportional, and position oblivious cake cutting mechanism for n

agents without the free disposal assumption, where n = 2k for some positive integer

k.

Proof. Suppose that such a mechanism exists. Assume that the cake is represented

by the interval [0, 4k2 + k].

31

First, consider the instance where W2i−1 = W2i = [i − 1, i] for i = 1, 2, . . . , k.

Since the interval [k, 4k2 + k] is of length 4k2 and there are 2k agents, some agent

gets value more than 2k−1 from the interval. Assume without loss of generality that

a1 is one such agent, and that a1 gets the interval [k, 3k − 1]. Since the mechanism

is proportional, a1 must get value at least 1/2k from the interval [0, 1] as well.

Next, consider the instance where W1 = [0, 1] ∪ [k, 3k − 1], W2 = [0, 1], and

W2i−1 = W2i = [i − 1, i] for i = 2, 3, . . . , k. Agent a1 must still get value at least

1/2k from the interval [0, 1]; otherwise he can report W1 = [0, 1] instead. This

means that a2 gets a total value of at most 1− 1/2k in this instance.

Finally, consider the instance where W1 = W2 = [0, 1]∪ [k, 3k− 1] and W2i−1 =

W2i = [i− 1, i] for i = 2, 3, . . . , k. By proportionality, a2 must receive value at least

1; let B2 ⊆ [0, 1] ∪ [k, 3k − 1] be a piece of length 1 that a2 receives. If W2 = B2

while the other Wi’s remain fixed, then since the mechanism is position oblivious,

a2 must get a total value of at most 1 − 1/2k. However, in that case a2 can report

W2 = [0, 1]∪ [k, 3k− 1] and receive value 1. This implies that the mechanism is not

truthful and yields the desired contradiction.

As with the connected piece assumption, Bei et al. showed a similar negative re-

sult for position obliviousness under the free disposal assumption but using the larger

class of piecewise constant valuations[Bei et al., 2017a]. For piecewise uniform val-

uations, Chen et al.’s mechanism is truthful, envy-free, and position oblivious under

the free disposal assumption.

3.1.5 Pareto optimal mechanism for two agents

In this section, we focus on the case of two agents. We show that in this case, there

exists a truthful, envy-free, and Pareto optimal mechanism for both cake cutting and

chore division, for two agents with arbitrary piecewise uniform valuations.

We first describe the cake cutting mechanism.

32

Mechanism 1 (for cake cutting between two agents)

Step 1: Find the smallest value of x ∈ [0, 1] such that v1([0, x]) = v2([x, 1]).

Step 2: Assign to a1 the intervals in [0, x] valued by a1 and the intervals in [x, 1]

not valued by a2, and assign the rest of the cake to a2.

While this is a succinct description of the mechanism, it turns out that the descrip-

tion is somewhat difficult to work with. We next provide an alternative formulation

that is more intuitive and will help us in establishing the claimed properties of the

mechanism.

Mechanism 1 (alternative formulation)

Phase 1: Let a1 start at point 0 of the cake moving to the right and a2 start at

point 1 of the cake moving to the left. Let both agents “eat” the cake with the

same constant speed, jumping over any interval for which they have no value

according to their reported valuations. If the agents are at the same point while

both are still eating, go to Phase 3. Else, one of the agents has no more valued

interval to eat; go to Phase 2.

Phase 2: Assume that ai is the agent who has no more valued interval to eat. Let

ai stop and a3−i continue eating. If the agents are at the same point (either while

a3−i eats or while a3−i jumps over an interval of zero value), go to Phase 3.

Else, both agents have stopped, but there is still unallocated cake between their

current points. In this case, let a3−i continue eating the unallocated cake until he

is at the same point as ai, and go to Phase 3.

Phase 3: Assume that both agents are at point x of the cake. (It is possible that

33

the two agents meet while both of them are jumping. In this case, we let a2 jump

first.) Assign any unallocated interval to the left of x to a2 and any unallocated

interval to the right of x to a1.

Theorem 4. When the valuation functions are piecewise uniform, Mechanism 1 is

a truthful, envy-free, and Pareto optimal cake cutting mechanism for two agents

without the free disposal assumption.

Proof. We begin with truthfulness. Note that there is no incentive for an agent to

report an interval that he has no value since this can only result in the agent wasting

time eating such intervals. So the only potential deviation is for the agent to report a

strict subset of the intervals that he has a positive value. If the agent does not report

intervals that he has a positive value, then the intervals that he jumps over before

the agents meet will be lost to the other agent, and the agent can use the extra time

gained from not reporting these intervals to eat intervals of no more than the same

length.

Next, for envy-freeness, it suffices to show that each agent gets at least half of his

valued intervals allocated in each phase. In Phase 1, each agent only gains intervals

that he has a positive value, and loses intervals that he has a positive value (due to

the other agent’s eating) at no more than the same speed. In Phase 2, the agent who

continues eating can only gain more, while the agent who has stopped eating has no

more interval that he has a positive value. In Phase 3, a1 has no unallocated interval

to the left of x that he has a positive value, so he cannot lose any unallocated interval

that he has a positive value. The same argument holds for a2.

Finally, our mechanism allocates any interval valued by at least one agent to an

agent who has a positive value on it. This establishes Pareto optimality.

Mechanism 1 gives rise to a dual mechanism for two-agent chore division that

satisfies the same set of properties.

34

Mechanism 2 (for chore division between two agents)

Step 1: Use Mechanism 1 to find an initial allocation of the chore, treating the

chore valuations as cake valuations.

Step 2: Swap the pieces of the two agents in the allocation from Step 1.

Theorem 5. When the valuation functions are piecewise uniform, Mechanism 2 is

a truthful, envy-free, and Pareto optimal chore division mechanism for two agents

without the free disposal assumption.

Proof. First, truthfulness holds because minimizing the chore in the swapped allo-

cation is equivalent to maximizing the chore in the initial allocation, and Theorem 4

shows that this is exactly what Mechanism 1 incentivizes the agents to do. Next,

envy-freeness holds again by Theorem 4 because getting at most half of the chore

in the swapped allocation is equivalent to getting at least half of the chore in the

initial allocation. Finally, in the initial allocation any interval of the chore valued by

only one agent is allocated to that agent, so in the swapped allocation the interval is

allocated to the other agent, implying that the mechanism is Pareto optimal.

Besides truthfulness, envy-freeness, and Pareto optimality, how do Mechanisms 1

and 2 fare with respect to the other previous properties

• Mechanism 1 is not anonymous: If W1 = [0, 0.5] and W2 = [0, 1] then both

agents get value 0.5, while if W1 = [0, 1] and W2 = [0, 0.5] then a1 gets value

0.75 and a2 gets value 0.25.

• It is also not position oblivious: If W1 = [0, 0.5] and W2 = [0, 1] then both

agents get value 0.5, while if W1 = [0.5, 1] and W2 = [0, 1] then a1 gets value

0.25 and a2 gets value 0.75.

• The allocation when W1 = [0, 1] and W2 = [0, 0.5] shows that the mechanism

does not satisfy the the connected piece assumption.

35

The same examples demonstrate that Mechanism 2 likewise satisfies none of the

three properties.

3.1.6 Pareto optimal mechanism for n agents

In this section, we consider the general setting where we allocate the resource among

any number of agents. We assume that each agent i has a prefix valuation (remind

it implies that ai only values the interval [0, xi]). Prefix valuations may appear in a

scenario where the agents are dividing machine processing time: ai has a deadline xi

for his jobs, so he would like to maximize the processing time he gets before xi but

has no value for any processing time after xi. We also remark that the example used

to illustrate that removing the free disposal assumption can be problematic consists

of two agents whose valuations belong to this class [Chen et al., 2013, p. 296].

Hence, designing a fair and truthful algorithm is by no means an easy problem even

for this valuation class.

We first describe the cake cutting mechanism.

Mechanism 3 (for cake cutting among n agents)

Step 1: If there is one agent left, the agent gets the entire remaining cake. Else,

assume that there are k ≥ 2 agents and length l of the cake left. Find the

maximum x ∈ [0, l] such that agent i values the entire interval [(i − 1)x, ix] for

all i = 1, 2, . . . , k, and allocate the interval [(i− 1)x, ix] to agent i.

Step 2: The agent whose right endpoint of his allocated interval coincides with

the right endpoint of his valued piece exits the process. (If there are more than

one such agent, choose the one with the lowest number.)

Step 3: Renumber the remaining agents in the same order starting from 1, and

relabel the left endpoint of the remaining cake as point 0. Return to Step 1.

36

Theorem 6. Let n be any positive integer. When the valuation functions are piece-

wise uniform, Mechanism 3 is a truthful, envy-free, and Pareto optimal cake cutting

mechanism for n agents without the free disposal assumption, if valuations are re-

stricted to be prefix valuations.

Proof. First, for truthfulness, there are two types of manipulation: moving xi to the

left and to the right. Moving xi to the left can only cause ai to quit the process early

when he could have gained more by staying on. On the other hand, if moving xi

to the right causes the allocation to change in some round of Step 1, the agent can

only get less value from the allocated interval as its right endpoint moves past xi.

Moreover, since he has no more valued intervals to the right, he cannot make up for

the loss.

Next, for envy-freeness, if an agent is no longer in the process, he has no more

part that he has a positive value on it. During the process, all remaining agents

receive an interval of the same length in each round. Since each agent values the

entire interval that he receives, he does not envy any other agent.

Finally, our mechanism allocates any interval to an agent who has a positive value

on it (if at least one agents have a positive value on it). This establishes Pareto

optimality.

In the chore setting, prefix valuations may also appear in the case where agent

i has another task and will be busy before the deadline xi, therefore he wants to

minimize the chore that he takes before xi, and after xi everything will be easy to

deal with (so it valued as 0). Unlike in the case of two agents, there is no simple

reduction between cake cutting and chore division in the general case. Nevertheless,

our next result shows a truthful and proportional chore division mechanism for any

number of agents. We were not able to strengthen the proportionality guarantee to

envy-freeness and leave it as an interesting open question for future research.

37

Mechanism 4 (for chore division among n agents)

Step 1: Let a1 take the piece [0, x1/n] ∪ [x1, 1]. If some other agent has no

value on parts of the interval [0, x1/n], give those parts to the agent. (If there are

several such agents, allocate the parts arbitrarily.)

Step 2: Repeat Step 1 with the next agent up to an−1 and the remaining chore; ai

takes the leftmost interval with value xi/n as well as any piece for which he has

no value. (If ai has value less than xi/n left, he takes the entire remaining chore.)

Step 3: Agent an takes all of the remaining chore.

Theorem 7. Let n be any positive integer. When the valuation functions are piece-

wise uniform, Mechanism 4 is a truthful, proportional, and Pareto optimal chore

division mechanism for n agents without the free disposal assumption, if valuations

are restricted to be prefix valuations.

Proof. We begin with truthfulness. First, an agent who has no value on some piece

that the mechanism initially allocates to another agent has no incentive not to take the

piece. Apart from this, agent an has no control over his allocation, so the mechanism

is truthful for his. For any other agent, there are two types of manipulation: moving

xi to the left and to the right. Moving xi to the right can only increase the value of

the piece that ai has to take. If ai moves xi to the left by an amount y, he can save

a value of at most y/n but has to take a piece of value y at the end. So ai does not

have a profitable manipulation.

We now consider proportionality. Each agent up to an−1 gets a piece of value

at most xi/n. For an, we consider two cases. Let x = min(x1, x2, . . . , xn−1). If

xn ≤ x, then each of the first n − 1 agents takes at least 1/n of the interval [0, xn],

so at most 1/n of this interval is left for an. Else, we have xn > x. The intervals

[0, (n − 1)x/n] and [x, 1] will not be left to an, meaning that an receives value at

38

most x/n < xn/n.

Finally, our mechanism allocates any interval for which some agent has no value

to one such agent. This establishes Pareto optimality.

3.2 Cake cutting with piecewise constant valuation functions

The piecewise constant function is known as the step function in real analysis. It can

be used to approximately approach a continuous function for any given accuracy,

which provides a way to improve the analysis of the functions. In this section, we

follow Chen et al. [Chen et al., 2013] and study fair division with piecewise constant

valuation functions instead of piecewise uniform valuation functions.

3.2.1 Related works

There is no truthful, proportional and Pareto optimal mechanisms for piecewise con-

stant piecewise constant valuations [Schummer, 1996; Aziz and Ye, 2014]. Truthful

mechanisms for two agents have been characterized [Maya and Nisan, 2012]. A

recent work studied non-wastefulness and the connected piece assumption [Menon

and Larson, 2017], which are also studied in our paper [Bei et al., 2017a]. Menon

and Larson developed an approximation algorithm that is proportional and partially

satisfies truthfulness with piecewise uniform valuations. We have already introduced

some of the related studies in the previous section, as these two sections significantly

overlap.

This section is reproduced from our published paper [Bei et al., 2017a].

3.2.2 Connected piece assumption

In Section 3.1.3, we learn there is no truthful envy-free mechanism that satisfyies

the connected piece assumption for two agents without the free disposal assumption

when the valuations are piecewise uniform. In this subsection, we have two differ-

39

ences from the setting in Section 3.1.3: the valuations are piecewise constant and we

adopt the free disposal assumption. We are going to prove there is no truthful envy-

free mechanism that can satisfy the connected piece assumption for any number of

agents.

Theorem 8. Under the free disposal assumption, no truthful envy-free cake cutting

mechanism satisfies the connected piece assumption for any number of agents when

valuation functions are piecewise constant.

Proof. Let ε > 0 be a sufficiently small constant. The cake is represented by [0, 7 +

n]. The density functions are defined as follows.

f1(x) = 1, for x ∈ [1, 2 + ε] ∪ [5, 6]

f2(x) = 1, for x ∈ [3, 4] ∪ [7− ε, 8]

For i = 3, . . . , n :

fi(x) = 1, for x ∈ [6 + i− ε, 6 + i+ ε]

The valuation of all density functions is zero on the unspecified intervals. Notice that

the cake is [0, 9] when n = 2, in which case only f1 and f2 are defined.

Under the connected piece constraint, it is easy to see that either a1 or a2 will get

a value of at most 1 + ε. Without loss of generality, assume it is a1. Considering the

scenario where a1 misreports his function to be

f ′1(x) =

 1 x ∈ [1, 2 + ε] ∪ [5, 6]

2 x ∈ [8, 7 + n]
,

we next show that a1 can get an allocation with a value of at least 2 (with respect to

f1).

Given the condition that one has to receive a consecutive piece, we know that a1

cannot get a value of more than 2 from the interval [8, 7 + n]. For each x ∈ [8, 7 +

n−1], the interval [x, x+1] will cover at least half of some [6+ i−ε, 6+ i+ε], thus

the envy-freeness must be broken. It holds trivially for n = 2, as a1 has value exactly

2 on [8, 7 +n] = [8, 9]. However, receiving value 2 is not enough for proportionality

40

(as
∫
[0,7+n]

f ′1(x) dx = 2n+ ε), and thus, it is not enough for envy-freeness. Also, it

can be seen that a1 cannot get a superset of [7− ε, 8] on which a2 has more than half

of his total valuation. Therefore, to receive a value of more than 2, a1 has to take

almost the entire interval [1, 6]; this results in a value of more than 2 with respect to

the true function f1. Compared with the upper bound 1 + ε that a1 receives when

reporting f1 truthfully, his obtained value is increased from manipulation.

Therefore, no truthful mechanism exists, and the theorem follows.

3.2.3 Non-wasteful mechanism

The non-wastefulness implies that we are not willing to allocate a piece to someone

who does not like it at all. Formally, we have the following definition.

Definition 14. A mechanism is non-wasteful if and only if an agent will never get a

cake segment, where he has no value on this segment.

With this mild assumption, we have the following negative conclusion.

Theorem 9. Under the free disposal assumption, there is no truthful, envy-free, and

non-wasteful cake cutting mechanism when valuation functions are piecewise con-

stant.

Proof. Suppose otherwise there is a non-wasteful truthful envy-free mechanismM.

Consider the cake cutting instance with two agents whose density functions are

f1(x) = 1 and f2(x) = 1 on the whole cake. The allocation A = (A1, A2) giv-

en by M must satisfy |A1| = |A2| = 0.5. Consider another cake cutting instance

with two agents whose valuation density functions are

g1(x) =

 1 x ∈ A1

0 otherwise
and g2(x) = 1.

For this instance (g1, g2), a1 will get the whole A1 ifM is truthful, as otherwise a1

can bid g′1(x) = 1 and get A1. Moreover, a1 cannot get more than A1, because oth-

erwise a2 will envy a1. Thus, A = (A1, A2) is the only possible allocation generated

byM for the instance (g1, g2). However, by taking advantage of the non-wasteful

41

condition, a2 can misreport his density function and get a better allocation than A2.

For example, a2 can bid the following function g′2:

g′2(x) =

 1 x ∈ A1

0.5 otherwise
.

For the instance (g1, g
′
2), a2 will receive the entire A2 according to the non-wasteful

condition. In addition, he will receive some of A1 to guarantee envy-freeness. Thus,

a2 will receive a strictly larger value from manipulation, which implies thatM can-

not be truthful.

3.2.4 Position oblivious mechanism

For piecewise constant valuation functions, we cannot use a set of agents to uniquely

denote the type of subintervals as we did with piecewise uniform valuation function-

s. Instead of that, we need to use n real numbers to denote the density of valuation

to every agent. Below we show that position oblivious, truthful and envy-free mech-

anism does not exist.

First, we consider a special piecewise uniform case.

Lemma 1. For any I1, I2 ⊆ [0, 1] such that I1 ∩ I2 = ∅ and |I1| = |I2|, given two

density functions

f1(x) =

1 if x ∈ I1 ∪ I2

0 otherwise
and f2(x) =

1 if x ∈ I2

0 otherwise
,

any mechanismM that is truthful, envy-free and position oblivious would produce

an allocationM(f1, f2) = (A1, A2) such that I2 ⊆ A2.

Proof. First consider the case where both agents have density function f1. By the

envy-free condition, both agents will get half of I1∪I2. That is, we haveM(f1, f1) =

(A1, A2) with |A1 ∩ (I1 ∪ I2)| = |A2 ∩ (I1 ∪ I2)| = |I1| = |I2|.

Next, consider another case where a2 has a density function

g2(x) =

1 if x ∈ A2 ∩ (I1 ∪ I2)

0 otherwise

42

Because M is truthful, one must have M(f1, g2) = (A′1, A
′
2) with A2 ⊆ A′2,

since otherwise a2 can bid g2 = f1 to receive whole A2.

Finally, due to the position oblivious property and the fact that L(f1,f2) = L(f1,g2),

we know with input (f1, f2) mechanism should also give the whole I2 to a2. This

proves the lemma.

Theorem 10. Under the free disposal assumption, there is no truthful, envy-free,

and position oblivious mechanism even for two agents when valuation functions are

piecewise constant.

Proof. Assume by contradiction that such mechanismM exists. Consider the cake

cutting instance (f1, f2) with

f1(x) =

1 if x ∈ [0, 1
3
]

0 otherwise
and f2(x) =

1 if x ∈ [0, 1
3
]

ε if x ∈ (1
3
, 1]

with some small ε > 0.

Assume that with these inputsM produces the allocation A = (A1, A2). By the

envy-free condition of a1, we know |A1 ∩ [0, 1
3
]| ≥ 1

6
, which implies |A2 ∩ [0, 1

3
]| ≤

1
6
, and by the envy-freeness of a2 we have 1

6
≥
∣∣A2 ∩

[
0, 1

3

]∣∣ ≥ 1
6
(1 − 4

3
ε)), and∣∣A2 ∩

(
1
3
, 1
]∣∣ ≥ 1

3
.

Next, consider another cake cutting instance (g1, g2) with

g1 = f1 and g2(x) =

1 if x ∈ [0, 1
3
] ∪ I

0 otherwise
,

where we have picked I ⊆ A2 ∩ (1/3, 1] such that |I| = 1
3
.

By Lemma 1, when reporting the true valuations,Mwould produce the allocation

M(g1, g2) = (A1, A2) with [0, 1
3
] ⊆ A1. Thus a2’s utility will be no more than

|I| = 1
3
. On the other hand, by reporting his density function as g2 = f2, a2 will

receive the whole A2 (A2 is the allocation to a2 with instance (f1, f2)), and his utility

will be at least 1
6
(1 − 4

3
ε) + 1

3
= 1

2
− 2

9
ε. With ε small enough, this value is strictly

larger than 1
3
, which implies thatM cannot be truthful.

43

3.3 Discussion

There are many possible directions for future study. We could try to approximately

satisfy the requirements for a truthful and envy-free mechanism. The approximation

could be defined as follows.

Definition 15. An allocation A is α-envy-free if for each pair of ai and aj , we have

αvi(Ai) ≥ vi(Aj). Similarly, a mechanism is β-truthful if a manipulation does not

increase one’s utility to β times. When α = β = 1, the definition is exactly envy-free

and truthful.

Bei et al. provided the proof for a mechanism maximizing the Nash social wel-

fare function that is 2-truthful and envy-free [Bei et al., 2017a]. We plot (α, β) to

show whether a mechanism can guarantee α-truthful and β-envy-free. Currently,

we know that three points exist, namely, (+∞, 1) and(2, 1) and (1,+∞), where the

+∞-truthful and envy-free mechanism is exactly an envy-free mechanism, and the

truthful and +∞-envy-free mechanism can be designed by allocating the whole cake

to any fixed agent.

Another recent study [Bei et al., 2017b] examined the networked fairness. In real-

life scenarios, one agent envies another only if he knows that agent. Networked envy-

freeness does not reduce the difficulty of designing mechanism, as a fully connected

graph is the same as the general cake cutting problem. The study provided solutions

for special cases and left the existence of mechanisms for networks that are directed

circles or undirected circles as an open question. We successfully find a networked

envy-free mechanism for the directed circle case.

Fact 1. There is a mechanism that can always output an envy-free allocation on a

directed circle network.

Proof. Let the first agent divide the cake evenly into n pieces, and let the other agents

each pick the preferred piece one by one in the circular order (every agent knows the

next agent). After n− 1 agents are done, let the first agent pick the remaining piece.

We can see that every agent except the first agent will choose the piece before the

44

agent that he might envy. The first agent will not envy any of the others, as the pieces

are all the same in his view.

45

Chapter 4

Indivisible Resource Allocation

In the first part of this chapter, we study the general indivisible resource allocation

problem. Several reasonable fairness notions are proposed for the cases of indi-

visible resources such as the maximin share(MMS) guarantee, envy-freeness up to

one item (EF1), and envy-freeness up to the least valued item (EFX)[Budish, 2011;

Caragiannis et al., 2016]. We present several results related to two open questions:

the existence of an EF1 and Pareto optimal mechanism that is computable in poly-

nomial time and the existence of an EFX mechanism.

In the second part, we introduce a real-life application, specifically, the online ver-

sion of the roommate market problem, which we call the online roommate allocation

problem. The online roommate allocation problem is characterized as follows. In

the beginning, we have empty double-bed rooms; then agents arrive one by one in an

online fashion. As soon as an agent arrives, we need to assign him a room. After all

of the agents have arrived, we want our allocation to be efficient and fair. The model

can be used, for example, to organize university accommodation or small working

groups in companies.

4.1 General indivisible resource allocation

The most general indivisible resource allocation problems is similar to the cake cut-

ting problem, but the resources cannot be cut, and must be allocated to agents based

46

on the pre-divided pieces (goods). Spliddit [Goldman and Procaccia, 2015] is an

application of indivisible resources allocation theories that can help to solve real-life

division tasks in several different scenarios, such as allocating goods or chores, or

advanced topics such as rent division and taxi fare division.

4.1.1 Related works

If we want to achieve fairness in indivisible resource allocation, we first need new

notions of fairness. In this section, we introduce three popular types of fairness

notions. In 2011, Budish proposed the maximin share(MMS) guarantee [Budish,

2011], but could not prove the existence of the MMS allocation. A few years later,

Ariel and Junxing proved there is no MMS mechanism [Procaccia and Wang, 2014].

In the same paper, they proposed an algorithm that can approximately satisfy the

MMS guarantee. More recent studies have improved the approximation ratio, and

one has successfully improved the approximation ratio of MMS to 7
8
− ε for three

agents[Amanatidis et al., 2017]. In another strand of research, researchers have

studied the MMS guarantee where every agent needs to get a connected component

in the goods graph[Bouveret et al., 2017]. As an alternative to the MMS guarantee,

envy-freeness up to one item (EF1) has been proposed for solving the indivisible

resource allocation problem[Budish, 2011]. Recently, Caragianni el at. showed that,

surprisingly, an allocation maximizing the Nash social welfare function would be

EF1 and Pareto optimal[Caragiannis et al., 2016]; that study left the open question

of whether we can find a polynomially computable allocation that satisfies EF1 and

Pareto optimality. In the same paper, they also proposed Envy-freeness up to the

least valued item (EFX) as well. Building on this research, Plaut and Roughgarden

studied EFX direction and showed a series of results in different classes of valuation

functions [Plaut and Roughgarden, 2018].

47

4.1.2 Contiguous maximin share guarantee

We want to satisfy the MMS guarantee in another way instead of an approximation.

In some cases, for convenience, we want to make the allocation contiguous to agents,

as in the connected piece assumption in the cake cutting problem. We consider

a situation in which every agent can only receive a contiguous sequence from the

goods list. As in the cake cutting problems with the connected piece assumption, we

can make n− 1 breakpoints on this list and allocate n bundles of items to n agents.

Below, we give a formal definition for contiguous maximin share guarantee.

Definition 16. We say a partition π of a list of goods I is a contiguous partition, if

each S ∈ π can be indicated by two numbers i and j, where S will contain item Ik

for i ≤ k ≤ j exactly.

The n-contiguous maximin share guarantee of ai is computed as:

CMMS
(n)
i (I) = max

(S1,S2,··· ,Sn)∈cπn(I)
min
j∈[n]

vi(Sj),

where cπn(I) are the set of all of the contiguous n-partitions. The partition that

generates the maximal result to ai is called the n-CMMS partition to ai.

We say an allocation satisfies the n-CMMS guarantee (or an allocation is an

n-CMMS allocation) if we have

vi(Ai) ≥ CMMS
(n)
i (I).

Bouveret et al. independently studied a more general case than ours[Bouveret et

al., 2017]. The connected fair division problem contains a graph of goods, and each

agent needs to acquire a subset of goods that form a connected component in the

graph. They showed that when the graph of goods is a tree, it is always possible to

find an allocation. The CMMS allocation can be reduced to a connected fair division

problem where the goods graph is a path.

Our result after computing the CMMS allocation is as follows.

Theorem 11. There is a polynomial-time algorithm for the indivisible resources al-

location problem that can always yield an allocation that satisfies the CMMS guar-

antee.

48

Proof. We compute the n-CMMS partition to ai, totally we get n partitions. Let

the breakpoints for the i-th partition be Bi = (B1
i = 0, B1

i , B
2
i , · · · , Bn−1

i , Bn
i =

m), where the j-th set of the partition contains items with indices that are between

Bj−1
i + 1 and Bj

i .

Our algorithm works as follows. In the i-th step, we pick the leftmost breakpoint

among {Bi
j} for all of the agents j who have not been allocated. We can see that

everyone gets an interval in which the right endpoint is exactly the same breakpoint

as in his original CMMS allocation, but the left endpoint may move to the left of

the original left endpoint, which means he can get a bundle that satisfies CMMS.

Therefore, this algorithm outputs an allocation that meets the CMMS guarantee.

Each Bi can be calculated within O(m log(m2)) operations, as there are less than

m2 different possible sums of intervals. We use a binary search to find n-CMMS,

where determining the existence of an allocation in which each bundle should be

valued as no less than a fix number can be done in O(m). Therefore, we need

O(nm logm) time to find all values of Bi and the time complexity of the main pro-

cedure is O(n2).

4.1.3 EF1 and Pareto optimal allocation

Envy-freeness up to one item is a natural generalization of the envy-freeness. One

way to satisfy EF1 is to use a Round Robin protocol that lets each agent choose the

item he likes most, finally the allocation will be EF1. Consider a pair of agents,

someone of them (call him a1) always pick items before the other (call him a2). a1

does not envy a2 clearly; if we remove the first chosen item from a1’s items, a2 al-

ways picks items before a1, thus establishing EF1. Until recently, an open question

about EF1 was whether there is an allocation that is simultaneously EF1 and Pareto

optimal. A recent study showed the surprising fact that any allocation maximizing

the Nash social welfare function will be EF1 and Pareto optimal[Caragiannis et al.,

2016]. However, finding an allocation that maximizes Nash social welfare func-

49

tion is NP-hard, so it is unclear whether EF1 and Pareto optimal allocations can be

computed in polynomial time.

In our study, we study a small case and show a polynomial-time algorithm to find

an EF1 and Pareto optimal allocation for two agents. First, we introduce a notion

that is used to make the proofs easier.

Definition 17. A snapshot of an allocation (A1, A2, · · · , An) is a point in n dimen-

sion space with a coordinate of (S1, S2, · · · , Sn), where Si = vi(Ai).

Snapshots map allocations onto high dimensional space. The following lemma

connects snapshots and Pareto optimality.

Lemma 2. All of the allocations with a snapshot that has the farthest Euclid distance

to any plane c1x1 + c2x2 + · · ·+ cnxn = 0 (ci > 0 for all i) are Pareto optimal.

Proof. Maximizing the distance from snapshot (x′1, x
′
2, · · · , x′n) to c1x1 + c2x2 +

· · ·+ cnxn = 0 is equivalent to maximizing

S = c1x
′
1 + c2x

′
2 + · · ·+ cnx

′
n.

Suppose the snapshot (x′1, x
′
2, · · · , x′n) has maximized S. As ci > 0, if there is

another snapshot in which all of the x′i are not decreasing and some x′j are becoming

strictly larger, there is the implied contradiction that there is an allocation with a

larger S than the maximal one.

With this lemma, we can prove our main result.

Theorem 12. Given two agents and their valuations of m items, an EF1 and Pareto

optimal allocation can be found in polynomial time.

Proof. Assume there arem items. We sort all of the items in the non-increasing order

of v2
v1

. For each i, we let c1 = v2(gi) and c2 = v1(gi) (gi is the i-th item in the sorted

goods list), and let a1 take the first i items and let a2 take the last m− i items. Each

allocation is Pareto optimal by Lemma 2, as it maximizes the value of c1x1 + c2x2.

Then we choose the smallest k such that when a1 gets the first k items, he will not

envy a2 up to one item. We claim this allocation is EF1 and Pareto optimal.

50

We first show why a2 will not envy a1 up to one item. We first take away k-

th item, so a1 gets the first k − 1 items and a2 gets the last m − k items. It is

also a Pareto optimal allocation by Lemma 2. As k is the smallest number that

a1 will not envy a2 up to one item, a1 must envy a2 before he gets k-th item. At

this moment, a2 must not envy a1, otherwise we swap their allocations and both

agents’ utilities will strictly increase, which contradicts the Pareto optimality of the

allocation. Therefore, after a1 receives the k-th item, a2 will not envy him after a1

disposes of the k-th item. Therefore, EF1 and Pareto optimality holds. The time

complexity is O(m logm).

Although the above algorithm works well for the case of two agents, it is impos-

sible to generalize to more agents as the following result shows.

Fact 2. Although we have Lemma 2, it is NP-hard to determine whether there is

an EF1 allocation among the Pareto optimal allocations generated by maximizing

c1x1 + c2x2 + · · ·+ cnxn.

Proof. The partition problem is a standard NP complete problem where it wants to

divide a set of positive integers into two subsets that havethe same sum. We can

reduce the partition problem to our task: in a partition problem instance, we have

n numbers {si}. Let c1 = c2 = c3 = 1, v1(gi) = v2(gi) = si and v3(gi) = 0 for

1 ≤ i ≤ n. We set up two virtual items:

v1(gn+j) = v2(gn+j) =

∑
i si
2

, v3(gn+j) = +∞, 1 ≤ j ≤ 2.

As a result, a3 takes items gn+1 and gn+2, and a1 and a2 will take the first n items. If

there is an algorithm that can determine whether an EF1 allocation exists in this case,

it also solves the partition problem as well, as an EF1 allocation implies v1(A1) =

v1(A2), where n items with value v1(gi) = si are allocated to a1 and a2.

4.1.4 Approximate EFX allocation

Unlike EF1 allocations, it is unclear whether EFX allocations exist. There are two

possible answers to this open question:

51

• No EFX allocation exists. Pairwise MMS guarantee is a stronger notion in

which each pair of agents satisfies the MMS guarantee with the union of items

in their allocations. It is clear that pairwise MMS allocation is EFX. However,

it is unclear whether pairwise MMS allocations exist currently.

• An EFX allocation always exists. In our study, we make an attempt on the vari-

ations of EFX. We impose some additional conditions, such as approximating

or throwing away some resources.

In Chapter 2, we introduce the envy-free graph. It can be used to find EFX allo-

cations efficiently when the agents value the items in the same order. Furthermore,

it can also be used to approximate an MMS allocation. There is an algorithm that

can achieve 1
2
-EFX [Plaut and Roughgarden, 2018] based on the envy-free graph.

However, that algorithm may incur exponential running time in the worst case. In

this subsection, we propose a polynomial-time algorithm for three agents. For con-

venience, we normalize the sum of the valuations of all of the items to 1.

Theorem 13. There is a polynomial-time algorithm for three agents that can always

output an 1
2
-EFX allocation.

We first present several lemmas.

Lemma 3. There is a polynomial-time algorithm to compute an EFX allocation for

two agents.

Proof. For two agents, an EFX allocation can be achieved using the cut-and-choose

protocol: one agent divides the items into two bundles by repeatedly adding the

highest valued item to the least valued bundle (in the beginning, there are two empty

bundles), until there is nothing left; after that, the other agent chooses the bundle he

prefers. The first agent is EFX whatever he gets, and clearly the second agent does

not envy the first agent.

Lemma 4. If one agent gets a subset of items that is valued as no less than 1/3, then

no matter how the other items are allocated, he will be 1
2
-EFX.

52

Proof. As he gets a value of at least 1/3, the total value of all of the other items is

at most 2/3, which is no more than twice the value he already has. Therefore, it

establishes 1
2
-EFX.

Lemma 5. If there is an item that is valued as no less than 1/3 by some ai, there is

an 1
2
-EFX allocation.

Proof. We allocate the item g, which is valued as no less than 1/3, to ai, and then

compute an EFX allocation with all items except g for the other two agents by Lem-

ma 3. The other two agents will not envy ai after we have removed the only item

ai has. By Lemma 4, ai is 1
2
-EFX, so this is is an 1

2
-EFX allocation to all of the

agents.

Lemma 6. Assume that each item is valued as at no more than 1/3 by the agents. If

there is a subset of items that an agent values as no less than 1/3 and the other two

agents values as no more than 1/3, an 1
2
-EFX allocation can be found.

Proof. Assume that a1 values a subset of items S as no less than 1/3 then it is 1
2
-EFX

to a1 by Lemma 4. We compute an EFX allocation with the remaining items for a2

and a3 by Lemma 3, and we claim both a2 and a3 can get a value of at least 1/6.

As every item is valued as no more than 1/3 and the total value of the remaining

items is at least 2/3, the valuations of the two bundles in the most unbalanced EFX

allocation are 1/6 and 3/6. Finally, 1/6 ≥ vi(S)
2

for i ∈ {2, 3} implies 1
2
-EFX.

Lemma 7. Assume each item is valued as no more than 1/3 by the agents. If there

is a subset of items that two agents value as no less than 1/3 and the other agent

values it as no more than 1/3, then an 1
2
-EFX allocation can be found.

Proof. Suppose a1 and a2 value the subset S as no less than 1/3 and a3 values S

as no more than 1/3. First, we process a refinement on S, in which we repeatedly

remove the least valued item in S until S is valued as less than 1/3 after we apply

one more removal. Then, we do the same refinement for a2. After that, there are two

possible cases: if one of two agents values S as less than 1/3, then we are done by

53

Lemma 6; otherwise, both agents value S as no less than 1/3 and it must be less than

2/3 (otherwise, the refinement will not stop, as an item is valued as no more than

1/3).

Next, we let a3 divide the I\S into two bundles that both satisfy EFX, which can

be done by Lemma 3. Now we have three bundles, which we call b1 (it is S), b2 and

b3 (divided by a3), and we want to let every agent take one bundle. We claim that the

following events will not disobey 1
2
-EFX:

• a1 (or a2) takes b1;

• a1 (or a2) takes the better of b2 or b3;

• a3 takes either b2 or b3.

By Lemma 4, a1 and a2 are 1
2
-EFX if they get b1. As b1 is valued as no more than

2/3, either b2 or b3 is valued as no less than 1/6. Due to the refinement, after we

remove the least valued item in b1, its value will be less than 1/3, which establishes
1
2
-EFX when a1 or a2 get a value of at least 1/6.

Finally, we want to prove that a3 can take one bundle of b2 and b3 to satisfy 1
2
-

EFX. The least valued bundle is valued as no less than 1/6 (in the worst case, the

valuations of three bundles are v3(b1) = 1/3, v3(b2) = 1/6 and v3(b3) = 1/2), which

is at least half of v3(b1) = 1/3.

Therefore, an 1
2
-EFX allocation can be found: we let a1 take b1, let a2 choose the

better of b2 and b3, and then let a3 take the last bundle.

Next we prove our theorem. We also illustrate our algorithm in pseudocode.

Proof of Theorem 13. If there is any item that is valued as no less than 1/3 to any

agent, by Lemma 5 we are done. Otherwise, each item is valued as less than 1/3.

Whenever there is a bundle of items that exactly one agent values as no less than

1/3, by Lemma 6 we are done. Similarly, if there is a bundle that exactly 2 agents

who value it as no less than 1/3, by Lemma 7 we are done. Then we only need to

consider the cases where each bundle is valued as no less than 1/3 to all or none of

54

Algorithm 1 1
2 -EFX Allocation for 3 agents

1: function IDENTICALORDERGOODSEFXALLOCATION(goods, v, n)

2: // Any item has the same value to all agents

3: Sort the items by the value v in the non-increasing order

4: for i ∈ goods do

5: Pick j with the least value v(Aj)

6: Aj ← Aj ∪ {i}

7: end for

8: return A

9: end function

10: function SATISFYINGGOODSSETFORAGENT1(goods, b1, v)

11: // a1 must be satisfying with b1

12: // a3 values b1 as less than 1/3

13: // Lemma 6 and Lemma 7 are considered together in this function

14: (b2, b3)←IDENTICALORDERGOODSEFXALLOCATION(goods/b1, vC , 2)

15: if a2 prefers b3 to b2 then

16: Swap b2 and b3

17: end if

18: return (b1, b2, b3)

19: end function

55

20: function 1/2-EFXGOODSALLOCATIONFORTHREEAGENT(goods, v)

21: if i and g exist such that vi(g) ≥ 1
3 then

22: b1 ← {g}

23: (b2, b3)←IDENTICALORDERGOODSEFXALLOCATION(goods\{g}, vC , 2)

24: if a2 prefers b3 to b2 then

25: Swap b2 and b3

26: end if

27: return (b1, b2, b3)

28: end if

29: (b1, b2, b3) = IDENTICALORDERGOODSEFXALLOCATION(goods, v1, 3)

30: if There exists S ∈ {b1, b2, b3}, such that exactly one agent aj satisfies vj(S) ≥ 1/3 then

31: Let perm be any permutation that makes aj become the first agent

32: (b1, b2, b3)← SATISFYINGGOODSSETFORAGENT1(goods, S, perm(vA, vB , vC))

33: return perm−1(b1, b2, b3)

34: end if

35: if There exists S ∈ {b1, b2, b3}, such that exactly two agent aj and ak consider (vj(S) ≥ 1/3

and vk(S) ≥ 1/3) or (v2(S\{g}) ≥ 1/3 or v3(S\{g}) ≥ 1/3 for some g ∈ S) then

36: while There exists g ∈ S, such that vj(S\{g}) ≥ 1/3 for some aj do

37: S ← S\{g}

38: end while

39: if Exactly one agent aj values S as vj(S) ≥ 1/3 then

40: Let perm be any permutation that makes aj become the first agent

41: (b1, b2, b3) = SATISFYINGGOODSSETFORAGENT1(goods, S, perm(v1, v2, v3))

42: return perm−1(b1, b2, b3)

43: else// It implies that still two agents value this set as no less than 1/3

44: Assume aj and ak value S as greater than 1/3

45: Let perm be any permutation that aj becomes the first agent and ak becomes the

second agent (b1, b2, b3) = SATISFYINGGOODSSETFORAGENT1(goods, S, perm(v1, v2, v3))

46: return perm−1(b1, b2, b3)

47: end if

48: end if

49: Reorder sets that v1(b1) ≤ v1(b2) ≤ v1(b3)

50: if a3 prefers b2 more than b3 then

51: Swap b2 and b3

52: end if

53: return (b1, b2, b3)

54: end function
56

the agents. Then, let a1 divide the items into b1, b2 and b3 in any way that achieves

EFX for himself. We can do this by repeatedly adding the highest valued item to the

least valued bundle, which is almost the same as the two bundles case in Lemma 3.

Let b1 be the best bundle to a1, then vi(b1) ≥ 1/3 for 1 ≤ i ≤ 3. We claim that the

following events will not disobey 1
2
-EFX:

• a1 takes any bundle;

• a2 (or a3) takes b1.

• a2 (or a3) takes the better of b2 or b3;

By Lemma 4, a2 is 1
2
-EFX if he gets b1. To prove that the better bundle of b2 and

b3 is 1
2
-EFX to a2, we discuss two cases:

• If v2(b1\{g}) ≥ 1/3 where g is the least valued item in b1. As a1 first divides

the items into three bundles in a way that achieves EFX for himself, v1(b1\{g})

is at most 1/3. Then, it can be done by Lemma 6 or Lemma 7.

• If v2(b1\{g}) < 1/3. The better bundle of b2 and b3 is valued as no less than
1−v2(b1)

2
≥ 1/6, implying it is at least half of v2(b1\{g}) < 1/3.

Therefore, we first let a3 choose any bundle he prefers, then a2 has a choice that

satisfies 1
2
-EFX, and finally let a1 take the last bundle. Let m be the number of

items, the time complexity of our algorithm is O(m logm), which requires running

function IdenticalOrderGoodsEFXAllocation for constant times.

4.1.5 EFX allocation of chores

In this subsection, we consider chores allocation problems. If we are allowed to

dispose of a few chores, proportionality can be satisfied as follows.

Fact 3. There is no proportional mechanism when we can dispose of no more than

n − 2 chores. There is a proportional mechanism when we can dispose of n − 1

chores.

57

Proof. First, consider a scenario with n − 1 chores, where each chore is valued as

1/(n − 1) by everyone. After we remove n − 2 chores, there is still a chore with a

value of 1/(n− 1), which breaks proportionality for whoever takes this chore.

If we can dispose of n − 1 chores, the result becomes positive. If there are only

two agents, let a1 divide the chores into two bundles that maximize the least valued

bundle. Then let a2 choose a bundle and let a1 remove one chore from his bundle,

which clearly creates a proportional allocation.

We assume that a proportional mechanism exists for n − 1 agents. It is done by

induction if we solve the case for n agents. Let C be the set of all of the chores and

let set S be an empty set. We repeatedly add one chore to S until all agents value it

as vi(S) ≥ 1/n. We dispose of the last added chore L and allocate S\{L} to ax who

satisfies vx(S\{L}) ≤ 1/n. Then we are left with n − 1 agents and C\S chores,

which becomes the desired subproblem. As all agents value S as vi(S) ≥ 1/n, the

proportionality in the subproblem implies vi(Ai) ≤ 1−vi(S)
n−1 ≤ 1/n, which finishes

our proof.

Next, we consider EFX or proportional as a new fairness notion. The formal

definition is as follows.

Definition 18. An allocation is EFX or proportional (EFX or PR hereafter), if every

agent satisfies at least one of the following two conditions:

1. the agent’s allocated bundle is proportional; or

2. the agent’s allocated bundle is EFX.

Our main result in this subsection is as follows.

Theorem 14. In the chores allocation stting, there exists an EFX or PR mechanism

for three agents, if it is allowed to dispose of at most one chore. Moreover, the

mechanism is polynomially computable.

We first present several lemmas.

Lemma 8. If there is a subset S of chores where exactly one agent values it at most

1/3, then there is an EFX or PR allocation.

58

Proof. Assume a1 values S as no more than 1/3, and a2 and a3 value S as no less

than 1/3. Then let a2 divide all of the chores except S into two bundles in a way

that achieves EFX for himself (as with goods, this can be done by repeatedly adding

the heaviest chore to the least valued bundle). Let a1 take S, a3 choose the bundle

he prefers, and a2 take the last bundle. S is proportional to a1, a3 takes the bundle

he likes the best (the value he gets is at most 1/3). After we remove the least valued

chore in a2’s bundle, the value must be less than 1−v2(S)
2
≤ 1/3, which is also less

than v2(S) ≥ 1/3.

Lemma 9. If there is subset S where exactly two agents value S as no more than

1/3, there is an EFX or PR allocation.

Proof. Assume a1 and a2 value S as no more than 1/3, and a3 values S as no less

than 1/3. Let a3 divide all of the chores except S into b2 and b3 in a way that achieves

EFX for himself. If we assume v3(b2) ≥ v3(b3), we have v3(b3) ≤ 1−v3(S)
2
≤ 1/3.

If a1 and a2 value b3 at least 1/3, then we can find an EFX allocation by Lemma 8.

Otherwise, without loss of generality, we assume that a1 values b3 at most 1/3, thus

he is satisfied to take S or b3 by proportionality. Therefore, we let a1 take b3, and

a2 take S, then a3 takes b2. a1 and a2 are satisfied by proportionality, and for a3,

we have v3(b2\{c}) ≤ v3(b3) ≤ v3(b1) as well, where c is the least valued chore in

b2.

With these two lemmas, the proof for the following theorem can be done. We

also provide pseudocode.

Proof of Theorem 14. By Lemma 8 and 9, if there is a set S that is valued as no more

than 1/3 by some agents but not by all agents, then we are done. Otherwise, if any

agent values a bundle as no more than 1/3, then all agents will value this bundle no

more than 1/3.

Let a1 divide the chores into three bundles (b1, b2, b3) in a way that achieves EFX

for himself. Assume v1(b1) ≤ v1(b2) ≤ v1(b3). As v1(b1) ≤ 1/3, all of the agents

value b1 as no more than 1/3. Our algorithm works as follows.

59

Algorithm 2 EFX or PR allocation for 3 agents with disposing of one chore

1: function IDENTICALCHORESEFXALLOCATION(chores, v, n)

2: // Any chore has the same value to all agents

3: Sort the chores by the value v in the non-decreasing order

4: for i ∈ chores do

5: Pick j with the least value v(Aj)

6: Aj ← Aj ∪ i

7: end for

8: return A

9: end function

10: function SATISFYINGCHORESSETFORAGENT1(chores, b1, v)

11: // b1 is proportional to a1

12: // b1 is not proportional to a2 and a3

13: (b2, b3)←IDENTICALORDERCHORESEFXALLOCATION(chores/b1, v3, 2)

14: if a2 prefers b3 more than b2 then

15: Swap b2 and b3

16: end if

17: return (b1, b2, b3)

18: end function

19: function SATISFYINGCHORESSETFORAGENT12(chores, b1, v)

20: // b1 is proportional to a1 and a2

21: // b1 is not proportional to a3

22: (b2, b3)←IDENTICALORDERCHORESEFXALLOCATION(chores/b1, v3, 2)

23: Let v3(b2) ≤ v3(b3)

24: if v1(b2) ≤ 1/3 then

25: return (b2, b1, b3)

26: end if

27: if v2(b2) ≤ 1/3 then

28: return (b1, b2, b3)

29: end if

30: Let perm be any permutation that makes a3 become the first agent

31: return perm−1 (SATISFYINGCHORESSETFORAGENT1(chores, b2, perm(v1, v2, v3)))

32: end function

60

33: function EFXORPRCHOREALLOCATIONFORTHREEAGENTEXCEPTONECHORE(chores, v)

34: (b1, b2, b3) = IDENTICALORDERCHORESEFXALLOCATION(chores, v1, 3)

35: if There exists S ∈ {b1, b2, b3}, such that exactly one agent aj values S as vj(S) ≤ 1/3 then

36: Let perm be any permutation that makes aj become the first agent

37: (b1, b2, b3)←SATISFYINGCHORESSETFORAGENT1(chores, S, perm(v1, v2, v3));

38: return perm−1(b1, b2, b3)

39: end if

40: if There exists S ∈ {b1, b2, b3}, such that exactly two agents aj and ak value S as vj(S) ≤

1/3 and vk(S) ≤ 1/3 then

41: Let perm be any permutation that aj becomes the first agent, ak becomes the second agent

42: (b1, b2, b3)←SATISFYINGCHORESSETFORAGENT12(chores, S, perm(v1, v2, v3));

43: return perm−1(b1, b2, b3)

44: end if

45: Reorder (b1, b2, b3) such that v1(b1) ≤ v1(b2) ≤ v1(b3)

46: Let leastChoreB and leastChoreC be the least valued chore in b2 and b3 to agent A

47: if Agent A prefers b2\{leastChore2} more than b3\{leastChore3} then

48: Swap b2 and b3, so leastChore2 and leastChore3 are also swapped

49: end if

50: b2 ← b2\{leastChore2}, remove leastChore2 from chores

51: if v2(b2) ≤ 1/3 then

52: return (b3, b2, b1)

53: end if

54: if v3(b2) ≤ 1/3 then

55: return (b3, b1, b2)

56: end if

57: // Then, only a1 values b2 at most 1/3

58: (b1, b2, b3)←SATISFYINGCHORESSETFORAGENT1(chores, b2, v);

59: return (b1, b2, b3)

60: end function

61

1. If v1(b2) ≤ 1/3, let a2 take b2 , a3 take b1 and a1 take b3, and our algorithm stops.

2. If v1(b2\{c2}) ≥ v1(b3\{c3}) where ci is the least valued chore in bi, dispose of

c2 from the set of chores; otherwise, dispose of c3 from the set of chores and swap

b2 and b3.

3. If b2 is valued at least 1/3 by all or none of the agents, go to Step 4; otherwise

output an allocation based on Lemma 8 or 9.

4. Let a2 take b2, a3 take b1 and a1 take b3, and our algorithm stops.

If the algorithm stops at Step 1, b1 and b2 are valued as no more than 1/3 by all

of the agents, and b3 is EFX to a1; therefore, the allocation is EFX or PR. In Step 3,

only b1 is valued at most 1/3 in the beginning. Due to EFX, v1(b2\{c2}) ≤ v1(b1) ≤

1/3, where c2 is the least valued chore in b2 (it also holds for b3). Therefore, b2

is proportional to a2 and b1 is proportional to a3; otherwise the case will break the

property that one bundle is valued at least 1/3 by all or none of the agents, which

can be solved in Step 3 by Lemma 8 or 9. Last, a1 is EFX when he takes b3, as

v1(b2\{c2}) ≥ v1(b3\{c3}) in Step 2, which finishes our proof.

4.2 Online roommate allocation problem

The roommate market problem is highly relevant to real life. In this problem, we

expect to know all of the agents’ valuations of rooms and other agents. However, in

many practical scenarios, we may not be able to gather all of the information from

all of the agents. We study the case where agents arrive in an online fashion. In

this section, we propose an algorithm for online roommate allocation and promise

a good constant competitive ratio of optimal social welfare. Moreover, we study

generalizations of our model, such as some rooms can have a larger capacity than

two agents, and rooms have an individual capacity. In addition to efficiency, we

study several kinds of stability.

62

4.2.1 Related works

The roommate market is a generalization of the matching problem. In this sense,

there are two strands of research related to our work: the stable matching and the

online bipartite matching. The stable matching is a classic problem in graph theory,

in which we need to find a match and satisfy some stability requirement. In the

stable marriage problem, we need to select pairs of ladies and gentlemen and let

them have a stable marriage. Similarly, our roommate matching model needs to

assign two people to live in a room and to provide some stability. This problem has

been studied for about 60 years. It was first proposed in 1962 [Gale and Shapley,

1962]. Several surveys of the history of stable matching are available [Knuth, 1997;

Iwama and Miyazaki, 2008]. The basic stable matching problem has been extended

in many dimensions. One direction is to consider general matchings [Irving, 1985;

Irving and Manlove, 2002] and higher dimensional matchings [Ng and Hirschberg,

1991; Eriksson et al., 2006; Huang, 2007]. Different stability notions have also been

proposed, such as exchange stability [Cechlárová and Manlove, 2005] and popular

matching [Biró et al., 2010].

Online matching is another generalization of the secretary problem, see [Ferguson

and others, 1989] for more details about the secretary problem. In 1990, Karp et al.

provided an algorithm with the optimal competitive ratio for unweighted bipartite

graph matching problems [Karp et al., 1990]. In 2013, the algorithm was extended

to the weighted bipartite matching [Kesselheim et al., 2013]. Many variants have

been proposed and analyzed, such as vertex-weighted matching [Aggarwal et al.,

2011] and online packing [Kesselheim et al., 2014].

In a roommate matching scenario, we need to match two agents to one room, and

the type of edge is different: an edge between people may indicate an interpersonal

relation or an edge between a person and a room may denote the degree to which the

person favours the room. Previous studies have developed complete answers to the

roommate market problem[Chan et al., 2016]. This thesis focus on the generalization

of the online model.

63

This section is reproduced from our published paper[Huzhang et al., 2017].

4.2.2 Online no-rejection bipartite matching

We are going to show our online algorithm for the online roommate allocation prob-

lem with a constant competitive ratio. To sketch our proof, we first introduce an

special online bipartite matching problem: no-rejection online bipartite matching

problem. In a no-rejection online bipartite matching problem, we have a weighted

complete bipartite graph G = (L,R,E), where |L| = |R| = n and all (i, j) will be

in E where i ∈ L and j ∈ R. Node in L will come in an uniformly random order.

Every time a node in L arrives, and we need to determine which node in R it should

match. After all nodes in L arrived, we want to maximize the weight of matching in

expectation. In comparison with the original online bipartite matching problem, we

cannot dispose of any node here.

Our algorithm is similar to the original problem’s solution provided by [Kessel-

heim et al., 2013], and our proof also follows a similar analysis in that work. To

understand it better, we present the algorithm below.

Lemma 10. Algorithm 3 has approximation ratio cb for online no-rejection bipartite

graph matching problem, where cb = ln(3)/8 is a constant.

Proof. We apply two steps:

1. We prove that if a vertex is matched according to the local maximum matching,

then the expected weight of this matching is 1/n of maximum matching.

2. We lower bound the probability of successful matching by local maximum match-

ing in each round.

Let Mopt be the weight of maximum matching between L and R. Let random

variable wk denote the weight of the edge chosen by a maximum matching in round

k, i.e. the matching among first k left vertices and all right vertices. Now we prove

the following claim.

Claim 1. For k > n/5, E[wk] ≥Mopt/n.

64

Algorithm 3 ONLINEMATCHING(n,R)

1: counter ← 0

2: L← ∅

3: A← ∅

4: for every person v that arrives do

5: L← L ∪ {v}

6: counter ← counter + 1

7: if counter ≥ n/5 then

8: Mv ← Optimal matching on G[L ∪R]

9: ev ← The matching edge that contains v in Mv

10: if A ∪ ev is a matching then

11: A← A ∪ ev

12: else

13: Randomly choose an available vertex v′.

14: A← A ∪ (v, v′)

15: end if

16: else

17: Randomly choose an available vertex v′.

18: A← A ∪ (v, v′)

19: end if

20: end for

21: return A

65

Proof. Roughly speak, we need to prove that expected weight of matching will be

increased by Mopt/n when we successfully add one edge to matching.

The k-th vertex can be viewed as picking by the following process:

1. First, choose k vertices uniformly random from n vertices;

2. Second, choose one vertex uniformly random from those k vertices.

Let Mk be the maximum matching between the first k vertices and R. Due to

the property that left vertices are uniformly coming, the expected weight of Mk is

at least k
n
Mopt. Since the k-th left vertex is picked randomly, the expected weight of

wk is 1/k of Mk. Thus, we have

E[wk] ≥
1

k

k

n
Mopt =

1

n
Mopt.

Let Bk be the event that the k-th left vertex is matched according to the maxi-

mum matching in the k-th round, which means the right vertex it wants to match is

unmatched. The following claim gives a lower bound of the probability Pr[Bk].

Claim 2. For k > n/5, Pr[Bk] ≥ n/5
k−1 ·

n−k+1
n

.

Proof. Above claim indicates that the probability of successfully adding one edge to

matching is large enough.

Let l be the k-th left vertex. Let r be the vertex matching with l in Mk. We first

analysis the probability that r does not match to any previous vertex by a maximum

matching.

Let ev be the right vertex which is matched to v in previous rounds as in algorith-

m. In any of the preceding rounds j ∈ {dn
5
e, . . . , k}, the vertex r was matched only

if r is el′ for some l′ which comes before l. We define Ek be the event that r becomes

matched in round k. The last vertex in the order can be seen as being chosen uni-

formly at random from the j participating vertices on the left-hand side. Hence, the

probability of r being matched in step j is at most 1/j, i.e. Pr[Ej] ≤ 1
j
. The order

66

of the vertices 1, . . . , j − 1 is irrelevant for this event. Therefore, also the respective

events if some vertex j′ < j was matched to r can be regarded as independent.

For an easier analysis, we consider the following new model: we first label k − 1

right vertices to be forbidden for matching, and when we want to randomly pick an

edge for matching, we can randomly select a vertex in the forbidden set to match

it. Thus it can be considered that we first randomly pick k − 1 vertices and throw

away them before considering the maximum matching edges, the probability, that

one vertex is matched by a random picking step, will be easy to bound. Let B′k

be the event same as Bk in the new model. Because we will make more vertices

forbidden for matching by this changing order operation, any vertices will have more

probability to lose their maximum matching edge and also for k-th vertex, therefore

Pr[B′k] ≤ Pr[Bk].

We define Ck be the event that r is not matched by previous maximum matching

edge in round k, we have

Pr[Bk] ≥ Pr[B′k] = Pr[Ck] ∗
n− k + 1

n
.

Because of independent of Ek, we have

Pr [Ck] = Pr
[
∧k−1j=dn

5
eĒj

]
≥ Πk−1

j=dn
5
e
j − 1

j

=
dn
5
e − 1

k − 1
.

Combining them together, the probability is

Pr[Bk] ≥
n/5

k − 1
· n− k + 1

n
.

(back to Lemma 10) Let random variableM denote the weight of resulting match-

67

ing. By two claims, we have

E[M] ≥
n∑

k=dn/5e

E[wk] · Pr[Bk]

≥ Mopt

n
·

n∑
k=dn/5e

n/5

k − 1
· n− k + 1

n

=
Mopt

n
·

n∑
k=dn/5e

1

5

(
n

k − 1
− 1

)

=
Mopt

5
·

 n∑
k=dn/5e

1

k − 1
−

n∑
k=dn/5e

1

n

≥ ln(5)− 0.8

5
·Mopt

≥ 0.1618Mopt.

4.2.3 Online algorithm for online roommate allocation

We look at the happiness first. In the online roommate market problem, the rela-

tions between agents form a general graph instead of a bipartite graph. Because the

incoming order is uniformly random, it is natural to pick up first half agents to be

the left-hand side nodes and last half to be the right-hand side nodes, and then the

social welfare will not be lost by a lot in expectation. With this idea, we introduce

the following lemma.

Lemma 11. In a complete general graph with 2n vertices and weight matrix W , we

make it be a bipartite graph by randomly picking n vertices to be left vertices and

other n vertices to be right vertices (so only the crossing edges will be considered

in the new bipartite graph). Then, the maximum weight bipartite matching will be 1
2

approximation for original maximum weight matching in expectation.

Proof. Look at the edges that appear in original maximum weight matching. One

edge will have probability 1
2

that two vertices of it will be in opposing sides, so by

68

linearity of expectation, the weight of maximum weight bipartite matching will be

at least 1
2

approximation to original maximum weight matching.

Because of the uniformly random arriving order, we see that we can get a good

approximation if we divide the agents into two groups directly by the incoming or-

der. Fortunately, the strategy to partition agents into groups can also make the value

between person and room kept in a large approximation in expectation.

We now present our constant competitive ratio algorithm for the online roommate

market problem. It uses the online no-rejection bipartite matching algorithm as a key

ingredient. The high-level idea is that we first apply Algorithm ONLINEMATCHING

on the first n agents arrived. After this stage, each room contains exactly one agent.

Then we combine each room-person pair as one new “room”, and apply Algorithm

ONLINEMATCHING again on the last n agents with adjusted valuations to match

them to the n room-person pairs.

Algorithm 4 ONLINEROOMMATE (n,H, V)

1: Run ONLINEMATCHING on the first n agents arrived.

2: Let M1 be the output matching.

3: for every agent ai arrived after the first n agents do

4: for each room r ∈ R do

5: Set v′ir ← vir + (hij + hji) where (j, r) ∈M1

6: end for

7: end for

8: Run ONLINEMATCHING on the last n agents with valuation matrix V ′.

9: Let M2 be the returned matching.

10: return M1 ∪M2

Theorem 15. Algorithm ONLINEROOMMATE is a polynomial-time and cb
4

-competitive

algorithm for the online roommate market problem, where cb = ln 5−0.8
5
≈ 0.1618.

Proof. Let Aopt denote the optimal offline allocation with maximum social welfare.

LetMpp denote the maximum weight general graph matching between the 2n agents,

where the weight between ai and aj is hij+hji. LetMpr denote the maximum weight

69

matching between 2n agents and n rooms where each room is duplicated into two

vertices. By slight abuse of notations, in the following we use SW (M) to denote the

summation of the edge weights in matching M .

We can divide the social welfare SW (Aopt) into two parts: the first part is the

happiness between roommates, which will not exceed SW (Mpp); the other part is the

valuations between agents and the rooms, which will not exceed SW (Mpr). Hence

we have

SW (Mpp) + SW (Mpr) ≥ SW (Aopt).

Next we bound SW (Mpp) and SW (Mpr). Fix a particular agents arriving order.

Let A1 be the set of first n agents, A2 be the set of last n agents, and E12 be the set of

weighted edges between A1 and A2 (where again the weight of edge (i, j) between

ai and aj is hij + hji). We further define the following notations:

• Mpb: the maximum weight matching in bipartite graph (A1, A2, E12).

• Mpr1: the maximum weight matching between the first n agents and n rooms

• Mpr2: the maximum weight matching between the last n agents and n rooms.

We will show in the following that

2E[SW (Mpr1) + SW (Mpr2) + SW (Mpb)]

≥SW (Mpp) + SW (Mpr),

where the expection is over the random arriving order of the agents.

First we bound SW (Mpb). Since agents arrive in an uniformly random order,

every edge in Mpp will be present in E12 with probability at least 1
2
, and these edges

together form a matching. We therefore have

E[SW (Mpb)] ≥
∑

(i,j)∈Mpp

1

2
(hij + hji) =

1

2
SW (Mpp).

Now we bound SW (Mpr) by SW (Mpr1) and SW (Mpr2). Let Mpr0 be the maxi-

mum weight bipartite matching between 2n people and n rooms and each room only

70

has one slot. We have

SW (Mpr1) + SW (Mpr2) ≥ SW (Mpr0) ≥
1

2
SW (Mpr).

The first inequality is because the edges in Mpr1 ∪Mpr2 can at least cover all edges

in Mpr0.

Together with

E[SW (Mpb)] ≥
1

2
SW (Mpp),

we have

2E[SW (Mpr1) + SW (Mpr2) + SW (Mpb)]

≥SW (Mpp) + SW (Mpr)

≥SW (Aopt).

Back to our algorithm, the first call to ONLINEMATCHING gives us a match-

ing with expected social welfare no less than cb · SW (Mpr1); the second call to

ONLINEMATCHING gives us a matching with expected social welfare no less than

cb · max{SW (Mpb), SW (Mpr2)}. Let A denote the allocation output by our algo-

rithm. Together we have

E[SW (A)]

≥cb · E[SW (Mpr1)] + cb ·max {E[SW (Mpb)],E[SW (Mpr2)]}

≥cb · E[SW (Mpr1)] +
cb
2
E[SW (Mpb) + SW (Mpr2)]

≥cb
2
E[SW (Mpr1) + SW (Mpb) + SW (Mpr2)]

≥cb
4
SW (Aopt).

4.2.4 Generalization to c-beds

In real-life situations, one room may contain more than two agents sometimes. We

consider the case where a room can contain c > 2 people, and take the advantage of

our algorithm’s flexibility, an algorithm can be developed for c-bed rooms.

71

Definition 19. In online roommate matching with c-beds rooms, there will be cn

agents and n rooms, we need to assign c agents per room. It need to maximize∑
(i1,i2,...,ic,r)∈A

(
∑

1≤j<k≤c

Hijik +
c∑
j=1

vijr)

For this kind of generalization, the idea is similar: we partition the agents into

c groups and every group will match to the set of one slot of the rooms. But the

analysis is harder because of more edges involved in the proof.

Algorithm 5 ONLINECBEDROOMMATE (n,H, V)

1: V ′ ← V

2: for g = 1, 2, . . . , c do

3: Run ONLINEMATCHING on the next n arriving agents with valuation matrix V ′.

4: Let Mg be the returned matching.

5: for every ai that is yet to arrive do

6: v′ir ← v′ir + hij + hji where (j, r) ∈Mg

7: end for

8: end for

9: return ∪Mg

Theorem 16. ONLINECBEDROOMMATE has competitive ratio cb(c−1)
c3

for the gen-

eralized online roommate market problem, where cb = ln 5−0.8
5
≈ 0.1618.

Proof. The proof is along similar lines of that for Theorem 15.

Let Aopt denote the optimal offline allocation with maximum social welfare. Let

App denote the allocation of cn agents into n rooms that with maximum total happi-

ness valuation between agents, and let Mpr denote the maximum bipartite matching

between cn agents and n rooms where each room is duplicated into c copies. Again

it is straightforward to see that SW (Aopt) ≤ SW (App) + SW (Mpr).

Note that for each room r, the c agents in this room will have total happiness

contributed by c(c−1)
2

pairs of relations. Let Cr be the general graph matching with

maximum total happiness among the c agents allocated to room r in allocation App.

Because each clique of c vertices can always be covered by c matchings via the

72

round-robin tournament algorithm, we can see that SW (Arpp) ≤ c · SW (Cr), where

Arpp is the sum of happiness of all agents in room r in allocation App.

Now go back to the online random arrival order. We call every n consecutively

arriving vertices a block. The probability of any two vertices arrive in different

blocks is cn−n
cn−1 . Let M ij

pp represent the maximum weight bipartite matching between

agents in the i-th block and j-th block, and we can assume c > 2. We can distribute

all matching edges in each Cr into some M ij
pp if the two vertices of the edge are in

different blocks, and every vertex will be involved in at most one matching edge.

Hence by linearity, we have

∑
1≤i<j≤c

E[SW (M ij
pp)] ≥

cn− n
cn− 1

n∑
r=1

SW (Cr)

>
c− 1

c

n∑
r=1

SW (Cr).

Put everything together, we have

SW (App) =
n∑
r=1

SW (Arpp) ≤
n∑
r=1

c · SW (Cr)

≤
∑

1≤i<j≤c

c2

c− 1
· E[SW (M ij

pp)].

Next we look at Mpr. Let M1
pr be the matching induced from Mpr such that each

room connects with only one agent who has the largest matching value. We have

SW (Mpr) ≤ c · SW (M1
pr). Let Mir be the maximum weight matching between

agents in i-th block and one slot of each room.

We also have SW (M1
pr) ≤

∑c
i=1 SW (Mir). Combing these two inequalities

gives us

SW (Mpr) ≤ c
c∑
i=1

SW (Mir) <
c2

c− 1

c∑
i=1

SW (Mir).

Together with App, we have

73

SW (Aopt) ≤ SW (App) + SW (Mpr)

≤ c2

c− 1
· E

[∑
1≤i<j≤c

SW (M ij
pp) +

c∑
i=1

SW (Mir)

]
.

Finally, letMi be the maximum weight matching between the agents in i-th block

and aggregated agent-room combinations according to the algorithm. We have

SW (Mi) ≥ max{SW (Mir), max
1≤j≤i−1

SW (M ij
pp)}.

Since there are at most c items in the max bracket, we have c·SW (Mi) ≥ SW (Mir)+∑i−1
j=1 SW (M ij

pp). Thus,

c2

c− 1
· E

[
c∑
i=1

c · SW (Mi)

]

≥ c2

c− 1
· E

[∑
1≤i<j≤c

SW (M ij
pp) +

c∑
i=1

SW (Mir)

]

≥ SW (App) + SW (Mpr) ≥ SW (Aopt).

By Lemma 10, the algorithm computes M∗
i which satisfies E[SW (M∗

i)] ≥ cb ·

SW (Mi). Therefore, we have

E

[
c∑
i=1

SW (M∗
i)

]
≥ cb(c− 1)

c3
SW (Aopt).

This finishes the proof of this theorem.

4.2.5 Rooms with different capacities

The model can be further generalized to allow rooms to have different capacities.

Assume we have n agents and k rooms with capacities ~c = (c1, c2, . . . , ck) such that∑
i ci = n.

Corollary 12. ONLINEGENCBEDROOMMATE achieves constant competitive ratio

for the generalized online roommate market problem where every room has constant

capacity.

74

Algorithm 6 ONLINEGENCBEDROOMMATE (~c,H, V)

1: c← max{c1, . . . , ck}

2: V ′ ← V

3: for g = 1, 2, . . . , c do

4: Let ng be the number of available rooms.

5: Run ONLINEMATCHING on the next ng arriving agents with valuation matrix V ′ (only rooms

with open capacities are used).

6: Let Mg be the returned matching.

7: for every ai that is yet to arrive do

8: v′ir ← v′ir + hij + hji where (j, r) ∈Mg

9: end for

10: for every room i with ci > 0 do

11: ci ← ci − 1

12: end for

13: end for

14: return ∪Mi

Proof. We use a similar algorithm as for generalized online roommate market. In

fact, the algorithm also worked for regular rooms, it is a kind of generalized for

original version: every time we pick all rooms with available slot, say r rooms in

total, then let next r agents match with the rooms with the weight that sum up all

happiness of agents who are already in the room and room valuation.

For the happiness, we calculate the maximal happiness without considering about

room valuation, and we also divide every clique of agents by matching and select the

maximum matching in every clique. Same as before, we have each sum of a clique

is still not more than c times of maximal happiness sum by matching in the same

clique, and combine all the matching we will have a constant competitive ratio for it

in expectation.

For the valuation of rooms, we look at the first matching which is from n agents

to n rooms. In expectation, it is 1/c of the maximum matching between all agents

and all slots of rooms. As before, this matching is 1/c of optimal allocation which

has maximum room valuation between all agents and rooms, notice here we will lose

75

by 1/c. So the ratio will still be a constant.

4.2.6 Fairness

We will meet some cases that need to consider the individual mind, and the stable

marriage problem is a good example. Previous study about roommate market also

works with different kinds of stabilities. In the online setting, stability is harder to

guarantee, and it is a challenge to have stability. In this section, we discuss different

stability conditions in the online roommate market model.

In our work, we will only discuss stability notions that guarantee to exist in the

offline setting, which are the 4-person stability and room stability. In addition, we

will also consider a new notion – weak room-stability.

Our goal is to design online algorithms that can satisfy certain stability conditions,

and further can gain high social welfare. We summarize our results in the following

table.

Stability type Achievable
Social welfare

competitive ratio

4-person stable no -

Room stable yes unknown

Weakly room-stable yes constant

In the offline setting, Chan et al. gave an algorithm that can find a 4-person

stable solution in O(n2) time[Chan et al., 2016]. However, no algorithm can always

guarantee a 4-person stable solution in the online setting.

Lemma 13. No algorithm can always find a 4-person stable allocation in the online

roommate market setting.

Proof. We prove this lemma by a simple example with four agents and two rooms.

Assume that every agent has value 0 for every room. Hence we only need to con-

sider the happiness values between them. We also assume that happiness values are

symmetric, i.e., hij = hji for every ai and aj . Consider the following sequence of

76

agents’ arrival: let 1 and 2 be the first and second arriving agents with h12 = 1.

When a2 arrives, any algorithm needs to make one of two choices:

• Assign a1 and a2 to the same room. In this case, assume that the next two ar-

riving a3 and a4 have happiness values h13 = h24 = 100. All other unspecified

happiness values are 0. It is easy to check that this already breaks the 4-person

stable condition because swapping a1 and a3 would make every agent better

off.

• Assign a1 and a2 to different rooms. In this case, assume that the next two

arriving a3 and a4 have h34 = 1 and all other happiness values are 0. Here

moving a1 and a2 to the same room can improve the utility of every agent.

Note that an online algorithm needs to make an assignment decision at each mo-

ment some agent arrives. This means regardless of what one algorithm does, it must

be failed to output a 4-person stable solution in one of above two situations.

When discussing this condition, the happiness valuation between roommates can

be ignored because the roommate relation will not be changed. It turns out that this

room-stable condition can be satisfied by an online algorithm.

Lemma 14. There is an online algorithm that always gives a room-stable allocation.

Proof. The simple serial dictatorship algorithm works as follows: For every arriving

agent, assign this agent to his most preferred room.

Now we show that the simple dictatorship algorithm that assigns every arriving a-

gent his most preferred available room can produce a room- stable allocation. Fixing

any two rooms r1 and r2. Suppose the arriving order among them is a1, a2, a3, a4.

If a1 and a2 both choose the same room, then they would not want to move to the

other room. If a1 and a2 choose different rooms, without loss of generality, assume

a1 chooses room r1 and a2 chooses room r2. If a3 chooses room r1, then a1 and a3

both prefer room r1 more than r2; If a3 chooses r2, both a2 and a3 prefer room r2 to

r1. In either case, there is a room in which the two tenants do not want to switch.

77

We comment that the above dictatorship algorithm, while always preserving the

room stability, does not have any competitive ratio guarantees on social welfare. It

remains an open question to design an algorithm that can achieve both room stability

and constant competitive ratio on social welfare. However, as we will show below,

if we are willing to weaken the room stability condition, such goal indeed becomes

achievable.

Definition 20. An allocation is weakly room-stable if for any two agents i, i′ in room

ri and two agents j, j′ in another room rj , switching their rooms cannot increase all

four agents’ utilities.

Theorem 17. There is an online algorithm that can always produce a weakly room-

stable allocation with competitive ratio cb/8 on social welfare, where cb = ln 5−0.8
5
≈

0.1618.

Proof. Recall in the proof of Theorem 15, we showed

2E[SW (Mpr1) + SW (Mpb) + SW (Mpr2)] ≥ SW (Aopt).

Note that we also have E[SW (Mpr1)] = E[SW (Mpr2)]. This means we can ignore

E[SW (Mpr1) and still get a constant competitive ratio solution. Thus we modify

algorithm ONLINEROOMMATE as follows: in the first step, we easily let the first

n arriving agents choose the best empty room as they want. For the next n agent

we still follow algorithm ONLINEMATCHING. After this change, our new algorithm

will have competitive ratio cb/8. In addition, the output solution also satisfies weak

room stability. This is because if we want to swap room ri and rj , and the first slot

of ri is assigned before rj . Then the agent who is assigned to ri will not want to

switch because he prefers room ri to rj . Thus the output allocation is always weakly

room-stable.

4.3 Discussion

In this chapter, we first introduce general indivisible resource allocation problems.

The existence of the polynomially computable, EF1 and Pareto optimal mechanism

78

and the existence of an EFX allocation are two challenging open questions in this

area. For the EF1 and Pareto optimal mechanism design, we show an efficient mech-

anism for two agents, but fail to generalize it to more agents. To approximate EFX

mechanisms, we introduce a mechanism (which is not polynomially computable)

that can satisfy 1
2
-EFX, and we believe there are better mechanisms with the bet-

ter approximation ratio. For two agents, we provide an efficient 1
2
-EFX algorithm,

and offer a possible direction for generalizing it to cases with more agents. For the

chores setting, we present an EFX or proportional allocation that can be found in

the polynomial time for three agents, where we are allowed to dispose of one chore.

We are curious whether we can remove some of the conditions from our EFX or

proportional mechanism.

There are a few directions for further research on the online roommate allocation

problem. Finding a better competitive ratio is one possible direction. Although we

currently have a constant competitive ratio, it could be improved, and we do not

have a lower bound for the ratio. Another direction is to determine whether we can

guarantee more stabilities. In the future, we may also run experiments with real data

to test the performance of the mechanisms.

79

Chapter 5

Summary

In this thesis, we introduce many topics on divisible and indivisible resource alloca-

tion problems.

Chapter 3 introduces a set of divisible resource allocation problems. We clas-

sify them into cake cutting problems and chore division problems. We study them

by restricting the valuation functions to piecewise uniform and piecewise constant

functions. This chapter is divided into two parts. In the first part, we consider piece-

wise uniform valuations and do not adopt the free disposal assumption, which has

been widely used in recent studies of truthful and fair cake cutting problems. We

obtain several negative results when we add some mild assumptions (Theorem 1, 2

and 3) and show that a fair allocation can be found when the number of agents is

small(Theorem 4, 5) or when more constraints are added to the valuation function-

s (Theorem 6, 7). In the second part of the chapter, we generalize the previous

reserch [Chen et al., 2013] and relax the piecewise uniform valuations to the piece-

wise constant valuations. We obtain some negative results when we add similar mild

assumptions(Theorem 8, 9 and 10). We identify the following remaining open ques-

tions as interesting directions for further research.

• Do truthful envy-free anonymous mechanisms with piecewise uniform valua-

tion functions for more than two agents without the free disposal assumption

exist? In our study, we prove that no anonymous mechanism exists, as such a

80

mechanism needs an infinite number of cuts (Theorem 1). However, our proof

is difficult to generalize to cases with more agents, so we do not know whether

there is an anonymous mechanism for even three agents. To have a complete

proof, we need to prove the case for an arbitrary number of agents.

• Do truthful envy-free position oblivious mechanisms with piecewise uniform

valuation functions for an odd number of agents without the free disposal as-

sumption exist? We have shown a constructive proof that no position oblivious

mechanism exists for an even number of agents (Theorem 3). In the proof, we

need to partition agents into several pairs. If there are an odd number of agents,

then the constructive proof no longer works. We cannot find a position oblivi-

ous mechanism for three agents, and cannot prove there is no such mechanism

as well.

• Do truthful envy-free cake cutting (chore division) mechanisms with piecewise

uniform valuation functions for n agents where every agent has a positive value

on an interval of the cake, without the free disposal assumption, exist? In our

study, we design mechanisms for a special case of this open question, i.e. the

case in which valuations are prefix valuations (Theorem 6 and 7). We hope

to relax this constraint to get closer to the setting of the general cake cutting

problem.

• Do truthful envy-free cake cutting mechanisms with piecewise constant valua-

tion functions for n agents exist under the free disposal assumption? For this

open question, we prove some negative results with some natural assumptions

added (Theorem 8, 9 and 10). Another direction is to allow the mechanism

to throw away some parts of the cake and the resulting allocation should be

envy-free and proportional (prevent too much cake from throwing away);

• Is there a mechanism that can approximate truthfulness and envy-freeness?

Real-life application of indivisible resource allocation tasks may require us to

weaken prefect fairness into “good enough” fairness. We have introduced no-

81

tions such as approximately truthfulness and approximately envy-freeness, and

this may be a potential direction for future research that aims to apply these

mechanisms to real scenarios where reasonably good approximation of fairness

are needed.

In Chapter 4, we first introduce standard indivisible resource allocation prob-

lems with the maximin share guarantee, envy-freeness up to one item (chore), envy-

freeness up to the least valued item (chore) and Pareto optimality. We propose CMM-

S (Theorem 11) and several mechanisms, most of them based on cases with a small

number of agents (Theorem 12, 13 and 14). Then we introduce a real-life applica-

tion of indivisible resource allocation, which we call the online roommate allocation

problem. We present an efficient online algorithm (Theorem 15) and generalize it to

many situations (Theorem 16 and Corollary 12). We consider stabilities at the same

time (Theorem 17 and Lemma 13, 14). We list the open questions that we want to

examine in future studies below.

• Do polynomial-time algorithms to find EF1 and Pareto optimal allocations ex-

ist? Currently, we know that the allocation that maximizes Nash social welfare

is EF1 and Pareto optimal, but no polynomial-time mechanism can be found.

This could potentially be applied in many real-life situations.

• Do EFX allocations for goods or chores exist? EFX represents strong fairness,

but we can neither find an EFX mechanism nor prove it does not exist for either

the goods or chores settings. It is an open question, even for cases with only

three agents.

• Is there a better competitive ratio and achievable stability in the online room-

mate allocation problem? Our polynomial-time online algorithm is not proved

to have a tight constant competitive ratio, so it is possible that there is a better

algorithm for this problem.

82

List of work Below is a list of works that have been done during my Ph.D. study.

• Cake Cutting: Envy and Truth1, with Xiaohui Bei, Ning Chen, Biaoshuai Tao,

and Jiajun Wu.

• Online Roommate Allocation Problem2, with Xin Huang, Shengyu Zhang, and

Xiaohui Bei.

• Truthful Fair Division without Free Disposal3, with Xiaohui Bei and Warut

Suksompong.

1[Bei et al., 2017a], copyright holder IJCAI’s link: http://www.ijcai.org/
2[Huzhang et al., 2017], copyright holder IJCAI’s link: http://www.ijcai.org/
3[Bei et al., 2018] copyright holder IJCAI’s link: http://www.ijcai.org/

83

Bibliography

[Aggarwal et al., 2011] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and

Aranyak Mehta. Online vertex-weighted bipartite matching and single-bid bud-

geted allocations. In Proceedings of the twenty-second annual ACM-SIAM sym-

posium on Discrete Algorithms, pages 1253–1264. SIAM, 2011.

[Alijani et al., 2017] Reza Alijani, Majid Farhadi, Mohammad Ghodsi, Masoud

Seddighin, and Ahmad S Tajik. Envy-free mechanisms with minimum number

of cuts. In AAAI, pages 312–318, 2017.

[Amanatidis et al., 2017] Georgios Amanatidis, Evangelos Markakis, Afshin

Nikzad, and Amin Saberi. Approximation algorithms for computing maximin

share allocations. ACM Transactions on Algorithms (TALG), 13(4):52, 2017.

[Austin, 1982] AK Austin. Sharing a cake. The Mathematical Gazette,

66(437):212–215, 1982.

[Aziz and Mackenzie, 2016a] Haris Aziz and Simon Mackenzie. A discrete and

bounded envy-free cake cutting protocol for any number of agents. FOCS, 2016.

[Aziz and Mackenzie, 2016b] Haris Aziz and Simon Mackenzie. A discrete and

bounded envy-free cake cutting protocol for four agents. STOC, 2016.

[Aziz and Ye, 2014] Haris Aziz and Chun Ye. Cake cutting algorithms for piecewise

constant and piecewise uniform valuations. In WINE, 2014.

[Bei et al., 2012] Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong

Yang. Optimal proportional cake cutting with connected pieces. In AAAI, 2012.

84

[Bei et al., 2017a] Xiaohui Bei, Ning Chen, Guangda Huzhang, Biaoshuai Tao, and

Jiajun Wu. Cake cutting: envy and truth. In IJCAI, pages 3625–3631. AAAI

Press, 2017.

[Bei et al., 2017b] Xiaohui Bei, Youming Qiao, and Shengyu Zhang. Networked

fairness in cake cutting. 2017.

[Bei et al., 2018] Xiaohui Bei, Guangda Huzhang, and Warut Suksompong. Truth-

ful fair division without free disposal. In IJCAI, 2018.

[Biró et al., 2010] Péter Biró, Robert W Irving, and David F Manlove. Popular

matchings in the marriage and roommates problems. In Algorithms and Com-

plexity, pages 97–108. Springer, 2010.

[Bouveret et al., 2017] Sylvain Bouveret, Katarı́na Cechlárová, Edith Elkind, Ayu-

mi Igarashi, and Dominik Peters. Fair division of a graph. In IJCAI, 2017.

[Brams and Taylor, 1995] Steven J Brams and Alan D Taylor. An envy-free cake

division protocol. American Mathematical Monthly, 102(1), 1995.

[Brams and Taylor, 1996] Steven J Brams and Alan D Taylor. Fair Division: From

cake-cutting to dispute resolution. Cambridge University Press, 1996.

[Budish and Cantillon, 2012] Eric Budish and Estelle Cantillon. The multi-unit as-

signment problem: Theory and evidence from course allocation at harvard. Amer-

ican Economic Review, 102(5):2237–71, 2012.

[Budish, 2011] Eric Budish. The combinatorial assignment problem: Approxi-

mate competitive equilibrium from equal incomes. Journal of Political Economy,

119(6):1061–1103, 2011.

[Burk, 1938] Abram Burk. A reformulation of certain aspects of welfare economics.

The Quarterly Journal of Economics, 52(2):310–334, 1938.

[Caragiannis et al., 2016] Ioannis Caragiannis, David Kurokawa, Hervé Moulin,

Ariel D Procaccia, Nisarg Shah, and Junxing Wang. The unreasonable fairness

85

of maximum nash welfare. In Proceedings of the 2016 ACM Conference on Eco-

nomics and Computation. ACM, 2016.

[Cechlárová and Manlove, 2005] Katarı́na Cechlárová and David F Manlove. The

exchange-stable marriage problem. Discrete Applied Mathematics, 152(1):109–

122, 2005.

[Chan et al., 2016] Pak Hay Chan, Xin Huang, Zhengyang Liu, Chihao Zhang, and

Shengyu Zhang. Assignment and pricing in roommate market. In Thirtieth AAAI

Conference on Artificial Intelligence, pages 446–452, 2016.

[Chen et al., 2013] Yiling Chen, John Lai, David Parkes, and Ariel D. Procaccia.

Truth, justice, and cake cutting. Games and Economic Behavior, 77:284–297,

2013.

[Eriksson et al., 2006] Kimmo Eriksson, Jonas Sjöstrand, and Pontus Strimling.

Three-dimensional stable matching with cyclic preferences. Mathematical Social

Sciences, 52(1):77–87, 2006.

[Ferguson and others, 1989] Thomas S Ferguson et al. Who solved the secretary

problem? Statistical science, pages 282–289, 1989.

[Foley, 1967] Duncan Foley. Resource allocation and the public sector. Yale Econ

Essays, 7(1):45–98, 1967.

[Gale and Shapley, 1962] David Gale and Lloyd S Shapley. College admissions and

the stability of marriage. American mathematical monthly, pages 9–15, 1962.

[Gamow and Stern, 1958] George Gamow and Marvin Stern. Puzzle-math. Viking

Press, 1958.

[Goldman and Procaccia, 2015] Jonathan Goldman and Ariel D Procaccia. Splid-

dit: Unleashing fair division algorithms. ACM SIGecom Exchanges, 13(2):41–46,

2015.

86

[Graham et al., 1979] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and

AHG Rinnooy Kan. Optimization and approximation in deterministic sequencing

and scheduling: a survey. In Annals of discrete mathematics, volume 5, pages

287–326. Elsevier, 1979.

[Huang, 2007] Chien-Chung Huang. Two’s company, three’sa crowd: Stable family

and threesome roommates problems. In Algorithms–ESA 2007, pages 558–569.

Springer, 2007.

[Hurwicz, 1972] Leonid Hurwicz. On informationally decentralized systems. Deci-

sion and organization, 1972.

[Huzhang et al., 2017] Guangda Huzhang, Xin Huang, Shengyu Zhang, and Xiao-

hui Bei. Online roommate allocation problem. In IJCAI, 2017.

[Irving and Manlove, 2002] Robert W Irving and David F Manlove. The stable

roommates problem with ties. Journal of Algorithms, 43(1):85–105, 2002.

[Irving, 1985] Robert W Irving. An efficient algorithm for the “stable roommates”

problem. Journal of Algorithms, 6(4):577–595, 1985.

[Iwama and Miyazaki, 2008] Kazuo Iwama and Shuichi Miyazaki. A survey of the

stable marriage problem and its variants. In Informatics Education and Research

for Knowledge-Circulating Society, 2008. ICKS 2008. International Conference

on, pages 131–136. IEEE, 2008.

[Kaneko and Nakamura, 1979] Mamoru Kaneko and Kenjiro Nakamura. The nash

social welfare function. Econometrica: Journal of the Econometric Society, pages

423–435, 1979.

[Karp et al., 1990] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An

optimal algorithm for on-line bipartite matching. In Proceedings of the twenty-

second annual ACM symposium on Theory of computing, pages 352–358. ACM,

1990.

87

[Kesselheim et al., 2013] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and

Berthold Vöcking. An optimal online algorithm for weighted bipartite matching

and extensions to combinatorial auctions. In Algorithms–ESA 2013, pages 589–

600. Springer, 2013.

[Kesselheim et al., 2014] Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and

Berthold Vöcking. Primal beats dual on online packing lps in the random-order

model. In Proceedings of the 46th Annual ACM Symposium on Theory of Com-

puting, pages 303–312. ACM, 2014.

[Knuth, 1997] Donald Ervin Knuth. Stable marriage and its relation to other com-

binatorial problems: An introduction to the mathematical analysis of algorithms,

volume 10. American Mathematical Soc., 1997.

[Kurokawa et al., 2013] David Kurokawa, John K Lai, and Ariel D Procaccia. How

to cut a cake before the party ends. In AAAI, 2013.

[Maya and Nisan, 2012] Avishay Maya and Noam Nisan. Incentive compatible two

player cake cutting. In WINE, 2012.

[Menon and Larson, 2017] Vijay Menon and Kate Larson. Deterministic, strate-

gyproof, and fair cake cutting. In IJCAI, 2017.

[Ng and Hirschberg, 1991] Cheng Ng and Daniel S Hirschberg. Three-dimensional

stable matching problems. SIAM Journal on Discrete Mathematics, 4(2):245–252,

1991.

[Plaut and Roughgarden, 2018] Benjamin Plaut and Tim Roughgarden. Almost

envy-freeness with general valuations. In SIAM, 2018.

[Procaccia and Wang, 2014] Ariel D Procaccia and Junxing Wang. Fair enough:

Guaranteeing approximate maximin shares. In Proceedings of the 2014 ACM

conference on Economics and computation. ACM, 2014.

[Procaccia, 2013] Ariel D Procaccia. Cake cutting: Not just child’s play. Commu-

nications of the ACM, 2013.

88

[Rais and Viana, 2011] Abdur Rais and Ana Viana. Operations research in health-

care: a survey. International transactions in operational research, 18(1):1–31,

2011.

[Robertson and Webb, 1998] Jack Robertson and William Webb. Cake-cutting al-

gorithms: Be fair if you can. AK Peters/CRC Press, 1998.

[Schummer, 1996] James Schummer. Strategy-proofness versus efficiency on re-

stricted domains of exchange economies. Social Choice and Welfare, 14(1), 1996.

[Steinhaus, 1948] Hugo Steinhaus. The problem of fair division. Econometrica,

16(1):101–104, 1948.

[Varian, 1974] Hal R Varian. Equity, envy, and efficiency. Journal of economic

theory, 9(1):63–91, 1974.

89

	Acknowledgements
	Abstract
	Introduction
	Efficiency
	Fairness
	Incentive
	Organization of thesis

	Preliminaries
	Divisible resource allocation
	Indivisible resource allocation
	Online roommate allocation

	Divisible Resource Allocation
	Truthful fair mechanism without the free disposal assumption
	Related works
	Anonymous mechanism
	Connected piece assumption
	Position oblivious mechanism
	Pareto optimal mechanism for two agents
	Pareto optimal mechanism for n agents

	Cake cutting with piecewise constant valuation functions
	Related works
	Connected piece assumption
	Non-wasteful mechanism
	Position oblivious mechanism

	Discussion

	Indivisible Resource Allocation
	General indivisible resource allocation
	Related works
	Contiguous maximin share guarantee
	EF1 and Pareto optimal allocation
	Approximate EFX allocation
	EFX allocation of chores

	Online roommate allocation problem
	Related works
	Online no-rejection bipartite matching
	Online algorithm for online roommate allocation
	Generalization to c-beds
	Rooms with different capacities
	Fairness

	Discussion

	Summary
	Bibliography

