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Figure 1. A typical brain signal recording system consists of an analog 

front-end and spike sorting back-end. 
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Abstract— Real time spike detection is the first critical step to 

develop spike-sorting for integrated brain circuits interface 

applications. Nonlinear Energy Operator (NEO) and absolute 

thresholding have been widely used as the spike detection 

algorithms where NEO has a better performance measured by 

the probability of detection and false alarm. This paper 

proposes a hybrid spike detection algorithm incorporating both 

spike detection algorithms to reduce the power and to keep the 

detection rate the same as that of NEO. In the proposed 

algorithm, the absolute thresholding is performed first to detect 

a potential spike. Once a potential spike is detected, NEO is 

executed to check whether the detected spike by absolute 

thresholding is valid. Since NEO is conditionally conducted, this 

reduces the overall power consumption. The simulation shows 

that the proposed hybrid method improves the power 

consumption by 54.48% compared to NEO in 65 nm CMOS 

technology.  

Keywords—spike sorting, integrated brain circuits interface, 

CMOS, subthreshold. 

I. INTRODUCTION  

Multi-electrode intracranial recording technology offers 

exceptionally high spatial and temporal signal resolutions 

needed for neural prosthetic development and neuroscience 

research [1], [2]. In most existing designs, analog signals 

from different neurons surrounding electrodes are collected 

and amplified by low-noise amplifiers. After digitizing the 

analog signals, they are transmitted to a nearby computer for 

subsequent software processing such as spike sorting and 

neural encoding. However, this approach consumes a huge 

power and requires a large transmitter bandwidth when the 

number of electrodes is a few hundreds. For example, the 

data rate for 100 channels, 25kS/s recording system using 8 

bit ADCs is 20 Mb/s. Furthermore, the neural prosthetic 

applications demonstrate that a software-based processing 

must be done online so that brain commands can be 

performed without significant time delay. A hardware 

realization of these processing units using ASIC have been 

proved to be faster and more power-efficient than that in the 

software domain. In addition, integrating whole or a part of 

these algorithms on-chip leads to a significant reduction of 

the data to be transmitted to the subsequent and more 

sophisticated software encoding blocks [1, 3]. The first step 

of neural prosthetic applications is called spike sorting, 

where each neural spike is detected and assigned to a 

specific neuron. The final output of the spike sorting process 

is a neuron ID which represents a physical neuron closest to 

the electrode. Fig. 1 illustrates a typical recording system 

where a multichannel analog front end receives brain signals 

directly from a 2D electrode array. After digitizing, the brain 

signals are sent to an on-chip, off-chip or software-based 

spike sorting processor. The spike sorting consists of several 

stages such as spike detection, alignment, feature extraction 

and clustering [4] as shown in Fig. 1.     

This work proposes a hybrid spike detection algorithm 

that bases on both conventional absolute thresholding and 

NEO and implements it in 65 nm CMOS technology. Since 

the operating frequency of the detector is extremely low, a 

leakage-aware VLSI realization of the proposed algorithm is 

highly required to improve the power efficiency.  

II. HYBRID SPIKE DETECTION ALGORITHMS 

Spike detection is an essential step in the spike sorting 
flow that is used to separate the spikes from the neural signal 
[5]. All spike detection methods involve two stages of pre-
emphasizing and thresholding. There are various pre-
emphasis methods such as absolute thresholding, nonlinear 
energy operator (NEO) [6], and stationary wavelet transform 
(SWTP) [7], etc. After executing the pre-emphasis part, a 
corresponding threshold value is applied to decide whether a 
spike is present or not. If a spike is detected, a 3-ms window 
of the input signal is used to capture the whole spike [5]. 
From the hardware realization point of view, there are trade-
offs between the detection accuracy,  the power consumption 
and the hardware complexity from the other side [8]. Both 
absolute thresholding and NEO schemes are popular due to 
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 Figure 2. Hybrid spike detection algorithm. 
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Figure 3. Hardware architecture of the proposed hybrid spike detection algorith.  

 

the efficient structures and good detection accuracy [7], [9]. 
In this work, we adopt a hybrid spike detection algorithm 
combining the absolute thresholding and NEO methods [10].  

A. Absolute thresholding 

This is the simplest way of detecting the spike in which 
the absolute value of the input data (raw data) is considered as 
a spike if it is larger than the predefined threshold value [11] 
given below: 

𝑇ℎ𝑟 = 4𝜎𝑁      𝜎𝑁 = 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥(𝑛)|

0.6745
} (1) 

where x(n) is the input data at time n and 𝜎𝑁 is the standard 
deviation of noise over N points. This method just looks at 
the amplitude of the data, whereas a spike is basically 
described as a high frequency and abrupt energy change. So 
in order to address this problem, NEO was proposed [8], [9] 
to extract the high frequency and high energy data. 

B. Nonlinear energy operator (NEO) 

NEO is defined as (2). If the input data processed by NEO 
is not a spike, 𝜓[𝑥(𝑛)] is a very small value and close to zero 
while if a spike is met,  𝜓[𝑥(𝑛)] will be very large because a 
spike is high in power (𝑥(𝑛)  is large value) and high in 
energy (i.e. 𝑥2(𝑛) − 𝑥(𝑛 − 1) × 𝑥(𝑛 + 1)  is large). 
Similarly, the threshold value is estimated during the training 
phase over N points as expressed in (3). 

𝜓[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 − 1) × 𝑥(𝑛 + 1) 
(2) 

𝑇ℎ𝑟_𝑁𝐸𝑂 = 4
1

𝑁
∑ 𝜓[𝑥(𝑛)]

𝑁

1

 (3) 

C. Proposed hybrid spike detection algorithm 

NEO operation requires two multipliers and one 
subtractor for each individual data while the absolute 
thresholding method just uses an absolute operator. Therefore 
the computational complexity of NEO-based detection (and 
thus its power consumption) is undoubtedly much more than 
absolute threshold-based detector [9]. As a result, the 
detection accuracy of NEO is much higher when compared to 
that of the absolute method. To achieve both good detection 
accuracy and low power consumption, we proposed a hybrid 
spike detection algorithm in which NEO complements the 
absolute method. Its block diagram is shown in Fig. 2. First 
the absolute threshold detector is utilized to filter out the 

noisy data before sending them to NEO. So NEO is disabled 
most of the time and is activated only when a potential spike 
is detected by the absolute threshold. NEO double-checks the 
data to make the final decision whether it is a high energy and 
high power input or not. Therefore, the hybrid spike detection 
algorithm theoretically has a similar accuracy as NEO and 
consumes less power than NEO [10].  

III. HARDWARE ARCHITECTURE FOR THE PROPOSED HYBRID 

SPIKE DETECTION ALGORITHM 

The hardware architecture of the proposed hybrid spike 
detection algorithm is shown in Fig. 3. The input data is first 
stored in the registers R1 and R2 to provide the last three data 
(i.e. xn+1, xn and xn-1) for NEO operation. If the input data is 
larger than Thr1 (absolute thresholding method), the control 
circuit will activate the NEO engine located in the bold 
rectangle. Then last three data are processed by NEO and its 
output will go high if the result is larger than Thr2, the NEO 
threshold. In either of “Thr1” and “Thr2” blocks, the absolute 
value of input are calculated and then compared with the 
threshold value to generate the active (high) output. 

To realize the NEO engine, all the input data are 
connected through the multiplexers to avoid any switching 
activity happening inside as long as the input data don’t 
exceed Thr1. Once the input is larger than Thr1, the last three 
data are converted to unsigned numbers by “Signed to 
Unsigned Blocks” and then two multiplications are 
implemented by adder-based structure utilizing “Extension 
Blocks” and “Adders Banks” to further reduce the total 
power. Note that if the NEO engine is fully pipelined, the 
power consumption is increased due to the pipeline overhead 
circuitry and it violates the primary goal of reducing the 
power consumption by applying the hybrid spike detection 
algorithm. Moreover, our simulation showed that the internal 
power of synthesized multiplier used in NEO engine is larger 
than that of being implemented by adder-based structure. As a 
result, the multipliers are replaced by an extension block and 
an adder bank, as shown in Fig. 3. 
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Figure 5. The adders Bank introduced in Fig. 3. 

 

 
  

Figure 6. The power breakdown of the proposed hybrid spike detector and 
NEO. 
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The extension block is depicted in Fig. 4. It receives two 
inputs as the multiplier operands and provides 10 extended 
outputs with the same width (20 bits) as partial products. For 
example, the first output (O0) is defined as 20-bit zero if i1[0] 
is zero or else it would be a 20-bit number, including 10-bit 
zero as the most significant bits and the 10 remaining bits are 
replaced by i2 (multiplicand). This is realized using MUX, as 
shown in Fig. 4. In the general case of i1[j] (jth bit of  
multiplier), Oj is 20-bit zero if i1[j] is equal to zero, otherwise 
it consists of (10-j)-bit zero as the most significant bits, 10-bit 
i2 and j-bit zero as the least significant bits. The j-bit zero 
inserted as the least significant bits of Oj implies the shifted 
partial product generated by the multiplier. Finally, 
multiplication is performed by 10 sequentially connected 
adders as shown in Fig. 5, where each one has 20-bit input 
and output width provided by the extension blocks.  

The control circuit enables the NEO engine inputs and 
output once the input is larger than Thr1 and keeps it enabled 
for five clock cycles because a spike may not happen exactly 
at the point which is singled out by the absolute thresholding 
and then NEO engine will be disabled. Therefore, compared 
to NEO method, the hybrid spike detection algorithm just 
activates NEO for five clock cycles, whereas it is always on 
in NEO method. Furthermore, it is only activated if a 
potential spike is detected by the simple threshold block. The 
final MUX at the output selects one between two results 
calculated by the subtractor (indicated by S) and adder 
(indicated by A) based upon the sign bits of input operands of 
xi+1 and xi-1, simply implemented by XORing the sign bits. In 
other words, if both xi+1 and xi-1 are negative or positive 
numbers, the second term of (2) is positive and should be 
subtracted from the first term. If either of xi+1 and xi-1 is 
negative and another one is positive, the second term of (2) is 
then negative and it should be added to the first term. It has to 
be done because all the operands at the input of NEO engine 
are converted to unsigned numbers, whereas as given in (2) 
the output of the NEO may be negative.   

IV. SIMULATION RESULTS 

In order to verify the proposed method and estimate the 
power consumption, we have implemented three structures. 
They are NEO, the proposed hybrid spike detection algorithm 
based on the architecture given in Fig. 3 and the proposed 

hybrid spike detection algorithm using two multipliers, all in 
65 nm CMOS technology. The intended operating frequency 
is selected as 25 KHz which is the usual sampling rate of the 
ADCs in neural signal recording. All input data available 
from [11] is quantized to 10 bits. Functionally verified netlist 
generated by the Synopsys Design Compiler (DC) and 
accurate switching activity using the neural spike data from 
[11] are used to evaluate the power consumption of the 
designs by the Synopsys Primetime tool.  

As tabulated in Table I, the proposed hybrid spike 
detection algorithm saves power by 54.48% when compared 
to NEO. In addition, it improves power by 26.87% when 
compared to the same hybrid spike detection algorithm 
implemented with two multipliers. Power breakdown of these 
implementation are detailed in Fig. 6.  It can be seen that all 
three designs have similar leakage power (~4 nW), which 
indicates that they have similar hardware complexity. The 
dynamic power (switching and internal) of the proposed 
detection algorithms is much smaller than that of NEO due to 
the seldom activation of the NEO engine and its 
multiplierless architecture requiring less switching activity 
during the calculation of the NEO value.  

TABLE I.  POWER CONSUMPTION COMPARISON 

Spike Detection Algorithm Total power for (nW) 

NEO 53.6 

Hybrid spike detection algorithm 

with 2 multipliers 
39.2 

Hybrid spike detection algorithm 
(Fig. 3) 

24.4 

Since the operating frequency of the detector is only 25 
KHz, its leakage contributes a significant amount to the total 
power consumption if this component is not adequately 
managed. Fig. 7 shows the power breakdown of the proposed 
architecture realized by three different standard cell libraries 
(LPHVT: low power high-Vth, GPHVT: general power high-
Vth, and LPLVT: low power low-Vth). It is apparent that all 
three options have similar dynamic power components but 
their leakages dramatically change from one option to 
another. Specifically, the LPHVT-based design has leakage 

1367 and 202 smaller than that of GPHVT- and LPLVT-
based implementation, respectively, which leads to more than 
50× reduction in the total power consumption. As a result, we 
choose LPHVT device to maximize the energy efficiency of 
the design. All reported numbers are simulated at the supply 
voltage of 1 V and room temperature.  
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Figure 7. The power breakdown of the proposed hybrid spike detector 
with three different 65 nm standard cell libraries. 

 

Figure 8. The layout of the proposed hybrid spike detection algorithm. 
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Figure 9. Operating frequecny vs. supply voltage. 

A comparison of this work with other state-of-the-art 
single-detection chips is summarized in Table II. Area and 
area-power product of the proposed design are much lower 
than other works. The proposed architecture occupies the 
layout area of 0.006 mm2. 

Finally, we studied the scalability of the proposed design. 
Fig. 9 shows the maximum operating frequency of the 
proposed detector at different supply voltage levels. At 1 V, it 
can operate up to 330 MHz. For 25 KHz, the minimum 
required supply is 0.31 V. This indicates that our design can 
be scaled down to 0.31 V without affecting the speed 
requirement of the system with 9× power reduction for a 
single channel detection. This figure also suggests optimum 
supply voltage for multi-channel detection systems. For 
example, for a detector to support 128 channels, it must be 
able to operate at 3.2 MHz. It should then operate at 0.5V for 
the best energy efficiency. 

 
V. CONCLUSION 

We have presented a novel hybrid spike detection 
algorithm for spike sorting DSPs. It utilizes the absolute 
threshold algorithm and NEO to have the same detection 
accuracy as NEO and reduce the power. To achieve this, 
input data is first analyzed by the absolute thresholding, 
which conditionally activates the NEO block for double-
checking. Since NEO is less frequently enabled compared to 

the previous NEO design, the power consumption of NEO 
can be significantly reduced without losing the detection 
accuracy. Simulation showed that the proposed design 
improves the power by 54.48% compared to NEO. 

TABLE II.  COMPARISON WITH PREVIOUS WORKS 

Detection Method [12] [13] [14] 
This 

work 

Power (nW/channel) 400 752 25000 24.4 

Area (mm2/ch) 0.006 0.033 0.06 0.006 

Area × Power (nW×
𝑚𝑚2) 

2.4 24.82 1500 0.16 

Process (nm) 130 90 90 65 

Core Voltage - 0.55 1.08 1.1 
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