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Indoor Tracking with the GeneralizegdDistribution
Noise Model

Le Yin, Shuo Liu, Weng Khuen Ho, and Keck Voon Ling

Abstract—An indoor tracking system with forgetting factor Instead of forming databases of ngerprints and then search-
and Generalized t-distribution (GT) noise model is proposed ing them, the target position can also be estimated using
in this paper. It consists of rst using the weighted centroid simple geometry. For example, path loss models [10] were

formulas to give an estimate of the position and then a lter . . . . .
with GT nois?e model to improve on Ft)he estimate. A common US€d to establish a relationship between the Received Signal

problem with indoor tracking is the noisy disturbances and Strength (RSS) and the target-receiver distance, and using
this paper uses the GT distribution to model them. By being a simple geometrical process of lateration [11] or weighted cen-

superset encompassing Gaussian, uniforn, Cauchy, and double  troid [12] the position of the target can be estimated. Besides
exponential distributions, GT distribution has the exibility to RSS, other measurements such as time of arrival or angle

characterize noise with Gaussian or non-Gaussian statistical f ival 50 b d to infer the t t i 13
properties. Because of the more accurate noise model, the lIter of arrival can also be used to infer the target position [13],

with GT noise model can produce a better estimate than that of [14]. Hybrid solutions such as multi-sensing modalities [15],

the Kalman Iter which makes the usual assumption of Gaussian [16], opportunistic discovery [9], [17] and dead reckoning

noise. An equation to compute the variance of the estimation enhancement [18] are also effective but require additional
error is also derived in the paper. For veri cation, 200 tracking hardware and sensor fusion.

exper?ments were conducted_. The variance obtained from _the A common problem with indoor tracking is the disturbances

experiments matched the variance calculated from the equation. ¢ . ; X

The variance of the estimation error from the Iter with GT ~ encountered in dynamic and complex indoor environments.
noise model is smaller than that of the Kalman Iter. Another Wireless signal variations due to obstacles and multipath
e>_<periment_at the Iift_landing showed that the p_roposed Iter [19], geomagnetic eld anomalies caused by ferromagnetic

with GT noise model is also less affected by outliers. materials and electronic devices [20], and even changes in

Index Terms—Indoor positioning and tracking, robust estima-  user's posture [9] can all impair the performance of localiza-
tion, GT noise model. tion techniques. Therefore, the estimate from a localization
algorithm is usually highly corrupted by noise and outliers
[21], [22].

Conventionally, the zero-mean Gaussian distribution is used

NDOOR positioning systems have proven to be useful {§ model the unknown noise. However, the occurrence of out-

applications such as indoor navigation, equipment trackifigrs, transient data in steady-state measurements, instrument
and inventory management [1]. For instance, indoor trackifgjlure, human error, model nonlinearity, etc. can all induce
systems have been used in hospitals to keep track of expengi¥8-Gaussian noise [23], [24]. Moreover, even high-quality
equipment and elderly patients [2], [3]. Furthermore, positiaflata may not t the Gaussian distribution and the presence of
information can also be used in smart buildings for occupangysingle outlier can spoil the statistical analysis completely for
F4e]te[<;t]ion, energy conservation and demand-driven operatighs case of least squares estimation and the Kalman lter [23],

SR 25].

Fingerprinting is a popular indoor localization techniqut[a 'Ilhe Generalized-distribution (GT) has been employed in
[6], [7]. This technique utilizes ngerprint matching as themany applications, from industrial manufacturing to statistical
basis for position determination. Fingerprint here referred tgance [26], [27]. GT was also explored in [28] to help
the unique characteristic of the received signal at differeghderstand the nature of genetic association signal. By being
indoor positions. Although these ngerprint based systemg superset encompassing Gaussian, unifainGauchy, and
have shown encouraging results, the process of site surygyple exponential distributions, GT distribution has the ex-
during the training phase to build up the database is timgjlity of characterizing noise with Gaussian or non-Gaussian
consuming and labor-intensive. SLAM (Simultaneous Locakatistical properties [29]. In practice, noise modelling in the
ization and Mapping) techniques [8] have made it possible 1 setting can proceed by likelihood methods analogous
automatically build a radio ngerprint map, but are still subjecip those for the Gaussian distribution. For instance, Fig. 1
to poor initial accuracy and slow convergence [9]. shows the histogram for the error (estimated positiotrue

) . ) i . position) distribution of 3000 x-position estimates of a target
L. Yin and K. V. Ling are with the School of Electrical and Electronic

Engineering, Nanyang Technological University, Singapore, 639798 (e-meﬁbtained from the Weighted centroid localization algorithm'

YINLO002@e.ntu.edu.sg; EKVLING@ntu.edu.sg). The maximum likelihood criterion was used to t a GT
c S. Liu and "’\IV K. H? are with thef DS?pa"me”t gf E'ec”ica'ﬁg% 7C70f(“p“t6t!listribution and a Gaussian distribution. It can be seen that
ngineering, National University of Singapore, Singapore, e-mail: S S .

s liu01@u.nus.edu; wk.ho@nus.edu.sg). %e GT distribution (solid-line) ts the histogram better than

(Corresponding author: Shuo Liu) the Gaussian distribution (dashed line). Hence we can expect

I. INTRODUCTION
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a more precise estimation result if the GT distribution is used. 14
In this paper, we illustrate the benet of using Iter with

GT noise model by ltering indoor positions obtained from

weighted centroid method. However, the approach is by no

means restricted to the weighted centroid method. Other 2

methods such as triangulation, lateration or hybrid localization &osl _

schemes can also be used to obtain the initial estimate of %

indoor positions and then use a lter with GT noise model gosy .
o

to obtain a more accurate estimate.
A Iter with GT noise model was used in [30] to solve 04r J;
a simple one-dimensional tracking problem where movement /
along a one-dimensional pathway is tracked by placing a row
of sensors along the pathway. A target must also be on the 0
pathway in order to be discovered. In this paper, we extend :
the problem to a more realistic two-dimensional case where
the target can move in any direction instead of being restricted. 1. The histogram of the error distribution of 3000 x-position estimates,

to a pathway. Furthermore. a new equation to compute thie Of a target obtained from the weighted centroid formula of Eq. (1). The
! maximum likelihood t of GT (p1 =2, vy =1:5, 1 =0:42) and Gaussian

variance of the estimation grror ff)r the lter with GT nOise(standard deviatiorr 0 :44) distributions are given by the solid and dashed
model and forgetting factor is derived. line respectively.

A two-dimensional tracking system based on RSS and
weighted centroid was implemented. Two dimensional indoor
tracking experiments were conducted. We choose RSS for its . o . )
ubiquitous availability, large user base and hence representa/Veighted centroid localization requires only simple calcu-
tiveness [31]-[33]. The weighted centroid method is choségfions. Recelvers_are placeq at known positions. The target
for its simplicity and robustness to changes in wireless propaoadcasts an unique identier and the RSS values at the
gation properties compared to other RSS-based methods sifg4givers are transformed into respective target-receiver dis-
as lateration [12]. The variance of the experimental resuf@ces through a path loss model. The distances are then
was also calculated and it matched the variance calculaf@@ployed as weights to estimate the target position as the
theoretically from equation (51). This is useful as the varian#¥eighted centroid [12], [34]. - -
equation can be used for the design and assessment of tHgonsiderm RSS values. The x-position and y-position of
indoor tracking system before implementation. The variance $¥¢ target denoted by, andz, respectively are estimated as
the estimation error from the lter with GT noise model is les§€ Weighted centroid:

Distance (m)

Il. THE WEIGHTED CENTROID METHOD

than that from the Kalman lIter. The experiments also showed _ P T w(i)x (i)
that the Iter with GT noise model could handle outlier better 2 = W 1)
than the Kalman lIter. This is the rst time that GT distribution ™ w(i)y; (i)
is used to model the noise in a realistic two-dimensional indoor Z; = e - (2)
tracking problem. In summary, the contributions are ) = w(i)

Robust and accurate indoor tracking: We proposed w(i) = D(i) ° ©)

a novel ltering approach based on Generalizéd wherew(i), x, (i) andy; (i) are the weight, x-position and y-

distribution noise model which improves the accuracyosition coordinates of the receiver with tHe RSS andg >

of the tracking system compared with the conventionglis an empirical tuning parameter that controls the relative

Kalman Iter. We demonstrated good performance evepeight of the receivers.

in the presence of outliers. The target-receiver distand® (i) can be obtained from

Theoretical veri cation: We derived the equation to comthe path loss model. One commonly used path loss model

pute the variance of the estimation error. The varianger indoor localization is the International Telecommunication

equation can be used as an analytical tool for designingion (ITU) indoor propagation model [35]-[{37]. For 2.4 GHz

and assessing the tracking system. We veri ed the equéingle oor applications, it is given as

tion through experimental results.

Real-environment validation: The experiments were con- RSS =RSS +10 10gy(D) )

ducted in two different indoor environments: of ce andvhere RSS is in dBm and in meters. The reference

lift landing. In both cases, the proposed lter with GTcoef cient, RSSy, and the path loss exponent, can be

noise model gives a smaller variance for the estimatiatetermined through calibration.

error than the Kalman lter. Note that the procedure of calibration is different from the

The rest of the paper is organized as follows. Section dbncept of site survey in ngerprinting. What we need to know

introduces the weighted centroid formulas and the path lassthe relationship between distance and signal strength as
model. Section Il describes the Iter with GT noise modelshown in Fig. 2, instead of the signal characteristic over all
Experimental results are given in Section IV and conclusiotise places of interest. Additionally, all the receivers can be
in Section V. calibrated simultaneously, saving labor cost and time.
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457 Dense and T is the sampling interval. The stateg(k) and x,(k)

are the positions in x and y directiongz(k) and x4(k)
are the speeds in x and y directions. The noise inp{k),
in the constant-velocity model of Eqg. (6) allows for motion
uncertainty and hence speed variation [40]. The measurements
z1(k) andz,(k) are the estimated positions from the weighted
centroid formulas of Egs. (1) and (2).

Let the two independent noiség(k) and",(k) be modeled
by the zero-mean GT probability density functions.

fi(") = b ©)

o - Vi +1 =p;
2 W™ (1=p;v) 1+ ﬁr{““_p',
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, , , o L Jsparse where ; is the scale parametep, and v; are the shape
5 Dista:ge(m) 15 20 rametersi = 1;2. The beta function is given by(a;b) =
01 a (1 )b 1d . By different choices ofp; andv;, the
Fig. 2. The path loss model (solid-line) is obtained by tting the RSS in th& T distribution can represent a wide range of distributions that

-90
0

least-squares sense. The RSS is given by the one commonly meets in practice as shown in Fig. 3.
[1l. FILTERING WITH GT NOISE MODEL
The positionsz; and z, estimated from the weighted oo p=2
centroid formulas of Egs. (1) and (2) are highly corrupte o =avz
by noise and it is necessary to pass them through a lter.
Box-Tiao Student’s t
A. The Auto-Regressive-Integrated-Moving-Average  al Power Exponential (df=2v)

Constant-Velocity Model
. p:l p— o p:Z VvV - oo V:1/2
Consider J o= av2
y

A(gq Yz(k) = C(q Y)"(k) (5) Laplacian [uniform | [ Gaussian |

Double Exponential

wherek = 1;2;:::;N is the sampling instancey ® is the
backward shift operator and Fig. 3. Diffe_ren't wgll-known distributions can be obtained by different choices
A(q 1) = Ag+ Auq 1, Asq 2 of the GT distribution shape parametgrandv [24].
C(?') = Co+Cig*+ Coq? Substituting Eq. (7) into Eq. (6) gives
Ao = A2 S Co = | _
x(k+1) = x(k)+ z(k) (20)
Al = 2l
This is the well-known second-order multivariate AutoWhere
Regressive-Integrate-Moving-Average  (ARIMA)  model _ H 1y
which, in state-space form, is the so-called constant-velocity 2" i . %
model commonly used in tracking problems [38]-[40] X ;
. . - Ci1(2;1) (Ci(2;2)+1) O T
Equation (5) in the state-space form is = C1(1:1)+ Co(1:1)+1 CiL2r CD) 1 g
x(k+1) = ax(k)+  "(k) (6) 01(2;1)102(2;1) C1(2§2)+:Cz(2;2)+1 0 1
z(k) = Hx(k)+ "(k) (1) : :
Iterating from the initial value(1), Egs. (7) and (10) give
where
x(2) = x(1)+ z(1
X(K) = xa(K) xo(K) Xs(K) Xa(K) " @ xh+ 2D
. W i m n T T x@) = x(+  z@)+ z(2)
(k) = k) "a(k) izk) = za(k) z2(k)
10T O :
_ go 1 OTZ_ 1 000 x(N) = N Ix@)+ x(N) (12)
A - I} -
00 10 0100 zZ(N) = H N x@)+ Hx(N)+ "(N)  (13)
0 0 0 1
2 i) +2 a2 3 where
g Ci1(2;1) Ci1(2;2)+2 g 1
= Cili)+ Co(Lil)+1  Ci(1:2)+ Co(1;2) (8) x(N) = k1 Z(N k) (14)

T T
C1(2;1)+ C2(2;1) Ci1(2;2)+ Cp(2;2)+1 k=1
T T
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B. Maximum Likelihood Estimation where
GivenN measurementg(k), k =1; ;N, and using Eq. L = l1 O
(13), the noise vectors(k) can be expressed as 0 Iz
n(k) - Z(k) H k 1X(1) HX(k) (15) and fori = 1,2

ivi+D[(pi Dvi Pjoietie 2
The initial condition,x(1), can be estimated by minimizing li = (i + 1)K ‘()\'/ pi)+|j..|_jpj‘)2|] 'l
I |

the following maximum likelihood objective function !
Substituting Eqg. (21) into Eq. (20) gives

1= N e 16 X o
T 0 e RN) = (H ¥ HTsH « 1

wheref;() is the GT probability density function given by k=1 |

Eq. (9) and'; (k) is thei" element of'(k) given by Eq. (15). X (H X HTsw(k) (22)
Let (") be the partial derivative of with respect tox(1).

It follows from Eq. (16) that where =
o @J
= aw wey =
XX @tk @f(i(k) @nfi(i(k) @) s s 0
=1 e @) @) @FCi(K) 0 s
(P1vi+1) "1 (k)" 1 (K)jPL 2 and fori =1;2
= H YT e e 2 B (18) W= EVEDINGP 2 L
k=1 v 52+j"2 (k)P STy Pk Si
and the maximum likelihood estimate ®{1) is obtained as z o e
the solution of the equation @ s = (pvitD)I(p 1i)Vi lp'J ;‘in I"if™ 2fi("i)d"i
] 1 (vi 7 +j"iP)
(")=0 (19) Oncer(1jN) is found,®(NjN) can be obtained from Eg. (12)
Denoting the estimate of(1) at theN™ sample a(1jN), as
Eqg. (19) can be solved fak(1jN) numerically for example RNjN)= N IR(LjN)+ x(N) (23)

using the Newton-Raphson algorithm. Or(@jN ) is solved,
H H th
k(NJ.N) the estimate ox(N) at the_N SamP'e can _be D. The Recursive Algorithm with Forgetting-Factor
obtained from Eq. (12). However, unlike recursive algorithms ) . . .
such as the recursive least-squares estimator, solving Eq. (1d]?!ot|ce that Eq. (22) is the weighted least-squares solution
numerically using iterative methods is not suitable for reaf(LiN) from the minimization of the weighted least-squares
time applications such as indoor tracking. loss function
1 X .
. .y Vo= ST Wk H KRN
C. Inuence Function Approximation 2
The in uence function IE") [23], [41] can be used to solve S W(k) H ¥ R@jN) (24)
Eq. (19) approximately. The solution is given in [42] as

R(LiN)

In other words, through in uence function approximation, the
IF(") maximum likelihood objective function in Eq. (16) can be
Z @ (") 1 approximated by the weighted least-squares objective function
———=dF (") (") (20) in Eq. (24).
1 @X1) In the loss function of Eqg. (24), it is common to reduce
wheredF (") = f1("1)f2("2)d"1d"5. the in uence of old data by introducing a forgetting-factor as

Remark: We can interpret Eq. (20) intuitively. Considerfollows
the rst-order Taylor series approximation of the nonlinear LN T
function ("). If the approximation is taken about an op- vV = > Nk wk) H K IR(LN)
erating point that is de ned as zero then it is given by k=1

(") = %x(l). If we do not consider the sign then taking S W(k) H ¥ R@jN) (25)

expectation Of% (i)) gives Eqg. (20). A formal derivation is  The forgetting-factor, 1, is a measure of how fast old
given in [23],_[411 [42]. _ _ data are forgotten. When the loss function of Eq. (25) is used
Differentiating (") in Eq. (18) with respect ta(1) gives to obtain the least squares estimate, Eq. (22) isI changed to

e _ X (H K 3T k1 (1)  R(LN) = P(LjN) X (H *HT N ksw(k)  (26)
@x1) Kot k=1
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TABLE |
THE FILTER WITH GT NOISEMODEL. THE OUTPUT ISR(1jN)

TABLE I
THE FILTER WITH GT NOISEMODEL. THE OUTPUT ISR(N jN)

P(jN) = [P@N 1) K(N)H N pQjN 1)]5 (28) Filtered Estimate:
K(N) = P@AN 1H N 4T R(Nj‘N)=’X(_NJ'N D+ Ke(N)(N) HR(NJN - 1)] (31)
[S T+H N PAN 1H N HT] 1 (29) Predicted Estimate:
. . R(N +1jN) = ~x(NjN)+ z(N) (32)
R(LjN) = XN 1) . .
N Lo Covariance Update:
+K(N)W(N) H RN 1)] (30) 1
PIN+1jN)=[ | K{(N)HIP(NjN 1) T= (33)
where
where Kalman Gain:
loy Ki(N)= P(NjJN DHT[S 1+ HP(NjN 1HT] %34)
Transformed Output:
PIN) = GRS @7) (N) = W(N)+pHx(N) (35)
k= W(N) = [wi(N) wa(N)]" (36)
and the recursive solution in Table | is given in many textbooks S = diagsy; s2) (37)
that discuss least-squares [43]. (ivi +1) " (N (N)Pi 2 1
Table | givesR(1jN ), the estimate ok(1) at sampleN . The wi(N) = Vi P (NP s (=129 @8
Itering problem is to produc&(NjN), the estimate ok(N) 241 (pvi+D(pi DV P P2,
at sampleN . This can be easily done by iterating frottiLjN ) Sis RETEIE Fi("i)d" (39)
to *(NjN) using Eq. (12). The results are given in Table "(N)= z(N) Hx(N) (40)
Il. For easy reference, the derivation is given in Appendix Xx(N+1)=  x(N)+ z(N) (41)
A. For initialization, P (1j0) can be set as an identity matrix
multiplied by some large number.
TABLE Il
THE KALMAN FILTER
E. The Kalman Filter Connection
Fig. 3 shows that the GT distribution reduces to the Gaus- Filtered Estimate:
sian distribution whemp =2, v = 1 . Furthermore, it is well- R(NGN) =X(NjN 1)+ K; (N)[z(N) HR(NjN 1)]
known that Gaussian noise is assumed in the Kalman lter. (42)
The connection between the proposed lter with GT noise Predicted Estimate:
model and the Kalman lIter will be shown below. RN +1jN) = AR(NjN 1)
If the Gaussian instead of GT distribution noise is assumed +K(N)[z(N) H2R(NJN 1) (43)
in the algorithm of Table Il then it will be reduced to the Covariance Update:
Kalman Iter in [43] which is given in Table IIl for easy P(N+1jN)= aP(NjN 1) 1 +R:
reference. Letp, = 2, v; = 1 and = 1. Firstly, notice K(N)HP (NJN  1)HT + RpJK T(N) (44)
that Eq. (39) givess; = %, hence Egs. (37) and (46) give Kalman Gain:
S 1= 2andEq. (34) is reduced to Eq. (45). Secondly, Kr(N)= P(NJN  DHT[Rz+ HP(NJN DHT] * (45)
substituting Egs. (11) and (34) into Eq. (33) gives Eq. (44). where
Thirdly, Eq. (38) givesw;(N) = "i(N) and Egs. (35), (36) Ri= 2T, Rp= 2% Rx= %
and (40) gives (N) = z(N). Substituting (N) = z(N) into = diag(p%; 19%) (46)
Eq. (31) gives Eq. (42). Finally, substituting Eqs. (1_1) and (31) K(NY=[ AP(NJN DHT + Ruo]
into Eq. (32) gives Eq. (43). Hence the algorithm in Table II ) T 1
[HP(NJN 1)HT + R3]

is reduced to the Kalman lter in Table IlI.

IV. STATISTICAL ANALYSIS

The variance is an indication of precision and in this secti®@xpectation yields

we derive the equations for the expectation and variance of ﬂEex(N)

estimation error.

A. Expectation
Consider the estimation error

¥(N)= x(N) R(NjN) 47
Substituting Egs. (12) and (23) into Eq. (47) gives
*N) = N Ixa) N Iz@ajN) (48)

= E(N @ N R@EjN))

= N 1Ex©Q) N CIE R(1jN)

= N 1Ex©) '
N 1 .

(H kl)TNkSHkl
k=1 |

(H ¥ HT N ks EW(k)
k=1

Substituting Egs. (26) and (27) into Eq. (48) and then taking

1

(49)
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given the assumption that(1) = 0 and according to Eq.
(38) W(k) depends orii(k) and",(k) which are zero-mean
independent random variables.

B. Variance

Using Egs. (48) and (49), the variance of the estimation
error can be obtained as follows.

E x(N)x"(N)
= E(N RR@N)C N R@AN))T (50)

Var x(N)

Substituting Eq. (26) into Eqg. (50) gives

= 2(N Kk k 1T k Iypm T
varx(N) = ( ™ N (H ) (H My Fig. 4. The receivers are numbered in the photograph.
k=1
(51)
where
]
X ©o 1
MN - N 1 (H k l)T N kSH k 1 (52)
k=1
0
— 1
- 0 (53)
and fori =1;2
z +1 - 2
(Pivi +1)"ij"j"
i = ——— fi(")d™ 54
1 1 v ip. +Jllini I( I) 1 ( )

The experimental veri cation of Eq. (51) is described in the
next section.

V. EXPERIMENT Fig. 5. The receivers are numbered and represented b timethe oor
plan. The estimates from the weighted centroid, Kalman lIter and Iter with
GT noise model are given by the, 4 and respectively. The true path is
given by the dotted-line.

The tracking system was implemented in a typical of ce
environment. The photograph and the oor plan are shown
in Figs. 4 and 5 respectively. The Texas Instrument CC2530
ZigBee Development Kit with 2.4 GHz omni-directional an-
tenna was programmed to work as transducers. Nine receivers
were placed in the of ce to form a rectangular grid coveringig. 6. The tracking system.
the monitored area as shown in Figs. 4 and 5. The target
broadcasts packages with a unique identi er to the receivers. ]
The receivers then send the measured RSS together with tifeif°arameter Selection
coordinates to a computer equipped with a CC2531 USBBefore the experiment, all the receivers were calibrated
Dongle which then calculates the position of the target aimultaneously with 1000 RSS measured at 7 different dis-
T = 0:3 second interval. The block diagram of the proposeadnces. The parameters in the path loss model of Eqg. (4)
tracking system is shown in Fig. 6. The inputs to the system amere obtained from the experimental data using least-squares
the RSS. They are rst converted into target-receiver distancestimation givingRSSy = 49.87dBm and = 211 The
D, through the log-distance path loss model of Eq. (4). Theechieved result is shown in Fig. 2, where the squares represent
distances are used as weights in the weighted centroid formRI&S measurements and the solid line refers to the path loss
of Egs. (1) and (2) to give(N) and subsequently through themodel obtained by least-squares tting.
proposed lter with GT noise model (Table 1), the estimated To obtain the GT parameters, 3000 initial x-position esti-
stateR(NjN). mates,z;, of a target obtained from the weighted centroid

A. Hardware Implementation
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formula of Eq. (1) were collected and compared with trudistribution is used. For y-position, the same values were
positions. The error (estimated positiontrue position) dis- obtained for the GT and Gaussian distribution parameters.
tribution is represented by the histograms in Fig. 1. The GT The polynomialC was chosen as to give

distribution of Eq. (9) was tted to the noise. For simplicity,

we xed p; =2, v; = 1:5and then used maximum likelihood 03 0
L . ) L 0 03
estimation to obtain ; = 0:42. For the Gaussian distribution, = .
L ; 008 O
a standard deviation d¥:44 was also obtained. 0 008

The quantile-quantile plot was used as an assessment of
goodness of t [44] and the results for both GT and Gaussidh EQ. (8) to model the process noise. A detail discussion on
distributions are shown in Fig. 7. It is clear that the pldhe choice of the process noise model for tracking with the
for the GT distribution follows the 45-degree reference lineonstant velocity model is given in [40]. The value @fin
more closely, especially at the tails. This indicates that tHedl. (3) was empirically determined gs= 2:5. The forgetting
GT distribution provides a more accurate representation of tfagtor is problem dependent. For our application, we tested
actual noise distribution and better describes the heavy-taiferent values of in the range oD:4 to 1 and0:5 gave the
samples and outliers. smallest average distance error as de ned in [35]. The lter
with GT noise model was implemented according to Table
Il with pp = pp =2,v1 = v, =15 1= , =0:42
The Kalman Iter was implemented according to Table Il with
pr=pP2=2,vi=Vvo =1, 1= 5 =0:44 2. Note that
if =1 was chosen then Tables Il and lll give the same
estimation results for the Kalman lter.

C. Statistical Results

The variance equation (51) can be veri ed experimentally.
Thirteen samples of x-position and y-position estimates were
determined in an experiment as a target moved from paiht “
to point “b" as shown in Fig. 5 and to obtain statistical results,
the experiment was repeated 200 times. The computational
time needed by Matlab 2016a on a standard laptop (Intel i5-
3230M, 8GB RAM, 3.2 GHz) for both the Iter with GT noise
model and Kalman lIter to process the data are 0.1402 s and
0.1264 s, respectively.

The variance of the estimation error (estimated position
true position) in the experimental results is shown in Fig. 8.
It can be seen that variance calculated from Eq. (51) matched
the variance from the experiment. A sample calculation for
the variances aN = 2 using Eg. (51) is given in Appendix
B.

As shown in Fig. 1, the GT distribution can model the noise
more accurately than the Gaussian distribution used in the
Kalman Iter. Hence the variance of the estimation error of the
Iter with GT noise model is less than that of the Kalman lter.
For largeN, Fig. 8 shows that the variance of the estimation
error from the lter with GT noise model is about half of the
Kalman lter.

D. Outliers

Fig. 7. The quantile-quantile plots for the Gaussian and GT distributions A Shapshot of the estimation errors for the 200 experiments
are given by the top and bottom graphs respectively. The quantile valsN = 7 is shown in Fig. 9. Notice that the quantile-quantile
of the 3000 samples are plotted against the theoretical values for the ttﬁqiot of Fig. 7 shows the GT distribution can model the outliers
distributions and the results are given by A 45-degree solid reference line ' . L . .
is also plotted in each graph. more accurately than the Gaussian distribution used in the
Kalman lter. Hence in Fig. 9, for Experiments 2, 18, 86,
The tted curves for both GT (solid-line) and Gaussiari50, 160 and 162, the estimates (triangles) from the Kalman
(dashed-line) distributions are also shown in Fig. 1. It can béer are affected by the outliers (crosses) but the estimates
seen that the GT distribution (solid-line) ts the histogramgsquares) from the Iter with the GT noise model are not.
better than the Gaussian distribution (dashed line). HenceThe target now moved along the pathbtd as shown in

we can expect a more precise estimation result if the GAig. 5. The estimates from the weighted centroid formulas of
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Fig. 8. The variances of the estimation errors in the 200 experiments #®. 11. The oor plan for the lift landing experiment. The pathb’ and

given by and_4 for the Iter with GT noise model and Ka!man Iter_ path ‘bc’ are given by the solid and dashed line respectively. The receivers
respectively. Variances calculated from Eq. (51) for the Iter with GT noisgre represented by ti@.

model and Kalman Iter are given by and respectively.

Egs. (1) and (2), the Kalman Iter and the lter with GT noise
model are shown in Figs. 5 and 10 by the crosses, triangles
and squares respectively.

In Fig. 5, large deviations of the weighted centroid estimates
(crosses) from the true path (dotted-line) are observed. This
is probably due to the wireless-unfriendly of ce environment
where magnetic whiteboards are installed at every cubicles.
Signal blockage, attenuation and multipath effect easily spoil
the RSS measurements and hence proper ltering is needed.

Consider the x-position estimates in Fig. 10 (top). For
the outliers (crosses) &fl = 10, 19, 22, 26, 33 and 62,
the estimates (squares) from the Iter with GT noise model
are close to the true positions (circles) while the estimates

triangl from the Kalman Iter are faraway. Note that for
(triangles) fro € raima er are faraway. Note tha 0Fig. 12. The histogram of the error distribution of the weighted centroid

30 N 46 the true x-positi_on is COHStamly at 8 meter§stimates collected in the lift landing experiment. The maximum likelihood
because the target was traveling along the p#iti Buring tof GT (p1 =2, v1 =1:5, 1 =0:22) and Gaussian (standard deviation
that time. = 0:28) distributions are given by the solid and dashed line respectively.

E. Lift Landing Experiment

Another experiment was conducted at the lift landing and
the oor plan is shown in Fig. 11. In Fig. 12 the parameters
obtained by tting the distribution to the noise using the max-
imum likelihood objective function are for the GT probability
density functionp; = 2, ¢p = 1:5, 1 = 0:22 and for the
Gaussian probability density function, standard deviation of
0.28. The results of the estimates when the target moved along
the path ‘ab’ and path ‘bc’ in Fig. 11 are shown in Fig. 13.
It can be seen that the deviations of the weighted centroid
estimates (crosses) from the true positions (circles) are larger
along the path B¢’ where there are six lifts with metal doors
as shown in Fig. 14 which exacerbated the effect of multipath.
Compared to the Kalman Iter which assumed Gaussian noisgy. 14. Photograph showing the pathc* where six metal lift doors
the Iter with the GT noise model tted to the actual noiseexacerbate the effect of multipath.
distribution in Fig. 12 is less affected by the outlierd\at= 9
and 32 in Fig. 13 (right).
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Fig. 9. A snapshot of the estimation error for the 200 experimentd a 7. The estimates from the weighted centroid, Iter with GT noise model and

Kalman lter are given by , and4 respectively.

Fig. 10. Estimates for x-position and y-position as the target moved along the gathl’ “are given by the top and bottom graphs respectively. The true
position, estimates from the weighted centroid, Kalman lter and Iter with GT noise model are given, by, 4 and respectively. The Iter with GT
noise model was implemented according to Table I vmhp pg =2,v1=v2=1:5 1= ,=0:42. The Kalman Iter was implemented according to

Table ll withpy = p2=2,vi=vp=1, 1= ,=0:44
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Fig. 13. Estimates for x-position as the target moved along the @dthdhd y-position as the target moved along the pdill’ ‘are given by the left and
right graphs respectively. The true position, estimates from the weighted centroid, Kalman Iter and lter with GT noise model are given,lay and
respectively. The lter with GT noise model was implemented according to Table Il mitb P2=2,vi=Vv2=1:5 1= 2=0:22 The Kalman lter
was implemented according to Table Il with = p, =2,vi=vp =1, 1= ,=0:28 2.

VI. CONCLUSION Secondly, multiplying Eq. (30) by N ! and then adding
This paper makes use of the GT noise model to model tﬁg\l) to both sides of the equation gives
actual noise distribution instead of making the usual Gaussian NOTR(LN) + x(N)
noise assumption which may not be applicable to the indoor= NCIg@N o D+ x(N)+ N K (N)
environment. Because of better noise modeling, more precise W(N)+ Hx(N) H N 22@QN 1) Hx(N)]

estimation results can be expected. An equation to compute the
variance of the estimation error from the lter with GT noise
model and the Kalman lter is also derived. The variance dfising Eg. (12), Eq. (55) can be written as
the estimation error from the tracking experiments matched . _ . N 1
the variance calculated from the equation. This is useful RNJN) = X(NJN 1)+ K(N) )
as the equation can be used for the design and assessment [W(N)+ Hx(N) H2(NJN  1)] (56)
of the indoor tracking system before implementation. ThBe ning
variance equation and experimental results also showed that _
the variance of the estimation error from the proposed lter Ki(N) = K (N) (57)
with GT noise model is smaller than that of the Kalman lterin Eqg. (56) gives Egs. (31) and (35).
Hence the proposed Iter with GT noise model produces a Thirdly, substituting Eq. (29) into Eq. (57) gives
more precise estimate. Ki(N) = N lpajN  1(H N YT

Another way to deal with non-Gaussian noise is to use the 1 N 1m/a: N I\Tq 1
particle Iter. However, this may come at the expense of heavy [S “+H PN 1)(H )]
computational load. One approach that has been proposed for P(NJN  1)HT
improving particle ltering is to combine it with another lIter [S Y+ HP(NJN D1HT]? (58)
such as the extended kalman lter or the unscented kalm\?v%ere
Iter [45], [46]. For future work, we can combine the Iter with

(55)

GT noise model with particle lter just like the combination PNIN )= N PN (N HT (59)
of Kalman lIter and patrticle lter [47]. Notice that Eq. (58) is also Eq. (34).
Finally, replacingN by N + 1 in Eq. (59) gives
APPENDIXA P(N+1jN)= NP@jN)( M)T (60)
DERIVATIONFg';;E;FI:\IL;EFiZVTI(T)'; %TT'A\ISLIEEI:\AODEL AND and substituting Eq. (28) into Eq. (60) gives
P(N +1jN)

Instead of estimating(1jN) in Eq. (30) we can estimate
R(NjN) directly as shown in Eq. (31). The recursive lter
algorithm in Table Il can be derived as follows.

Firstly, noitice that Eq. (10) gives Eq. (32).

[ PININ 1) T Ke(N)HP(NjN 1) T]*

[1 K (NHP(NjN 1) T2
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which is Eqg. (33).

(1]
(2]

APPENDIX B
SAMPLE CALCULATION

The integral in Eqg. (54) can be viewed as an expectatio[%]
and calculated as a sample average. poF p, = 2, v1 =

v, =15 1= ,=0:42 =0:5 Eq. (54) gives "
z 1 " 2
L = .
1 0:265+"2 (5]
1 R gk °
2600, 0:265+"1(k)? [6]
= 8:706

is given by the empirical discrete distribution [7]
13 samples= 2;600

wheref1("1)
obtained from the200 experiments

data samples i.e’;(k) and k = 1;2; ;260Q Similar [8]
calculations for , gives ]
8:706 0
0 8692
[10]
for Eq. (53). ForN =2, Eq. (52) gives 1]
M, = _ HTSH +(H)TSH °

2 12
0 0 0441 O (12]

_ g 0 0 0 04412

- 0:637 0 2957 0

0 0:637 0 2957 (13]

where from Eg. (39)

[14]
g= 7559 0
- 0 7559

Finally, Eq. (51) gives [15]
Varx(2) = ,*MoHT HMZ + Mz(H) T () M7 pg

0152 0 0508 O
_ g 0 0152 O 05072 [17]

- 0508 0 2577 O
0 0507 0O 2573 (18]

where the rst two diagonal elements of 0.152 are the vari-
ances of the x-position and y-position estimation errors showir
in Fig. 8 by the crosses &f = 2.

[20]
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