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Abstract: Despite decades of research, the etiological origins of Autism Spectrum 

Disorder (ASD) remains elusive. Recently, the mechanisms of ASD have 

encompassed emerging theories involving the gastrointestinal, immune and nervous 

systems. While each of these perspectives presents its own set of supporting 

evidence, the field requires an integration of these modular concepts and an 

overarching view of how these subsystems intersect. In this systematic review, we 

have synthesized relevant evidences from the existing literature, evaluating them in 

an interdependent manner and in doing so, outlining their possible connections. 

Specifically, we first  discussed gastrointestinal and immuno-inflammation pathways 

in-depth, exploring the relationships between microbial composition, bacterial 

metabolites, gut mucosa and immune system constituents. Accounting for temporal 

differences in the mechanisms involved in neurodevelopment, prenatal and postnatal 

phases were further elucidated, where the former focused on maternal immune 

activation (MIA) and fetal development, while the latter addressed the role of immune 

dysregulation in contributing to atypical neurodevelopment. As autism remains, 

foremost, a neurodevelopmental disorder, this review presents an integration of 

disparate modules into a “Gut-Immune-Brain” paradigm. Existing gaps in the 

literature have been highlighted and possible avenues for future research with an 

integrated physiological perspective underlying ASD have also been suggested.  
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1. Introduction  

1.1 Autism Spectrum Disorder 

 

Deficits in social communication and restricted, repetitive patterns of behaviors and 

interests have been identified as the two overarching branches of symptoms in 

Autism Spectrum Disorder (ASD) (American Psychiatric Association, 2013). 

However, the unique constellation of symptoms that differs strikingly across 

individuals hints at more complex underlying mechanisms. The past decades have 

since witnessed a paradigm shift in ASD research, veering from its once 

predominantly genetic focus to encompass more systemic approaches (Frye & 

Rossignol, 2011; Herbert, 2010; Rossignol & Frye, 2012a; Rossignol & Frye, 2012b; 

Arndt, Stodgell, & Rodier, 2005; Harumi Jyonouchi, Sun, & Itokazu, 2002). Emerging 

evidence shows that ASD is associated with extensive dysregulation across 

numerous biological modules, the most prominent of which implicate the 

gastrointestinal environment (e.g. McElhanon, McCracken, Karpen, & Sharp, 2014; 

Adams, Johansen, Powell, Quig, & Rubin, 2011; Arentsen, Raith, Qian, Forssberg, & 

Heijtz, 2015; Clarke et al., 2012; Desbonnet, Clarke, Shanahan, Dinan, & Cryan, 

2014; Heijtz et al., 2011; Neufeld, Kang, Bienenstock, & Foster, 2011; Sudo et al., 

2004), immuno-inflammation pathways (e.g. Rossignol & Frye, 2012a; El-Ansary & 

Al-Ayadhi, 2014; Pardo, Vargas, & Zimmerman, 2005; Vargas, Nascimbene, 

Krishnan, Zimmerman, & Pardo, 2004) and nervous system (e.g. Catani et al., 2016; 

Ha, Sohn, Kim, Sim, & Cheon, 2015; Herrington, Miller, Pandey, & Schultz, 2016; 

Yang, Beam, Pelphrey, Abdullahi, & Jou, 2016).  

 

1.2 The Gut-Brain Axis 

 

Notable features of gastrointestinal abnormalities associated with autism include 

alterations of microbial composition (Kinross, Darzi, & Nicholson, 2011; Adams, 

Johansen, et al., 2011; Finegold et al., 2002; Kang et al., 2013; Song, Liu, & 

Finegold, 2004; Williams et al., 2011; de Theije, Koelink, et al., 2014; de Theije, 
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Wopereis, et al., 2014; Finegold et al., 2010; Parracho, Bingham, Gibson, & 

McCartney, 2005; Song et al., 2004), overproduction of bacterial metabolites 

(Macfabe, 2013; Calabrese & Rizza, 1999; Wajner, Latini, Wyse, & Dutra-Filho, 

2004; Wang et al., 2012) and increase in gastrointestinal mucosa permeability 

(Hsiao et al., 2013; de Magistris et al., 2010; D’Eufemia et al., 1996; Adams, Audhya, 

et al., 2011; Cade et al., 2000; D’Eufemia et al., 1996). Dysbiosis of the gut is 

hypothesized to influence mammalian brain development via communication 

between gastrointestinal microbiota and the central nervous system (CNS) (Sarkar et 

al., 2016; McVey Neufeld, Mao, Bienenstock, Foster, & Kunze, 2013; Bercik et al., 

2011), which is usually modulated by immune responses (Carabotti, Scirocco, 

Maselli, & Severi, 2015; Erny et al., 2015; Heijtz et al., 2011; Midtvedt, 2012; 

Nicholson et al., 2012; Alkanani et al., 2015; Breban et al., 2017; Köhling, Plummer, 

Marchesi, Davidge, & Ludgate, 2017; Ma, Shi, Li, Chen, & Niu, 2015; Miyake et al., 

2015). 

 

1.3 The Immuno-Inflammation Pathways 

 

Accumulating evidence drives at the indubitable link between ASD and generalized 

immune dysfunction. A subset of children with ASD has been shown to exhibit 

upregulated quantities of natural killer (NK) cells, interferon gamma (INF-γ) (Gregg et 

al., 2008; Enstrom, Lit, et al., 2009; Vargas et al., 2004), tumour necrosis factor-

alpha (TNF-α) (Chez, Dowling, Patel, Khanna, & Kominsky, 2007), TNF-receptor II 

(Zimmerman et al., 2005), interleukin-6 (IL-6)(Li et al., 2009; Wei et al., 2011), IL-8 

(Li et al., 2009), IL-1β (Ashwood, Schauer, Pessah, & Van de Water, 2009) and 

autoantibodies (Rossignol & Frye, 2012a; Frye, Sequeira, Quadros, James, & 

Rossignol, 2013; Rossignol & Frye, 2012a; Gesundheit et al., 2013), with 

concomitant reduction in concentration of plasma transforming growth factor-beta 

(TGF-β1) (Ashwood et al., 2008). Contradicting results have surrounded findings on 

immunoglobulin atypicalities in ASD (Croonenberghs et al., 2002; Stern et al., 2005; 

Gupta, 2000). Neuroinflammation in microglial activation has also been reported in 

various brain regions (Vargas et al., 2004; Morgan et al., 2010; Tetreault et al., 2012; 

Suzuki et al., 2013). Finally, the presence of immuno-inflammatory biomarkers have 

been shown to correlate with acuteness of ASD symptoms (Khakzad et al., 2012; Al-
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ayadhi & Mostafa, 2011; Al-Ayadhi & Mostafa, 2012a, 2013; Mostafa & Kitchener, 

2009).  

 

The current review will begin by unravelling the mechanistic connections between 

the gut and immune system, followed by the immune system and brain development. 

This discussion will coalesce on the multiple routes that these networks can possibly 

take to influence brain maturity, linking etiological mechanisms of autism across the 

‘gut-immune-brain’ axis.  

 

2. Methods 

 

--- FIGURE 1 – About here --- 
 

Pubmed and PsycInfo databases were utilized to browse for articles, from the year 

2000 to 2018, relating to the gut-brain axis and immune/inflammation system in 

Autism Spectrum Disorder (ASD). Firstly, five database searches were made using 

the Boolean operator “AND”: 1) Gut, Brain and Autism; 2) Immune, Brain and 

Autism; 3) Microbiome and Autism; 4) Gut, Brain, Immune and Autism; 5) Gut, Brain, 

Inflammation and Autism. These searches generated a long list of records (n=931), 

which were subsequently organized into a database and screened according to 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines as illustrated in Figure 1. A total of 358 records were eventually included 

for qualitative analysis. 

 

3. The Gut and Immuno-Inflammation 

 

3.1 Microbiota, T-cells and Cytokines 

 

The human gastrointestinal (GI) tract is home to 100 trillion microorganisms, 

collectively known as the microbiota (Weinstock, 2012). The medley of gut 

microbiota has astounding implications on the profile of circulating cytokines (e.g. IL-

12p40, IFN-γ, TGFβ, IL-β, IL-6, TNF-α, MCP-1) (El-Ansary & Al-Ayadhi, 2014; 

Jyonouchi, Sun, & Le, 2001; Suzuki et al., 2011; Xu, Li, & Zhong, 2015; Harumi 

Jyonouchi, Geng, Ruby, & Zimmerman-Bier, 2005), and lymphocyte development, 
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with some species stimulating the differentiation of specific T-cell subtypes (Estes & 

McAllister, 2015; Hsiao, 2013; Morgan et al., 2010; Vargas et al., 2004). In ASD, a 

dysbiosis in microbiota, featuring an overrepresentation of Clostridial, Bacteriodetes, 

Firmicutes and Lactobacilli (Finegold, Downes, & Summanen, 2012; Tomova et al., 

2015; Wang, Conlon, Christophersen, Sorich, & Angley, 2014) has been observed. 

Synthesis of T regulatory (T-reg) cells producing anti-inflammatory IL-10 is only 

enhanced by a strain-specific cluster of Clostridial species and Bacteroides fragilis 

(Ochoa-Reparaz et al., 2010; Round et al., 2011), whereas accretion of Th17 cells 

producing pro-inflammatory IL-17 is stimulated by segmented filamentous bacteria 

(SFB) (Lee, Menezes, Umesaki, & Mazmanian, 2011; Wu et al., 2010). The balance 

between Th1/Th2 cytokine response has also been shown to be modulated by 

specific bacterial species (Mulle, Sharp, & Cubells, 2013), although conflicting 

findings of Th1 and Th2 dominance in ASD have been reported (Anthony et al., 

1998; Furlano et al., 2001). Recently, Rose et al. (2018) stratified sub-groups of 

children with (ASD) and without ASD (TD), who either displayed irregular (GI) or 

normal GI symptoms (NoGI). Upon endotoxin stimulation, the ASD-GI group was 

found to display higher levels of IL-5, IL-15 and IL-17 than ASD-noGI. This group 

also exhibited lower concentrations of anti-inflammatory TGF-β1 than ASD-noGI and 

TD-noGI, and their bacterial composition was distinctly different from other groups. In 

a similar study, Luna et al. (2017) observed an increased abundance in Clostridiales 

genera and reduced levels of Sutterella, Dorea and Blautia, with parallel elevations 

in IL-6 and tryptophan concentrations amongst ASD-GI, as compared to other 

groups. Gene sequencing analyses by Foley and colleagues (2015) revealed that 

infants with ASD have a higher abundance of bacterial genera Faecalibacterium, and 

lower levels of Blautia, in fecal and blood samples. Recently, a study by Coretti et al. 

(2017) on mice models have elucidated markedly unique microbial and immune 

profiles in male and female autistic mice, suggesting the possible role of the 

microbiota in influencing sex-specific susceptibility to autism. 

 

3.2 Microbiota and Antibodies 

 

An altered gut microbiome may be sufficient to stimulate the production of an army of 

antibodies (Gutzeit, Magri, & Cerutti, 2014). Indeed, Immunoglobulin A (IgA), the 

main antibody secreted in the gut, has been shown to be significantly higher in ASD 
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populations as compared to controls (Zhou et al., 2017). IgA is responsible for 

maintaining mucosal immunity (Lutgendorff, Akkermans, & Soderholm, 2008), the 

overstimulation of which suggests a consistent assault to the gut. Several species of 

microbiota have been postulated to be associated with ASD. In particular, the 

presence of Micobacterium paratuberclosis may evoke antibodies that interact with 

the myelin basic protein in the CNS (Dow, 2011), while Clostridium bolteae and 

Sutterella species have been proposed to elicit antibody production that aggravates 

gastrointestinal co-morbidities (Pequegnat et al., 2013; Williams, Hornig, Parekh, & 

Lipkin, 2012). Re-establishing microbial balance through Fecal Microbiota Transplant 

(FMT) has been shown to alleviate gastrointestinal and core autistic symptoms 

(Kang et al., 2017; Moon et al., 2015; Palm et al., 2014). 

 

3.3 Microbiota and Interferon (IFN) Signalling  

 

In autism, mechanisms of interferon (IFN), a signalling protein released in response 

to pathogens (De Andrea, Ravera, Gioia, Gariglio, & Landolfo, 2002), are altered. 

Genes associated with type-I IFN signalling have been shown to be substantially 

reduced in germ-free (GF) mice devoid of gut microbiota (Erny et al., 2015). Inoue et 

al. (2016) recently discovered that, as compared to healthy controls, autistic infants 

exhibited significantly different expression patterns of genes implicated in IFN-γ and 

type-I IFN signalling. Elevated quantities of IFN-α or IFN-γ, with (Jyonouchi et al., 

2002) and without endotoxin induction, have also been reported in the cerebrospinal 

fluid (CSF) and peripheral mononuclear blood cells (PBMC) of autistic children 

(Singh, 1996; Stubbs, 1995; Vargas et al., 2004). Interestingly, correlational analysis 

generated significant association between IFN-related genes and quantity of 

Faecalibacterium (Ashwood et al., 2011; Suzuki et al., 2011). 

 

3.4 Microbiota and Maternal Immune Activation (MIA)  

 

Whilst earlier reports have associated specific infectious agents (e.g. rubella, 

influenza), during the prenatal phase, to an increased incidence of ASD, it was later 

discovered that it was the inflammatory response towards an infection, known as 

maternal immune activation (MIA) (Wong & Hoeffer, 2018), rather than a specific 

causative agent, that presents a risk (Atladóttir et al., 2010; Wilkerson, Volpe, Dean, 
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& Titus, 2002; Libbey, Sweeten, McMahon, & Fujinami, 2005; Lintas, Altieri, 

Lombardi, Sacco, & Persico, 2010; Atladottir, Henriksen, Schendel, & Parner, 2012; 

Zhang et al., 2010; Meltzer & Van de Water, 2016). In addition to MIA, evidence 

points to the involvement of functional Toll-like receptor 3 (TLR3) and commensal 

microflora in inducing autistic phenotypes (Atarashi et al., 2015). In a study by Kim et 

al. (2017) on mice, administration of the antibiotic vancomycin prior to inducing MIA 

by poly (I:C) treatment did not lead to observation of abnormal behavioral 

phenotypes. Moreover, vancomycin treatment substantially diminished Th17 levels in 

the offspring’s small intestine. The study also revealed that certain maternal 

intestinal bacteria modulate Th17 abundance and the emergence of autistic 

behaviors. Specifically, offspring which came from mothers with human commensal 

bacteria or mouse commensal SFB showed significantly more Th17 cell 

differentiation (Kim et al., 2017), which is potentially linked to aberrant behaviours 

mediated by an increase in expression of IL-17a receptor in the offspring’s frontal 

cortex (Choi et al., 2016a).  

 

3.5 Gastrointestinal Mucosa Permeability  

 

The “leaky gut theory” postulates that an exceptionally increased permeability of the 

intestinal mucosa barrier represents a fundamental mechanism underlying autistic 

pathology (de Magistris et al., 2010; D’Eufemia et al., 1996; Horvath & Perman, 

2002; Panksepp, 1979; Wakefield et al., 1998). Studies on subgroups of ASD 

subjects have revealed that this deficiency is partly contributed by (1) alterations in 

microbial composition, with an overrepresentation of bacterium Akkermansia 

muciniphila, known to degrade the mucus lining (Wang et al., 2011), (2) prevalence 

of Clostridia and reduced abundance of Bifidobacteria, increasing pro-inflammatory 

cytokines production, which aggravates mucosa permeability (Heberling, Dhurjati, & 

Sasser, 2013), (3) elevated plasma levels of zonulin, a protein that regulates 

permeability (Esnafoglu et al., 2017), (4) decreased amounts of tight junction 

proteins at the intestinal barrier (Fiorentino et al., 2016), potentially due to increased 

toxins from Clostridia (Hecht, Pothoulakis, LaMont, & Madara, 1988), (5) infection by 

Escherichia coli, which leads to transformation of actin and tight junction structures 

(Long, Nisa, Donnenberg, & Hassel, 2014), (6) abundance of Candida fungi, which 

expresses root-like formations that invade the intestinal wall (de Magistris et al., 
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2010) and (7) increased levels of claudin, a molecule that contributes to pores 

formation (Fiorentino et al., 2016). Individuals with both autistic and gastrointestinal 

disorders exhibit a distinct cytokine (Ashwood & Wakefield, 2006; Torrente et al., 

2002) and regulatory (Ashwood, Anthony, Torrente, & Wakefield, 2004) profile. 

However, while Ashwood et al. (2003) reported a link between ASD with GI 

symptoms and intestinal permeability, de Magistris et al. (2010) found no 

association. Animal model studies suggest that the composition of microbiota 

modulates the integrity of both the intestinal barrier (Jakobsson et al., 2014), and the 

blood-brain barrier (BBB) (Braniste et al., 2014). Permeability of the brain and the GI 

appears to be developmentally-sensitive. Stolp and colleagues (2005) revealed that 

BBB permeability in rats is propagated by inflammation in early life, while Braniste et 

al. (2014) and Cani et al. (2009) showed that the gut microbiota determines 

permeability of the gut mucosa lining in later adulthood. 

 

An impaired intestinal barrier leads to resoundingly detrimental outcomes. Firstly, 

intestinal permeability upsets normative levels of major histocompatibility complex 

(MHC)-presenting epithelial cells, which affects activation of T-regs (Rabinowitz & 

Mayer, 2012) and exacerbates inflammation (Pastorelli, De Salvo, Mercado, Vecchi, 

& Pizarro, 2013). Secondly, neuroactive opioids from digested products, such as 

amyloid beta peptides, have been shown to leak into the bloodstream and permeate 

the BBB, influencing only neural but not glial cells (Clifford et al., 2007), to elicit ASD 

symptoms (Panksepp, 1979; Shattock & Whiteley, 2002). However, no significant 

difference in opioid levels has been found between those with and without ASD 

(Cass et al., 2008). Lastly, toxins from the gut that pass through the intestinal barrier 

have been shown to induce antibody production (de Magistris et al., 2014) that 

exacerbates chronic inflammation (Visser, Rozing, Sapone, Lammers, & Fasano, 

2009). Indeed, deposition of IgG and complement C1q at the epithelium supports the 

presence of an autoimmune reaction (Torrente et al., 2002). Additionally, bacterial 

lipopolysaccharides (LPS) from the gut stimulate liver cells to secrete TNF-α, which 

modulates BBB permeability (Kim, Wass, Cross, & Opal, 1992). Studies on ASD 

patients revealed that TNF-α cascades to produce pro-inflammatory cytokines, which 

leads to peripheral inflammation (Breese et al., 1994), followed by activation of 

microglia in the brain (Qin et al., 2007), indicating neuroinflammation (Derecki et al., 

2012; Laurence & Fatemi, 2005; Morgan et al., 2010; Tetreault et al., 2012). 
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Moreover, TNF-α indirectly inhibits interferon-beta (INFβ), a molecule which defends 

the mucosa lining (Long et al., 2014). Most interestingly, studies comparing ASD and 

typical populations with GI symptoms found that increased permeability of the 

intestinal barrier allows for an almost imperceptible infiltration of immune cells into 

the GI (Ashwood et al., 2003, 2004; Ashwood & Wakefield, 2006; Furlano et al., 

2001; Torrente et al., 2002; Torrente et al., 2004), including lymphocytes bearing 

pro-inflammatory characteristics (i.e. CD3+ staining revealed increased TNF-α+, 

IFN-γ+ and reduced IL-10+), although Fernell and colleagues (2007) did not find any 

association between gastrointestinal inflammation and autism. 

 

3.6 Bacterial Metabolites 

 

The gut microbiome produces three classes of short-chain fatty acid (SCFA): 

propionic acid (PPA), acetic acid and butyric acid (Stilling, Dinan, & Cryan, 2014), 

which were all shown to be overexpressed in ASD populations (Wang et al., 2012), 

though contradictory findings remain prevalent (Cryan & Dinan, 2012; Louis, 2012; 

Mangiola et al., 2016; Vuong & Hsiao, 2017). Animal model studies that replicate 

autistic-like behaviours have elucidated an overgrowth in Firmicutes bacteria, a 

reduction in Bacteroidetes, along with increased levels of SCFA, especially butyric 

acid, in male mice (de Theije, Koelink, et al., 2014; de Theije, Wopereis, et al., 

2014). Although Hsiao et al. (2013) did not generate similar findings using MIA mice 

models, they demonstrated an increase in diversity of Clostridium and Bacteroides, 

in line with predominant findings in ASD human subjects (Parracho et al., 2005; 

Tomova et al., 2015). Several studies have illustrated that SCFAs are capable of 

permeating the BBB (Karuri, Dobrowsky, & Tannock, 1993) to modulate neural 

characteristics of brain cells (El-Ansary, Ben Bacha, & Kotb, 2012; Kratsman, 

Getselter, & Elliott, 2016; Macfabe, 2012; Erny et al., 2015). Indeed, administration 

of PPA in rats, prenatally through a pregnant mother (Foley, Ossenkopp, Kavaliers, 

& Macfabe, 2014) and in early life (Foley et al., 2015; MacFabe, 2015; Thomas et al., 

2012; Wikoff et al., 2009), as well as increasing PPA diet in children (Mellon, 

Deshpande, Mathers, & Bartlett, 2000), facilitated the emergence of autistic-like 

behaviors across animal and human studies. Intriguingly, administration of sodium 

butyrate alleviated autistic symptoms (Kratsman et al., 2016; Takuma et al., 2014), 

either by reducing concentrations of IL-17 and IL-23 while simultaneously increasing 
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T-regs, IL-10 and IL-12 production (Zhang, Liao, Sparks, & Luo, 2014) or through 

different metabolic processes (Ríos-Covián et al., 2016; Jung, Park, Jeon, & Han, 

2015; Peng, Li, Green, Holzman, & Lin, 2009).  

SCFAs from bacterial species act upon specific GI and immune pathways. A 

consortium of Clostridia species is capable of inducing the production of tryptophan 

catabolites (Maes & Rief, 2012), such as propionic acid, that interact with aryl 

hydrocarbon receptor on the surface of differentiating T-cells to stimulate production 

of IL-22 (Fallarino, Grohmann, & Puccetti, 2012; Mezrich et al., 2010; Opitz et al., 

2011; Qiu et al., 2013), which promotes T-cell differentiation (Cavaglieri et al., 2003; 

Qiu et al., 2012; Veldhoen et al., 2008). This process regulates T-reg/Th17 balance 

(Zhang et al., 2014) and intestinal barrier integrity (Mjösberg, Bernink, Peters, & 

Spits, 2012; Qiu et al., 2012). Previous animal studies have revealed that mice with 

microbial dysbiosis, lacking Trp-metabolising bacteria, or gene (e.g. ACE2, Card9 

knockout mice), subsequently synthesised low amounts of IL-22, creating pro-

inflammatory conditions (Hashimoto et al., 2012; Lamas et al., 2016) and disrupting 

the intestinal barrier (Mjösberg et al., 2012; Qiu et al., 2012). Table 1 summarizes 

central gastrointestinal-immune mechanisms in ASD. 

 

 

--- TABLE 1 – About here --- 

 

 

4. Prenatal Phase: Maternal Immune System and Fetal Development  

 

 4.1 Maternal Immune Activation (MIA) and Neurodevelopment 

Fetal development of organs tethers on a delicate course that, when interrupted, 

leads to deleterious consequences. Extensive retrospective studies have suggested 

a link between prenatal maternal infection and altered neurodevelopment that 

ultimately elevates the risk of ASD in infants (Lee et al., 2015; Meltzer & Van de 

Water, 2016). Moreover, maternal immune activation (MI) during the prenatal phase 

has long been established to play a crucial role in inducing inflammatory states 

(Lintas et al., 2010; Atladottir et al., 2012) and behavioral dysregulation (Bauman et 

al., 2014a; Machado, Whitaker, Smith, Patterson, & Bauman, 2015; Malkova, Yu, 

Hsiao, Moore, & Patterson, 2012). The immune system comprises of a myriad of 
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cells which are capable of producing pro-inflammatory cytokines responsible for the 

inflammatory state observed in MIA (Meltzer & Van de Water, 2016). Animal studies 

do not only support this observation, but also further suggest that the mere activation 

of immune response in the mother, devoid of any infection, is sufficient enough to 

propagate changes in the offspring (Shi et al., 2003).  

 

Regardless of whether immune activation was triggered by direct infection (i.e. 

Influenza), dsRNA mimic poly (I:C), or bacterial LPS, MIA models have replicated 

significant autistic traits in their offspring, further buffeting the role of a generalized 

inflammatory state in ASD (Gilmore, Jarskog, & Vadlamudi, 2005; Meyer, Feldon, 

Schedlowski, & Yee, 2005; Urakubo, Jarskog, Lieberman, & Gilmore, 2001; 

Zuckerman & Weiner, 2005; Meltzer & Van de Water, 2016; de Cossío, Guzmán, 

van der Veldt, & Luheshi, 2017). In one study, the authors utilized a direct infection 

of human influenza and poly (I:C) to trigger immune activation in two separate 

groups of pregnant mice and found that both experiments yielded similar autism-

relevant traits in offspring (Shi et al., 2003). These findings suggest that MIA was 

responsible for the offspring’s aberrant phenotypes (Shi et al., 2003). Interestingly, 

altered cerebellar development, also observed in autistic individuals, was 

demonstrated in a follow up study (Shi et al., 2009). Poly(I:C) injection in pregnant 

rhesus macaques at either the late-first or late-second trimester presented atypical 

social interactions and vocal communications along with repetitive behaviors, all of 

which align with ASD traits (Bauman et al., 2014b). Another study injected bacterial 

LPS in pregnant mice, producing offspring where only the males exhibited autistic-

relevant behavioral changes, with an associated reduction of CX3CR1 expression - a 

receptor involved in neuronal pruning (de Cossío et al., 2017). MIA models have thus 

proven to be successful in establishing and replicating autism-relevant socio-

behaviours. However, much of the mechanistic approach remains unresolved 

(Gilmore et al., 2005; Meyer et al., 2005; Urakubo et al., 2001; Zuckerman & Weiner, 

2005).  

 

4.2 Maternal Pro-inflammatory Cytokine Profile 

Atypical cytokine profiles in pregnant mothers and their offspring have become a 

ubiquitous observation associated with autism. A study done in 2007 revealed that 

upon injection of pregnant mice with IL-6, one of the main pro-inflammatory 



 
GUT-IMMUNE-BRAIN MECHANISMS IN AUTISM 

  

cytokines, offspring with autism-relevant behaviors were observed (Smith, Li, 

Garbett, Mirnics, & Patterson, 2007). Interestingly, these behaviors were not seen in 

offspring of pregnant mice that were injected with other relevant pro-inflammatory 

cytokines such as IL-1a, TNF-α or IFN-γ (Smith et al., 2007). The authors went on to 

prove IL-6’s key role in ASD when autistic-related behaviors were rescued upon the 

co-injection of anti-IL-6 antibody onto pregnant dams (Smith et al., 2007). Rescued 

phenotype was not apparent upon co-injection with anti-IFN-γ or anti-IL-1β. An 

extended study demonstrated no significant difference in social behavior between 

poly(I:C) treated IL-6 knockout (KO) mice and untreated IL-6 KO mice, thus further 

supporting the integral role of IL-6 in the etiology of ASD (Smith et al., 2007). 

Besides IL-6, Choi et al. (2016b) recently discovered that atypical socio-behaviors 

were observed in the offspring of IL-17 injected dams. Likewise, pre-treatment of 

dams with anti-IL-17 produced offspring with ‘rescued’ phenotypes (Choi et al., 

2016b). Indeed, Th17 cells may be another critical player in MIA-induced ASD that is 

acting downstream of elevated IL-6 levels (Choi et al., 2016b). The authors showed 

that other pro-inflammatory cytokines such as TNF-α, IFN-β and IL-1β were 

increased in MIA induced models (Choi et al., 2016b). This was also reflected in a 

recent human study that saw elevated pro-inflammatory cytokines, at mid-gestational 

stage, in mothers of children with ASD (Jones et al., 2017). More importantly, some 

of these cytokines are capable of crossing the placenta and fetal BBB via active 

transport mechanisms. These cytokines potentially activate fetal microglia and mast 

cells, exacerbating the neuro-environment which could contribute to autism 

(Abdallah, Larsen, Grove, Nørgaard-Pedersen, et al., 2013; Zaretsky, Alexander, 

Byrd, & Bawdon, 2004; Ferretti & Hollander, 2015a). 

   

4.3 Autoantibodies Against Fetal Brain Protein 

Aside from MIA, emerging findings of maternal autoantibodies against fetal proteins 

strongly support the correlation between maternal immune dysregulation and ASD 

(Dalton et al., 2003a; Croen et al., 2008; Zimmerman et al., 2007; Singer et al., 2008; 

Braunschweig et al., 2013a; Enstrom, Van de Water, & Ashwood, 2009). During 

pregnancy, protective maternal IgG antibodies cross the placenta to transfer 

immunity to the developing fetus. Consequently, maternal autoantibodies against 

fetal brain can cross the placenta and through the BBB, which, although is actively 

forming, remains permissive and as such results in the disruption of 
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neurodevelopment (Bake, Friedman, & Sohrabji, 2009). Injection of IgG from 

mothers of children with autism into pregnant macaque monkeys produced offspring 

of enlarged brain volume as well as aberrant social behavior (Dalton et al., 2003b; 

Bauman et al., 2013). Interestingly, a specific set of maternal antibodies, found in 

12% of mothers with autistic children, were shown to be reactive towards fetal brain 

proteins of sizes 37 kDA, 73 kDa (Braunschweig & Van de Water, 2012; Fox, 

Amaral, & Van de Water, 2012; Daniel Braunschweig et al., 2008) and around 39 

kDa (Piras et al., 2014). Subsequently, seven developmentally regulated proteins 

were identified from the bands: Lactate Dehydrogenase A and B (LDH-A and LDH-

B), stress-induced phosphoprotein 1 (STIP1), collapsin response mediator proteins 1 

and 2 (CRMP1 and CRMP2), cypin and Y-box binding protein 1 (YBX1) 

(Braunschweig et al., 2013b). These findings not only provide insights into the 

mechanisms of autoantibodies, but also highlight the potential predictive markers for 

autism risk (Meltzer & Van de Water, 2016). Animal model studies that injected 

maternal anti-brain antibodies from mothers of children with autism into pregnant 

mice and monkeys, at varying gestational stages, yielded offspring with autism-

relevant traits, supporting the promising clinical utility of antibodies (Dalton et al., 

2003b; Singer et al., 2009; Braunschweig et al., 2012; Martin et al., 2008).  

 

5. Postnatal Phase: Immune System and Neuroinflammation  

 

5.1 Immune Dysregulation  

Once thought to be immune-privileged, the CNS has been shown to be in constant 

communication-relay with the immune system (Skaper, Facci, Zusso, & Giusti, 

2018). Immune cell derived mediators influence the CNS environment through 

interaction with key players such as microglia and mast cells (Garden & Möller, 

2006; Hanisch & Kettenmann, 2007a). Post-mortem of brain specimens in ASD 

individuals ages four to forty-five suggests chronic neuroinflammation as well as 

increased microglial abundance and activation, with greatest activity found in the 

cerebella and anterior cingulate gyrus (Li et al., 2009; Morgan et al., 2010; Vargas et 

al., 2004). Interestingly, growing evidences have suggested that neuroinflammation 

is a double-edged sword that provides both neuroprotection and deleterious 

consequences (Tilleux & Hermans, 2007; Griffiths, Neal, & Gasque, 2007; Skaper, 

2007). Persistent activation of microglia, mast cells and astroglia contribute heavily 
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to elevation in pro-inflammatory cytokine levels that shift the exquisite balance 

between pro- and anti-inflammatory states to favor a perilous pro-inflammatory 

condition, hindering neurodevelopmental processes (Abdallah et al., 2012; Abdallah, 

Larsen, Grove, Bonefeld-Jørgensen, et al., 2013; Zerbo et al., 2014). While 

extensive post-natal studies saw elevated levels of pro-inflammatory cytokines, 

including IL-6, IL-8, IL-12, IFN-γ, TNF-α and TH1, in both the brain and CSF, there 

were also contradictory findings which reported that, as compared to controls, ASD 

individuals exhibited lesser IL-6, one of the prominent pro-inflammatory cytokines 

(Pardo et al., 2005; Abdallah et al., 2011; Al-Ayadhi & Mostafa, 2012b; Masi et al., 

2014; Croonenberghs et al., 2002; Croonenberghs, Bosmans, Deboutte, Kenis, & 

Maes, 2002; Li et al., 2009; Ricci et al., 2013; Chez & Guido-Estrada, 2010; Chez et 

al., 2007; Garbett et al., 2008; Goines & Ashwood, 2013; Falcone & Franco, 2015).  

 

5.2 Microglial Cell Activation 

Microglia, a resident mononuclear phagocytic cell, contributes greatly towards 

neurodevelopment by modulating synaptic pruning, maturation of brain circuitry, and 

immunosurveillance (Bessis, Béchade, Bernard, & Roumier, 2007; Hanisch & 

Kettenmann, 2007b; Di Marco, Bonaccorso, Aloisi, D’Antoni, & Catania, 2016; 

Kettenmann, Kirchhoff, & Verkhratsky, 2013; Blinzinger & Kreutzberg, 1968; 

Tremblay et al., 2011; Paolicelli et al., 2011; Schafer et al., 2012). Both animal 

studies and post-mortem on brains of ASD individuals showed salient pathology 

differences as compared to controls, with an abundance of activated microglial cells 

in various brain regions (Morgan et al., 2010; Tetreault et al., 2012; Vargas et al., 

2004; Careaga, Schwartzer, & Ashwood, 2015). Activated microglial cells undergo 

two major changes that begins with a drastic cell morphology transformation from a 

highly branched order to an amoeboid form (M1) before a final transformation into 

active phagocytes (M2) (Hanisch & Kettenmann, 2007a). The former is responsible 

for neuronal homeostasis while the latter results in neuroinflammation (Kalkman & 

Feuerbach, 2016). Morphological assessments of ASD brains have shown greater 

proportions of microglia in M1 activated state, which further supports its role in 

neuroinflammation (Morgan et al., 2010; Tetreault et al., 2012). Influenced greatly by 

external immune signals, activated microglia secrete numerous pro-inflammatory 

cytokines such as IL-6, IL-1β and TNF-α, and generate reactive oxygen species that 

alter the CNS environment (Garden & Möller, 2006; Hanisch & Kettenmann, 2007a). 
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Phagocytic events during neuronal debris clearance may occur without the induction 

of pro-inflammatory cytokines (Ransohoff & Perry, 2009; Kettenmann et al., 2013). 

As such, an upregulation of cytokines associated with the activation of microglia 

presents evidence of chronic neuroinflammation (Ferretti & Hollander, 2015b). 

Consequently, these findings espouse the critical role of abnormal microglial 

activation in neurodevelopment (Fernández de Cossío et al., 2017), and in creating a 

neuro-inflammatory state which may underlie the pathogenesis of ASD (Di Marco et 

al., 2016),  

 

5.3 Mast Cell Activation 

Alongside microglia, mast cells, which belong to the innate arm of the immune 

system, were also reported to be activated in autism (Theoharides, Doyle, Francis, 

Conti, & Kalogeromitros, 2008; Theoharides et al., 2012; Theoharides, Stewart, 

Panagiotidou, & Melamed, 2016). Indeed, the incidence of ASD increases by ten-

folds in children with mastocytosis, a condition defined as the accumulation of 

functionally defective mast cells that contribute greatly to pro-inflammatory 

secretions (Kempuraj et al., 2010). Aside from immune cells-derived mediators, other 

substances, such as neurotensin, microbial products and immunoglobulin-free light 

chains from the gut can also trigger mast cell activation (Theoharides & 

Kalogeromitros, 2006). In turn, mast cells secrete numerous pro-inflammatory 

cytokines, as well as vasoactive molecules such as histamines (Kim et al., 1992; de 

Boer & Breimer, 1998; Abbott, 2000). Recent findings have shown that neurotensin 

is present at elevated levels in both the brain and gut of ASD patients (Angelidou et 

al., 2010). Aside from stimulating lymphocyte proliferation and activating T cells and 

mast cells, neurotensin is also capable of stimulating mast cells to secrete 

mitochondrial DNA extracellularly, a phenomenon that has inflammatory 

consequences (Zhang, Asadi, Weng, Sismanopoulos, & Theoharides, 2012), and 

which is also observed in ASD patients (Evers et al., 1994; Ramez et al., 2001; 

Lemaire, 1988; Carraway et al., 1982; Zhang et al., 2010). More importantly, these 

mast cells-derived inflammatory and vasoactive mediators increase BBB 

permeability, which further exacerbates the neuro-inflammatory state (Theoharides, 

Tsilioni, Patel, & Doyle, 2016). Table 2 summarizes fundamental immune-brain 

mechanisms in ASD.  
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--- TABLE 2 – About here --- 

 

 

6. Perspective  

 

This section integrates the main etiological pathways of ASD in Figure 2 and Figure 

3. Future research in this field may opt to adopt three key suggestions. Firstly, the 

interconnected nature of these processes emphasize the need for extensive 

systemic approaches with an eye for detailed mechanistic investigation. Researchers 

should direct their focus on reinforcing or extending existing theories, allowing for 

sequential processes to be elucidated. Secondly, the literature is rife with glaring 

missing connections. For instance, the dearth of longitudinal studies that 

continuously investigate pre- and post-natal processes is concerning, given that 

autism is a temporally-sensitive neurodevelopmental disorder with processes in both 

stages of development being implicated. Another unaddressed matter is how little in 

the way of testing has been conducted to investigate how neuroinflammation leads 

to autistic behavioral phenotypes, although numerous studies have cited this 

phenomenon to be a central etiological factor. The disjoint between systemic 

pathways and the manifestation of abnormal behaviors should be bridged with 

rigorous testing for causality. Indeed, the final suggestion reiterates the need for the 

field to unearth causal mechanisms. With studies on the association of systems 

dysfunction and ASD sketching the scaffold of autistic etiology, it is time for causal 

mechanisms to be brought to the fore, allowing for more definitive etiological 

pathways to be uncovered.  

 

--- FIGURE 2 – About here --- 

--- FIGURE 3 – About here --- 

 

7. Conclusion 

 

Autism remains one of the most perplexing unsolved mysteries of the human 

condition. Taking the reader through the gastrointestinal, immune and nervous 

systems, this review has holistically elucidated the mechanisms of the “gut-immune-

brain” pathway in ASD. Drawing from studies that have investigated these modular 
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connections, potential gaps in the literature were deciphered. Future studies in this 

field should adopt a more systemic and causal approach, explicating missing links 

and conflicting evidences in a  systematic manner.  
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Table and Figure Captions 

 

Table 1. Table depicting fundamental mechanisms in the gut-immune connection 

implicated in autism spectrum disorder (ASD). 

 

Table 2. Table depicting fundamental mechanisms in the immune-brain connection 

implicated in autism spectrum disorder (ASD). 

 

Figure 1. PRISMA Flow for Inclusion of Records in Systematic Review. Records 

were identified on Pubmed and PsycInfo databases from the following five searches: 

“Gut” AND “Brain” AND “Autism”; “Immune” AND “Brain” AND “Autism”; “Microbiome” 

AND “Autism”; “Gut” AND “Brain” AND “Immune” AND “Autism”; “Gut” AND “Brain” 

AND “Inflammation” AND “Autism”. Records written in English were screened for 

content relevant to connections across the gut-brain axis, immune system, 

inflammation processes and autism. A total of 358 records were included for 

qualitative analysis.  

 

Figure 2. Schematic diagram consolidating the main mechanisms underlying 

Autism Spectrum Disorder (ASD) in the prenatal phase. (1) Maternal immune 

activation (MIA) generates maternally-derived cytokines that crosses the fetal blood 

brain barrier (BBB), leading to excessive production of reactive oxygen species 

(ROS) and pro-inflammatory cytokines from microglial cells, influencing neuronal 

survival and proliferation; (2) Dysfunction in microglial cells contribute to abnormal 

synaptic pruning; (3) Maternally-derived cytokines induces mast cells to secrete 

inflammatory and vasoactive substances, which further corrodes BBB integrity; (4) 
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Maternal autoantibodies crosses the BBB and targets highly expressed proteins in 

the fetal brain.  

 

Figure 3. Schematic diagram consolidating Gut-Immune-Brain mechanisms 

underlying Autism Spectrum Disorder (ASD) in the postnatal phase. (1) 

Alteration in composition of gut microbiota; (2) Microbiota degrades mucin, further 

compromising the intestinal gut mucosa; (3) Compromised BBB allows bacterial 

metabolites (e.g. short chain fatty acids; SCFA), toxin, and bacterial components 

(e.g. lipopolysaccharides; LPS) to leak into the bloodstream; (4) Elevated levels of 

pro-inflammatory cytokines cross the BBB, which causes microglial dysregulation; 

(5) Dysfunction of microglial cells contribute to neuroinflammatory state in the child’s 

brain; (6) Propionic acid (PPA) and SCFA compromises the BBB and influence 

neurotransmitter and metabolic functions; (7) Pro-inflammatory cytokines activate the 

vagus nerve, which leads to aberrant neural activity. (Dashed arrows indicate 

probable mechanisms that are involved which ought to be further investigated). 

 

 








