
�5�I�J�T���E�P�D�V�N�F�O�U���J�T���E�P�X�O�M�P�B�E�F�E���G�S�P�N���%�3���/�5�6���	�I�U�U�Q�T�������E�S���O�U�V���F�E�V���T�H�

�/�B�O�Z�B�O�H���5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z�
���4�J�O�H�B�Q�P�S�F��

�*�O�E�P�P�S���5�S�B�D�L�J�O�H���8�J�U�I���U�I�F���(�F�O�F�S�B�M�J�[�F�E

�U���%�J�T�U�S�J�C�V�U�J�P�O���/�P�J�T�F���.�P�E�F�M

�:�J�O�
���-�F�����-�J�V�
���4�I�V�P�����)�P�
���8�F�O�H���,�I�V�F�O�����-�J�O�H�
���,�F�D�L���7�P�P�O

��������

�:�J�O�
���-���
���-�J�V�
���4���
���)�P�
���8�����,���
�������-�J�O�H�
���,�����7�����	���������
�����*�O�E�P�P�S���5�S�B�D�L�J�O�H���8�J�U�I���U�I�F���(�F�O�F�S�B�M�J�[�F�E

�U���%�J�T�U�S�J�C�V�U�J�P�O���/�P�J�T�F���.�P�E�F�M�����*�&�&�&���5�S�B�O�T�B�D�U�J�P�O�T���P�O���$�P�O�U�S�P�M���4�Z�T�U�F�N�T���5�F�D�I�O�P�M�P�H�Z�
�������
������������

�I�U�U�Q�T�������I�E�M���I�B�O�E�M�F���O�F�U������������������������

�I�U�U�Q�T�������E�P�J���P�S�H�������������������5�$�4�5��������������������������

�h�������������*�&�&�&�����1�F�S�T�P�O�B�M���V�T�F���P�G���U�I�J�T���N�B�U�F�S�J�B�M���J�T���Q�F�S�N�J�U�U�F�E�����1�F�S�N�J�T�T�J�P�O���G�S�P�N���*�&�&�&���N�V�T�U���C�F

�P�C�U�B�J�O�F�E���G�P�S���B�M�M���P�U�I�F�S���V�T�F�T�
���J�O���B�O�Z���D�V�S�S�F�O�U���P�S���G�V�U�V�S�F���N�F�E�J�B�
���J�O�D�M�V�E�J�O�H

�S�F�Q�S�J�O�U�J�O�H���S�F�Q�V�C�M�J�T�I�J�O�H���U�I�J�T���N�B�U�F�S�J�B�M���G�P�S���B�E�W�F�S�U�J�T�J�O�H���P�S���Q�S�P�N�P�U�J�P�O�B�M���Q�V�S�Q�P�T�F�T�
���D�S�F�B�U�J�O�H���O�F�X

�D�P�M�M�F�D�U�J�W�F���X�P�S�L�T�
���G�P�S���S�F�T�B�M�F���P�S���S�F�E�J�T�U�S�J�C�V�U�J�P�O���U�P���T�F�S�W�F�S�T���P�S���M�J�T�U�T�
���P�S���S�F�V�T�F���P�G���B�O�Z���D�P�Q�Z�S�J�H�I�U�F�E

�D�P�N�Q�P�O�F�O�U���P�G���U�I�J�T���X�P�S�L���J�O���P�U�I�F�S���X�P�S�L�T�����5�I�F���Q�V�C�M�J�T�I�F�E���W�F�S�T�J�P�O���J�T���B�W�B�J�M�B�C�M�F���B�U��

�<�I�U�U�Q�������E�Y���E�P�J���P�S�H�������������������5�$�4�5���������������������������>��

Downloaded on 07 Dec 2023 04:19:53 SGT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Indoor Tracking with the Generalizedt-Distribution
Noise Model

Le Yin, Shuo Liu, Weng Khuen Ho, and Keck Voon Ling

Abstract—An indoor tracking system with forgetting factor
and Generalized t-distribution (GT) noise model is proposed
in this paper. It consists of �rst using the weighted centroid
formulas to give an estimate of the position and then a �lter
with GT noise model to improve on the estimate. A common
problem with indoor tracking is the noisy disturbances and
this paper uses the GT distribution to model them. By being a
superset encompassing Gaussian, uniform,t, Cauchy, and double
exponential distributions, GT distribution has the �exibility to
characterize noise with Gaussian or non-Gaussian statistical
properties. Because of the more accurate noise model, the �lter
with GT noise model can produce a better estimate than that of
the Kalman �lter which makes the usual assumption of Gaussian
noise. An equation to compute the variance of the estimation
error is also derived in the paper. For veri�cation, 200 tracking
experiments were conducted. The variance obtained from the
experiments matched the variance calculated from the equation.
The variance of the estimation error from the �lter with GT
noise model is smaller than that of the Kalman �lter. Another
experiment at the lift landing showed that the proposed �lter
with GT noise model is also less affected by outliers.

Index Terms—Indoor positioning and tracking, robust estima-
tion, GT noise model.

I. I NTRODUCTION

I NDOOR positioning systems have proven to be useful in
applications such as indoor navigation, equipment tracking

and inventory management [1]. For instance, indoor tracking
systems have been used in hospitals to keep track of expensive
equipment and elderly patients [2], [3]. Furthermore, position
information can also be used in smart buildings for occupancy
detection, energy conservation and demand-driven operations
[4], [5].

Fingerprinting is a popular indoor localization technique
[6], [7]. This technique utilizes �ngerprint matching as the
basis for position determination. Fingerprint here referred to
the unique characteristic of the received signal at different
indoor positions. Although these �ngerprint based systems
have shown encouraging results, the process of site survey
during the training phase to build up the database is time-
consuming and labor-intensive. SLAM (Simultaneous Local-
ization and Mapping) techniques [8] have made it possible to
automatically build a radio �ngerprint map, but are still subject
to poor initial accuracy and slow convergence [9].
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Instead of forming databases of �ngerprints and then search-
ing them, the target position can also be estimated using
simple geometry. For example, path loss models [10] were
used to establish a relationship between the Received Signal
Strength (RSS) and the target-receiver distance, and using
simple geometrical process of lateration [11] or weighted cen-
troid [12] the position of the target can be estimated. Besides
RSS, other measurements such as time of arrival or angle
of arrival can also be used to infer the target position [13],
[14]. Hybrid solutions such as multi-sensing modalities [15],
[16], opportunistic discovery [9], [17] and dead reckoning
enhancement [18] are also effective but require additional
hardware and sensor fusion.

A common problem with indoor tracking is the disturbances
encountered in dynamic and complex indoor environments.
Wireless signal variations due to obstacles and multipath
[19], geomagnetic �eld anomalies caused by ferromagnetic
materials and electronic devices [20], and even changes in
user's posture [9] can all impair the performance of localiza-
tion techniques. Therefore, the estimate from a localization
algorithm is usually highly corrupted by noise and outliers
[21], [22].

Conventionally, the zero-mean Gaussian distribution is used
to model the unknown noise. However, the occurrence of out-
liers, transient data in steady-state measurements, instrument
failure, human error, model nonlinearity, etc. can all induce
non-Gaussian noise [23], [24]. Moreover, even high-quality
data may not �t the Gaussian distribution and the presence of
a single outlier can spoil the statistical analysis completely for
the case of least squares estimation and the Kalman �lter [23],
[25].

The Generalizedt-distribution (GT) has been employed in
many applications, from industrial manufacturing to statistical
�nance [26], [27]. GT was also explored in [28] to help
understand the nature of genetic association signal. By being
a superset encompassing Gaussian, uniform,t, Cauchy, and
double exponential distributions, GT distribution has the �ex-
ibility of characterizing noise with Gaussian or non-Gaussian
statistical properties [29]. In practice, noise modelling in the
GT setting can proceed by likelihood methods analogous
to those for the Gaussian distribution. For instance, Fig. 1
shows the histogram for the error (estimated position� true
position) distribution of 3000 x-position estimates of a target
obtained from the weighted centroid localization algorithm.
The maximum likelihood criterion was used to �t a GT
distribution and a Gaussian distribution. It can be seen that
the GT distribution (solid-line) �ts the histogram better than
the Gaussian distribution (dashed line). Hence we can expect
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a more precise estimation result if the GT distribution is used.
In this paper, we illustrate the bene�t of using �lter with

GT noise model by �ltering indoor positions obtained from
weighted centroid method. However, the approach is by no
means restricted to the weighted centroid method. Other
methods such as triangulation, lateration or hybrid localization
schemes can also be used to obtain the initial estimate of
indoor positions and then use a �lter with GT noise model
to obtain a more accurate estimate.

A �lter with GT noise model was used in [30] to solve
a simple one-dimensional tracking problem where movement
along a one-dimensional pathway is tracked by placing a row
of sensors along the pathway. A target must also be on the
pathway in order to be discovered. In this paper, we extend
the problem to a more realistic two-dimensional case where
the target can move in any direction instead of being restricted
to a pathway. Furthermore, a new equation to compute the
variance of the estimation error for the �lter with GT noise
model and forgetting factor is derived.

A two-dimensional tracking system based on RSS and
weighted centroid was implemented. Two dimensional indoor
tracking experiments were conducted. We choose RSS for its
ubiquitous availability, large user base and hence representa-
tiveness [31]–[33]. The weighted centroid method is chosen
for its simplicity and robustness to changes in wireless propa-
gation properties compared to other RSS-based methods such
as lateration [12]. The variance of the experimental results
was also calculated and it matched the variance calculated
theoretically from equation (51). This is useful as the variance
equation can be used for the design and assessment of the
indoor tracking system before implementation. The variance of
the estimation error from the �lter with GT noise model is less
than that from the Kalman �lter. The experiments also showed
that the �lter with GT noise model could handle outlier better
than the Kalman �lter. This is the �rst time that GT distribution
is used to model the noise in a realistic two-dimensional indoor
tracking problem. In summary, the contributions are

� Robust and accurate indoor tracking: We proposed
a novel �ltering approach based on Generalizedt-
distribution noise model which improves the accuracy
of the tracking system compared with the conventional
Kalman �lter. We demonstrated good performance even
in the presence of outliers.

� Theoretical veri�cation: We derived the equation to com-
pute the variance of the estimation error. The variance
equation can be used as an analytical tool for designing
and assessing the tracking system. We veri�ed the equa-
tion through experimental results.

� Real-environment validation: The experiments were con-
ducted in two different indoor environments: of�ce and
lift landing. In both cases, the proposed �lter with GT
noise model gives a smaller variance for the estimation
error than the Kalman �lter.

The rest of the paper is organized as follows. Section II
introduces the weighted centroid formulas and the path loss
model. Section III describes the �lter with GT noise model.
Experimental results are given in Section IV and conclusions
in Section V.

Fig. 1. The histogram of the error distribution of 3000 x-position estimates,
z1 , of a target obtained from the weighted centroid formula of Eq. (1). The
maximum likelihood �t of GT (p1 = 2 , v1 = 1 :5, � 1 = 0 :42) and Gaussian
(standard deviation= 0 :44) distributions are given by the solid and dashed
line respectively.

II. T HE WEIGHTED CENTROID METHOD

Weighted centroid localization requires only simple calcu-
lations. Receivers are placed at known positions. The target
broadcasts an unique identi�er and the RSS values at the
receivers are transformed into respective target-receiver dis-
tances through a path loss model. The distances are then
employed as weights to estimate the target position as the
weighted centroid [12], [34].

Considerm RSS values. The x-position and y-position of
the target denoted byz1 andz2 respectively are estimated as
the weighted centroid:

z1 =
P m

i =1 w(i )x r (i )
P m

i =1 w(i )
(1)

z2 =
P m

i =1 w(i )yr (i )
P m

i =1 w(i )
(2)

w(i ) = D(i ) � g (3)

wherew(i ), x r (i ) andyr (i ) are the weight, x-position and y-
position coordinates of the receiver with thei th RSS andg >
0 is an empirical tuning parameter that controls the relative
weight of the receivers.

The target-receiver distanceD(i ) can be obtained from
the path loss model. One commonly used path loss model
for indoor localization is the International Telecommunication
Union (ITU) indoor propagation model [35]–[37]. For 2.4 GHz
single �oor applications, it is given as

RSS = RSS0 + 10� log10(D ) (4)

where RSS is in dBm andD in meters. The reference
coef�cient, RSS0, and the path loss exponent,� , can be
determined through calibration.

Note that the procedure of calibration is different from the
concept of site survey in �ngerprinting. What we need to know
is the relationship between distance and signal strength as
shown in Fig. 2, instead of the signal characteristic over all
the places of interest. Additionally, all the receivers can be
calibrated simultaneously, saving labor cost and time.
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Fig. 2. The path loss model (solid-line) is obtained by �tting the RSS in the
least-squares sense. The RSS is given by the� .

III. F ILTERING WITH GT NOISE MODEL

The positionsz1 and z2 estimated from the weighted
centroid formulas of Eqs. (1) and (2) are highly corrupted
by noise and it is necessary to pass them through a �lter.

A. The Auto-Regressive-Integrated-Moving-Average and
Constant-Velocity Model

Consider

A(q� 1)z(k) = C(q� 1)" (k) (5)

where k = 1 ; 2; : : : ; N is the sampling instance,q� 1 is the
backward shift operator and

A(q� 1) = A0 + A1q� 1 + A2q� 2

C(q� 1) = C0 + C1q� 1 + C2q� 2

A0 = A2 = C0 = I

A1 = � 2I

This is the well-known second-order multivariate Auto-
Regressive-Integrate-Moving-Average (ARIMA) model
which, in state-space form, is the so-called constant-velocity
model commonly used in tracking problems [38]–[40]
Equation (5) in the state-space form is

x(k + 1) = � A x(k) + 
 " (k) (6)

z(k) = Hx (k) + "(k) (7)

where

x(k) =
�
x1(k) x2(k) x3(k) x4(k)

� T

" (k) =
�
"1(k) "2(k)

� T
; z(k) =

�
z1(k) z2(k)

� T

� A =

2

6
6
4

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

3

7
7
5 ; H =

�
1 0 0 0
0 1 0 0

�


 =

2

6
6
4

C1(1; 1) + 2 C1(1; 2)
C1(2; 1) C1(2; 2) + 2

C1 (1 ;1)+ C2 (1 ;1)+1
T

C1 (1 ;2)+ C2 (1 ;2)
T

C1 (2 ;1)+ C2 (2 ;1)
T

C1 (2 ;2)+ C2 (2 ;2)+1
T

3

7
7
5 (8)

and T is the sampling interval. The statesx1(k) and x2(k)
are the positions in x and y directions;x3(k) and x4(k)
are the speeds in x and y directions. The noise input," (k),
in the constant-velocity model of Eq. (6) allows for motion
uncertainty and hence speed variation [40]. The measurements
z1(k) andz2(k) are the estimated positions from the weighted
centroid formulas of Eqs. (1) and (2).

Let the two independent noises"1(k) and"2(k) be modeled
by the zero-mean GT probability density functions.

f i (" i ) =
pi

2� i v
1=pi
i � (1=pi ; vi )

�
1 + j " i jp i

v i � p i
i

� v i +1 =pi
(9)

where � i is the scale parameter,pi and vi are the shape
parameters,i = 1 ; 2. The beta function is given by� (a; b) =R1

0 � a� 1(1 � � )b� 1d� . By different choices ofpi and vi , the
GT distribution can represent a wide range of distributions that
one commonly meets in practice as shown in Fig. 3.

Fig. 3. Different well-known distributions can be obtained by different choices
of the GT distribution shape parametersp andv [24].

Substituting Eq. (7) into Eq. (6) gives

x(k + 1) = � x(k) + 
 z(k) (10)

where

� = � A � 
 H (11)

=

2

6
6
4

� (C1(1; 1) + 1) � C1(1; 2) T 0
� C1(2; 1) � (C1(2; 2) + 1) 0 T

� C1 (1 ;1)+ C2 (1 ;1)+1
T � C1 (1 ;2)+ C2 (1 ;2)

T 1 0
� C1 (2 ;1)+ C2 (2 ;1)

T � C1 (2 ;2)+ C2 (2 ;2)+1
T 0 1

3

7
7
5

Iterating from the initial valuex(1), Eqs. (7) and (10) give

x(2) = � x(1) + 
 z(1)

x(3) = � 2x(1) + �
 z(1) + 
 z(2)
...

x(N ) = � N � 1x(1) + �x(N ) (12)

z(N ) = H � N � 1x(1) + H �x(N ) + "(N ) (13)

where

�x(N ) =
N � 1X

k=1

� k � 1
 z(N � k) (14)
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B. Maximum Likelihood Estimation

Given N measurementsz(k), k = 1 ; � � � ; N , and using Eq.
(13), the noise vectors" (k) can be expressed as

"(k) = z(k) � H � k � 1x(1) � H �x(k) (15)

The initial condition,x(1), can be estimated by minimizing
the following maximum likelihood objective function

J = �
2X

i =1

NX

k=1

ln f i (" i (k)) (16)

where f i (�) is the GT probability density function given by
Eq. (9) and" i (k) is thei th element of" (k) given by Eq. (15).
Let  (" ) be the partial derivative ofJ with respect tox(1).
It follows from Eq. (16) that

 (" ) =
@J

@x(1)

= �
2X

i =1

NX

k=1

@"(k)
@x(1)

@fi (" i (k))
@"(k)

@lnf i (" i (k))
@fi (" i (k))

(17)

= �
NX

k=1

(H � k � 1)T

2

4
(p1 v1 +1) " 1 (k ) j " 1 (k ) jp 1 � 2

v1 � p 1
1 + j " 1 (k ) jp 1

(p2 v2 +1) " 2 (k ) j " 2 (k ) jp 2 � 2

v2 � p 2
2 + j " 2 (k ) jp 2

3

5 (18)

and the maximum likelihood estimate ofx(1) is obtained as
the solution of the equation

 (" ) = 0 (19)

Denoting the estimate ofx(1) at theN th sample aŝx(1jN ),
Eq. (19) can be solved for̂x(1jN ) numerically for example
using the Newton-Raphson algorithm. Oncex̂(1jN ) is solved,
x̂(N jN ) the estimate ofx(N ) at the N th sample can be
obtained from Eq. (12). However, unlike recursive algorithms
such as the recursive least-squares estimator, solving Eq. (19)
numerically using iterative methods is not suitable for real-
time applications such as indoor tracking.

C. In�uence Function Approximation

The in�uence function IF(" ) [23], [41] can be used to solve
Eq. (19) approximately. The solution is given in [42] as

x̂(1jN ) = IF (" )

= �
� Z + 1

�1

@ (")
@x(1)

dF (" )
� � 1

 (" ) (20)

wheredF (" ) = f 1("1)f 2("2)d"1d"2.
Remark: We can interpret Eq. (20) intuitively. Consider

the �rst-order Taylor series approximation of the nonlinear
function  (" ). If the approximation is taken about an op-
erating point that is de�ned as zero then it is given by
 (" ) = @ (" )

@x(1) x(1). If we do not consider the sign then taking

expectation of@ (" )
@x(1) gives Eq. (20). A formal derivation is

given in [23], [41], [42].
Differentiating  (" ) in Eq. (18) with respect tox(1) gives

@ (" )
@x(1)

=
NX

k=1

(H � k � 1)T LH � k � 1 (21)

where

L =
�

l1 0
0 l2

�

and for i = 1 ; 2

l i =
(pi vi +1)[( pi � 1)vi �

pi
i �j " i jpi ]j" i jpi � 2

(vi �
pi
i + j" i jpi )2

Substituting Eq. (21) into Eq. (20) gives

x̂(1jN ) =

 
NX

k=1

(H � k � 1)T SH� k � 1

! � 1

�

 
NX

k=1

(H � k � 1)T SW(k)

!

(22)

where

W (k) =
�

w1(k)
w2(k)

�

S =
�

s1 0
0 s2

�

and for i = 1 ; 2

wi (k) =
(pi vi +1) " i (k)j" i (k)jpi � 2

vi �
pi
i + j" i (k)jpi

�
1
si

si =
Z + 1

�1

(pi vi +1)[( pi � 1)vi �
pi
i �j " i jpi ]j" i jpi � 2

(vi �
pi
i + j" i jpi )2 f i (" i )d" i

Oncex̂(1jN ) is found,x̂(N jN ) can be obtained from Eq. (12)
as

x̂(N jN ) = � N � 1x̂(1jN ) + �x(N ) (23)

D. The Recursive Algorithm with Forgetting-Factor

Notice that Eq. (22) is the weighted least-squares solution
x̂(1jN ) from the minimization of the weighted least-squares
loss function

V =
1
2

NX

k=1

�
W (k) � H � k � 1x̂(1jN )

� T

� S
�
W (k) � H � k � 1x̂(1jN )

�
(24)

In other words, through in�uence function approximation, the
maximum likelihood objective function in Eq. (16) can be
approximated by the weighted least-squares objective function
in Eq. (24).

In the loss function of Eq. (24), it is common to reduce
the in�uence of old data by introducing a forgetting-factor as
follows

V =
1
2

NX

k=1

� N � k �
W (k) � H � k � 1x̂(1jN )

� T

� S
�
W (k) � H � k � 1x̂(1jN )

�
(25)

The forgetting-factor,� � 1, is a measure of how fast old
data are forgotten. When the loss function of Eq. (25) is used
to obtain the least squares estimate, Eq. (22) is changed to

x̂(1jN ) = P(1jN )

 
NX

k=1

(H � k � 1)T � N � k SW(k)

!

(26)
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TABLE I
THE FILTER WITH GT NOISE MODEL. THE OUTPUT ISx̂ (1jN )

P (1jN ) = [ P (1jN � 1) � K (N )H � N � 1P (1jN � 1)]
1

�
(28)

K (N ) = P (1jN � 1)(H � N � 1 )T

� [�S � 1 + H � N � 1P (1jN � 1)(H � N � 1 )T ]� 1 (29)

x̂(1jN ) = x̂(1jN � 1)

+ K (N )[W (N ) � H � N � 1 x̂ (1jN � 1)] (30)

where

P(1jN ) =

 
NX

k=1

(H � k � 1)T � N � k SH� k � 1

! � 1

(27)

and the recursive solution in Table I is given in many textbooks
that discuss least-squares [43].

Table I givesx̂(1jN ), the estimate ofx(1) at sampleN . The
�ltering problem is to producêx(N jN ), the estimate ofx(N )
at sampleN . This can be easily done by iterating from̂x(1jN )
to x̂(N jN ) using Eq. (12). The results are given in Table
II. For easy reference, the derivation is given in Appendix
A. For initialization, P(1j0) can be set as an identity matrix
multiplied by some large number.

E. The Kalman Filter Connection

Fig. 3 shows that the GT distribution reduces to the Gaus-
sian distribution whenp = 2 , v = 1 . Furthermore, it is well-
known that Gaussian noise is assumed in the Kalman �lter.
The connection between the proposed �lter with GT noise
model and the Kalman �lter will be shown below.

If the Gaussian instead of GT distribution noise is assumed
in the algorithm of Table II then it will be reduced to the
Kalman �lter in [43] which is given in Table III for easy
reference. Letpi = 2 , vi = 1 and � = 1 . Firstly, notice
that Eq. (39) givessi = 2

� 2
i
, hence Eqs. (37) and (46) give

S� 1 = � 2 and Eq. (34) is reduced to Eq. (45). Secondly,
substituting Eqs. (11) and (34) into Eq. (33) gives Eq. (44).
Thirdly, Eq. (38) giveswi (N ) = " i (N ) and Eqs. (35), (36)
and (40) gives� (N ) = z(N ). Substituting� (N ) = z(N ) into
Eq. (31) gives Eq. (42). Finally, substituting Eqs. (11) and (31)
into Eq. (32) gives Eq. (43). Hence the algorithm in Table II
is reduced to the Kalman �lter in Table III.

IV. STATISTICAL ANALYSIS

The variance is an indication of precision and in this section
we derive the equations for the expectation and variance of the
estimation error.

A. Expectation

Consider the estimation error

~x(N ) = x(N ) � x̂(N jN ) (47)

Substituting Eqs. (12) and (23) into Eq. (47) gives

~x(N ) = � N � 1x(1) � � N � 1x̂(1jN ) (48)

TABLE II
THE FILTER WITH GT NOISE MODEL. THE OUTPUT ISx̂ (N jN )

Filtered Estimate:

x̂ (N jN ) = x̂(N jN � 1) + K f (N )[ � (N ) � H x̂(N jN � 1)] (31)

Predicted Estimate:

x̂ (N + 1 jN ) = �^ x(N jN ) + 
 z(N ) (32)

Covariance Update:

P (N + 1 jN ) = �[ I � K f (N )H ]P (N jN � 1)� T 1

�
(33)

where

Kalman Gain:

K f (N ) = P (N jN � 1)H T [�S � 1 + HP (N jN � 1)H T ]� 1(34)

Transformed Output:

� (N ) = W (N ) + H �x(N ) (35)

W (N ) = [ w1 (N ) w2 (N )]T (36)

S = diag(s1 ; s2 ) (37)

wi (N ) =
(pi vi + 1) " i (N )j" i (N )jp i � 2

vi �
p i
i + j" i (N )jp i

�
1

si
(i = 1 ; 2) (38)

si =
Z + 1

�1

(pi vi +1)[( pi � 1)vi �
p i
i �j " i jp i ]j" i jp i � 2

(vi �
p i
i + j" i jp i )2

f i (" i )d" i (39)

" (N ) = z(N ) � H �x(N ) (40)

�x(N + 1) = �� x(N ) + 
 z(N ) (41)

TABLE III
THE KALMAN FILTER

Filtered Estimate:

x̂ (N jN ) = x̂(N jN � 1) + K f (N )[z(N ) � H x̂(N jN � 1)]

(42)

Predicted Estimate:

x̂ (N + 1 jN ) = � A x̂ (N jN � 1)

+ K (N ) [z(N ) � H x̂(N jN � 1)] (43)

Covariance Update:

P (N + 1 jN ) = � A P (N jN � 1)� T
A + R1

� K (N )[HP (N jN � 1)H T + R2 ]K T (N ) (44)

Kalman Gain:

K f (N ) = P (N jN � 1)H T [R2 + HP (N jN � 1)H T ]� 1 (45)

where

R1 = 
 � 2 
 T ; R12 = 
 � 2 ; R2 = � 2 ;

� = diag(
� 1p

2
;

� 2p
2

) (46)

K (N ) = [� A P (N jN � 1)H T + R12 ]

� [HP (N jN � 1)H T + R2 ]� 1

Substituting Eqs. (26) and (27) into Eq. (48) and then taking
expectation yields

E ~x(N ) = E (� N � 1x(1) � � N � 1x̂(1jN ))

= � N � 1E x(1) � � N � 1E x̂(1jN )

= � N � 1E x(1)

� � N � 1

 
NX

k=1

(H � k � 1)T � N � k SH� k � 1

! � 1

�

 
NX

k=1

(H � k � 1)T � N � k S E W (k)

!

= 0 (49)
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given the assumption thatx(1) = 0 and according to Eq.
(38) W (k) depends on"1(k) and"2(k) which are zero-mean
independent random variables.

B. Variance

Using Eqs. (48) and (49), the variance of the estimation
error can be obtained as follows.

Var ~x(N ) = E ~x(N )~xT (N )

= E (� N � 1x̂(1jN ))(� N � 1x̂(1jN ))T (50)

Substituting Eq. (26) into Eq. (50) gives

Var ~x(N ) =
NX

k=1

� 2(N � k ) M N (H � k � 1)T �( H � k � 1)M T
N

(51)

where

M N = � N � 1

 
NX

k=1

(H � k � 1)T � N � k SH� k � 1

! � 1

(52)

� =
�


 1 0
0 
 2

�
(53)

and for i = 1 ; 2


 i =
Z + 1

�1

�
(pi vi + 1) " i j" i jpi � 2

vi �
pi
i + j" i jpi

� 2

f i (" i )d" i (54)

The experimental veri�cation of Eq. (51) is described in the
next section.

V. EXPERIMENT

A. Hardware Implementation

The tracking system was implemented in a typical of�ce
environment. The photograph and the �oor plan are shown
in Figs. 4 and 5 respectively. The Texas Instrument CC2530
ZigBee Development Kit with 2.4 GHz omni-directional an-
tenna was programmed to work as transducers. Nine receivers
were placed in the of�ce to form a rectangular grid covering
the monitored area as shown in Figs. 4 and 5. The target
broadcasts packages with a unique identi�er to the receivers.
The receivers then send the measured RSS together with their
coordinates to a computer equipped with a CC2531 USB
Dongle which then calculates the position of the target at
T = 0 :3 second interval. The block diagram of the proposed
tracking system is shown in Fig. 6. The inputs to the system are
the RSS. They are �rst converted into target-receiver distances,
D , through the log-distance path loss model of Eq. (4). The
distances are used as weights in the weighted centroid formula
of Eqs. (1) and (2) to givez(N ) and subsequently through the
proposed �lter with GT noise model (Table II), the estimated
statex̂(N jN ).

Fig. 4. The receivers are numbered in the photograph.

Fig. 5. The receivers are numbered and represented by thein the �oor
plan. The estimates from the weighted centroid, Kalman �lter and �lter with
GT noise model are given by the� , 4 and � respectively. The true path is
given by the dotted-line.

Fig. 6. The tracking system.

B. Parameter Selection

Before the experiment, all the receivers were calibrated
simultaneously with 1000 RSS measured at 7 different dis-
tances. The parameters in the path loss model of Eq. (4)
were obtained from the experimental data using least-squares
estimation givingRSS0 = � 49:87 dBm and� = � 2:11. The
achieved result is shown in Fig. 2, where the squares represent
RSS measurements and the solid line refers to the path loss
model obtained by least-squares �tting.

To obtain the GT parameters, 3000 initial x-position esti-
mates,z1, of a target obtained from the weighted centroid
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formula of Eq. (1) were collected and compared with true
positions. The error (estimated position� true position) dis-
tribution is represented by the histograms in Fig. 1. The GT
distribution of Eq. (9) was �tted to the noise. For simplicity,
we �xed p1 = 2 , v1 = 1 :5 and then used maximum likelihood
estimation to obtain� 1 = 0 :42. For the Gaussian distribution,
a standard deviation of0:44 was also obtained.

The quantile-quantile plot was used as an assessment of
goodness of �t [44] and the results for both GT and Gaussian
distributions are shown in Fig. 7. It is clear that the plot
for the GT distribution follows the 45-degree reference line
more closely, especially at the tails. This indicates that the
GT distribution provides a more accurate representation of the
actual noise distribution and better describes the heavy-tailed
samples and outliers.

Fig. 7. The quantile-quantile plots for the Gaussian and GT distributions
are given by the top and bottom graphs respectively. The quantile values
of the 3000 samples are plotted against the theoretical values for the �tted
distributions and the results are given by+ . A 45-degree solid reference line
is also plotted in each graph.

The �tted curves for both GT (solid-line) and Gaussian
(dashed-line) distributions are also shown in Fig. 1. It can be
seen that the GT distribution (solid-line) �ts the histograms
better than the Gaussian distribution (dashed line). Hence
we can expect a more precise estimation result if the GT

distribution is used. For y-position, the same values were
obtained for the GT and Gaussian distribution parameters.

The polynomialC was chosen as to give


 =

2

6
6
4

0:3 0
0 0:3

0:08 0
0 0:08

3

7
7
5

in Eq. (8) to model the process noise. A detail discussion on
the choice of the process noise model for tracking with the
constant velocity model is given in [40]. The value ofg in
Eq. (3) was empirically determined asg = 2 :5. The forgetting
factor � is problem dependent. For our application, we tested
different values of� in the range of0:4 to 1 and0:5 gave the
smallest average distance error as de�ned in [35]. The �lter
with GT noise model was implemented according to Table
II with p1 = p2 = 2 , v1 = v2 = 1 :5, � 1 = � 2 = 0 :42.
The Kalman �lter was implemented according to Table II with
p1 = p2 = 2 , v1 = v2 = 1 , � 1 = � 2 = 0 :44

p
2. Note that

if � = 1 was chosen then Tables II and III give the same
estimation results for the Kalman �lter.

C. Statistical Results

The variance equation (51) can be veri�ed experimentally.
Thirteen samples of x-position and y-position estimates were
determined in an experiment as a target moved from point “a”
to point “b” as shown in Fig. 5 and to obtain statistical results,
the experiment was repeated 200 times. The computational
time needed by Matlab 2016a on a standard laptop (Intel i5-
3230M, 8GB RAM, 3.2 GHz) for both the �lter with GT noise
model and Kalman �lter to process the data are 0.1402 s and
0.1264 s, respectively.

The variance of the estimation error (estimated position�
true position) in the experimental results is shown in Fig. 8.
It can be seen that variance calculated from Eq. (51) matched
the variance from the experiment. A sample calculation for
the variances atN = 2 using Eq. (51) is given in Appendix
B.

As shown in Fig. 1, the GT distribution can model the noise
more accurately than the Gaussian distribution used in the
Kalman �lter. Hence the variance of the estimation error of the
�lter with GT noise model is less than that of the Kalman �lter.
For largeN , Fig. 8 shows that the variance of the estimation
error from the �lter with GT noise model is about half of the
Kalman �lter.

D. Outliers

A snapshot of the estimation errors for the 200 experiments
at N = 7 is shown in Fig. 9. Notice that the quantile-quantile
plot of Fig. 7 shows the GT distribution can model the outliers
more accurately than the Gaussian distribution used in the
Kalman �lter. Hence in Fig. 9, for Experiments 2, 18, 86,
150, 160 and 162, the estimates (triangles) from the Kalman
�lter are affected by the outliers (crosses) but the estimates
(squares) from the �lter with the GT noise model are not.

The target now moved along the path “abcd” as shown in
Fig. 5. The estimates from the weighted centroid formulas of
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Fig. 8. The variances of the estimation errors in the 200 experiments are
given by � and 4 for the �lter with GT noise model and Kalman �lter
respectively. Variances calculated from Eq. (51) for the �lter with GT noise
model and Kalman �lter are given by� and � respectively.

Eqs. (1) and (2), the Kalman �lter and the �lter with GT noise
model are shown in Figs. 5 and 10 by the crosses, triangles
and squares respectively.

In Fig. 5, large deviations of the weighted centroid estimates
(crosses) from the true path (dotted-line) are observed. This
is probably due to the wireless-unfriendly of�ce environment
where magnetic whiteboards are installed at every cubicles.
Signal blockage, attenuation and multipath effect easily spoil
the RSS measurements and hence proper �ltering is needed.

Consider the x-position estimates in Fig. 10 (top). For
the outliers (crosses) atN = 10, 19, 22, 26, 33 and 62,
the estimates (squares) from the �lter with GT noise model
are close to the true positions (circles) while the estimates
(triangles) from the Kalman �lter are faraway. Note that for
30 � N � 46 the true x-position is constantly at 8 meters
because the target was traveling along the path “bc” during
that time.

E. Lift Landing Experiment

Another experiment was conducted at the lift landing and
the �oor plan is shown in Fig. 11. In Fig. 12 the parameters
obtained by �tting the distribution to the noise using the max-
imum likelihood objective function are for the GT probability
density functionp1 = 2 , q1 = 1 :5, � 1 = 0 :22 and for the
Gaussian probability density function, standard deviation of
0.28. The results of the estimates when the target moved along
the path “ab” and path “bc” in Fig. 11 are shown in Fig. 13.
It can be seen that the deviations of the weighted centroid
estimates (crosses) from the true positions (circles) are larger
along the path “bc” where there are six lifts with metal doors
as shown in Fig. 14 which exacerbated the effect of multipath.
Compared to the Kalman �lter which assumed Gaussian noise,
the �lter with the GT noise model �tted to the actual noise
distribution in Fig. 12 is less affected by the outliers atN = 9
and32 in Fig. 13 (right).

Fig. 11. The �oor plan for the lift landing experiment. The path “ab” and
path “bc” are given by the solid and dashed line respectively. The receivers
are represented by the.

Fig. 12. The histogram of the error distribution of the weighted centroid
estimates collected in the lift landing experiment. The maximum likelihood
�t of GT ( p1 = 2 , v1 = 1 :5, � 1 = 0 :22) and Gaussian (standard deviation
= 0 :28) distributions are given by the solid and dashed line respectively.

Fig. 14. Photograph showing the path “bc” where six metal lift doors
exacerbate the effect of multipath.
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Fig. 9. A snapshot of the estimation error for the 200 experiments atN = 7 . The estimates from the weighted centroid, �lter with GT noise model and
Kalman �lter are given by� , � and4 respectively.

Fig. 10. Estimates for x-position and y-position as the target moved along the path “abcd” are given by the top and bottom graphs respectively. The true
position, estimates from the weighted centroid, Kalman �lter and �lter with GT noise model are given by� , � , 4 and � respectively. The �lter with GT
noise model was implemented according to Table II withp1 = p2 = 2 , v1 = v2 = 1 :5, � 1 = � 2 = 0 :42. The Kalman �lter was implemented according to
Table II with p1 = p2 = 2 , v1 = v2 = 1 , � 1 = � 2 = 0 :44

p
2.
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Fig. 13. Estimates for x-position as the target moved along the path “ab” and y-position as the target moved along the path “bc” are given by the left and
right graphs respectively. The true position, estimates from the weighted centroid, Kalman �lter and �lter with GT noise model are given by� , � , 4 and �
respectively. The �lter with GT noise model was implemented according to Table II withp1 = p2 = 2 , v1 = v2 = 1 :5, � 1 = � 2 = 0 :22. The Kalman �lter
was implemented according to Table II withp1 = p2 = 2 , v1 = v2 = 1 , � 1 = � 2 = 0 :28

p
2.

VI. CONCLUSION

This paper makes use of the GT noise model to model the
actual noise distribution instead of making the usual Gaussian
noise assumption which may not be applicable to the indoor
environment. Because of better noise modeling, more precise
estimation results can be expected. An equation to compute the
variance of the estimation error from the �lter with GT noise
model and the Kalman �lter is also derived. The variance of
the estimation error from the tracking experiments matched
the variance calculated from the equation. This is useful
as the equation can be used for the design and assessment
of the indoor tracking system before implementation. The
variance equation and experimental results also showed that
the variance of the estimation error from the proposed �lter
with GT noise model is smaller than that of the Kalman �lter.
Hence the proposed �lter with GT noise model produces a
more precise estimate.

Another way to deal with non-Gaussian noise is to use the
particle �lter. However, this may come at the expense of heavy
computational load. One approach that has been proposed for
improving particle �ltering is to combine it with another �lter
such as the extended kalman �lter or the unscented kalman
�lter [45], [46]. For future work, we can combine the �lter with
GT noise model with particle �lter just like the combination
of Kalman �lter and particle �lter [47].

APPENDIX A
DERIVATION OF THE FILTER WITH GT NOISE MODEL AND

FORGETTING-FACTOR IN TABLE II

Instead of estimatinĝx(1jN ) in Eq. (30) we can estimate
x̂(N jN ) directly as shown in Eq. (31). The recursive �lter
algorithm in Table II can be derived as follows.

Firstly, noitice that Eq. (10) gives Eq. (32).

Secondly, multiplying Eq. (30) by� N � 1 and then adding
�x(N ) to both sides of the equation gives

� N � 1x̂(1jN ) + �x(N )

= � N � 1x̂(1jN � 1) + �x(N ) + � N � 1K (N )

� [W (N ) + H �x(N ) � H � N � 1x̂(1jN � 1) � H �x(N )]

(55)

Using Eq. (12), Eq. (55) can be written as

x̂(N jN ) = x̂(N jN � 1) + � N � 1K (N )

� [W (N ) + H �x(N ) � H x̂(N jN � 1)] (56)

De�ning

K f (N ) = � N � 1K (N ) (57)

in Eq. (56) gives Eqs. (31) and (35).
Thirdly, substituting Eq. (29) into Eq. (57) gives

K f (N ) = � N � 1P(1jN � 1)(H � N � 1)T

� [�S � 1 + H � N � 1P(1jN � 1)(H � N � 1)T ]� 1

= P(N jN � 1)H T

� [�S � 1 + HP (N jN � 1)H T ]� 1 (58)

where

P(N jN � 1) = � N � 1P(1jN � 1)(� N � 1)T (59)

Notice that Eq. (58) is also Eq. (34).
Finally, replacingN by N + 1 in Eq. (59) gives

P(N + 1 jN ) = � N P(1jN )(� N )T (60)

and substituting Eq. (28) into Eq. (60) gives

P(N + 1 jN )

= [� P(N jN � 1)� T � � K f (N )HP (N jN � 1)� T ]
1
�

= �[ I � K f (N )H ]P(N jN � 1)� T 1
�
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which is Eq. (33).

APPENDIX B
SAMPLE CALCULATION

The integral in Eq. (54) can be viewed as an expectation
and calculated as a sample average. Forp1 = p2 = 2 , v1 =
v2 = 1 :5, � 1 = � 2 = 0 :42, � = 0 :5, Eq. (54) gives


 1 =
Z 1

�1

�
4"1

0:265 + "2
1

� 2

f 1("1)d"1

=
1

2600

2600X

k=1

�
4"1(k)

0:265 + "1(k)2

� 2

= 8 :706

where f 1("1) is given by the empirical discrete distribution
obtained from the200 experiments� 13 samples= 2 ; 600
data samples i.e."1(k) and k = 1 ; 2; � � � ; 2600. Similar
calculations for
 2 gives

� =
�

8:706 0
0 8:692

�

for Eq. (53). ForN = 2 , Eq. (52) gives

M 2 = �
�
H T �SH + ( H �) T SH�

� � 1

=

2

6
6
4

0 0 0:441 0
0 0 0 0:441

� 0:637 0 2:957 0
0 � 0:637 0 2:957

3

7
7
5

where from Eq. (39)

S =
�

7:559 0
0 7:559

�

Finally, Eq. (51) gives

Var ~x(2) = � 2M 2H T � HM T
2 + M 2(H �) T �( H �) M T

2

=

2

6
6
4

0:152 0 0:508 0
0 0:152 0 0:507

0:508 0 2:577 0
0 0:507 0 2:573

3

7
7
5

where the �rst two diagonal elements of 0.152 are the vari-
ances of the x-position and y-position estimation errors shown
in Fig. 8 by the crosses atN = 2 .
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