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Abstract 

In polymer composites, inclusions (fillers) are introduced into the glassy polymeric matrixes 

in order to improve the toughness properties as the brittleness is one of the fatal drawbacks 

for glassy polymers. The first time in our current study, the stress analysis has been 

performed on the interaction between a circular inclusion and a craze with an internal small 

crack in polymeric composites. A craze can be treated as a crack with fibrils bridging the two 

crack surfaces. The forces applied by the fibrils to the crack surfaces (pulling the two surfaces 

closer) depend on the crack opening displacement. However, the crack opening displacement 

is directly related on the forces applied by the craze fibrils. To solve this dilemma, an 

iterative procedure is proposed for the first time to solve the formulated singular integral 

equations. The craze thickness profiles, the cohesive stress distribution and the fracture 

toughness of the polymeric composites are investigated thoroughly. Moreover, due to the 

influence of the inclusion, the uneven craze thickness profiles are observed from the left to 

the right part of the entire craze zone. 

 

Keywords: Craze; Crack; Stress intensity factor; Fracture Mechanics; Composites; Glassy 

polymers. 
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1. Introduction 

Recently a lot of research efforts have been put to develop polymer-based composites to 

satisfy the ever-increasing industry demand to accommodate a green and sustainable society 

[1]. This demand requires such materials with the multifunction and high performance, as 

single-phased polymeric materials cannot meet these requirements. Hence, carbon blocks, 

clays and carbon nano-fillers are added into the polymeric matrix in order to improve the 

mechanical, electrical and thermal properties of polymeric composite. 

 

The fillers as the inclusions in the polymer matrices are tailored over a wide range of length 

scaled from nano-meters to micro meters. The past couple decades have witnessed a burst of 

experimental studies in the nature and entanglement of the polymers with the inclusions, 

especially in improving the toughness of polymeric composites. For instance, the application 

of the single-wall carbon nanotube was observed to improve the interfacial interaction and 

reduce the composite brittleness [2]. Sub-micron inclusions can substantially increase the 

fracture toughness in epoxy composites [3]. Reinforcing the glass, silica and alumina fillers 

sized up to 300 um into epoxy composites showed that the weakly bonded fillers would 

enhance the fracture properties. The toughness of epoxy composites was increased at higher 

volume fraction [4-6]. Meanwhile, in the microscopic view, the effects of particle size and 

volume fraction on the nanocomposite structure under deformation were studied by Monte 

Carlo dynamic simulations [7]. The toughness of the composites made of glassy polymer and 

nanotube fillers was increased significantly by a high inclusion density (2.0 wt%) [8].  

 

It is generally recognized that the crazing is common in polymers. Nevertheless, in all the 

studies reviewed above, little research work has been found on the interaction between the 

craze and the inclusions in polymeric composites. A thin band of porous material termed as a 
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craze was observed in a glassy polymer from Kambour’s experiments [9-11]. Crazing is 

considered as the first stage of the fracture process under steady loading in polymers. Crazes 

initiate, develop and grow into cracks which may lead to the failure through fracture of 

polymers. Therefore, to understand the interaction between the craze and the inclusion on the 

toughness properties of polymeric composites is indeed desirable in engineering practice. 

 

From the mechanical aspect, a craze is treated as a crack fully or partially bridged by fibrils. 

For the stress distribution on the craze, one of the first attempts done by Knight [12], was to 

determine the displacement and stress distributions through the Fourier transform method, 

under the assumption of the craze with a uniform thickness. Later Lauterwasser and Kramer 

[13] obtained the craze thickness profile experimentally, based on the electron microscope 

observation, in order to determine the stress distributions along the craze. In this point, 

several methods were adopted for analytical and numerical investigations on the craze 

thickness profiles and stress distribution, such as the distributed dislocation method [14] and 

the superposition of Green’s functions [15]. Nonlinear relationship between the stress and the 

craze thickness was considered to examine the growth of craze [16]. A simple model of craze 

tip stress amplification induced by cross-tie fibrils was proposed to estimate the failure of 

polymers [17]. In addition, Paris law model was adopted for the analysis of the craze growth 

problem in the glassy polymers [18].  

 

All the above mentioned research works were concerned with the craze in a single 

homogeneous polymer material. With the increasing application of polymer composites, 

when a craze is initiated in a polymer composite, the interaction between the craze and the 

inclusion (the filler phase) will greatly influence the composite’s fracture toughness and 

failure behavior.  
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In our current study, the influences of a near-by circular inclusion on the craze behaviors and 

the fracture toughness of the glassy polymers are investigated for the first time. The craze 

zone with a central small crack is considered since it is one of the common crazing cases in 

polymeric composites. The distributed dislocation method is employed to analyze the 

cohesive stress distributions along a craze interacting with different sized inclusions. Using 

the edge dislocation density as the Green’s function, the physical problem of the interaction 

between a circular inclusion and a craze with an internal small crack in the glassy polymers is 

formulated into a set of singular integral equations, as given in Section 2. An iterative 

procedure is proposed to solve the craze thickness profiles, combined with the singular 

integral equations in this section as well. Results and discussion are given in Section 3. 

Validations on the numerical procedure with the empirical results are carried out. A series of 

the parametric studies are conducted to investigate the influences of the inclusion’s elastic 

properties and their geometrical configurations on the craze behaviors. Major and significant 

conclusions arrived at in this study are summarized in the last Section.  

 

2. Methodology  

2.1. Problem formulation 

Consider an infinite elastic polymer matrix which contains a circular inclusion with different 

mechanical properties. A craze with an internal small crack near the circular inclusion in the 

polymeric composite is illustrated in Fig. 1. The craze is assumed to be oriented along the 

radial direction of the circular inclusion. A uniform tensile stress is applied on the polymeric 

composite in the far field. For the craze, the cohesive stress distribution exerted by the fibrils 

on the craze region is represented by ( )P x . Here what we have done is that we imaginarily 

cut off all the fibrils partly connecting the top and bottom surfaces of the craze, and add the 
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cohesive force from the fibrils to the surfaces. So the craze is equivalent to a crack with 

distributed cohesive stress ( )P x  applied on part of the top and bottom surfaces. 

Fig. 1  

 

For the polymeric composite material, the matrix (termed as phase 1 labelled by “1” in Fig. 1) 

occupies the region of 0r r , while the circular inclusion (termed as phase 2 labelled by “2” 

in Fig. 1) occupies the region of 0r r . The polymer matrix has the shear modulus 1 and 

Poisson’s ratio 1 as its elastic properties. Similarly, the shear modulus 2 and Poisson’s ratio 

2 represent the inclusion’s elastic properties. The craze is of length 2c, and the internal small 

crack is of length 2a. With respect to the proximity, the distance from the center of the 

inclusion to the left craze tip is denoted by 1t . It should be noted that 1 0t L r  . 

 

2.1.1. Loading and boundary conditions 

The loading and boundary conditions for the craze-inclusion problem in polymers are 

prescribed as follows. For polymer matrix, the far field loading is given by a uniform tensile 

stress: 

yy 

 , 0xy   .                                                                                                                   (1) 

The resulting stress from the far field loading at the craze surfaces is expressed as [19,20], 

2 20 01
2 3

1 1

3
( ,0) [1 ( ) ( ) ]

2( ) 2
y

r r
T x a b

x x




 
  


.                                                                     (2)       

Where the coefficients 2a and 3b can be obtained through 

2 1 2 1
2

2 1 2

a
   

  

  
 

 
, 2 1

3

2 1 1

b
 

  





. 
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Here 1 13 4    for the plane strain condition and 1 1 1(3 ) / (1 )     for the plane stress 

analysis.   is one of the Lame’s parameters, given by 2 / (1 2 )      . 

 

For the craze surfaces, the cohesive stress exerted by the fibrils is given by 

( ) ( )yD x P x  for 1 1 ( )t x t c a    & 1 1( ) 2t c a x t c     .                                            (3) 

 

Therefore, at the craze surfaces, the total stresses can be expressed as 

1 1 1 1

1 1

( ) ( ) , ( ) , ( ) 2
( )

( ) , ( ) ( )

y

yy

y

T x P x for t x t c a t c a x t c
x

T x for t c a x t c a


         
 

     
.                        (4) 

 

2.1.2. Formulation of the current physical problem   

To formulate the current physical problem of the craze-inclusion interaction, the craze is 

treated as a pile-up of dislocations based on the distributed dislocation method. Since in this 

study the uniaxial tensile loading as Mode I loading is considered, only the climbing 

dislocation density (x)yB  for the edge dislocation is adopted to represent the craze. The 

spatial relationship between a single dislocation and the circular inclusion is presented in Fig. 

2. The entire craze is taken to be located on the x-axis since it lies along the radial direction of 

the circular inclusion. Using the single edge dislocation solution as the Green function 

[21,22], the traction at the point (x, 0) due to the dislocation density along the craze zone is 

given by 

2 2

1
1

1 1 1

( )2
( ,0) [ (x, ) ( ) ]

( 1)

t t
y

yy y

t t

B
x d k B d

x


    

  
  

   .                                                      (5) 

Where 2 1 2t t c  .  

Fig. 2  
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Substituting Eq. (4) into Eq.(5) leads, 

2 2

1
1

11 1

( ) 11
[ (x, ) ( ) ] (x)

2

t t
y

y yy

t t

B
d k B d

x

 
    

  


 

  .                                                                       (6) 

Meanwhile, based on the distributed dislocation method, the dislocation densities for the 

whole craze must satisfy: 

2

1

( ) 0

t

y

t

B d   .                                                                                                                                                  (7) 

 

In Eq. (6), 1(x, )k  is the relevant influence function, expressed as follows [22], 

2 2

2 2
1 2 2 2 2

2 2
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2
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2

4
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k

r r r r

Ax L x L
x d x

r d r

r d AL

r d r d

r x x x
r A d

r r d


 

   

    

  
  

     

.                                                              (8) 

Where 

2 2r x y  ,
2 2

2 2r x y  , 1x x   , 2 1x x L  ,
2

0 (d 1) / dL r  , 0/d r .  

The elastic constants are: 

1
A

 







,

1
B

 




 


,

(1 )(1 )

(1 )(1 2 )
Q

 

  

 


  
.  

Here ,   are the Dundurs’ parameters, given by 

2 1 1 2

2 1 1 2

( 1) ( 1)

( 1) ( 1)

   


   

  


  
, 2 1 1 2

2 1 1 2

( 1) ( 1)

( 1) ( 1)

   


   

  


  
. 

 

2.1.3. Cohesive stress  
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In past literature, for simplicity, it is assumed that the constant cohesive stress is applied 

throughout the craze zone, similar with the crack problems in the small scale yielding zone 

[23]. Based on certain experimental observations, recent studies attempted to link the 

cohesive stress distribution profile ( )P x  with the vertical displacement ( )v x of the craze. For 

instance, Ungsuwarungsri & Knauss employed several P-v relationships to obtain the craze 

initiation and craze growth problems [16,15]. In order to explore the influence of the P-v 

relationship on the craze-inclusion interaction problems, three different types of the P-v 

relationship are considered. If the craze thickness profile, i.e., the vertical displacement ( )v x

is known, the cohesive stress ( )P x can be obtained by  

( ) ' ( )P x m E v x   ,                                                               (9a) 

1.1( ) ' ( ( ))P x m E v x    ,                                                          (9b) 

0.9( ) ' ( ( ))P x m E v x    .                                                            (9c) 

Where 'E E for plane stress and 2' / (1 )E E   for plane strain, m is the coefficient, 

m=0.25 is adopted in this study based on experimental observations [16,15]. Given the plane 

strain conditions, the curves of P(x) versus v(x) for the three different types are plotted in Fig. 

3.  

Fig. 3  

 

2.2. Numerical procedure 

As the physical problem of craze-inclusion interaction is formulated into a series of singular 

integral equations, the next step is to solve these equations (Eq. (6) and Eq. (7)), and 

subsequently to obtain the dislocation density ( )yB x . Once ( )yB x is obtained, the vertical 

displacement profile of the craze can be calculated accordingly. Moreover, other significant 
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parameters, such as the cohesive stress distribution and the stress intensity factors at both 

craze tips, can also be derived.  

 

Since the craze is considered as a crack partially bridged by the fibrils in polymers, the 

singularity at the both craze tips are the inverse square root of x, the same as the crack 

problems. Thus, the dislocation density should have 1/ 2  singular item on both craze tips. 

With this in mind, we let 

                                             ( ) ( ) ( )y yB x w x F x .                                                                  (10) 

Where ( )yF x is bounded functions in 1 2t x t  , and
-1/2 -1/2( ) 1 2w x (x - t ) (t - x) .  

 

To simplify the integral domain, the new two variables, s and t are introduced to shift the 

interval of the integral throughout the whole craze zone from 1 2( , )t t to ( 1,1) . They are 

written as 

2 1 2 1

2 2

t t t t
x t

 
  , 

2 1 2 1

2 2

t t t t
s

 
  .                                                     (11) 

Then, Eqs. (6) and (7) are rewritten in terms of s and t as: 

1 1

1
11

11 1

( ) 11
[ ( , ) ( ) ] ( )

2

y

y yy

B s
ds k t s B s ds t

s t




 
 


 

  ,                         (12) 

1

1

( ) 0yB s ds


 .                                                                          (13) 

Where  

2 1 2 1 2 1 2 1 2 1
11 1( ) ( , )

2 2 2 2 2

t t t t t t t t t t
k t,s k t s

    
   . 
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2.2.1. Discretization  

The discretization method is employed to solve Eq. (12) and (13) numerically. Based on the 

numerical method developed by Erdogan and Gupta[24], the singular integral equation Eq. 

(12) can be discretized into (n-1) linear algebraic equations, expressed as below 

1
11

1 1

11 1
(s )[ k ( ,s )] ( )

s 2

n

y k r k yy r

k k r

F u x
n u







 


 .                                  (14) 

Where n is the number of discretized terms used, and 

(2k 1)
s cos( ),k 1,..., n

2
k

n

 
  , 

cos( ), where 1,..., n 1r

r
u r

n


   , and 2 1 2 1u

2 2
r r

t t t t
x

 
  . 

Similarly, Eq. (13) is discretized into the following linear algebraic equation,  

1

1
(s ) 0

n

y k

k

F
n

 .                                                                         (15)                       

In summary, Eq. (14) and Eq. (15) provide a system of n linear algebraic equations to 

determine the n unknown parameter 1(s ),..., (s )y y nF F . In this study, the discretized number 

n=500 is the best compromise between the convergence accuracy (within 0.1%) and the 

computational time.  

 

2.2.2. Iterative procedure 

In the formulated equations, the cohesive stress ( )P x  is a function of the vertical displacement 

( )v x (as given in Eq. (9)), while the vertical displacement ( )v x is a function of the dislocation 

density ( )yB x . But to solve the dislocation density ( )yB x  from the n linear algebraic equations 

mention above, we need to know how much the cohesive stress ( )P x  is. To solve this 

dilemma, an iterative solution procedure is specially designed to solve the cohesive stress

( )P x at the craze zone.  
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Step 1: we assume an initial form of the vertical displacement 0 ( )v x as 

0 2 2 2

max 1( ) (1 (x t ) / )v x v c c     .                                        (16) 

Where maxv is presumed as the maximum value of the vertical displacement. It is found that a 

properly selected maxv will make the iterative convergence fast. Here c is the half craze length.  

 

Step 2: based on the initial assumed 0 ( )v x , the initial cohesive stress 0 ( )P x is calculated by Eq. 

(9) only for the craze region indicated by Eq. (3). Then it is substituted into Eq. (4).  

 

Step 3: as the total stresses on the craze surfaces given by Eq. (4) are evaluated, the first-

round iterative results for 1(s ),..., (s )y y nF F are determined through solving an array of Eqs (14, 

15). Once the variable (s )y kF is obtained, the dislocation density ( )yB x can be evaluated by 

Eq. (10).  

 

Step 4: based on the distributed dislocation method, the vertical displacement of the craze can 

be obtained by 

1

( ) ( )

x

i

t

v x B d   .                                                          (17) 

A new iteration procedure will restart again with the new vertical displacement ( )iv x  

evaluated from the above equation. For the iteration procedure, the convergence is achieved 

when it satisfies
1 1( ( ) ( )) / ( ) 0.1%i i iv x v x v x   . 

 

Lastly, with the numerical solutions of the dislocation density, the Mode I stress intensity 

factors on the left and right craze tips [25] are given as below 
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1

1 1 1 2 1

1 1

2 2 ( t ) 2 (t t ) / 2
lim ( ) ( 1)

1 1

L

I y y
t

K B F


    


 

  
   

 
,                                         (18a) 

2

1 2 1 2 1

1 1

2 2 (t ) 2 (t t ) / 2
lim ( ) ( 1)

1 1

R

I y y
t

K B F


    


 

 
  

 
.                                             (18b) 

Where, the superscripts L and R represent the left and right craze tips, respectively. 

 

3. Results and Discussion 

In this section, the influence of a circular inclusion on the fracture behaviors of the craze with 

an internal small crack in the glassy polymers is investigated thoroughly. The stress intensity 

factor, as one of the significant fracture parameters, is adopted to represent the toughness 

behaviors of the polymeric composite for various inclusion’s material properties and different 

craze-inclusion geometrical configurations. Moreover, the craze thickness profile and the 

cohesive stress exerted by the fibrils are evaluated under the assumption of several P-v 

relationships. It should be noted that all the numerical examples considered are assumed to be 

in the plane strain state.  

 

3.1. Comparison of the stress intensity factors with the empirical results 

As presented in the previous section, the numerical procedure to solve the craze-inclusion 

physical problem is tedious, particularly in the expressions of the singular integrals and those 

discretized equations. As a result, mistakes or slight errors may be introduced during 

compiling the program codes. To avoid possible errors, the solution of the stress intensity 

factor for the craze problem given by Tada et al. [26] is used to verify the analytical results 

obtained from the current work. To perform the validation on our analytical results, the 

circular inclusion is assumed to have the same material properties with the polymeric matrix. 

So the current problem is reduced to a craze in a homogeneous polymer without the inclusion, 

which is the case studied by Tada et al. [26]. 
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The stress intensity factor IK  for the craze problem in an infinite 2-D case under the far field 

tensile loading, is given by the following equation,    

2 / arccos( / )I brK S c S c a c   .                                        (19) 

Where S represents the far field tensile loading, c is the half craze length, a is the half length 

of the internal small crack and brS is the average value of the cohesive stress on the craze 

surfaces.  

 

The values of the stress intensity factors obtained from our current work and Eq. (19) are 

listed in Table 1, for different far field loadings, craze lengths and internal crack lengths. It 

can be observed that the relative errors are less than 1% for all the cases considered. The 

negligible relative errors indicate that the results obtained from the current work are in good 

agreement with the solution of IK from Tada’s book. In other words, the numerical procedure 

to solve the craze-inclusion problem presented in this study is reliable and accurate.  

Table 1  

 

3.2.Craze thickness profile 

There are many factors affecting the fracture behaviors of the craze, such as the matrix and 

the inclusion’s material properties, the distance between the craze and inclusion, and the 

loadings. Since the primary concern in this study is the craze-inclusion interaction and the 

corresponding fracture behaviors of the polymeric composites, the far field loading is 

assumed to be constant as 33.0MPa  . Also, the numerical examples considered in the 

following sections are calculated with the following parameters: 1 2.0GPa  , 1 2 0.33   ,

100c m . For a better understanding of crazing phenomenon in polymer composites, we 
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concentrate on the following parameters: the variations of relative shear modulus ratio 2 1/  , 

the relative inclusion size 0 /r c , the ratio a/c and the relative crack-inclusion distance /L c . 

Those parameters are used to carry out the investigation on the fracture behaviors of the 

crazed polymeric composites.  

 

The craze thickness profiles for three different ratios of a/c are plotted in Fig. 4, under the 

condition that 0 / 2.0r c  , / 0.5L c  , 2 1/ 10   , and the P-v type 1 are considered. In the 

figure, ru is a dimensionless variable and its value (-1.0 ~ 1.0) represents the whole craze 

region (including the internal crack). It can be observed that at 0.0ru  (i.e., at the center of 

the internal crack), the case of / 0.5a c   has the maximum value of crack thickness. While 

the case of / 0.1a c   produces the minimum value of crack thickness (which is around

1.1 m ). The possible reason for this observation is that in the case of / 0.1a c  , the longer 

cohesive zone is involved, and subsequently, the larger cohesive forces exerted by the fibrils 

are applied on the craze surfaces. It leads to the smaller crack opening displacement. 

Moreover, the uneven craze thickness profiles for the three curves are observed between the 

left and right part throughout the craze zone. The right craze zone has relatively larger craze 

thickness values than those at the left craze zone. For instance, in the case of / 0.5a c  the 

value of craze thickness is 0.6 m at 0.8ru   , while it is around 0.8 m at the symmetry 

point 0.8ru  . Clearly it is due to the effect of the near-by circular inclusion. Here 

2 1/ 10    is considered, it means that the inclusion has a harder stiffness, compared to the 

polymeric matrix. Consequently, the harder inclusion has the more shielding effect on the left 

craze zone, which will produce smaller value of craze thickness.  

Fig. 4  
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Next is to examine the influence of the P-v relationships, the craze thickness profiles for the 

three different P-v types are plotted in Fig. 5, in which the parameters are considered as 

follows: 0 / 0.2a c  , 0 / 2.0r c  , / 0.5L c   and 2 1/ 10   . It is found that as a whole, the 

shapes of the craze thickness profiles are similar for the three P-v types. However, at a given 

location of the craze zone, the largest value of craze thickness is obtained by using the P-v 

type 2. On the contrary, it produces the smallest value of craze thickness under the P-v type 3.  

Fig. 5  

 

3.3.Cohesive stress distribution 

With the parameters of 0 / 2.0r c  , / 0.5L c   and 2 1/ 10   , Fig. 6 shows the cohesive 

stress distributions along the craze zone for three different internal crack sizes. Here the P-v 

type 1 is assumed. It is obvious that the uneven cohesive stress profiles between the left and 

right craze zone are observed due to the stiffer inclusion ( 2 1/ 10   ) considered. Another 

observation is that at the right craze zone 0ru  , the cohesive stress ahead of the internal 

crack tip increases gently with the increasing ratio a/c.  

Fig. 6  

 

Meanwhile, the cohesive stress distributions along the craze zone for the three different P-v 

types are shown in Fig. 7. It can be observed that the maximum value of the cohesive stress is 

obtained ahead of the internal crack tip for all the cases. Additionally, at any value of ru , the 

maximum cohesive stress is obtained from the case of the P-v type 3. Whereas, the case of 

the P-v type 2 has the smallest cohesive stress.  

Fig. 7  
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3.4. Fracture behaviors of the craze 

In this study the stress intensity factors at the left and right craze tips are normalized by the 

results from the homogeneous crack case (without the inclusion) for better understanding the 

inclusion’s influence on the craze. They are expressed by / ( )L L

I InK K c  and 

/ ( )R R

I InK K c  , respectively. 

 

3.4.1. Influence of shear modulus ratio  

For condition / 0.1a c  , / 0.5L c  and P-v type 1, the curves of 
L

InK and 
R

InK against the 

shear modulus ratios of the inclusion/matrix are plotted in Fig. 8 for various inclusion sizes. 

In this figure, the solid straight line represents the normalized stress intensity factor obtained 

from the homogenous craze case (i.e., 2 1/ 1   ).  

 

When the shear modulus ratio 2 1/   is greater than 1, both 
L

InK and 
R

InK values are below 

the solid straight line, and both decrease with the increasing shear modulus ratio. That means, 

the shielding effect of the inclusion on the craze is observed due to the stiffer inclusion (i.e., 

2 1/ 1   ). In general, the stiffer the inclusion is, the higher the shielding effect is achieved. 

As a result, it leads to smaller stress intensity factor as shown in the figure. The normalized 

stress intensity factors 
L

InK and 
R

InK versus the shear modulus ratios become stabilized when 

2 1/  is greater than 15, where the inclusion becomes much stiffer than the matrix and is 

nearly rigid.  

 

When the shear modulus ratio 2 1/   is less than 1, both the normalized stress intensity 

factors 
L

InK and 
R

InK  values are above the solid straight line, and they decreases significantly 
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as the value of 2 1/  increases up to 1.0. Here 2 1/ 1   means that the inclusion has a 

“softer” stiffness compared to the polymeric matrix. Under this situation, the anti-shielding 

effect of the softer inclusion on the craze is observed. As shown in Fig. 8(a) the value of 
L

InK  

reaches 2.3 for the case of 0 / 10r c  , indicating that the large softer inclusion plays a 

significant anti-shielding effect on the fracture behavior of the near-by craze.  

 

Another interesting observation is that for the case of 0 / 0.5r c  , the curve of 
R

InK against 

the shear modulus ratio is much closer to the straight line than that of 
L

InK at any shear 

modulus ratio. It reveals that compared to the left craze zone, the right craze zone is less 

affected by the relatively small inclusion even if the inclusion is a stiffer material.   

 

Fig. 8 

 

3.4.2. Influence of P-v types  

 Considering the case 2 1/ 1   , the normalized stress intensity factor variations of 
L

InK and 

R

InK with the shear modulus ratio 2 1/  are presented in Fig. 9 for the three different P-v 

relationships. Here / 0.2a c  , 0 / 2.0r c  and / 1.0L c   are considered. The first observation 

is that the values of 
L

InK and 
R

InK decreases with the increasing ratio 2 1/  . In Fig. 9(a) it is 

observed that given any value of 2 1/  , the maximum value of 
L

InK is obtained from the 

case of P-v type 2, while the case of P-v type 3 has the minimum value of 
L

InK . The similar 

trend is found in Fig. 9(b) for the value of 
R

InK . This observation indicates that the P-v type 3 

which produces the smaller stress intensity factors, can enhance the shielding effect of a 

stiffer inclusion on the craze. While the P-v type 2 can decrease the shielding effect of a 
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stiffer inclusion. In this study, the P-v type 1 as a moderate solution is considered for the 

following parametric studies.  

Fig. 9   

 

3.4.3. Influence of a/c 

To investigate the effect of the internal crack size on the fracture behaviors of the entire craze, 

we take the following ratios 0 / 2.0r c  , / 0.5L c  and P-v type 1. The variations of 
L

InK and

R

InK with the ratio a/c are shown in Fig. 10 for the three different shear modulus ratios. The 

value of 
L

InK as shown in Fig. 10(a) increases with the increasing ratio a/c. It suggests that 

for any shear modulus ratio considered, the internal crack becomes larger, and it will result in 

a larger stress intensity factor. Moreover, it is observed that the value of 
L

InK obtained from 

the case of 2 1/ 0.1   are much greater than the other two cases, due to the anti-shielding 

effect of the softer inclusion on the craze. In Fig. 10(b) the curves of 
R

InK versus the ratio a/c 

show the similar trend as those in Fig. 10(a). Another interesting observation is that for the 

case of 2 1/ 10   , the very gentle slopes are observed for both curves of 
L

InK and 
R

InK , 

indicating that the effect of the ratio a/c on the fracture behaviors of the craze can be 

negligible for the case when a stiffer inclusion is considered. 

Fig. 10 

 

3.4.4. Influence of L/c 

In order to examine the influence of craze-inclusion distance on fracture behaviors of the 

polymeric composites, the curves of InK against the variable L/c for two different inclusion 

sizes are plotted in Fig. 11. Here / 0.2a c   is considered. For 2 1/ 10   shown in Fig. 
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11(a), it is observed that both 
L

InK and R

InK are less than 0.78 (which is the value obtained 

from the homogenous case) due to the shielding effect of the stiffer inclusion on the craze. 

When L/c is less than 1.0, the value of 
L

InK is considerably smaller than that of 
R

InK . This is 

because the left craze tip is close to the stiff inclusion, and its fracture behavior is dominated 

by the significant shielding effect of the stiff inclusion. However, for a small inclusion with 

0 / 0.5r c  , the values of 
L

InK and 
R

InK are almost the same when /L c is greater than 3.0. For 

the large inclusion with 0 / 10.0r c  , both 
L

InK and 
R

InK are approaching to each other when 

/L c  is greater than 15.0. As the distance increases, the shielding effect of the inclusion is 

getting weaker and weaker, so the fracture behaviors of the two craze tips are beyond the 

influencing zone of the inclusion. When the inclusion is further away from the craze, the 

normalized stress intensity factors is close to 0.78 (especially for the small inclusion). It 

indicates that the interaction of the inclusion and craze could be neglected at such a large 

craze-inclusion distance, and the craze can be treated as in pure polymeric matrix.  

 

Similarly, the normalized stress intensity factors with the values greater than 0.78 are found 

in Fig. 11(b) for 2 1/ 0.1   . The values of 
L

InK and 
R

InK decrease with the increasing L/c 

value. Particularly, the two curves of 
L

InK against the ratio /L c are of exponential decreasing 

trend as the ratio /L c increases. For instance, at / 0.5L c  , the value of 
L

InK obtained from 

the case of 0 / 10.0r c  can reach up to 2.0, due to the significant anti-shielding effect by the 

larger and softer inclusion. 

 

In summary, Fig. 11 demonstrates that a short craze-inclusion distance has significant 

influence on the fracture behaviors of the craze. Given the shear modulus ratio and the 

inclusion size, the short craze-inclusion distance can largely magnify the shielding effect of 
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the stiffer inclusion. On the other hand, it can also prompt the anti-shielding effect of the 

softer inclusion on the craze.  

Fig. 11  

 

4. Conclusions 

The first time in our current study, the analytical solution for the interaction between a craze 

(with an internal small crack) and a near-by circular inclusion in glassy polymer is presented. 

An iterative procedure is proposed to solve the formulated singular integral equations. The 

detailed numerical procedure is given to obtain the stress intensity factors at the both craze 

tips. Based on systematic parametric studies, the craze thickness profiles, the cohesive stress 

distribution and the fracture toughness of the polymeric composites are investigated. The 

main conclusions are summarized as below: 

1) Comparisons of the stress intensity factors obtained from the current work and the 

empirical equation in open literature demonstrate that the solution procedure on the 

craze-inclusion interaction problem presented in this study is reliable and accurate.  

2) The uneven craze thickness profiles are observed between the left and right part 

throughout the craze zone due to the near-by inclusion considered. A stiffer inclusion 

has stronger shielding effect on the left craze zone (which is nearer to the inclusion), 

and results in smaller craze thickness.  

3) When the shear modulus ratio 2 1/ 1   , both the normalized stress intensity factor 

L

InK and 
R

InK values decrease with the increasing shear modulus ratio, due to the 

shielding effect of a stiffer inclusion on the craze. This shielding effect reaches a 

plateau when 2 1/ 15   . While for 2 1/ 1   , anti-shielding effect is observed. The 

normalized stress intensity factors increase exponentially with the decreasing shear 

modulus ratio.  
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4) When the central crack inside the craze zone is larger, it results in a larger stress 

intensity factor of the craze.  

 

In our following work, a craze interacting with many surrounding inclusions in glassy 

polymer composites will be investigated. Moreover, due to the softening, the internal crack 

propagation will be taken into account once the craze thickness reaches a certain value.  

Meanwhile, complicated loading conditions such as biaxial loadings will be considered in our 

future work.  
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Table Captions 

Table 1 Values of the stress intensity factors obtained from current work and Eq. (19). 

 

 

 

 

 

 

 

 

 

 

Table 1  

 (MPa) c ( m ) a( m ) IK calculated 

by Eq.(19) 

IK obtained from 

current work 

Relative 

error 

20 100.00 10.00 8.6199 8.6382 0.21% 

20 100.00 20.00 8.8184 8.8268 0.09% 

33 100.00 10.00 14.2277 14.2577 0.21% 

33 100.00 20.00 14.5517 14.5655 0.09% 

45 100.00 10.00 19.3972 19.4381 0.21% 

45 100.00 20.00 19.8380 19.8568 0.09% 

33 50.00 5.00 10.0605 10.0818 0.21% 

33 150.00 15.00 17.4253 17.4621 0.21% 
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Figure Captions 

Fig. 1 Illustrative diagram of the craze-inclusion interaction problem: a craze with an internal 

small crack near a circular inclusion. 

Fig. 2 The spatial relationship between a single edge dislocation and a circular inclusion. 

Fig. 3 Curves of the three different P-v relationships considered in this study. 

Fig. 4 Craze thickness profiles for the three different ratios of a/c. 

Fig. 5 Craze thickness profiles for the three different P-v relationships. 

Fig. 6 Cohesive stress distributions along the entire craze zone for three different ratios a/c. 

Fig. 7 Cohesive stress distributions along the entire craze zone for the three different P-v 

relationships. 

Fig. 8 (a) Curves of normalized stress intensity factor 
L

InK against the shear modulus ratios 

for various inclusion sizes. (b) Curves of normalized stress intensity factor 
R

InK

against the shear modulus ratios for various inclusion sizes. The other parameters are 

considered as: / 0.1a c  , / 0.5L c  and P-v type 1. 

Fig. 9 (a) Curves of 
L

InK against the shear modulus ratio 2 1/  and (b) Curves of 
R

InK

against the shear modulus ratio 2 1/  for three different P-v types, when / 0.2a c  ,

0 / 2.0r c   and / 1.0L c  are considered. 

Fig. 10 (a) Curves of 
L

InK against the ratio a/c and (b) Curves of 
R

InK against the ratio a/c for 

three different shear modulus ratios when the following parameters 0 / 2.0r c  ,

/ 0.5L c   and P-v type 1 are considered. 

Fig. 11 Curves of InK against the ratio L/c for both craze tips: (a) for 2 1/ 10   and (b) for 

2 1/ 0.1   when / 0.2a c  and P-v type 1 are considered. 
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