
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Adaptive resource optimization of three‑tier web
applications running on the cloud

Borhani, Amir Hossein

2018

Borhani, A. H. (2018). Adaptive resource optimization of three‑tier web applications running
on the cloud. Doctoral thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/83251

https://doi.org/10.32657/10220/46660

Downloaded on 09 Apr 2024 17:26:29 SGT

ADAPTIVE RESOURCE OPTIMIZATION OF

THREE-TIER WEB APPLICATIONS RUNNING

ON THE CLOUD

AMIR HOSSEIN BORHANI

School of Computer Scince and Engineering

2018

ADAPTIVE RESOURCE OPTIMIZATION OF
THREE-TIER WEB APPLICATIONS RUNNING

ON THE CLOUD

AMIR HOSSEIN BORHANI

School of Computer Scince and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2018

Acknowledgments

My foremost thank goes to my main supervisor, Associate Professor Terence Hung

for all of his efforts, inspiration and support in my graduate study. I thank him for

his understanding, optimistic guidance, and constructive comments on my work that

helped to shape my research skills. As well, I wish to express my sincere gratitude

to my first co-supervisor Associate Professor Bu-Sung Lee for his patience and pro-

fessional feedback. Since the beginning of my PhD, he has motivated me to realize

and develop my potential in research. I am also sincerely grateful to my second co-

supervisor Dr. Zheng Qin for his scientific and impeccable guidance in my research

period. Further, I must show my great gratitude to Dr. Xiaorong Li for her continued

support, encouraging meetings and helpful suggestions. I will forever be thankful for

her kind efforts for giving me the opportunity to pursue my PhD study in Singapore.

In addition, I would like to express my appreciation to Associate Professor Anis

Yazidi from the University College of Oslo and Akershus of Applied Sciences, Oslo,

Norway, for his valuable advice and encouragement. I gratefully acknowledge the

scholarship support by the Agency for Science, Technology and Research (A*Star) of

Singapore grant so that I can pursue my PhD in Singapore. I should be thankful to all

my friends and colleagues in Nanyang Technological University and A*star Graduate

academy for their numerous help. In particular, my great appreciation to Mrs Ng-

Goh Siew Lai (Irene) for solving my technical computer problems quickly and helping

me access the SCSE Custom Computing Resource to run some of my experiments. I

would like to thank my family for understanding all the time I could not spend with

them and their constant support and encouragement throughout my study. Last but

not least, my deepest love and gratitude are devoted to my wife Marjan for being the

foundation of my happiness in difficult times of my life and helping push me to the

finish line. Thank you for working hard in Singapore to pay the tuition fee and living

expenses while you suffered from severe eczema and headache.

ii

Contents

Acknowledgments . ii

Abstract . vii

List of Figures . viii

List of Tables . xi

1 Introduction 1

1.1 Overview of cloud computing . 1

1.1.1 Cloud Computing Architecture 2

1.1.2 Cloud Computing Services . 4

1.1.3 Cloud Types . 6

1.2 Virtualization Technology . 9

1.2.1 VM Live Migration . 11

1.3 Scope, Contributions and Organization 13

1.3.1 Research Motivations . 13

1.3.2 Organization and Contributions 14

2 Literature Review 18

2.1 Benchmark Studies on Cloud Computing 18

2.2 Resource Optimization Approaches . 22

2.2.1 Energy-Aware VM Migration Algorithms 22

2.2.2 Network-Aware VM Migration Algorithms 27

2.2.3 Energy-Efficient Network-aware VM Migration Algorithms . . . 31

2.3 Research Trends, Scope and Novelty of the Thesis 36

3 WPress: A Performance Benchmark For Three-Tier Web Applica-

tions Running on the Cloud 40

3.1 Methodology . 41

3.1.1 WordPress-Based Benchmark Application 42

3.1.2 Client Implementation . 43

iii

3.1.3 Experimental Environment . 47

3.2 Results and Discussion . 50

3.3 Summary . 60

4 Network-Aware VM Migration Heuristic for Improving the SLA Vi-

olation of Three-tier Web Applications on the Cloud 61

4.1 System Model . 63

4.1.1 Power Model . 64

4.1.2 Network Model . 64

4.1.3 Three-tier Web Application Model 65

4.1.4 Workload Model . 66

4.2 Methodology . 68

4.3 Analysis . 73

4.3.1 Performance Metrics . 73

4.3.2 Experiment Setup . 74

4.3.3 Workload Data . 75

4.3.4 Simulation Results and Analysis 76

4.4 Summary . 81

5 Combined Energy Efficient and Network Aware VM Migration Heuris-

tics for Improving the SLA 83

5.1 System Model . 84

5.1.1 Power Model . 84

5.2 Methodology . 85

5.2.1 Energy and Network Aware VM Migration Algorithm 85

5.2.2 PG Calculation Methods . 88

5.2.3 Migration Selection Policies . 90

5.3 Analysis . 90

5.3.1 Performance Metrics . 90

5.3.2 Experiment Setup . 92

5.3.3 Workload Data . 95

5.3.4 Simulation Results and Analysis 95

5.4 Summary . 105

iv

6 Conclusions and Future Works 107

6.1 Conclusions . 107

6.2 Future Works . 109

6.2.1 A Comprehensive Benchmark Application 110

6.2.2 Energy-Efficient Network-Aware VM Migration Algorithm . . . 110

6.2.3 Resource Management for HPC-type Applications 112

Appendices . 114

Author’s Publications 128

References 129

v

Summary

Cloud Computing has been envisioned as a promising approach and dominant com-

puting model in IT infrastructures. It employs the Virtual Machine (VM) technol-

ogy to provide on-demand provisioning of resources on a pay-as-you-go base. This

motivates enterprise application providers to adopt Cloud computing and outsource

their infrastructures and computational needs. In particular, Cloud computing has

become an attractive and promising platform for three-tier web applications. How-

ever, an inappropriate and inefficient resource management practice may negatively

affect the Service Level Agreement (SLA) and the response time experienced by users,

essentially under high load operating conditions. Furthermore, this may result in sub-

stantial amount of energy consumption in data centers, which consequently leads to

a high operational cost.

This research consists of three major parts. The first part is a benchmark study

that runs a three-tier web application on public cloud providers. It proposes WPress

benchmark, which is based on the widespread blogging software, WordPress, as a

three-tier web application, and implements an open source workload generator. Fur-

thermore, a CPU micro-benchmark is utilized to investigate CPU performance of

cloud-based VMs in greater detail. The main objective of this study is to evaluate

and compare the average response time and operational cost of three-tier web appli-

cations running on commercial cloud providers. The small and large instance types

of Amazon EC2, Microsoft Azure, and Rackspace Cloud are evaluated. Based on the

experimental results it is found that Rackspace and Microsoft Azure are the preferred

cloud solutions for small and large instance types, respectively. Furthermore, it is no-

ticed that average response time has substantial fluctuations for large instances that

can lead to significant SLA Violation (SLAV) for high load.

Cloud service providers are penalized if the service level agreement is violated.

This may result in the loss of revenue. It is hence important for service providers to

minimize SLAV as much as possible. To address this, the second part of the thesis

introduces a network-aware VM migration algorithm to minimize the average SLAV

vi

of the system. The algorithm considers steady-state traffic condition to minimize the

negative effect of migration on other flows. The Network Gain (NG) is calculated

for candidate VMs and the VM with the maximum NG is selected. The simulation

results in CloudSim show that the suggested algorithm yields significant performance

improvements.

The increase in computing capacity and communication units in modern data

centers results in the high energy consumption and operational cost. This negatively

affects the environment and the cost of using cloud. Therefore, it is crucial to design

new approaches for saving the energy consumption in the data centers. The third part

of this thesis is to address this issue by extending the network-aware algorithm with

energy-awareness capabilities to minimize the energy consumption while maintaining

the SLA. In addition to NG, Power Gain (PG) is calculated for each candidate VM

and two lists are created for each congested link: NG list and PG list. The VM with

the lowest sum of the rank is selected. An extensive simulation study in CloudSim

presents the effectiveness of the proposed approach.

vii

List of Figures

1.1 Cloud-architecture . 2

1.2 Cloud-architecture . 4

1.3 Cloud-architecture . 7

1.4 Hypervisor-based virtualization . 10

1.5 Container virtualization . 10

1.6 An example of load balancing VM migration (a) before migration (b)

after migration [1, 2]. 12

1.7 An example of power management VM migration (a) before migration

(b) after migration [1, 2]. 13

3.1 Average response times for different number of parallel users in Mi-

crosoft Azure for Read Workload, (a) Small instances and (b) Large

instances. 47

3.2 cpu sharing . 48

3.3 Average response times for small instances: (a) Read Workload, (b)

Write Workload, (c) Read/Write Workload. 51

3.4 Average response times for large instances: (a) Read Workload, (b)

Write Workload, (c) Read/Write Workload. 52

3.5 Comparing total VM cost for Read, Write and Read/Write workloads

on different cloud providers. (a) Small instances, (b) Large instances. . 54

3.6 CPU micro-benchmark results observed at 4pm (SGT) for small in-

stances: (a) Amazon EC2, (b) Microsoft Azure, (c) Rackspace Cloud. 55

3.7 CPU micro-benchmark results observed at 4pm (SGT) for large in-

stances: (a) Amazon EC2, (b) Microsoft Azure, (c) Rackspace Cloud. 56

3.8 Performance variation of CPU on small instances: (a) for three providers

on different time slots, (b) for three providers. 58

3.9 Performance variation of CPU on large instances: (a) for three providers

on different time slots, (b) for three providers. 59

viii

4.1 The 3-tier architecture . 66

4.2 An Aggregated Request (AR) consisting of three Network Cloudlets

(NCs) . 68

4.3 The simulated data center consisting of 24 hosts and 60 VMs connected

by a 1-Gbps edge switch. 75

4.4 The simulated scenarios. In this Figure, ”H” and ”V” stand for Host

and VM, respectively. 77

4.5 The comparison of the average SLA Violations. The figure is zoomed in

to demonstrate the efficiency of the proposed network-aware algorithm,

even for low load. 78

4.6 The comparison of the average execution time. The figure is zoomed in

to demonstrate the efficiency of the proposed network-aware algorithm,

even for low load. 78

4.7 The comparison of the average energy consumption. The figure is

zoomed in to demonstrate the efficiency of the proposed network-aware

algorithm, even for low load. 79

4.8 The comparison of the average number of VM migrations. 79

5.1 The operation of Algorithm 5.1. The PG in step 2 is calculated by two

methods: Power Balancer method, and Power Saver method. Further-

more, if there are more than one candidate for migration in step 4, two

policies are used to select the best candidate for migration. 87

5.2 The change in energy consumption before and after migration. This

example assumes migration of vm from HostA to HostB. (a) Energy

consumption on HostA, (b) Energy consumption on HostB 88

5.3 An example of having more than one migration candidates with the

lowest sum of ranks . 91

5.4 The simulated data center consisting of 24 physical hosts and 103 VMs

interconnected by a Gigabit Ethernet edge switch. 92

5.5 The eight scenarios simulated in this chapter. Each scenario contains

at least two communication paths. For example, {VM 16↔ VM 38↔
VM 9} and {VM 40 ↔ VM 25 ↔ VM 60} are the two communication

paths in the first scenario. 94

5.6 Comparing the efficiency of MST and MLB overloading detection poli-

cies in the proposed network-aware algorithm 97

ix

5.7 Comparing the efficiency of Network-Priority (NP) and Power-Priority

(PP) final selection policies while Power Gain (PG) is calculated with

Power Balancer (PB) method. 100

5.8 Comparing the efficiency of Network-Priority (NP) and Power-Priority

(PP) final selection policies while Power Gain (PG) is calculated with

Power Saver (PS) method. 103

5.9 Comparing the average completion time of Power-Balancer (PB) and

Power-Saver (PS) calculation methods. In this comparison the Network-

Priority (NP) is adopted for the final selection policy. 104

5.10 Comparing the average traffic gain of Power-Balancer (PB) and Power-

Saver (PS) calculation methods. In this comparison the Network-

Priority (NP) is adopted for the final selection policy. 105

5.11 Comparing the average over-utilization time of Power-Balancer (PB)

and Power-Saver (PS) calculation methods. In this comparison the

Network-Priority (NP) is adopted for the final selection policy. 105

x

List of Tables

1.1 The instance types offered by Amazon EC2, last viewed on January 2017 8

3.1 List of tasks generated by WPressClient 44

3.2 Detailed Setup of Instances Deployed in the experiment 49

3.3 Detailed Setup of Instances Deployed in Test Executer 49

3.4 Recommended Providers for Each Workload type on small and large

instances. 58

4.1 Average active power of the selected servers at different load levels in

Watts (W) . 65

4.2 Definition of variables in algorithm 4.1 72

4.3 The final simulation results including the means and 95% CIs 80

4.4 Comparison of different algorithms using paired t-test 80

4.5 Comparison of MST and MLB in terms of migration time. VM migra-

tion starts at t =26.48 second in MST and t =55.31 second in MLB. . . 81

5.1 Average active power of the selected servers at different load levels in

Watts (W) . 85

5.2 Definition of variables in algorithm 5.1 87

5.3 The host types in Figure 5.4 . 93

5.4 The simulation results including the means and 95% confidence inter-

vals (CIs) . 98

5.5 Comparison of different algorithms using paired t-test 98

5.6 Comparison of MST and MLB in terms of migration time. Migration of

VM 58 from Host 13 to Host 2 starts at t =35.27 second in MST. How-

ever, the same VM is migrated at t =88.34 second in MLB. CPU shows

the CPU utilization of Host 2 and UUT stands for Upper Utilization

Threshold. 99

A.1 The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP for

Average SLAV (%). The mean values are presented in Figure 5.7(a). . . 114

xi

A.2 The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP for

average energy consumption (kWh). The mean values are presented in

Figure 5.7(c). 115

A.3 The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP

for average completion time (sec). The mean values are presented in

Figure 5.7(e). 116

A.4 The t-test results to compare average SLAV (%) between NA, PNA-

PB-NP, and PNA-PB-PP. The original values are presented in Figure

5.7(b). 117

A.5 The t-test results to compare average energy consumption (kWh) be-

tween NA, PNA-PB-NP, and PNA-PB-PP. The original values are pre-

sented in Figure 5.7(d). 118

A.6 The t-test results to compare average completion time (sec) between

NA, PNA-PB-NP, and PNA-PB-PP. The original values are presented

in Figure 5.7(e). 119

A.7 The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for

Average SLAV (%). The mean values are presented in Figure 5.8(a). . . 120

A.8 The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for

average energy consumption (kWh). The mean values are presented in

Figure 5.8(c). 121

A.9 The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for

average completion time (sec). The mean values are presented in Figure

5.8(e). 122

A.10 The t-test results to compare average SLAV (%) between NA, PNA-

PS-NP, and PNA-PS-PP. The original values are presented in Figure

5.8(b). 123

A.11 The t-test results to compare average energy consumption (kWh) be-

tween NA, PNA-PS-NP, and PNA-PS-PP. The original values are pre-

sented in Figure 5.8(d). 124

A.12 The t-test results to compare average completion time (sec) between

NA, PNA-PS-NP, and PNA-PS-PP. The original values are presented

in Figure 5.8(e). 125

A.13 The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of

average completion time (sec). The mean values are presented in Figure

5.9 . 126

xii

A.14 The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms

of average completion time (sec). The original values are presented in

Figure 5.9 . 126

A.15 The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of

average traffic gain (Mbits). The mean values are presented in Figures

5.10 . 126

A.16 The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms

of average traffic gain (Mbits). The original values are presented in

Figures 5.10 . 127

A.17 The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of

average over-utilization time (sec). The mean values are presented in

Figures 5.11 . 127

A.18 The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms

of average over-utilization time (sec). The original values are presented

in Figures 5.11 . 127

xiii

List of Abbreviations

α-MCNU α-Minimum Migration Cost Network Utilization
A*Star Agency for Science, Technology and Research
ACES Automated Controller for Energy-aware Servers
AHP Analytic Hierarchy Process
App-tier Application-tier
APP-VM Application Server VM
AR Aggregated Request
AWS Amazon Web Services
BaaS Benchmark-as-a-Service
BFH Best Fit Host
BFV Best Fit VMs
CARE Cloud Architecture Runtime Evaluation
CDN Content Delivery Network
CI Confidence Interval
CRM Customer Relationship Management
CSO Cat Swarm Optimization
CVM Container Virtual Machine
DaaS Database-as-a-Service
DBMS Database Management System
DB-tier Database-tier
DB-VM Database Server VM
DCN Data Center Network
DENDIST-FM Dynamic Reroute with Flow Migration
DNA Deoxyribonucleic Acid
EC2 Elastic Compute Cloud
ECU EC2 Compute Unit
ERP Enterprise Resource Planning
ETA-VMM Energy-and-Topology Aware VM Migration
FCFS First-Come First-Serve
FFD First Fit Decreasing
GA Genetic Algorithm
GB Gigabyte
GbE Gigabit Ethernet
GL Group Leader
GM Group Manager
HPC High Performance Computing
HSP Host Selection Policy
HVM Hardware Virtual Machine

IaaS Infrastructure-as-a-Service
IIS Internet Information Server
IQR Interquartile Range
kWh kilowatt-hour
LC Local Controller
LIPHostSort Least Increased Power with Host Sort
LR Local Regression
MA Multi-Agent
MAD Median Absolute Deviation
MBFD Modified Best Fit Decreasing
Mbps Megabit per second
MC Maximum Correlation
MCC Minimum Correlation Coefficient
MCMC Maximum Correlation with Migration Control
MCRVMP Min Cut Ratio-aware VM Placement
MIPS Million Instructions Per Second
MLB Migration with Load-Balancing Threshold
MM Migration Manager
MST Migration with Static Threshold
MWC Monotonic Write Consistency
NA Network-Aware
NAS Network Attached Storage
NC Network Cloudlet
NG Network Gain
NIST National Institute of Standards and Technology
NM No Migration
NP Network Priority
NPB NAS Parallel Benchmark
NS2 Network Simulator
NTU Nanyang Technological University
NUS National University of Singapore
OLTP On-Line Transactional Processing
OS Operating System
PaaS Platform-as-a-Service
PB Power Balancer
PG Power Gain
PNA Power and Network-Aware
PP Power Priority
PS Power Saver
PVA Peer VM Aggregation
PVM Paravirtualized Virtual Machine
R Read workload
R/W Read/Write workload
RFDCN Removed From the DCN
RLR Robust Local Regression
RNA Ribonucleic Acid
RSST Resultant Steady State Traffic
RT Retransmitted Traffic

RYWC Read Your Writes Consistency
S3 Simple Storage Service
SaaS Software-as-a-Service
SCSE School of Computer Science and Engineering at NTU
SDN Software Defined Network
SEO Search Engine Optimization
SGT Singapore Time
SLA Service Level Agreement
TAVMS Topology-Aware Virtual Machine Selection
THR Static CPU Utilization threshold
THR-RS Threshold with Random Selection
ToR Top-of-Rack
Ubench Unix benchmark utility
UUT Upper Utilization Threshold
VC VM Clustering
vCPU virtual CPU
VM Virtual Machine
VMM Virtual Machine Manager
VPC Virtual Private Cloud
VSP VM Selection Policy
W Write workload
WAN Wide Area Network
WEB-VM Web Server VM
WIPS Web Interactions Per Second
YCSB Yahoo! Cloud Servicing Benchmark

Chapter 1

Introduction

This chapter is an overview of basic terms and terminologies that are employed in this

thesis. Firstly, I describe the cloud computing architecture including different types

of cloud and available cloud services. Next, I explain the virtualization technology

and illustrate existing types of virtualization. After that, I explain the Live migration

in data centers and show existing approaches.

1.1 Overview of cloud computing

Cloud computing is an emerging information technology which provides on-demand

shared resources and services over the Internet on the pay-as-you-go basis with the

predicted market size of $228 billion by 2026 [3]. The primary goal of cloud computing

model is to establish a proficient utilization of distributed resources (i.e. computing,

storage and network) with high availability, security and cost effectiveness. The lack

of a standard definition of cloud computing has led to small amount of indecision and

confusion. There have been several research works on standardizing the definition of

cloud computing [4–16]. In this thesis, the definition of cloud computing proposed by

The National Institute of Standards and Technology (NIST) [16] is adopted because,

it is able to cover the major features of cloud computing: ”Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction.”

1

Chapter 1. Introduction

Indeed, the key reason for existence of various impressions of cloud computing is

that it serves as a basic model to bring together a set of existing technologies such as

grid computing, utility computing and virtualization each of which has their own defi-

nition and characteristics. Essentially, cloud computing leverages the aforementioned

technologies to run a business in new way which is more effective and efficient to

meet the technological and economic requirements of today’s demand for information

technology [17].

Services Resources managed at each level Examples

SaaS

Application Level

Business Applications, Web services,

Multimedia, Healthcare Applications

PaaS

Platform Level

Software Framework (Java, Python,

.Net), Operating System, Database

IaaS

Infrastructure Level

Computation (VM), Storage (block)

Hardware Level

CPU, Memory, Disk, Network

Figure 1.1: The architecture of cloud computing.

1.1.1 Cloud Computing Architecture

The architecture of cloud computing environment (refer to Figure 1.1) consists of 4

layers: 1) the hardware layer, 2) the infrastructure layer, 3) the platform layer, and

4) the application layer. While the modular architecture enables each layer to behave

and evolve separately, it facilitates each layer to communicate with its successor or

predecessor. At the highest level of the hierarchy, the application layer refers to the

actual software and applications that are available over the cloud including business,

2

Chapter 1. Introduction

web services, multimedia, health care, etc. The next layer, known as platform layer,

provides the software frameworks (e.g. Java, Python, .Net, etc.), operating system

(OS) and database.The purpose of platform layer is to eliminate the complexity of

establishing and maintaining the infrastructure usually associated with developing and

launching an application. The subsequent layer is called infrastructure, also known

as virtualization layer. This is an essential part of cloud computing that uses the

virtualization technologies (e.g. Xen [18], VMware [19], and KVM [20]) and provides

dynamically scalable virtual resources in the form of Virtual Machine (VM), storage

blocks and network bandwidth. The lowest layer is the hardware, also known as data

center, layer that consists of all physical resources being used in the cloud environment

including physical machines, network devices, power source and cooling systems [17].

A typical data center contains hundreds or thousands of servers. Figure 1.2 il-

lustrates a typical building block of a data center. The physical servers (e.g. web,

application and database servers) are organized in multiple racks which in turn are

interconnected via the data center network (DCN). Upon receiving a new request,

the content switches and the load balance devices choose the appropriate server to

direct the request to, and control the path taken by packets in the network. Quite

possibly, this server needs to communicate with many other servers to fulfill the re-

quest. A good example is posting a new photo into your personal web-log in which

web, application and database servers are involved.

The DCNs are usually established in either two- or three-tiers of switches or

routers. The DCN depicted in Figure 1.2 has a canonical fat-tree 3-tiered design

including edge, aggregation and core tiers. In the edge tier, also known as access

tier, each rack is connected a 1 Gbps Top-of-Rack (ToR) switch. In the aggregation

tier, ToR switches are connected to 10 Gbps switches so-called aggregation switches.

Finally, the core tier is to interconnect aggregation switches either via 10 Gbps or 100

Gbps links (a bundle of 10 Gbps links [21]). The fat-tree architecture is very promising

in terms of scalability, fault-tolerance and simplicity of the interconnection.

3

Chapter 1. Introduction

Figure 1.2: The architecture of data center. (Adopted from [22])

1.1.2 Cloud Computing Services

Cloud computing promises to provide its resources as a subscription-based services.

In other word, the four levels of resources depicted in Figure 1.1 (i.e. hardware, infras-

tructure, platform, and application) are delivered on an on-demand basis with pay-

as-you-go business model. In practice, cloud services are classified in three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS) [9–15,17,23–26] (readers are referred to figure 1.1).

(i) Infrastructure as a Service (IaaS)

IaaS, is one of the most flexible services offered by cloud providers. This is a

systematic approach to deliver a variety of infrastructure resources (i.e. com-

pute, storage and network) as well as several services (e.g. load balancing and

4

Chapter 1. Introduction

content delivery networks (CDNs)) over the Internet. For instance, Amazon

Elastic Compute Cloud (EC2) offers compute resources while Amazon S3 and

EBS offer storage resources. IaaS server hosting service is the dominant solu-

tion for enterprises and organizations in the current market environment with

which, they can run their businesses from scratch by renting a desired number

of virtual machines called instances each of which with a predefined amount of

physical resources being assigned from the hardware level shown in figure 1.1.

In particular, IaaS has the following substantial benefits:

(a) No CAPEX (no upfront heavy investment)

(b) Minimal delay in getting started

(c) Save time and effort to procure, setup and maintain the resources as these

services are taken care of by the providers

According to the information provided by Dan [27], the most popular IaaS

providers are Amazon AWS, Windows Azure, Google Compute Engine, Rackspace

Open Cloud, IBM SmartCloud Enterprise and HP Enterprise Converged Infras-

tructure.

(ii) Platform as a Service (PaaS)

PaaS, is specifically designed for software developers. It provides several pro-

gramming platforms (e.g. Java, Ruby, PHP, Python, Go, Node, Scala, Er-

lang, .NET, etc.) and database applications (e.g. MySQL, PostgreSQL, Redis,

Microsoft SQL Server, etc.). All developers need to do is just selecting their

favorite platform and starting their application development, testing and de-

ployment without having to worry about the hardware that is being used. The

major advantage for PaaS customers is that they are not required to invest in

expensive infrastructure to make use of the application provided as a service.

This is because of the fact that PaaS providers charge customers only for the

portion of time that they use the platform. Furthermore, PaaS is considered

as an effective IT solution in terms of availability and fault tolerance because

5

Chapter 1. Introduction

normally multiple copies of user’s data are stored on provider’s data-centers.

Moreover, PaaS offers dynamic scalability where allocated resources scale up or

down automatically based on application demand [12, 13, 15, 24]. Some of the

popular PaaS providers are Google App Engine, Microsoft Azure platform, and

AppFog. [28].

(iii) Software as a service (SaaS)

Perhaps, SaaS is one of the most popular cloud services on which enterprise

applications, which are already installed and running on the cloud, are leased

on-demand [29, 30]. The applications offered in SaaS layer may have been de-

veloped and deployed on the lower levels, such as PaaS and IaaS, of the cloud

service hierarchy. In particular, SaaS changes traditional software usage to a

subscription-based model to reduce the user cost of infrastructure [30]. SaaS has

been adapted in fast pace for many business applications including customer re-

lationship management (CRM), enterprise resource planning (ERP) [31]. Some

of the well-known SaaS providers are: Google App (Google Doc, Google Mail,

Google Spreadsheets), Microsoft Office 365 and SalesForce.com [32].

1.1.3 Cloud Types

Depending on infrastructure ownership and management, cloud computing are clas-

sified into three major types: Private Cloud, Public Cloud and Hybrid Cloud [17,30].

According to the survey conducted by RightScale in 2016 [33], almost 95% of techni-

cal professionals across a broad cross-section of organizations adopted some types of

cloud solutions (see Figure 1.3).

(i) Public Cloud

In public cloud, the infrastructure and virtualization software are owned by a

third-party organizations commonly known as public cloud providers, such as

Amazon EC2, Microsoft Azure, Rackspace Cloud and Google Apps. They offer

cloud services over Internet to be accessible for general public. Public clouds,

6

Chapter 1. Introduction

18% 6%71%

Hybrid

Private Cloud

Only

Public Cloud

Only

Private = 77%Private = 89%

95% of participants adopted Cloud

Figure 1.3: The 2016 survey results, conducted by RightScale, in terms of popularity
of cloud types (adopted from [33])

also referred as hosted cloud [8], usually have several data centers distributed in

different countries and regions to meet resource demand of thousands of million

users each with different QoS requirement. The Service Level Agreement (SLA)

is a contract negotiated and agreed between a customer and a service provider

of the level of service to be provided [34]. Public cloud offers services in a

pay-as-you-go business model. This is a very cost-effective computing solution

particularly for small organizers or individuals because they do not need to

purchase any infrastructure or software [35, 36]. Nonetheless, public clouds are

unable to provide users a fine-grained control over allocated resources [12, 24].

In other words, customers are not allowed to alter the instance details such

as number of virtual CPUs (vCPUs), memory, storage, etc. To address this

issue, cloud providers tend to develop a reasonable variety of instance types

to meet customer demands. For example, at the time of writing this report

Amazon EC2 offers 55 types of instances which are classified into five categories:

general purpose, compute optimized, memory optimized, accelerated computing,

and storage optimized [37]. Table 1.1 illustrates the number of instances being

offered coupled with a few sample use cases for each category.

(ii) Private Cloud

7

Chapter 1. Introduction

Table 1.1: The instance types offered by Amazon EC2, last viewed on January 2017

Category No. of Sample use case
instance

General Purpose 17 web applications, code repositories
Compute Optimized 10 web servers, distributed analytics
Memory Optimized 13 big data processing engines, data mining
Accelerated Computing 7 machine learning, 3D application streaming
Storage Optimized 8 NoSQL databases, data warehousing

Private cloud is devoted for internal use of organizations. In fact, private

cloud providers are mostly large companies or government departments, that

are mainly interested to have more security and control over its data [30]. Pri-

vate cloud can be set up within an internal data center of an organization or

outsourced to a third party to operate. The Microsoft Azure Government [38] is

a good example of the United States Federal government-specific private cloud

that is outsourced to Microsoft. Essentially, private clouds are able to pro-

vide many of the features of public clouds such as elasticity and being service

based [36]. Some of the most popular private cloud solutions are CloudStack [39],

OpenStack [40] and Eucalyptus [41].

(iii) Hybrid Cloud

The hybrid cloud is formed by an integration of private and public clouds [42].

In this model, high flexibility of resource provisioning offered in private cloud is

combined with cost effective infrastructure of public clouds. Essentially, services

with high security demands are kept within the control of the organization

and the remaining services can be safely outsourced to public cloud providers.

Furthermore, if internal demands exceed the available resources in the private

cloud, more resources can be leased from public cloud providers to meet an

organization’s overall business objectives. Some good examples of hybrid cloud

are Virtual Private Cloud (VPC) services offered by Google [43] and Amazon

[44].

8

Chapter 1. Introduction

1.2 Virtualization Technology

Virtualization technology has a long history in computer science, dating back to the

1960s with IBM’s System/360 (S/360) and System/370 (S/370) [45, 46]. The term

Virtualization is used to describe the abstraction of computing resources required to

complete a service and the underlying physical infrastructure (CPU, storage, network,

memory). Virtualization is the core technology used in cloud computing that enables

multi-tenancy by providing shared, scalable resource platform for all tenants [47]. In

particular, a special type of operating system, known as hypervisor or Virtual Machine

Manager (VMM), is running on top of the physical hardware infrastructure. Hyper-

visor is capable of making resource allocation completely independent of operating

system level. By doing this, the hypervisor is able to execute multiple operating sys-

tems and their associated applications in smaller computing units, known as Virtual

Machine (VM), each of which runs on a single physical server. It is the job of hyper-

visor to hide all the complexity from end-user, so that from the users’ point of view

each VM is perceived as if it is the only machine on the physical infrastructure [48].

Figure 1.4 depicts an example of a virtualized cloud environment with two servers

each of which runs two guest operating systems (OSs). Tenants have access to the

applications through their web browsers without knowing anything about where they

are located [49].

The state-of-the-art virtualization technologies are generally classified into three

categories: Paravirtualized Virtual Machine (PVM), Hardware Virtual Machine (HVM),

and Container Virtual Machine (CVM) [52]. The main similarity between PVM and

HVM is the use of hypervisor between VMs and underlying physical resources (Fig-

ure 1.4). Hence, both technologies are able to ensure security and confidentiality of

running VMs. However, they differ with regards to the modification of guest OS. In

HVM, the guest OSs can be run without any modification on top of the hypervisor

as if they are directly interacting with the bare metal hardware. But, in fact the

guest OSs are running as user-level processes on top of the hypervisor. Therefore,

the hypervisor needs to emulate certain functionalities of the guest OS that can only

9

Chapter 1. Introduction

Cloud environment

Tenant 1

Application 1 Application 2

Guest OS 1 Guest OS 2

Hypervisor

Server A

Application 3 Application 4

Guest OS 3 Guest OS 4

Hypervisor

Server B

Tenant 2 Tenant 3 Tenant 4

Browser Browser Browser Browser

Figure 1.4: An example of hypervisor-based virtualization in cloud computing envi-
ronment (adopted from [50,51])

be run in the privileged mode. In the PVM design, instead, the binary code of the

guest OS is modified such that the guest OS become aware of the virtualized envi-

ronment and hypervisor. Hence, in PVM the hypervisor does not need to emulate

certain functionalities of the guest OS [52–54]. VMware [55], is a well known product

for HVM, and Xen [18] is a widely used project of PVM. To name a few commercial

cloud providers, Amazon AWS [44] uses Xen hypervisor, and vCloud Air [56] employs

VMware. CVM, also known as software virtualization, is a lightweight alternative to

Cloud environment

Tenant 1

Application 1 Application 2

Virtualization Layer

Host OS 1

Server A

Application 3 Application 4

Virtualization Layer

Host OS 2

Server B

Tenant 2 Tenant 3 Tenant 4

Browser Browser Browser Browser

Figure 1.5: An example of container-based virtualization in cloud computing environ-
ment (adopted from [50,51,57])

10

Chapter 1. Introduction

the hypervisor-based virtualization technologies such as HVM and PVM. In particu-

lar, CVM is an OS-level virtualization technology that enables applications to run on

distributed resources without launching a separate VM for each application [57,58]. It

is shown that CVM leads to minimal interference among virtualized applications [59]

with negligible extra energy consumption compared to those of HVM and PVM [60].

The main limitation of the CVM design is that each server is unable to run more than

one host OS on the physical hardware. Because of that reason, commercial cloud

providers seldom use CVM [52]. Figure 1.5 illustrates an example of CVM design

with two tenants and virtualized applications for each server. Essentially, the virtu-

alization layer installed on top of the host OS hides the complexity of the underlying

system from users such that from the tenant’s point of view, each application has

its own dedicated OS. Some famous examples of CVM design are OpenVZ [61] and

Linux-VServer [62].

1.2.1 VM Live Migration

Live migration of VM is a remarkably powerful tool, enabled by the virtualization

technology. This provides the facility for cloud administrators to transfer VMs across

the DCN from one machine to another with very negligible negative impact on the

applications and processes being executed on the VM [63]. Dynamic re-allocation of

VMs is highly beneficial for various critical system functions such as load balancing,

power management, and DCN traffic management [2, 64,65].

Load balancing approaches aim to balance the overall resource utilization in the

data center to enhance the performance of applications running on hosts. Figure

1.6 illustrates an example of load balancing scenario. The initial CPU utilization of

Host 1, Host 2, Host 3 and Host 4 are 60%, 60%, 20% and 95%, respectively (see

Figure 1.6(a)). The host is over-utilized if its CPU utilization exceeds 85% of the

total computing capacity of the host. Hence, Host 4 in Figure 1.6(a)) is over-utilized

and unable to satisfy the computing demands of VM 5, VM 6 and VM 7. Live VM

migration can effectively prevent the performance degradation of applications running

11

Chapter 1. Introduction

Host 1 Host 2 Host 3 Host 4

85%

VM 2

45%

VM 7

30%

VM 6

25%

VM 5

40%

50%

VM 4
20%

VM 3
15%

VM 1

60%

(a)

Host 1 Host 2 Host 3 Host 4

85%

VM 2

45%

VM 7

30%

VM 6

25%

VM 5

40%

50%

VM 4
20%

VM 3
15%

VM 1

60%

(b)

Figure 1.6: An example of load balancing VM migration (a) before migration (b) after
migration [1, 2].

on Host 4 such that migration of VM 7 distributes the load evenly on the system and

consequently the resource demands of VMs are met (Figure 1.6(b)).

The power management approaches address the energy inefficiency of data centers.

Typically, the power management methods dynamically consolidate VMs on a min-

imum number of hosts. This allows operators to switch idle hosts to standby mode

and eliminate the idle power consumption. However, aggressive consolidation of VMs

may cause serious performance degradation of applications running on VMs. The

common approach to address this issue is to migrate VMs from over-utilized hosts to

less loaded hosts. Figure 1.7 depicts an example of power management VM migration.

The initial VM placement in Figure 1.7(a) is similar to what is explained for Figure

1.6(a). The optimization algorithm selects VM 6 to migrate from Host 4 to Host 1.

This reduces the CPU utilization of Host 4 from 95% to 65%. Moreover, VM 4 is

migrated from Host 3 to Host 2 Figure 1.7(b). After migration of VM 4 is completed,

12

Chapter 1. Introduction

Host 3 can be switched from active mode to standby mode for energy saving.

Network bandwidth is a scarce resource in data centers [66]. In particular, network

intensive applications such as three-tier web applications generate huge amount of

traffic on the DCN. This can quickly lead to network congestion and performance

degradation of applications especially in terms of response time. The live migration

of VMs is a well known approach to bring communicating VMs close to each other to

minimize the network congestion and improve the application response time.

Host 1 Host 2 Host 3 Host 4

85%

VM 2

45%

VM 7

30%

VM 6

25%

VM 5

40%

50%

VM 4
20%

VM 3
15%

VM 1

60%

(a)

Host 1 Host 2 Host 3 Host 4

85%

VM 2

45%

VM 7

30%

VM 5

40%

50%VM 3
15%

VM 1

60%

VM 4
20%

VM 6

25%

(b)

Figure 1.7: An example of power management VM migration (a) before migration (b)
after migration [1, 2].

1.3 Scope, Contributions and Organization

1.3.1 Research Motivations

Typically, cloud data centers consist of powerful physical machines that are inter-

connected via high speed network. Cloud computing provides on-demand access to

13

Chapter 1. Introduction

computing and network resources on a pay-as-you-go business model. This makes

the Cloud an attractive solution for several types of applications such as Web service,

HPC and large-scale data processing [67–69]. In fact, the ever increasing number of

hosts and switches in data centers causes several issues. Firstly, such a giant data

center consumes considerable amount of energy that leads to high operation cost. It

is reported that the energy consumption of IT infrastructures in the United States

was about 61 billion kWh that corresponds to 2 percent of global carbon emission,

and the numbers are likely to double every 5 years [70]. The other issue is the high

amount of traffic that is generated by applications on the data center network. This

can quickly over-load the network links and apparently increase the average response

time of applications. This network problem is more noticeable for network-intensive

applications. Therefore, an efficient resource management algorithm is crucial for

modern data centers.

There are many research works exploring the energy and network optimization of

Cloud platform. However, little work has been done to study the three-tier web appli-

cations running on the cloud. Thus, the scope of this thesis is to design and implement

an adaptive energy-efficient network-aware VM migration heuristic for three-tier web

applications running on the Cloud platform. The main objective of the proposed ap-

proach is to minimize the SLA violation and energy consumption of the data center.

1.3.2 Organization and Contributions

The organization of this thesis is as follows. Chapter 1 provided a background of

Cloud Computing coupled with the research motivation and main contributions of

this dissertation. Chapter 2 discusses related works and emphasizes the novelty of

contributions. Chapter 3 explains a benchmark study that is conducted to study

the average response time and computational cost of three-tier web applications run-

ning on public cloud providers. Chapter 4 and Chapter 5 are the main two chap-

ters of this work which present the design and implementation of an energy-efficient

network-aware VM management algorithm for three-tier web applications running on

14

Chapter 1. Introduction

the Cloud. In particular, Chapter 4 proposes a network-aware VM migration heuris-

tic and determines the most suitable overloading detection policy. Chapter 5 extends

the proposed network-aware approach with energy-awareness capabilities. Finally,

Chapter 6 presents the conclusion and future research directions.

The organization and the main contributions of the thesis are summarized as

follows.

• Chapter 1:

– The fundamental background of Cloud computing is provided. Further-

more, some applications of VM migration are presented.

• Chapter 2:

– The previous benchmark studies for web applications running on clouds

are presented. Moreover, research works on existing energy-efficient and

network-aware VM management algorithms are discussed.

– The novelty and significance of this work is stated compared with existing

research works in the literature.

• Chapter 3:

– A WPress benchmark is proposed, which uses WordPress as a widely

used open-source blogging and publishing platform in today’s market [71].

WordPress follows the three-tier architecture consisting of presentation

layer (Web tier), business logic layer (App tier), and database layer (DB

tier). Furthermore, various use-cases for WordPress are described to indi-

cate that it is a good representative for three-tier Web applications.

– An open-source Benchmark Client Application, called WPressClient, is

implemented to generate typical Web requests for WordPress and collect

the results.

15

Chapter 1. Introduction

– A distributed infrastructure is used to test WPress on small and large

instance types of Amazon EC2 [37], Microsoft Azure [72] and Rackspace

Cloud [73]. WPress runs on each cloud provider to evaluate and compare

average response times and total operation cost.

– A CPU micro-benchmark is employed as proposed in [74], to detect periods

during which the VM is not assigned CPU time by the hypervisor. Results

of the CPU micro-benchmark are used to investigate the effect of CPU

performance on observed average response times and total operational cost.

• Chapter 4:

– The high SLAV is addressed by proposing a network-aware migration heuris-

tics that aims to minimize the SLAV of three-tier web applications running

on the Cloud.Once a congested link is detected its traffic flows are moni-

tored and the network gain is calculated for all contributing VMs. Even-

tually, the VM with the maximum network gain is selected for migration.

The same practice applies to all congested links. The steady-state traffic

condition has been used to calculate the network gain to mitigate the nega-

tive effect of VM migration on other flows. The network gain is the amount

of network traffic that can be removed from the data center network after

migration. The larger the network gain, the lower SLAV is expected to be

achieved.

– Two overloading detection policies are compared for the host selection pol-

icy: 1) Migration with Static Threshold (MST) that uses a static Up-

per Utilization Threshold (UUT), and 2) Migration with Load-balancing

Threshold (MLB) in which the UUT sets to the average CPU utilization

of the system.

– Finally, to verify the effectiveness of the proposed heuristic, CloudSim ver-

sion 3.0, a well-known cloud simulator, is extended with power-network

awareness capabilities for three-tier web applications running on the Cloud.

16

Chapter 1. Introduction

• Chapter 5:

– The network-aware migration heuristics proposed in Chapter 4 is extended

to include power-awareness capabilities. In particular, once a congested

link is identified, the algorithm monitors its traffic flows and calculates

network gain and power gain values for all contributing VMs. Accordingly,

the network gain and power gain lists are created for each congested link

and eventually, the VM with the lowest sum of ranks is selected for migra-

tion. The power gain reflects the amount of energy saving achieved by VM

migration. Two different methods are used to measure the power gain and

conducted an extensive set of experiments to evaluate the performance of

the proposed methods.

• Chapter 6:

– The conclusion of this thesis is presented and some future research oppor-

tunities are suggested.

17

Chapter 2

Literature Review

In this chapter, firstly, the previous research works for benchmarking the three-tier web

applications on the cloud platform are discussed. Then, the most relevant studies that

addressed the energy efficiency and network optimization in the cloud data centers

are presented. Finally, the research trend is explained and the novelty of thesis is

presented.

2.1 Benchmark Studies on Cloud Computing

Schad et al. [75] carried out a comprehensive study on performance variation of differ-

ent VM instances on Amazon EC2. A multi-node MapReduce application is used to

quantify the impact of real data-intensive applications. Furthermore, they used three

micro-benchmarks in their study. Firstly, the Unix benchmark utility (Ubench) is used

for testing the CPU and Memory speed. Secondly, they employed Bonnie++ micro-

benchmarks for disk performance evaluation. Thirdly, the Iperf is used to evaluate

the network bandwidth. They analyzed the results in terms of different availability

zones, points in time, and locations. They showed significant variation of performance

in Amozon EC2.

Liang et al. [76], proposed the CARE (Cloud Architecture Runtime Evaluation)

framework for evaluating different cloud application hosting servers and cloud databases

and ran it on Amazon Web Services (AWS), Google App Engine and Microsoft Azure.

Small compute instances on each provider were compared. It is shown that Amazon

EC2 and Azure have larger response time compared to that of Google App when con-

current requests increase. In addition, different cloud databases including Amazon S3,

18

Chapter 2. Literature Review

Amazon SimpleDB, Amazon LocalDB, Azure table storage, Azure blob storage and

App Engine datastore were tested in their work. This is different from my benchmark

study in that Amazon EC2, Microsoft Azure, and Rackspace cloud are compared.

Furthermore, the main focus of my work is on CPU utilization of cloud providers

rather than their databases.

Klems et al. [77] proposed a quality measurement and analysis framework for run-

time management of cloud database service systems. It can be used for analyzing

the scaling strategies, and system configuration changes. This also allows more bal-

anced database system optimization in the case of conflicting objectives. The paper

proposed a parametric configuration model including three levels: 1) the compute

cloud management level which is more related to capacity management, 2) the clus-

ter management level which is mainly focused on data replication and distribution

methods, and 3) server management level that is primarily concerned with operating

system and software settings. The authors showed that EC2-based Cassandra cluster

outperforms Amazon database services: SimpleDB and DynamoDB.

Cloud storage systems often sacrifice consistency for availability. Bermbach et

al. [78] proposed a new approach to study staleness in distributed databases. The

proposed approach is used to evaluate the eventual consistency in Amazon’s Simple

Storage Service (S3). The authors have shown that S3 frequently violates mono-

tonic read consistency. Moreover, Bermbach et al. [79] discussed the main challenges

and requirements of building a standard comprehensive benchmark that quantify the

consistency guarantees of cloud hosted storage systems. The authors extended the

consistency benchmark tool suggested in [78] to measure violations of Read Your

Writes Consistency (RYWC) and Monotonic Write Consistency (MWC). The paper

used Yahoo! Cloud Servicing Benchmark (YCSB) as a workload generator compo-

nent and applied the proposed approach to evaluate the consistency guarantees of

Casandra and MongoDB.

Curino et al. [80] proposed OLTP-Bench (On-Line Transactional Processing), a

benchmarking approach that is designed and implemented to evaluate various rela-

tional DBMSs (Database Management Systems) and cloud-based DaaS (database-as-

19

Chapter 2. Literature Review

a-service) solutions. The proposed approach is capable of controlling the transac-

tional mixture, rate, and workload dynamically during simulation. Different work-

loads are employed including YCSB [81] and Wikipedia. The experiment is run on

five EC2 RDS instance sizes: Small, Large, HighMem XLarge(XL-HM), HighMem

2XLarge(2XL-HM) and HighMem 4XLarge(4XL-HM). The simulation results show

that although 4XL-HM has the maximum throughput and minimum latency, XL-HM

has the best price/performance ratio for the majority of customers.

The authors in [82] presented a case study in which a DaaS service provided by a

DBMS with lower hourly rate costs more to clients compared to a DaaS service offered

by another DBMS with higher hourly rate. The paper, proposed a new service, so-

called Benchmark-as-a-Service (BaaS) that provides an accurate estimate of the actual

costs charged to end users based on their workload patterns.

There are many research works that employed TPC and Rubis benchmark for

the performance evaluation of web-based applications running on the cloud [83–90].

In [83], Huppler presented the important requirements of a good benchmark. In par-

ticular, they explained five key characteristics for an ideal benchmark including rele-

vancy, repeatability, fairness, verifiability and cost effectiveness. The author believed

that spending less time developing a benchmark to stress a subsystem is preferable to

spend long time on designing a benchmark for the whole system. However, he argued

that subsystem should not be used as a representative of the whole system. The TPC

and SPEC benchmarks are examined in this paper and it is recommended to design

and implement new benchmarks to address the rapid changes of the industry.

Folkerts et al. [84] extended Huppler’s work [83] to present a more comprehensive

classification of benchmark requirements in cloud environments. They listed sample

use-cases and proposed appropriate benchmarks for each use-case including TPC-

C. They also discussed meaningful metrics, variable workloads, scalability, fairness

and repeatability as the main challenges for designing a good benchmark in cloud

environments.

Kossmann et al. [85,86] studied the end-to-end performance and cost of executing

enterprise web applications on different cloud providers. In particular, they employed

20

Chapter 2. Literature Review

TPC-W benchmark to evaluate various database architectures offered by AWS, Google

App and Microsoft Azure. The simulation results showed that in terms of cost, Google

App is preferable for small applications with low workload. Nonetheless, Microsoft

Azure is shown to be the most affordable cloud provider for medium and large appli-

cations.

Hill et al. [87] proposed a quantitative method in order to analyze the performance

of two main services offered by Wndows Azure Platform. The first one is the Windows

Azure which provides both computing resources and scalable storage and the second

one is the SQL Azure that offers traditional SQL server services limited to 10 GB in

size. TPC-E benchmark is used to evaluate the Azure database on three scenarios: 1)

SQL-Server and clients are installed on the same machine, 2) SQL-Server and clients

are located on the same local LAN and 3) SQL-Server and clients are installed on

separate Azure VMs. The simulation results showed that for a single thread client the

local deployment has the best performance. However, the cloud deployment resulted

in better performance when the system scales up and the number of concurrent users

increases.

Binning et al. [24] discussed the main reasons why TPC-W is not a suitable bench-

mark application for cloud computing. First, ACID properties for data opration must

be guaranteed in TPC-W. However, the cloud environment typically does not of-

fer such strong consistency constraints. Second, the main metric in TPC-W is the

maximum number of web interactions per second (WIPS) that the system can handle.

However, this metric is not very accurate for cloud environment in which an increasing

load is ideally compensated by additional resources.

Furthermore, the second metric of TPC-W which is the ratio of cost to performance

($/WIPS) is not a good representative for the cloud cost model. This is due to the

fact that the pricing in TPC/W is based on the total cost of system ownership for 3

years. Hence, it is not possible to find a single $/WIPS value for cloud environment.

It is also worth mentioning that TPC is an expensive benchmark application with the

annual full membership of $15000.

21

Chapter 2. Literature Review

2.2 Resource Optimization Approaches

There has been a growing number of research works to optimize the resource alloca-

tion in cloud using live migration of VMs. This section divides previous works into

three main categories: energy-aware VM migration algorithms, network-aware VM

migration algorithms, and energy-efficient network-aware VM migration algorithms.

2.2.1 Energy-Aware VM Migration Algorithms

In [91], the authors proposed a methodology that can automatically detect and resolve

the bottlenecks in a two-tier read-intensive web application running on the cloud. In

particular, their approach is able to actively monitor the response time of requests,

capture the CPU utilization of hosts, and identify the over-utilized physical machines.

Once the bottleneck is detected, their proposed heuristic dynamically scales up and

allocates a new server to a specific tier. The work is focused on a two-tier web

applications including web-tier and application-tier. Their approach is also able to

scale down for varying workload to minimize the energy consumption. They evaluated

their approach with synthetic workload on a EUCALYPTUS-based cloud and showed

that their method is able to guarantee the SLA.

Beloglazov et al. [92] proposed an energy-aware allocation of data center resources

while meeting the SLA violation. In particular, the VM allocation problem is divided

into two parts. The first part is the admission of new requests for VM provisioning.

The authors employed Modified Best Fit Decreasing algorithm (MBFD). The MBFD

algorithm sorts all the VMs running on the system in a decreasing order in terms

of their CPU utilization and each VM is allocated to a host that results in the least

increase in the total energy consumption of the system.

The second part accounts for optimization of current allocated VMs. The opti-

mization cycle starts with selecting VMs from over-utilized hosts and then applying

the MBFD algorithm to allocate them to new physical hosts. The simulation results

have shown that their approach is able to save considerable energy consumption com-

pared to static resource allocation approaches. In fact, the MBFD algorithm is used

for the initial VM placement in the proposed energy-efficient network-aware approach.

22

Chapter 2. Literature Review

In [93], an Automated Controller for Energy-aware Servers (ACES), is proposed

to minimize the energy consumption of a data center while the workload demand

is met. The ACES starts with characterizing the incoming workload and predicting

the workload demand in near future. Then, the server power scheme is modeled as

a Markov state diagram in which each state represents a server power scheme (e.g.

on, off, sleep, hibernate), and each edge denotes the cost of state transition. The

cost is calculated based on the transition delay, the cost of energy consumption, and

reliability of the server. The problem is approximated through a linear programming

formulation and solved by the polynomial-time approach proposed in [94]. The sim-

ulation results revealed that the ACES can achieve considerable energy saving while

meeting the workload demand by identifying the optimal assignment of power schemes

to servers.

Younge et al. [95] proposed a new energy efficient framework for cloud computing

architecture. They suggested a greedy-based VM scheduling algorithm to minimize

the energy consumption of a data center. For the given list of new VMs, the algorithm

checks the number of required CPU cores for each VM. Their approach is an effort

to allocate as many VMs as possible to each physical host. Moreover, a simple VM

management approach is discussed. Live VM migration is applied to move VMs

running on low load hosts to medium load servers. Once all VMs are migrated from

a low load host it is switched off to save the energy consumption.

In [96,97], authors proposed a new scalable and energy efficient VM management

framework for a private cloud so-called Snooz. The Snooz has a hierarchical structure

consisting of four layers. The bottom most layer is known as Local Controller (LC)

which is connected to physical hosts. The next layer is called Group Manager (GM)

such that each GM manages a subset of LCs in terms of VM monitoring, resource

utilization, VM scheduling, and power management. The third layer is Group Leader

(GL) that receives requests from clients and dispatches them among GMs. In fact,

the energy-aware VM scheduling is performed in two steps: from GL to GM, and from

GM to LC.

23

Chapter 2. Literature Review

Their proposed approach used round-robin method to dispatch new VM requests

from GL to GMs. The GMs used round-robin and first-fit placement policies to assign

new VMs to LCs. The VM migration is performed in GM level in the event of LC

over-loading or under-loading. The paper migrates the VMs from over-loaded LCs to

lightly-loaded LCs. Furthermore, the energy saving is achieved by migrating all the

VMs from low-loaded LCs to moderately-loaded LCs.

Kaur et al. [98] proposed an energy-efficient approach for cloud computing using ge-

netic algorithm. The SLA parameters considered in their work are the system response

time and throughput. The common VM management strategy is employed. Firstly,

the over-loaded and under-loaded servers are detected. Secondly, the MBFD [92] al-

gorithm is used for initial VM placement. Finally, the VM selection policy selects

VMs for migration. The VM migration is also based on lower and upper threshold

values of the physical hosts. The simulation results showed that their approach can

reduce the energy consumption of the data center while improving the response time

and throughput of the system.

In another work [99], an energy-efficient VM placement approach was proposed

based on Minimum Correlation Coefficient (MCC) method. The authors used Fuzzy

Analytic Hierarchy Process (AHP) to make a suitable trade-off between energy con-

sumption and SLA violation of a data center. In particular, the paper modeled the

VM placement algorithm as a bin packing problem with variable bin sizes and prices.

The VM migration is selected based on two criteria.

First, the MBFD algorithm [92] is used such that the migrant VM leads to the

least increase in the energy consumption of the data center. Second, the MCC method

is employed such that migrant VM has the minimum correlation between existing

VMs on the destination host in order to reduce the SLA violation. In fact, the high

correlation between resource usage of VMs running on a host denotes a high risk of

host over-utilization and SLA violation. The experimental results have shown that

the proposed approach can provide a suitable trade-off between energy consumption

and SLA violation in the cloud.

24

Chapter 2. Literature Review

Monil et al. [100] proposed an energy-aware VM consolidation approach known as

Maximum Correlation with Migration Control (MCMC). Their work is mainly focused

on the VM selection policy that is applied once over-utilized hosts are detected. In

particular, they calculated the correlation between all VMs on the over-utilized host

and selected the VM with the maximum correlation with other VMs. The main reason

for this selection is that the VM with the maximum correlation with other VMs has a

high probability for server over-loading. Furthermore, the paper considered another

constraint called migration control.

The main idea of migration control is to prevent migration of VMs with steady

CPU usage. This is due to the fact that such VMs may over-utilize any hosts in

the data center. Therefore, they suggested that the CPU utilization of the selected

VM should not exceed a predefined CPU utilization threshold. The efficiency of

MCMC VM selection policy is compared with the Maximum Correlation (MC) policy

in CloudSim. Five overloading detection policies are studied: Static CPU Utilization

threshold (THR), Adaptive Median Absolute Deviation (MAD), Adaptive Interquar-

tile Range (IQR), Local Regression (LR), and Robust Local Regression (RLR). The

simulation results have proved that MCMC is able to improve the energy consumption

of the data center in most cases.

In [101], the existing energy efficient VM management algorithms are divided into

three categories including energy-aware VM allocation, energy-aware VM migration,

and energy-aware task scheduling. Their work is an effort to address the first two

categories. In particular, they proposed HGACSO, an energy-aware VM allocation

algorithm based on Genetic Algorithm (GA) and Cat Swarm Optimization (CSO).

Initial chromosomes are used as cats in the CSO cycle. Each iteration of CSO evaluates

the fitness of cats and saves the best cat positions. After that, it determines whether

the cat is in the seeking mode or tracing mode. Then, the algorithm applies crossover

and mutation operations of GA. Next step in CSO cycle, is to select the fittest cat

and chromosomes. This cycle continues until the best physical machines are identified

for new VMs.

25

Chapter 2. Literature Review

Moreover, the authors proposed an energy saving method for under-utilized hosts.

Once an under-utilized host is detected, all of its VMs are migrated to other hosts

using the First Fit Decreasing (FFD) algorithm. In fact, the FFD algorithm, sorts

available physical machines based on their CPU utilization in decreasing order and

migrates VMs using First Fit allocation method. The authors compared four allo-

cation algorithms: HGACSO, GA, CSO, and First Fit. The simulation results have

shown that HGACSO is able to save more energy consumption compared to other

algorithms.

In [102], the authors proposed a Topology-Aware Virtual Machine Selection (TAVMS)

algorithm for balancing the load among distributed data centers. The main objective

of this work is to reduce the total energy consumption of a system. They assumed a

single cloud provider with several data centers around the world, which are connected

via a 100 Gbps backbone optical network. Incoming requests from clients are modeled

as a group of VMs communicating with each other. Moreover, it is assumed that VMs

have traffic flows to the Internet. The TAVMS operation includes two phases. In the

first phase, the Selection (known as SEL) algorithm, periodically evaluated each data

center and identified the potential VM groups for migration.

In the second phase, the Negotiation (NEG) algorithm estimated the energy con-

sumption of the VM groups after migration to other data centers and selected the data

center with the maximum energy saving. For each VM group, the NEG algorithm

estimated the migration time based on the disk size, size of RAM, and the available

bandwidth. The algorithm prevents migration of VM group in which remaining life-

time of VMs is larger than the migration time. The simulation results have shown that

TAVMS resulted in significant saving in energy consumption compared to scenarios

with no migrations.

Wang et al. [103] proposed a decentralized Multi-Agent-based (MA-Based) re-

source management method for cloud computing systems. In particular, a cooperative

agent is assigned to each physical machine in order to control the resource manage-

ment on the physical machine. Upon receiving a set of VM requests from clients the

MA-based approach run two procedures to allocate VMs on hosts.

26

Chapter 2. Literature Review

Firstly, an auction-based VM allocation algorithm is used for initial VM allocation.

The agents and VMs are modeled as bidders and commodities, receptively. At each

bidding cycle, the agent bids for the largest VM that it can host and it broadcasts

its bids to all other agents in the system. Once the broadcasting is completed all

the agents send an acknowledgment message to the winner agent which is the one

that can host the VM with the minimum energy consumption. Secondly, a local

negotiation-based VM consolidation mechanism is employed such that agents use VM

live migration to exchange their allocated VMs with the aim of minimizing the energy

consumption.

2.2.2 Network-Aware VM Migration Algorithms

In [104] an efficient network-aware resource management algorithm is proposed for

distributed data centers. The authors assumed multiple small data centers which are

interconnected over a wide-area network. This assumption is different from typical

resource management systems that consider a few number of large data centers. Each

request from client specifies the number of VMs required to be provisioned. The

major objective of this work is to minimize the maximum latency in communication

between VMs that are allocated for each user. In particular, the paper used the 2-

approximation algorithm to find the optimal data centers for the VMs. Also the same

algorithm is used to find the optimal physical machine inside the data center. The

simulation results have shown the efficient performance of the proposed algorithm.

In another work, Biran et al. [105] introduced a stable network-aware VM place-

ment mechanism for cloud computing. Their proposed VM placement approach,

known as Min Cut Ratio-aware VM Placement (MCRVMP), is an effort to satisfy

the predicted communication demand considering time-varying nature of the network

traffic. The MCRVMP modeled data center network as a graph and used the concept

of network graph cut in order to reduce the worst case cut ratio. A general graph

may have an exponential number of cuts.

Therefore, the paper only considered critical cuts which are bottlenecks for the

traffic between VMs that are placed in opposite sides of the cuts. Eventually, the

27

Chapter 2. Literature Review

MCRVMP identified the VM-Host placement that minimizes the maximum network

cut load, while satisfying CPU and memory demands. The simulation results have

shown that their approach can reduce the number of packet dropping and VM relo-

cations.

In [106], authors considered a network-aware mechanism for coordinating concur-

rent VM migrations in cloud environment. The paper used a simulation tool for

predicting the total completion time of concurrent VM migrations based on different

VM characteristics and network links conditions. The pre-copy VM migration tech-

nique is used in the paper and it is shown that available bandwidth on the network

link and the dirty page rate of the migrating VM are the essential factors for finding

the optimal link sharing strategy.

An extensive simulation study has been conducted to obtain the optimum number

of parallel migrations for the given network bandwidth and dirty page rate. The simu-

lation results have shown that the total completion time of concurrent VM migrations

is lower compared to that of sequential VM migration for low dirty page rate and high

network link bandwidth. Otherwise, the sequential VM migration is preferable.

Concurrent VM migration is also studied by Chen et al. [107]. The authors pro-

posed a network-aware load-balancing approach using concurrent VM migrations. The

paper is an attempt to minimize the time required for load balancing. The load bal-

ancing problem is modeled as a minimum weighted matching problem and is solved

using Hungarian method [108]. In fact, the over-utilized and under-utilized are sepa-

rated in two different sets of vertices known as trigger nodes and non-trigger nodes,

respectively. The edge weight between vertices is determined by resource demand of

VM, resource capacity of physical machines, and the network cost.

The network cost is modeled as the number of hobs between two servers in the data

center network. The algorithm identifies a set of VMs from trigger nodes and migrates

them to non-trigger hosts with the objective of reducing the total migration time.

The experiments are conducted in NetworkCloudSim [109] and 100 Mbps network

bandwidth was reserved for concurrent VM migration. The experimental results have

28

Chapter 2. Literature Review

shown that the proposed approach is able to minimize the time required for load

balancing.

Network flows typically traverses through a sequence of policies which are specified

by middleboxes such as firewall, load balancer, traffic shapers, etc. Cui et al. [110]

proposed a PoLicy-Aware Network-aware, known as PLAN, VM migration algorithm

for clouds. The main objective of PLAN is to minimize the communication cost

while the policy requirements are met. The communication cost is specified in terms

of the policy requirement of VMs. The PLAN algorithm is a distributed heuristic

approach executed on both VM and server sides known as PLAN-VM and PLAN-

server, respectively.

The optimization process starts from PLAN-VM which employs a greedy approach

to find the most appropriate destination host for each VM. The results are sent to

PLAN-server requesting for final approval. The request will be approved by PLAN-

server provided that the resource demand of VM does not exceed the available re-

sources on the destination host. Upon approval, the migration process starts. The

proposed approach has been evaluated in ns-3 [111] using a fat-tree topology. The

simulation results have shown that PLAN is able to minimize the communication cost

while the policy constraints of network flows are satisfied.

Vijay et al. [65] proposed Remedy, a network-aware steady-state VM migration

approach for data centers. The main objective of Remedy is to reduce the network

congestion from the data center while minimizing the migration cost. The migration

cost is defined as the total network traffic that is generated during migration. Rem-

edy identified the candidate flows that pass through congested links. It employed a

heuristic-based approach to remove network congestion.

At the very beginning, the VM selector algorithm calculates the migration cost

associated with VMs that are part of the candidate flows. After that, the target

selection algorithm monitors resource usage of physical machines and ranks them

based on available bandwidth and bandwidth balance after migration. Remedy has

been evaluated in VMFlow [112] using real network traffic data. The simulation results

have shown that Remedy is able to predict the migration cost with high accuracy.

29

Chapter 2. Literature Review

Moreover, it is shown that Remedy can efficiently exploit unused network bandwidth

in order to reduce the network congestion in the data center.

Piao et al. [113] suggested a network-aware VM placement and migration approach

for data-intensive applications running on a cloud. The paper assumed a federated

cloud system consisting of several compute and storage clouds that are interconnected

via Internet or Intranet links. Clients send compute and storage requests to the cloud

provider. The data center broker allocates requested VMs and storage blocks to the

compute cloud and storage cloud, respectively. In fact, clients use VMs to run their

applications while the real data is stored in the storage block.

The authors suggested a VM placement policy that chooses a physical machine

that results in the smallest data transmission time between application and storage

blocks. Nonetheless, communication delay is a typical challenge for data-intensive

applications that can be caused by network congestion or faulty links. The authors

addressed this challenge by proposing a network-aware VM migration algorithm that

identifies a destination host such that the transmission time between applications and

storage blocks remain minimized. The simulation results in CloudSim 2.0 have shown

that the proposed placement approach is able to improve the average task completion

time, despite the fact that the migration algorithm is not very effective.

Stage et al. [114] is the vision paper to propose a network-aware topology-aware

model for scheduling VM migration in clouds. The paper discussed the optimization of

network bandwidth consumption due to VM migration. The proposed model consists

of four major units including workload classifier, allocation planner, live migration

scheduler, non-conformance detector. The workload classifier is designed to identify

different class of workload and allocate workload on one class in the same server

cluster. The workload classifier considered several attributes to identify the class of

workloads including predictability and periodicity.

Once workload is classified, the allocation planner determines the expected over-

utilized and under-utilized physical machines in the data center and finds the suitable

VMs for migration. The non-conformance detector is provided for handling spike in

resource utilization in order to prevent over-utilization of physical machines. Finally,

30

Chapter 2. Literature Review

the live migration scheduler gets the list of VMs for migration from allocation plan-

ner and non-conformance detector units and calculates the optimal time to start the

migration. Although the authors did not propose an actual algorithm and any simu-

lation results, their proposed model can be useful to minimize the SLA violation due

to live VM migration in data centers.

Another work is a VMbuddies done by Lio et al [115]. The VMbuddies is a coordi-

nating approach for live migration of three-tier web application across distributed data

centers. The authors addressed the correlated VM migrations problem by proposing

an adaptive bandwidth allocation approach to minimize migration cost. The migra-

tion cost is defined in terms of migration completion time and migration downtime.

Similar to my work, it is assumed that the application traffic and migration traffic

shared the same bandwidth.

However, the available bandwidth for migration between clouds is much smaller

compared to the bandwidth inside a data center. Hence, the VMbuddies method-

ology is an effort to coordinate VM migrations such that the bandwidth between

clouds can be exclusively used by the migration traffic. In particular, all the VMs

of a web application are identified and migrated into the same data center. More-

over, a synchronization approach is employed such that VM migrations are completed

simultaneously. This is to avoid retransmission of data across data centers.

The authors used RUBBoS [116], a public three-tier application benchmark, to

evaluate their proposed approach. The algorithm is tested on both simulated Wide

Area Network (WAN) and real in-built private clouds between Nanyang Technological

University (NTU) and National University of Singapore (NUS). The experimental

results have shown that VMbuddies is able to make substantial improvement in the

performance degradation experienced by three-tier application during migration with

slight overhead due to migration synchronization.

2.2.3 Energy-Efficient Network-aware VM Migration Algo-
rithms

Vu et al. [117] suggested a virtual machine placement approach that takes energy

consumption and network traffic into consideration. In particular, their approach

31

Chapter 2. Literature Review

is very similar to conventional VM migration algorithms consisting of the following

phases. The first phase detects the over- and under-utilized hosts. The second phase

selects the VM for migration. One or more VMs are selected from over-utilized hosts

such that the CPU utilization falls below the over-utilization threshold.

Furthermore, energy saving is achieved by migrating all VMs from under-utilized

hosts and switching them from active mode to standby mode. Finally, the third phase

employs a network-aware target selection policy for the selected VMs such that those

with high communication traffic are placed close to each other. However, this approach

is not very efficient for network-intensive applications with small CPU demand. The

simulation results in CloudSim have shown the efficiency of the proposed approach.

Another work is that of Kliazovich et al. [118]. They presented DENS as an energy-

efficient network-aware scheduling methodology for data centers. Their approach is

designed to avoid hotspots in data center network while minimizing the number of

hosts for job scheduling. The paper also highlighted the importance of communication

fabrics in the total energy consumption of data centers. It suggested to keep the core

switches running while turning off the aggregation switches whose racks are inactive.

In particular, the DENS algorithm is an effort to minimize the energy consumption

of a data center by finding the best server for executing a given job.

Each iteration of the DENS algorithm calculates several factors including server

load, rack load, and communication potential of racks. Then, the algorithm computes

the DENS metric which is a weighted sum of the calculated factors and finally selects

the server with the maximum DENS metric. The communication potential is defined

as the total amount of bandwidth provided to each server in the data center. The

DENS methodology is evaluated on GreenCloud simulator [119]. The simulation

results have shown that DENS methodology is able to optimize the tradeoff between

job consolidation and the traffic pattern of a data center.

In [120], a network- and power-aware, so-called NAP, consolidation approach is

introduced. The main objective of the NPA algorithm is to identify an appropriate

migration map with the least number of VM migrations such that power consumption

32

Chapter 2. Literature Review

is reduced and network performance is improved. The NPA consists of two main mod-

ules. The first one, is the power module that employed the Threshold with Random

Selection (THR-RS) algorithm proposed in [121]. The THR-RS uses static thresh-

old to detect over- and under-utilized physical machines. Furthermore, it employs the

random selection policy for VM selection from over- and under-utilized hosts. Readers

are referred to [121] for more details about THR-RS algorithm.

The second one, is the network module that is specifically designed to address

network overhead imposed by VM migrations. In fact, the optimization cycle is

triggered in three conditions: 1) host over-utilization, 2) host under-utilization, and

3) low throughput between communicating VMs. The paper assumed a predefined

throughput below of which is considered as low throughput. The destination selection

policy depends on how the optimization is triggered. If migration is triggered due

to over- and under-utilized hosts, the algorithm only selects a host that meets the

computing demand of VM regardless of its impact on the network traffic. Otherwise,

it tries to place the VM on hosts near each other ensuring resource demand is met.

The author used CloudSim to compare THR-RS, NPA, and DVFS [121] approaches.

Not surprisingly, the simulation results have shown that NPA has lower SLA vio-

lation and higher throughput compared to that of THR-RS. However, the DVFS has

significantly lesser SLA violation and better network throughput compared to NPA.

The author believes that the low efficiency of NAP approach is attributed to two

facts. First, is the random VM selection policy. Each VM might communicate with

different number of VMs with varied traffic patterns. Thus, random selection of VMs

may quickly degrade the system throughput and increase the SLA violation and power

consumption. Second, is ignoring the negative effect of VMs migrated from over- and

under-utilized host on the network traffic. This may lead to negative consequences

especially in terms of network traffic for network-intensive applications.

Lin et al. [122] considered integration of routing algorithms and VM migrations

in cloud data centers. The main objective of the paper is to optimize the network

throughput while the total energy consumption of data center is maintained. The

authors used a cloud architecture consisting of four major parts: 1) network devices,

33

Chapter 2. Literature Review

2) Software Defined Network (SDN) [123] controller that is in charge of managing

the network devices, 3) computing devices, 3) cloud controller which is working as a

hypervisor and responsible for VM management and resource allocation. In particular,

the paper contributions are two folds.

Firstly, the authors suggested a dynamic reroute with flow migration (DENDIST-

FM) aimed at improving the network performance and avoiding network conges-

tion. The DENDIST-FM algorithm continuously monitored the communication links.

Once, an over-utilized link is detected the algorithm collects flow information from

the link, re-computes new path and updates new route.

Secondly, they proposed an energy-and-topology aware VM migration (ETA-VMM)

algorithm to determine the optimal migration map. The algorithm employed mini-

mum migration technique [121] to select VMs from over-utilized host and add them

to list of candidate VMs for migration. Moreover, all VMs from under-utilized hosts

are selected and added to the list of candidate VMs for migration. Finally, the algo-

rithm identifies destination host based on the network distance which is modeled as

the number of hops.

The authors used Network Simulator (NS2) [124] and Cloudsim v3.0 to evaluate

their approach. NS2 is used to simulate source routing and flow-aware routing in

SDN and evaluating the network throughput. CloudSim is used to simulate the VM

management algorithm and evaluate the total energy consumption. The simulation

results have shown that the proposed approach achieves throughput improvement and

energy saving.

Reguri et al. [125] is another network-aware approach that aims at reducing energy

consumption of a data center while SLA is met. The authors employed three energy-

efficient approaches in [126] which are enhanced versions of the MBFD algorithm [92].

The first approach is the Least Increased Power with host sort (LIPHostSort) algo-

rithm that finds all the destination hosts with the least increase in power consumption,

sorts them in decreasing order of their CPU utilization, and selects the one with the

highest CPU utilization. The second approach is the Best Fit Host (BFH) algorithm.

34

Chapter 2. Literature Review

The main idea is to select the host whose predicted CPU utilization after VM mi-

gration is maximized without exceeding the upper utilization threshold. The last

approach, is the Best Fit VMs (BFV) algorithm that employs dynamic programming

approach to find the best-fit VM for each host.

The authors proposed three energy-efficient traffic-aware VM management al-

gorithms by integrating the traffic-aware VM Clustering (VC) approach presented

in [117] with any of the three aforementioned algorithms. The new algorithms are

known as LIPHostSort with VC (LIPHostSort VC), BFH with VC (BFH VC), and

BFV with VC (BFV VC), correspondingly. Once an over-utilized host is detected,

the traffic-aware approach clusters the communicating VMs and looks for the desti-

nation to migrate the whole cluster to another host. In the same way, the algorithm

identifies the VM clusters from under-utilized hosts and migrates the whole cluster

to achieve energy saving. The paper used CloudSim to evaluate the efficiency of pro-

posed algorithms. The simulation results have shown that BFV VC leads to lower

SLA violation and energy consumption compared to the other two algorithms.

Another work that deals with the network and energy efficiency in data centers

is the one by Takouna et al. [127]. The authors have proposed a network-aware and

energy-efficient scheduling approach for parallel applications running in the virtualized

data centers. The main objective of the paper is to reduce the network utilization and

improve the SLA violation. Moreover, the paper aims to minimize the total energy

consumption of servers and switches. In particular, the paper proposed Peer VM

Aggregation (PVA) algorithm that aggregates communicative VMs on the same host.

For each VM the algorithm receives the list of all communicating VMs and tries to

converge the whole system. The converged system is defined as a system on which all

VMs for the same application are located on the same host.

The PVA algorithm consists of four steps. Firstly, the given list is sorted in

decreasing order of the number of in/out traffic flows and the current placement of

peered VMs is determined. Next, is to select the VM with the highest number of in/out

traffic flows and the most appropriate destination host in terms of network traffic.

After that, the Migration Manager (MM) approves the destination host provided

35

Chapter 2. Literature Review

that it meets the resource demand of migrating VM. Finally, the MM schedules the

migration.

In the third step, if the MM realizes that the destination host does not have enough

space for the migrating VM, it recessively calls the PVA algorithm to migrate one VM

from destination host. In fact, this policy seems not to be very efficient for network-

intensive application because it increases the number of VM migrations which may

cause significant overhead on the data center network. The authors used CloudSim

and NAS Parallel Benchmark (NPB) [128] to compare their proposed approach with

a typical CPU based placement algorithm suggested in [129]. Not surprisingly, the

simulation results have shown the lower SLA violation and energy consumption of

PVA algorithm compared to that of CPU based placement algorithm.

2.3 Research Trends, Scope and Novelty of the

Thesis

The literature review shows that different criteria are employed to evaluate the cloud

platforms. The main criteria include response time, CPU speed, RAM speed, storage

performance, and total price. Furthermore, several cloud providers have been studied

consisting of Amazon EC2, Microsoft Azure, and Google App. Moreover, various

workloads have been used such as YCSB, Wikipedia, TPC-C, RUBiS, and TPC-W.

The most relevant workload type to our proposed approach in Chapter 3 is TPC-W

which is designed for web applications. However, Binning et al. [24] explained the main

reasons why TPC-W is not a suitable benchmark application for cloud computing.

Chapter 3 is my attempt to address the main issues of using the TPC-W workload on

cloud environment. In terms of cloud providers, the previous research works rarely

compared large instances of the aforementioned cloud providers. Therefore, Chapter 3

compares small and large instances of Amazon EC2, Microsoft Azure, and Rackspace

Cloud. Regarding the performance criteria, this thesis adopts the response time and

total cost as two of the most important performance metrics for evaluation of three-

tier web applications. Furthermore, a CPU micro-benchmark is employed to compare

the CPU speed of the three cloud providers.

36

Chapter 2. Literature Review

The proposed benchmark application in Chapter 3, so-called WPress, is different

from existing benchmarks, as it uses the real-life WordPress blogging and publishing

platform. The author argue that this approach has several advantages over the simu-

lated E-commerce applications used in TPC and RUBiS. First, WordPress was ranked

first among the 15 best blogging and publishing platforms on the Internet [130]. Sec-

ond, it is based on the latest technologies used for web applications. The current

stable version, at the time of writing this thesis, is 4.7 released on November 2016.

Third, it is open-source and has a remarkable user friendly interface, which meets

benchmark’s availability requirement discussed in [84]. Fourth, it is reported that

almost 8% of all websites on the Internet are based on WordPress. This is because

more than 10000 plugins add almost all kinds of functionalities for a three-tier web

application such as social media sharing, search engine optimization (SEO), photo

slide shows, and on-line shopping [131]. Last but not the least, WPress measures

total VM cost, which is a meaningful price metric to assess public cloud providers

with the pay-as-you-go business model.

Section 2.2 reviews some of the previous literatures on the resource optimiza-

tion approaches in cloud computing. The previous literatures can be classified into

three main categories: 1) energy-aware methods, 2) network-aware approaches, and

3) energy-efficient and network-aware algorithms. The energy-aware VM migration

algorithms aim at minimizing the total energy consumption of data centers. The re-

search works were mainly aimed at minimizing the number of over-utilized hosts and

switching-off as many under-utilized hosts as possible. Different approaches including

scaling up/down, MBFD, FFD, greedy-based, and genetic algorithms were employed

either for admission of new VMs or VM migration. The migration algorithms nor-

mally start once a new over-utilized or under-utilized host is detected in the data

center. Furthermore, several criteria are considered as SLA such as response time and

throughput.

The network-aware methods were mainly focused to remove as much traffic as pos-

sible from the network links. Several approaches are proposed such as 2-approximation

algorithm, Min Cut Ratio-aware VM placement algorithm, greedy approach, removing

37

Chapter 2. Literature Review

network congestions from the data center network, and adaptive bandwidth alloca-

tion approach. Furthermore, algorithms were evaluated by simulation or on real data

centers.

The energy-efficient network-aware algorithms normally consider both energy con-

sumption and network traffic for VM management. Several approaches were suggested

including: considering the communication fabric, turning off the aggregation switches

whose racks are inactive, threshold with random selection policy, and DVFS. Proposed

approaches are evaluated either by simulation such as NS2, CloudSim, GreenCloud,

and SDN, or through implementation on real data centers.

This dissertation proposes an energy-efficient network-aware VM migration algo-

rithm. The MBFD algorithm is used for the initial VM placement algorithm, and

the average response time is measured as the main SLA criterion. The algorithm is

evaluated through an extensive set of experiments in CloudSim. Moreover, CloudSim

version 3.1 is extended to enhance its capability to simulate combined energy and

network aware VM allocation algorithms for three-tier web applications. The main

reason to focus on three-tier web applications is to be consistent with the benchmark

study presented in Chapter 3. In fact, web-applications are small in size but very

large in quantity. Thus, designing an accurate network-aware resource management

technique has a great deal of importance.

The proposed approach in Chapter 4 employs the energy-aware MBFD algorithm

[92] for the initial VM placement. Furthermore, the system monitors the data center

network and starts the optimization algorithm as soon as a new congestion is detected

in the data center network. Essentially, the VMs whose migration can remove the

largest steady-state network traffic from the data center network are selected for

migration. The suggested network-aware algorithm is very similar to the Remedy [65].

My work is different from [65] in that the MBFD algorithm [92] is employed to optimize

the energy efficiency of the data center. Moreover, a three-tier model is designed for

web applications in CloudSim and the algorithm is customized accordingly.

Chapter 5 extends the network-aware migration heuristics presented in Chapter

4 with energy-awareness capabilities to make farther improvements in total energy

38

Chapter 2. Literature Review

consumption of the data center. In particular, once a congested link is identified, the

algorithm monitors its traffic flows and calculates network gain and power gain values

for all contributing VMs. Accordingly, the network gain list and power gain list are

created for each congested link and eventually, the VM with the lowest sum of ranks

is selected for migration.

The proposed approach in Chapter 5 is different from the aforementioned studies in

Section 2.2.3 in several ways. Firstly, my proposed approach considered the steady-

state amount of traffic which is more accurate than considering the current traffic

condition. Typically, a VM is in communication with many other VMs and migration

of one VM affects the whole data center network. while a VM migration can remove

network traffic from one congested link, it can imposes network traffic on other links

and make them congested. Hence, looking at the steady-state amount of traffic can

guarantee the optimal selection of VM for migration. Secondly, the optimization

cycle in my suggested approach starts once a congested link is detected. This is a

more efficient method rather than starting the optimization cycle from over- or under-

utilized hosts [117,120,125]. This is because of the reason that each optimization cycle

imposes some computing overhead into the system. Thus, it makes more sense to leave

the system work normally with its maximum amount of computing power while there

is no network congestion in the data center network. Thirdly, the proposed approach

selects VMs that can remove the largest amount of traffic from the communication

links. This is different from selecting VMs from over- and under-utilized hosts and

applying a network-aware destination selection policy [117,122,125]. The approach is

more promising than the previous methods because network traffic plays a significant

role on the performance of network intensive applications.

39

Chapter 3

WPress: A Performance
Benchmark For Three-Tier Web
Applications Running on the Cloud

Cloud computing [132] has become an attractive platform for three-tier Web appli-

cations. Recently public Cloud platforms are employed in preference to specialized

clusters and supercomputers due to their reliability, scalability and cost effectiveness.

The Infrastructure-as-a-service (IaaS) model [9] enables customers to rent computing

and storage resources from different cloud providers in the form of VMs.

TPC-W and RUBiS benchmarks have been widely used to evaluate the perfor-

mance of three-tier Web applications in clouds [83,85–87]. Nevertheless, they are not

originally designed for cloud computing platforms with unknown hardware configura-

tion and pay-as-you-go pricing model [24,133,134].

To address this research gap, this chapter introduces a performance benchmark for

three-tier Web applications deployed on public clouds. In fact, design and implemen-

tation of a comprehensive performance benchmark in a highly distributed computing

environment raise considerable challenges. First, it is a time consuming task which

involves several repetitions to present statistically reliable results. In addition, choos-

ing a representative application and generating enough load need to be carried out

proficiently. Furthermore, considerable amount of data generated from long-running

experiments requires a suitable data collection approach. Moreover, basic require-

ments of benchmarks like fairness, relevancy, verifiability and cost effectiveness, as

already discussed by Folkerts and Huppler [83, 84], should be taken into considera-

40

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

tion. In summary, the following contributions are made to address the challenges

mentioned above:

• A WPress benchmark is proposed, which uses WordPress as a widely used

open-source blogging and publishing platform in today’s market [71]. Word-

Press follows the three-tier architecture consisting of presentation layer (Web

tier), business logic layer (App tier), and database layer (DB tier). Further-

more, various use-cases for WordPress are described to indicate that it is a good

representative for three-tier Web applications.

• An open-source Benchmark Client Application, called WPressClient, is imple-

mented to generate typical Web requests for WordPress and collect the results.

• A distributed infrastructure is used to test WPress on small and large instance

types of Amazon EC2 [37], Microsoft Azure [72] and Rackspace Cloud [73].

WPress runs on each cloud provider to evaluate and compare average response

times and total operation cost.

• A CPU micro-benchmark is employed as proposed in [74], to detect periods

during which the VM is not assigned CPU time by the hypervisor. Results of

the CPU micro-benchmark are used to investigate the effect of CPU performance

on observed average response times and total operational cost.

The rest of this chapter is organized as follows: Section 3.1 describes design and

implementation of WPress. Section 3.2 illustrates and discusses the results of the

proposed benchmark. Finally, Section 3.3 summarizes the chapter.

3.1 Methodology

This section introduces the proposed benchmark, called WPress, to study the perfor-

mance of cloud providers when they host three-tier web applications. Firstly, Word-

Press is described as the benchmark application and its advantages over E-commerce

applications used in TPC and RUBiS are explained. After that, the functionality

41

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

and implementation details of WPress client application, called WPressClient, are

described. This section ends with explanation of the experimental environment devel-

oped to run WPress on Amazon EC2, Microsoft Azure and RackSpace cloud. Please

note that all information provided in this chapter is based on my case study research

from 01 October 2013 to 30 February 2014.

3.1.1 WordPress-Based Benchmark Application

WPress is designed based on WordPress blogging and publishing platform identified

as the best blogging and publishing platform on the Internet [135]. WordPress can be

used for several transactional use-cases such as E-commerce, on-line booking systems

and blogging platforms. Moreover, WordPress is a web application that relies on three

tier architecture [136]. PHP and HTML are used in presentation tier, PHP is used as

application tier, and MySQL is employed as database tier. In WPress, the blogging

platform is used because: (1) the author believes that popularity of blogging systems

is increasingly growing, and (2) WordPress has more than 25000 plugins and 10000

themes which make it the first solution for most blog owners [71].

There are a plethora of free, or at least cheap, plugins available for WordPress that

can be incorporated with WPress in the future. For instance, WordPress provides a

full fledged E-commerce website with integrated shopping card flow and PayPal pay-

ment gateway. Available plugins include WP E-commerce 1, eShop 2, WooCommerce

3 and Quick Shop 4. Moreover, it can also be employed as an on-line booking system

with Rezgo Online Booking 5 and EzyOnlineBooking 6 plugins. Other use-cases for

WordPress include Job board or classified website, private social network, portfolio

as well as news websites [137].

Extensibility, representativeness, availability and cost effectiveness are the main

requirements for a good benchmark application [84]. The first two requirements are

1https://wordpress.org/plugins/wp-e-commerce/
2https://wordpress.org/plugins/eshop/
3http://wordpress.org/plugins/woocommerce/
4https://wordpress.org/plugins/quick-shop/
5https://wordpress.org/plugins/rezgo-online-booking/
6https://wordpress.org/plugins/ezyonlinebookings-online-booking-system/installation/

42

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

guaranteed because WordPress is implemented by the latest Web technologies and

various plugins can be easily associated with its main core. Therefore, it can be

extended to a benchmark suite comprising several Web services. In TPC and RUBiS,

such flexibility does not exist because they are specifically designed for e-commerce

applications. Availability and cost-effectiveness are also guaranteed by wordPress.

This is because of the facts that: 1) WordPress is an open-source project with many

available plugins, and 2) It has a user friendly interface which makes it easy to be

used even by unskilled clients.

3.1.2 Client Implementation

WPressClient is the integrated client application implemented for WPress. It is an

open-source multi-threaded Java application developed using Selenium Web-driver

library [138]. Selenium Web-driver uses Firefox plugin to steer an actual browser win-

dow, so that execution of each thread in the WPressClient, is as close to a real user

who works with WordPress as possible. Essentially, WPressClient has two function-

alities in this chapter: (1) to generate representative workloads for WordPress and (2)

to calculate average response times and total cost of VMs on the clouds under test.

Workloads are generated based on ten predefined WordPress tasks named task

1 to task 10 (Table 3.1). Each entry of the Table includes a short description of

what each task does and the maximum number of HTTP requests sent to WordPress

server. Each task is associated with realistic delay and scrolling actions, to mimic the

real behavior of a human user of the system. Task 1 is designed to search a random

keyword. It consists of three Web requests. The first request opens WordPress landing

page, which is then scrolled down for 1000 pixels (which represents the user is trying

to view the whole page). Afterwards, WPressClient waits for 6 seconds (a quick view

of less than 10 seconds is assumed experimentally) before scrolling up again. Within

12 seconds (which is experimentally determined and corresponds to the elapsed time

for a user to choose a keyword for search) a sample keyword (a short keyword is

assumed experimentally to have ten-characters long) is typed into the search box. In

six seconds (which is the experimentally determined estimated time for typing the

43

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

Table 3.1: List of tasks generated by WPressClient

Task Description Number of Web requests

1 Searching a keyword 3

2 Publishing a new post 5

3 Browsing several pages 8

4 Replying to a post 4

5 Loading a page 5

6 Uploading several photos 5

7 Deleting some posts 7

8 Creating a new post with draft status 5

9 Adding a new user 6

10 Approving several comments on pending status 6

keyword) a search request is sent. Resulting page is scrolled down for 500 pixels

(which represents the user is only interested on viewing the top results) and returned

back to its original place 6 seconds later (A quick view of less than 10 seconds is

assumed experimentally to see the searching results). Next, one of the links in the

home page is clicked. This task ends by scrolling down the newly loaded page for 500

pixels (which expresses that the user is trying to view the top of loaded page). For

reasons of brevity, details of scrolling and delays are not mentioned in the description

of task 2 to task 10.

Task 2 is implemented to publish random text-only posts. Post title and body

have 10 and 1000 characters, respectively. Some users in WordPress just want to

read other’s posts. Task 3 is applied to browse through the WordPress contents. In

addition to browsing, unsuccessful login is also covered in this task to simulate a user

who forgets his username or password. Task 4 browses a specific post for which it

leaves a comment. Replier name, email, website and the comment left, have 33, 18,

34 and 300 characters, respectively. In Task 5, a so called core-task is executed five

times. Essentially, core-task sends a request to open the WordPress landing page and

then closes the Firefox window after being successfully loaded. In Task 6, in addition

to text, a single photo for each post is uploaded. Post title and text have 33 and

700 characters, respectively with a 640*480-pixel photo whose size is about 100KB.

Moreover, each post is published on five different categories.

44

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

Task 7 is designed to delete posts that they previously published. By default, posts

are sorted by publishing date and shown in multiple windows with 20 posts each. In

this task, the first 20 published posts (which are actually the latest ones) are deleted.

Further capabilities of this task are deleting the posts with specific publication date,

changing the number of posts to be deleted, and deleting posts with ’draft’ status.

Another common task for WordPress users is to create a new post without sending

immediately for further editing.

Task 8 is implemented to create a new post whose title and text are 32 and 1800

characters, respectively. The post remains in the dashboard and saved (i.e. ’draft’

status) into 5 categories without being sent to the database. Task 9, adds a new

user to the database with the following information: user-name (29 characters), e-

mail address (59 characters), first name (9 characters), last name (10 characters), and

password (9 characters). Moreover, possible roles, which are randomly assigned to

each generated user include subscriber, administrator, editor, author, and contributer.

Although task 4 has left comments for a post, those comments remain in the pending

state until they get approved. Task 10 is designed to approve the 20 latest pending

comments.

WPressClient generates three workload types:

(i) Read (called R), in which, executed tasks only read from database. For this

type, workload is generated based on task 1, task 3 and task 5.

(ii) Write (named W), in which, database is updated. W -type workload is generated

based on task 2, task 4, task 6, task 7, task 8, task 9 and task 10.

(iii) Read/Write (labeled R/W) in which all 10 tasks are executed.

For each type of workload, WPressClient selects tasks using round-robin technique

from available task pool.

WPressClient is also responsible to measure the average response time and total

operation cost of VMs on the clouds under test. In this chapter, WPressClient is

executed on small and large instance sizes of Amazon EC2, Microsoft Azure and

45

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

Rackspace cloud. The small size instances have 1 CPU core, less than 1.75 GB of

RAM, with $0.060 hourly cost. Nonetheless, the large size instances use 4 CPU

cores, more than 7 GB of RAM, with more than $0.240 hourly cost (experimental

environment will be discussed in more details in Section 3.1.3). WPressClient is

configured to generate workload, based on available resources on the instance under

test. The number of parallel users is obtained experimentally. Increasing number

of parallel users leads to relatively large average response time particularly for W

workloads in Amazon EC2. As the author is not testing a scalable framework for this

benchmark, it is decided to go with 40 (for small size) and 150 (for large size) parallel

users as the performance results up to these figures are sufficient to provide a good

sense for the behavior of different cloud VMs.

Each user is simulated by a single Java thread which runs a specific task (see Table

3.1). For example, the first 10 tasks for R-type workload would be: task 1, task 3,

task 5, task 1, task 3, task 5, task 1, task 3, task 5, task 1 which are executed through

10 parallel Java threads. Task execution is repeated 5 times for any number of parallel

users and the average response time is calculated. Moreover, total execution time of

the whole experiment, i.e. completion time of 40 parallel users for small instances or

completion time of 150 parallel users for large instances, is recorded by WPressClient

for computing the total cost of VMs.

Just for illustration purpose, the five response times along with their average

values of Microsoft Azure instances are shown in Figure 3.1. The values are adopted

from the log files of Microsoft Azure with R-type workload. Figure 3.1(a) shows the

difference between five response times in Azure small instance is linearly increased

with number of users. However, significant fluctuations is observed between response

times for Azure large instance (Figure 3.1(b)). Section 3.2 compares the response

times in more details and discusses the main reasons for the observed fluctuations.

The systematic structure of WPressClient along with the distributed infrastructure

discussed in Section 3.1.3 is an efficient and cost effective approach to make represen-

tative workloads for WordPress. Furthermore, it allows researchers and businesses to

46

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 2000

 2500

 3000

 3500

 4000

 4500

 5 10 15 20 25 30 35 40 45

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Average
Test 1
Test 2
Test 3
Test 4
Test 5

(a)

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 20 40 60 80 100 120 140 160 180

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Average
Test 1
Test 2
Test 3
Test 4
Test 5

(b)

Figure 3.1: Average response times for different number of parallel users in Microsoft
Azure for Read Workload, (a) Small instances and (b) Large instances.

add new tasks or modify existing ones according to their requirements. WPressClient

source code is available at [139].

3.1.3 Experimental Environment

The experimental environment used in this chapter is illustrated in Figure 3.2. It

includes two parts: (1) server side that involves small and large instances on public

cloud providers, and (2) client side which is a distributed infrastructure to run the

WPressClient application.

On the server side, three well-known IaaS public cloud providers in the current

market have been selected as representative samples for my benchmarking approach:

(1) Amazon EC2, is the de facto standard and industry leader for public IaaS cloud

47

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

��������	

��
�������

��������������
��
������

��������	
����

�������
����

�������
�����
��
������

������������	����

��� �������!������	�	����

"��
��	���������	����
�	�	��	�����#�	���

$��%����	���	����

���&�����	��
	'�������	�

�
��

�

�

��
�
�

�
��

��
�
��

�
�

�
�

�
�

�
�
�
�

�
�
�
�
�
��

�

��

��
�
�
�

�
�

�
�

Figure 3.2: Experimental environment

providers. Its data-centers are distributed all over the world and various types of ser-

vices are provided to handle different computing and storage demands. (2) Microsoft

Azure also delivers a wide range of computing and storage services. It is making a huge

effort toward being a prominent cloud provider by offering cost-effective services. (3)

RackSpace Cloud is one of the biggest cloud providers in the United States of America

(USA) with an easy to use control panel and high-quality customer service [27].

Two instance types of each provider are studied in this chapter (Table 3.2). For

the sake of simplicity, they are shown by small and large labels in this chapter. Small

implies m1.small in EC2, 1 GB standard in Rackspace, and (A1) Small in Azure.

Large indicates m1.Xlarge in EC2, 8 GB standard in Rackspace, and (A3) Large

in Azure. To achieve experiment fairness, corresponding instances are selected in a

way to have comparable computing power, memory space, disk capacity and hourly

cost. The Ubuntu server (version 12.04 LTS 64-bit), WordPress (version 3.5.2) and

complete LAMP platform (Linux Ubuntu 64-bit, version 12.04; Apache HTTP Server,

version 2.2.14; MySQL database, version 5.1.70 and PHP, version 2.3.2) are used on

all six instances. The web, application, and database servers are located on the same

48

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

Table 3.2: Detailed Setup of Instances Deployed in the experiment

Name Cores (ECUs) RAM (GB) Disk (GB) Cost (USD/h)

Amazon EC2

m1.small 1 1.7 160 0.060

m1.xLarge 4 15 1680 0.480

RackSpace Cloud

1 GB Standard 1 1 40 0.060

8 GB Standard 4 8 320 0.480

Microsoft Azure

(A1) Small 1 1.75 197 0.060

(A4) Large 4 7.0 412 0.240

Table 3.3: Detailed Setup of Instances Deployed in Test Executer

Instance Type Processor Virtual CPU Memory (GB) Disk (GB)

Architecture (ECUs)

m1.small AMD 64-bit 1 1 40

m1.medium AMD 64-bit 2 3 40

instance in all tests. Therefore, WordPress uses the local database associated with

the LAMP server.

The client side of benchmark is a distributed infrastructure, named Test executer,

located in an OpenStack based private cloud. Test executer consists of 52 instances:

(1) A m1.medium instance, WP-Client, which is the front-end used to trigger tests

and collect the results. (2) A cluster of 50 m1.small instances, named Workers, is

responsible to execute WPressClient application in the private cloud. (3) A m1.small

instance, referred as MQ, runs an Apache ActiveMQ message queuing system.

MQ enhances the extensibility of experiment by decoupling WP-Clients from the

Workers so that Workers can be easily added or removed. To increase the number of

Workers, it is only needed to start more instances which can hot-plug into the system

running the experiment. Similarly, if one of the Workers crashes or turns off, it will

neither get any further tasks nor break the experiment.

Table 3.3 depicts detailed setup of each instance used in Test executer. As illus-

trated in Figure 3.2, Test executer essentially involves five steps. First, WP-Client

generates tasks and sends them to MQ. Each task is actually an execution of a single

49

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

task in WPressClient application. Then, Workers receive tasks from MQ based on a

first-come first-serve (FCFS) scheduling. After that, Workers run each task five times

against each WordPress instance on Amazon EC2, Rackspace Cloud and Microsoft

Azure. Next, each active Worker returns duration statistics of its running task to

MQ and finally, WP-Client collects the results from MQ.

3.2 Results and Discussion

In this section, the results of applying WPress to Amazon EC2, Rackspace cloud, and

Microsoft Azure are illustrated and discussed. In order to investigate the results fur-

ther, the CPU micro-benchmark introduced in [74] is employed to demonstrate periods

during which the VM is not allotted CPU time by the hypervisor. All the experimen-

tal results illustrated in this section were obtained from October 2013 to February

2014. Figure 3.3 shows that for small instances the response time is increasing with

the number of parallel users regardless of the workload type. However, substantial

fluctuations are observed for large instances (Figure 3.4). The author believes that

undesirable effect of having no CPU affinity in WPress leads to inconsistency among

large instances. Each VM in small instances has only one virtual core, hence the only

scheduling overhead is at the hypervisor level to allocate physical CPU to the virtual

core. However, for large instances, in which each VM possesses 4 virtual cores, an

extra overhead is introduced in the virtualized layer for core scheduling.

Figure 3.5 illustrates total VM cost for each cloud provider based on instance and

workload types. The VM cost model is based on the total execution time of the

WPressClient application times the VM hourly cost on each provider. The statistical

t-test for small instance (Figure 3.5(a)) shows that Amazon EC2 has the largest cost

compared with the other two cloud providers. However, no significant difference is

found between the costs of Azure and Rackspace. As for large instances (Figure

3.5(b)), the t-test results show that Azure has the lowest cost among three providers.

This is due to the lowest VM cost of large instances in Azure compared with that of

Amazon EC2 and Rackspace at the time of running this experiment. In addition, the

50

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(c)

Figure 3.3: Average response times for small instances: (a) Read Workload, (b) Write
Workload, (c) Read/Write Workload.

51

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(a)

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(b)

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160

A
v
er

ag
e

re
sp

o
n
se

 t
im

e
[m

s]

Number of parallel users

Amazon
Azure

Rackspace

(c)

Figure 3.4: Average response times for large instances: (a) Read Workload, (b) Write
Workload, (c) Read/Write Workload.

52

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

results show that Amazon EC2 and Rackspace are the most costly providers for large

instances.

For further analysis, the CPU micro-benchmark proposed in [74] is employed to

determine possible relationships between WPress results and CPU performance. The

micro-benchmark runs on small and large instances of Amazon, Azure and Rackspace

and continuously records CPU time for 1,000,000 times. The micro-benchmark appli-

cation runs five times on each instance and labels S1 to S5 (S stands for Sample) are

used to identify them. Moreover, the micro-benchmark is executed at different times

(SGT) of a day (8am, 4pm and 11pm) to investigate any performance variations on

the clouds under test. The micro-benchmark is the only running application on the

instances. Therefore, it is expected to see the recorded values in a linear trend with

positive slope, provided that allocated CPU to the instance is not shared with any

other active instances.

Figures 3.6 and 3.7 depict sample outputs of small and large instances on Amazon,

Azure and Rackspace recorded at 4pm (SGT) time-slot. The figure is zoomed in for

the range of 200,000 to 400,000 loop numbers to magnify small changes for readers.

The time stamps are measured in millisecond and are rather long (up to 13 digits).

Therefore, for the sake of simplicity the values are normalized in the range of 1-10.

In Figure 3.6(a), Amazon EC2 significantly shares allotted CPU with other instances.

Vertical lines in Amazon results demonstrate period of time that CPU is not running

the micro-benchmark application. On the contrary, Amazon large instances (Figure

3.7(a)) do not show significant CPU sharing. Similarly, considerable evidences of CPU

sharing is not seen in small and large instances of Azure (Figures 3.6(b) and 3.7(b)),

and Rackspace (Figures 3.6(c) and 3.7(c)).

The boxplot view of the observed micro-benchmark results are also depicted. Fig-

ures 3.8(a) and 3.9(a) show variation of 5,000,000 numbers recorded on each provider

per time slot, whereas, Figures 3.8(b) and 3.9(b) illustrate variation of 15,000,000

recorded values for each provider. Due to noticeable CPU sharing, Amazon small

instances have considerably larger time stamps than those of Azure and Rackspace

53

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Read write read/write

To
ta

l V
M

 c
os

t (
U

SD
)

Workload type

Amazon Azure Rackspace

(a)

 0

 0.5

 1

 1.5

 2

 2.5

Read write read/write

To
ta

l V
M

 c
os

t (
U

SD
)

Workload type

Amazon Azure Rackspace

(b)

Figure 3.5: Comparing total VM cost for Read, Write and Read/Write workloads on
different cloud providers. (a) Small instances, (b) Large instances.

54

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(a)

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(b)

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(c)

Figure 3.6: CPU micro-benchmark results observed at 4pm (SGT) for small instances:
(a) Amazon EC2, (b) Microsoft Azure, (c) Rackspace Cloud.

55

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(a)

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(b)

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 200000 250000 300000 350000 400000

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Loop number

S1
S2
S3
S4
S5

(c)

Figure 3.7: CPU micro-benchmark results observed at 4pm (SGT) for large instances:
(a) Amazon EC2, (b) Microsoft Azure, (c) Rackspace Cloud.

56

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

(Figures 3.8(a) and 3.8(b)). This accounts for drastically larger average response time

of Amazon small instances.

Moreover, t-test is conducted to investigate variation among three samples on each

provider (Figures 3.8(a) and 3.9(a)) as well as variation among different providers (Fig-

ures 3.8(b) and 3.9(b)). Results imply that all samples are significantly different with

95% confidence interval. In addition to the impact of CPU affinity, significant perfor-

mance variations of CPU can be another reason for observed fluctuations of average

response times in large instances. Obviously, CPU performance of large instances are

better than those of small instances. It is worth mentioning, that the time stamps

values shown in Figures 3.8, and 3.9, are normalized in the range of 1-10. The findings

of this section are summarized as follow:

(i) For small instances, amazon EC2 has the largest average response times. This

is attributed to the impact of CPU sharing, which is predominantly observed on

Amazon small instances. Therefore, for a predictive performance, Amazon small

instances should be used with care. However, it is observed that Rackspace

has the lowest average response time and total VM cost compared with the

other two providers. The high performance of Rackspace in small instances

has been verified by CPU micro-benchmark results. Hence, Rackspace is the

recommended Cloud solution for small instances.

(ii) Similarly, Rackspace shows the best performance for large instances among the

three providers. Nonetheless, it is realized that the average response time be-

tween Rackspace and Azure is not statistically significant, especially for R/W

workload. Thus, Azure is considered as a favorable alternative for the majority

of customers according to its lower total VM cost.

Tables 3.4 depicts the recommended providers for small and large VM instances based

on the experimental results obtained from October 2013 to February 2014.

57

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Amazon(11pm)

Amazon(8am)

Amazon(4pm)

Azure(11pm)

Azure(8am)

Azure(4pm)

Rackspace(11pm)

Rackspace(8am)

Rackspace(4pm)

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Time slots

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Amazon Azure Rackspace

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Cloud providers

(b)

Figure 3.8: Performance variation of CPU on small instances: (a) for three providers
on different time slots, (b) for three providers.

Table 3.4: Recommended Providers for Each Workload type on small and large in-
stances.

Workload Type Small VM Instance Large VM Instance
Read (R) Rackspace Rackspace
Write (W) Rackspace Azure
Read/Write (R/W) Rackspace Azure

58

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

Amazon(11pm)

Amazon(8am)

Amazon(4pm)

Azure(11pm)

Azure(8am)

Azure(4pm)

Rackspace(11pm)

Rackspace(8am)

Rackspace(4pm)

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Time slots

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Amazon Azure Rackspace

N
or

m
al

iz
ed

 ti
m

e
st

am
p

Cloud providers

(b)

Figure 3.9: Performance variation of CPU on large instances: (a) for three providers
on different time slots, (b) for three providers.

59

Chapter 3. WPress: A Performance Benchmark For Three-Tier Web Applications
Running on the Cloud

3.3 Summary

This chapter proposes WPress as an open-source performance benchmark for three-

tier Web applications running on public clouds. WPress is tested for small and large

VM instances of Amazon EC2, Microsoft Azure and Rackspace Cloud. Three dif-

ferent workload types (Read, Write and Read/Write) are considered. Furthermore,

WPressClient, is implemented as an open-source Client and load generator applica-

tion. WPressClient can generate representative workloads for WordPress and calcu-

late the average response times and total cost of VMs for each provider. Moreover,

the CPU micro-benchmark presented in [74] is employed to analyze CPU performance

on the clouds under study and its impact on WPress results is identified.

The experimental results have shown that Rackspace Cloud and Microsoft Azure

are the best Cloud solutions for small and large VM instances, respectively. Further-

more, it is noticed that average response times have substantial fluctuations on large

instances that are due to undesirable effect of CPU affinity and significant perfor-

mance variation of CPU. The benchmark results compared the stability of Amazon

EC2, Microsoft Azure, and Rackspace Cloud in terms of handling concurrent requests

to a three-tier web application running on them. However, it is not a very realistic

assumption to have all tiers run on the same instance. In practice, each tier of a three-

tier web application, such as WordPress, runs on a separate instance, and even on

more than one instances for high availability purposes. Hence, a data center network

needs to handle huge amount of network traffic between instances for an enterprise

web application running on the cloud. Large amount of traffic has negative impact

on the response time and energy consumption of the system.

The main focus of the next two chapters is to simulate more realistic scenarios for

three-tier web applications running on the cloud and introduce a network-aware and

power-aware VM migration heuristic in order to optimize the average response time

and energy consumption of the system.

60

Chapter 4

Network-Aware VM Migration
Heuristic for Improving the SLA
Violation of Three-tier Web
Applications on the Cloud

The powerful data centers with high bandwidth connections coupled with the need for

on-demand computing and network resources on a pay-as-you-go basis make Cloud

computing a suitable platform for three-tier web applications. However, the bench-

mark study conducted in Chapter 3 showed the importance of having an efficient

resource optimization method for three-tier web applications running on the cloud.

In fact, an efficient deployment of web applications on the Cloud environment needs

to address two big challenges.

Firstly, the ever increasing number of servers and switches in modern data centers

consumes considerable amount of energy leading to a rapid increase in total opera-

tional cost. For example, the energy consumption of IT infrastructures in the United

States was about 61 billion kWh that corresponds to 2 percent of global carbon emis-

sion, and the numbers are likely to double every 5 years [70].

Secondly, the large number of web requests generated by millions of clients can

easily overload the communication links inside the Data Center Network (DCN). The

immediate consequence of traffic congestion on the DCN is an apparent increase in the

average response time which may lead to SLAV. In particular, handling large number

of requests in modern web applications, such as e-commerce, banking, and online

shopping, involves complex database operations. This encompasses dynamic query

61

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

processing and data generation which are remarkably slower compared to delivering

static contents especially under heavy load [140].

The VM technology and VM migration are the accepted approaches to address

the aforementioned challenges. To tackle the first challenge, the Modified Best Fit

Decreasing (MBFD) VM placement algorithm proposed in [92] is exploited. The

allocated hosts by the MDBF algorithm are experiencing the least increase in energy

consumption after VM allocation.

Furthermore, the second challenge is addressed by suggesting an adaptive network-

aware VM migration algorithm. The additional network traffic generated during VM

migration may noticeably degrade the overall performance in network intensive ap-

plications. In order to mitigate this problem, the possibility of more than one VM

migration on a congested link is not allowed. Moreover, the VM selection policy (VSP)

considers the steady state amount of inbound/outbound traffic of VMs in order to

reduce the undesirable effects of the migration overhead. More precisely, the following

contributions are made in this chapter:

• An adaptive network-aware VM migration heuristic is proposed to improve the

SLAV of three-tier web applications deployed in the Cloud. Once a congested

link is detected, the VSP sorts all contributing VMs on the corresponding host.

The sort is carried out in descending order in terms of the remaining steady state

traffic of VMs. Afterwards, the Host Selection Policy (HSP), creates the list of

target hosts with which the VMs are communicating. Next, HSP identifies the

best migration pattern in order to minimize the SLAV and provide savings in

energy consumption.

• Two host overloading detection polices are compared in HSP: 1) Static Thresh-

old proposed by [92] which sets a static Upper Utilization Threshold (UUT) for

all hosts, and 2) Adaptive Threshold in which the UUT is changed based on the

average load of the system [141].

62

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

• CloudSim is extended to enhance its ability to simulate power-aware and network-

aware VM allocation algorithms for web applications. The extended pack-

age, so called power.network.datacenter, integrates the power [121] and net-

work.datacenter [109] packages of CloudSim. The package is also equipped with

the three-tier model that is widely used in web applications.

The remainder of this chapter is organized as follows. Section 4.1 presents the system

model used in the implementation of the heuristic. Section 4.2 describes the adaptive

network-aware migration algorithm. Section 4.3 evaluates and analyses the obtained

experimental results. Finally, Section 4.4 summarizes the results.

4.1 System Model

Without the loss of generality, a data center consisting of N heterogeneous physical

servers (hosts) and one edge switch is considered. It is worth mentioning that the

proposed algorithm in section 4.2 can work on more than one edge switches, but for

the sake of simplicity all experiments are conducted with a single edge switch. Each

host i is defined by the CPU performance measured in Million Instructions Per Second

(MIPS), the amount of memory (RAM), and the total network capacity. The servers

share a common Network Attached Storage (NAS) device in order to obviate the

need to migrate the disk storage. The chapter is an attempt to consider a Platform

as a Service (PaaS) Cloud environment that allows developers to deploy, host and

run three-tier web applications regardless of their programming language and hosting

frameworks.

The system consists of M heterogeneous VMs on data center resources. Each

VM is characterized by its CPU requirement defined in MIPS, the amount of RAM

and network bandwidth. The SLA is established between a service provider and a

customer, to determine the costs and penalties based on the achieved performance

level. SLAV can be caused by many events like VM consolidation, device (network or

host) failure or even operator unavailability [142]. This chapter assumes a fault-free

63

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

distributed system. The system with fault tolerant capabilities will be studied as

future work.

Each host is equipped with a multi-core CPU which is defined as a CPU with

n cores each having m MIPS with the effective total capacity of nm MIPS. This is

rationalized as time-shared scheduling support allows applications and VMs to run on

an arbitrary number of cores. It is assumed in this chapter that applications running

on a VM cannot be arbitrarily parallelized. In order to achieve this goal, the CPU

capacity requested by a VM is assumed to be less than or equal to the CPU capacity

provided by each core.

4.1.1 Power Model

Energy consumption in data centers is mostly determined by servers, network devices,

power supplies, and cooling systems [121], [1], [143]. In comparison to other system

resources, it is shown that the main portion of energy is consumed by CPU [92].

The rapid increase in the usage of multi-core CPUs coupled with the complication

of modeling the energy consumption of modern multi-core CPUs make developing a

rigorous model a complicated research problem. Hence, instead of using an analytical

approach, real data of energy consumption is utilized which is obtained as the results

of the SPEC power benchmark. Two server configurations have been chosen: 1)

HP ProLiant DL160 G5 (1 x [Intel Xeon L5420 2.5 GHz, 8 cores, 1 Gbps], 16GB)

published in June 2008, and 2) IBM Server x3250 M3 (1 x [Intel Xeon X3470 2.93

GHz, 4 cores, 1 Gbps], 8GB) published in November 2009. The reason why these

models have been chosen is that they are already provided as part of CloudSim and

have enough resources for VM consolidation. The average active power values of the

selected servers are presented in Table 4.1.

4.1.2 Network Model

The over-subscription of network resources and bandwidth sharing on DCN can have

a significant negative effect on the performance experienced by network-intensive ap-

plications that may cause SLAV. Therefore, developing a representative model for

64

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Table 4.1: Average active power of the selected servers at different load levels in Watts
(W)

CPU utilization HP ProLiant DL160 G5 IBM System x3250 M3
0% 148 41.6
10% 159 46.7
20% 167 52.3
30% 175 57.9
40% 184 65.4
50% 194 73
60% 204 80.7
70% 213 89.5
80% 220 99.6
90% 227 105
100% 233 113

DCN has a great deal of importance. Furthermore, in order to have an accurate per-

formance evaluation of the migration algorithms, an efficient communication method

must be taken into account. The network model within CloudSim [109], considers

a flow model to capture the point-to-point steady-state behaviour of network trans-

fers. Nevertheless, the flow model fails to capture the actual network latency. That

is because the whole flow needs to be received by the switch before being forwarded

to its destination. The inefficiency of the flow model becomes much more severe

when a VM migration is triggered. To solve this problem, CloudSim is extended with

the packet switching communication method which is used as a network model in

the experiments. This provides the ability to model the actual network traffic more

accurately.

4.1.3 Three-tier Web Application Model

Currently, most web applications (e.g. online shopping, online banking, social net-

working, etc.) are generated as three-tier systems because of its flexibility and software

reusability [144]. This chapter considers the 3-tier model, that consists of presentation

layer (Web tier), business logic layer (App tier), and database layer (DB tier) (Figure

4.1).

The Web tier receives requests from users, forwards its dynamic contents to the

App tier, gets the results from App tier and displays them on the user’s machine.

65

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Presentation Layer

(Web tier)

Business and Logic layer

(App tier)

Database Layer

(DB tier)

Figure 4.1: The 3-tier architecture

Apache and Microsoft Internet Information Server (IIS) are the widely used appli-

cations in the first tier. The App tier contains all the business logic for a web site.

It processes the incoming requests from Web tier, renders the desired information

obtained from DB tier, and sends the formatted results directly back to the Web tier.

Apache Tomcat, Sun Java system application, and IBM WebSphore are well-known

applications for the App tier. The DB tier is able to store several terabytes of text

and multimedia data. Typical examples include Microsoft SQL Server, MySQL, and

PosetgreSQL.

4.1.4 Workload Model

This dissertation employed the three-tier workload model proposed by [109]. The

workload model presents each tier with a single Network Cloudlet (NC) and each

NC consists of several stages. The Web tier NC is the starting point of a three-tier

web application. It begins with sending stage (stage number = 0 in Web tier NC)

representing sending some data to the Application tier NC. The application tier NC

is in the network delay stage (stage number=0 in App tier NC) which expresses the

state of waiting for some data to be received from Web tier NC. By sending data, the

Web tier NC changes its stage from sending to network delay (Stage number = 1 in

Web tier NC). This implies that Web tier NC is now waiting to receive a response

from the Application tier NC. While data is being sent from Web tier NC to the

Application tier NC, the Application tier NC is on receive stage (stage number = 1 in

Application tier NC) denoting that it is receiving some data from the Web tier NC.

66

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Once data is received successfully, the Application tier NC moves into stage change

(stage number = 2 in Application Tier NC) and then enters the processing stage (stage

number = 3 in Application tier NC). In the processing stage, the Application tier NC

processes the received data from the Web tier NC and then gets into stage change

(stage number = 4 in Application tier NC). Next, the Application tier NC enters the

sending stage (stage number = 5 in Application tier NC) which accounts for sending

some data to the Database tier NC. The database tier NC receives data from the

Application tier NC (stage number = 1 in Database tier NC), processes the data

(stage number = 3 in Database tier NC), and returns the results to the Application

tier NC (stage number = 5 in Database tier NC).

While data is being processed in the Database tier NC, the Application tier NC

is on the network delay stage (stage number = 6 in Application tier NC) meaning

that it is waiting for some data from the Database tier NC. Once data is successfully

received by the Application tier NC (stage number = 7 in application tier NC), an

acknowledgment message is passed to the Database tier NC which is currently in

the network delay sate (stage number = 6 in Database tier NC). By getting the

acknowledgment message the Database tier NC enters the finish stage (stage number

= 7 in the Database tier NC) and then the Database tier NC is removed from the NC

list of Cloudsim. The application tier NC enters the stage change (stage number =

8 in the Application tier NC) and then to the processing stage (stage number = 9 in

the application tier NC).

Once the data is processed by the application tier NC, the processed data is sent

back to the Web tier NC (stage number = 11 in the Application tier NC and stage

number = 2 in the Web tier NC). Once the data is received successfully in the Web

tier NC, an acknowledgment message is passed to the Application tier NC so that the

Application tier NC finishes its execution and subsequently it is removed from the

list of NC in the CloudSim. The Web tier NC continues with processing the received

data from the Application tier NC (stage number = 4 in the Web tier NC) and finally

ends its execution (stage number = 6 in Web tier NC). Readers are referred to Garg

et. al. [109] for more information about different stages in a NC.

67

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

The three-tier web requests are normally very small in size. Hence, huge number of

individual web requests are needed to simulate a network intensive application which

in turn demands for huge number of computing and memory resources. Because of our

limitations in the computing resources, we used the concept of Aggregation Request

(AR) in this thesis. The AR architecture (Figure 4.2) is nothing but the three-tier

network model explained above. The only difference between AR and individual

request is that we employed larger number of bits to be sent and received and longer

processing time. In other words, each AR represents a collection of individual web

requests. The concept of AR enabled me to use commodity computer systems to

create huge amount of network traffic to evaluate my proposed network intensive

migration algorithm for three-tier web application running on the cloud.

Web tier NC

Application tier NC

Database tier NC

Task Stages:

Send Stage change Receive Network delay Processing Finished

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

0 1 2 3 4 5 6 7

NC stands for Network Cloudlet

Figure 4.2: An Aggregated Request (AR) consisting of three Network Cloudlets (NCs)

4.2 Methodology

Recent advances in virtualization technologies have made it a common practice to

dynamically consolidate VMs into smaller number of hosts. This enables the Cloud

provider to switch idle nodes to the sleep mode in order to get rid of the idle energy

consumption and reduce the overall energy consumption of the data center. In addi-

tion, an efficient VM migration plan can mitigate network congestion from the DCN

which has a significant importance in network-intensive applications.

68

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

In this chapter, virtualization technology is used to efficiently mitigate the network

congestion with the objective of minimizing the SLAV. The problem of minimizing

SLAV by reducing the network congestion is very similar to the recently proposed α-

Minimum Migration Cost Network Utilization (α-MCNU) problem [65]. In α-MCNU

problem, the main objective is to maintain the utilization of all links below α such

that the migration cost is minimized. The migration cost is defined as the total traffic

generated due to migration. It is shown that α-MCNU problem is NP-Hard [65]. This

section presents the heuristics to minimize the SLAV by reducing the network traffic.

The problem of VM allocation can be divided in two: the initial placement of

VM on the host and the optimization of the current VM allocation. In this work,

the recently proposed power-aware MBFD algorithm [92] is exploited to deal with

the admission of new requests for VM provisioning and placing new VMs on hosts.

Nevertheless, the optimization involves two steps: identifying the VMs that need to

be migrated, and determining the destination host for migrating VMs. The pseudo-

code of the algorithm is presented in Algorithm 4.1. The basic idea is to set UUTs for

hosts and network links and prevent the total utilization of CPU and network from

exceeding the specified thresholds. A hot switch is defined as a switch with at least

one over-utilized link. The terms hot and over-utilized are used interchangeably in

this thesis.

The network-aware heuristics VM migration algorithm is shown in Algorithm 4.1.

The DCN traffic is continuously monitored on a real-time bases to determine the list

of hot switches during each optimization cycle. The list is given to Algorithm 4.1

as an input. Essentially, the algorithm checks all congested links1 of each hot switch

(line 3). For each congested link, the algorithm finds all candidates for migration (line

8) and calculates their Network Gain (NG) (lines 12 and 18). The NG is calculated

using equation 4.1, where the total traffic to be retransmitted (RT) after migration

together with the resultant steady state traffic (RSST) is subtracted from the total

steady state traffic that is removed from the DCN (RFDCN). The steady state traffic

1Congested link is a link whose bandwidth utilization exceeds 80% of the its maximum bandwidth
capacity.

69

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Algorithm 4.1 The network-aware VM migration algorithm

Input: Hswitches ← list of hot switches
Output: Mmap ← migration map

initialization :
1: Mmap ← ∅
2: for each hot switch hswitch ∈ Hswitches do
3: for each hot link hlink of hswitch do
4: NGmax ← 0
5: hostd ← The host with direct connection to hlink
6: Lvm ← list of VMs on hostd
7: for each VM vm ∈ Lvm do
8: Lvmc ← list of VMs in communication with vm
9: Lhostc ← list of hosts in communication with vm
10: for each host hostc ∈ Lhostc do
11: if (NGF (vm, hostc) > NGmax) then
12: NGmax ← NGF (vm, hostc)
13: mcandidate ← 〈vm, hostc〉
14: end if
15: end for
16: for each VM vmc ∈ Lvmc do
17: if (NGF (vmc, hostd) > NGmax) then
18: NGmax ← NGF (vmc, hostd)
19: mcandidate ← 〈vmc, hostd〉
20: end if
21: end for
22: if (NGmax 6= 0) then
23: Mmap ←Mmap +mcandidate

24: end if
25: remove hlink from hswitch

26: end for
27: end for
28: end for
29: return Mmap

70

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

refers to the total amount of traffic that will be transferred between VMs. This is

different from the instantaneous traffic between VMs which indicates to the amount

of traffic at the migration time. The larger the NG, the higher the amount of traffic

can be removed from the DCN and the lower SLAV is expected to be achieved.

NG = RFDCN − (RT +RSST) (4.1)

The RFDCN value is calculated by processing the traffic between the migrating

VM and VMs on the destination host. In particular, the algorithm processes NCs

that are running on the migrating VM. It also processes the NCs on the destination

host that are communicating with the migrating VM.

For example, assume an application tier NC is being processed on the migrating

VM with the current stage number of 6 (for more details about stage numbers please

refer to section 4.1.4), and the VM migration is still in progress. Stage number 6,

represents the network delay stage which means either that the data is still being sent

from the application tier NC to database tier NC, or that the data is successfully sent

by the application tier NC, but it is waiting to receive the response from database tier

NC. In the former case, provided that the VM is migrating to the same host that runs

database tier NC, the remaining data to be sent to DB tier NC is added to RFDCN .

If the VM is migrating to the same host that web tier NC is being run, the traffic to

be sent from application tier NC to web tier NC is considered as removed traffic. For

the latter case, the remaining data to be received from database tier NC is added to

RFDCN , if the VM is migrating to same host the runs DB tier NC. Similarly, the

traffic to be sent from application tier NC to web tier NC is added to RFDCN , in

case that the VM is migrating to the same host that runs the web tier NC. The same

approach applies to all the other NCs.

The RT and RSST values are calculated by processing the traffic between the

migrating VM and VMs on other hosts. As stated for RFDCN calculation, all NCs

need to be processed. The same example is used to explain the calculation approaches.

It is assumed that an application tier NC is being processed on the migrating VM

71

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Table 4.2: Definition of variables in algorithm 4.1

Term Description
Mmap The migration map
Hswitches Set of hot switches in DCN
hswitch An individual hot switch
hlink An individual over-utilized link (i.e. hot link)
vmc The candidate VM for migration
mcandidate The candidate for migration
hostd The host with direct connection to hlink
Lvm Set of VMs allocated to hostd
Lvmc Set of communicating VMs with Lvm

Lhostc Set of communicating hosts with Lvm

hostc An individual member of Lhostc

NGmax Maximum network gain
NGF (vm, host) Calculate the network gain for vm to host migration

with the current stage number of 6 (i.e. network delay), and the VM migration is just

completed.

Similarly, there are two possible cases: 1) if the sending of data from application

tier to database tier is not completed, the amount of data that is received by database

tier NC is considered as retransmitted traffic (RT) and the remaining data to be sent

from application tier NC to database tier NC is considered as resultant steady state

traffic (RSST). Moreover, the traffic to be received from database tier NC and the

traffic to be sent from application tier NC to web tier NC are added to RSST , 2) if the

data is successfully sent by the application tier NC to database tier NC, the amount

of traffic that is received from database tier NC is added to RT and the remaining

data to be received is added to RSST . Furthermore, the amount of data to be sent

from application tier NC to web tier NC is added to RSST . The same approaches

are used for all other NCs.

The algorithm identifies a mcandidate for each congested link which is the best

candidate for migration in terms of NG and eventually returns the migration map

(Mmap) for the current optimization cycle. Table 4.2 explains the variables used in

algorithm 4.1.

Moreover, the system configuration after migration must satisfy the maximum ca-

pacities of all hosts such that the sum of the processing demands of all VMs allocated

72

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

to a physical machine falls below the specified UUT. This chapter compares the effi-

ciency of Algorithm 4.1 with two overloading detection policies: Migration with Static

Threshold (MST) and Migration with Load-Balancing Threshold (MLB). The over-

loading detection policy is used to ensure that the destination host is not over-utilized

after migration.

In MST policy, the UUT for each host is constant over time and is assumed to be

80% of the maximum CPU capacity of the host. However, the UUT in MLB policy is

changing over time and is defined as the average CPU utilization of the system. On

one hand, the MLB policy is expected to balance the CPU utilization of the system

and consequently lower the average execution time of the requests; On the other hand,

the MST policy is predicted to improve the SLAV due to its high flexibility in HSP.

However, it is not very clear which policy will eventually lead to lower SLAV. To

answer this question, an extensive simulation study is conducted in CloudSim and it

is found that SLAV in MST is significantly lower compared to that of MLB policy.

Please refer to Section 4.3.4 for more details.

4.3 Analysis

4.3.1 Performance Metrics

Several metrics are used to evaluate the performance of the proposed network-aware

algorithm. The first metric is the percentage of SLAV, defined as the percentage of

requests whose SLAs are violated. SLAV occurs when the response time perceived by

the end user is larger than the specified value in the SLA contract. This can happen

when a host is over-utilized and due to over-subscription of CPU. Consequently, a

given VM cannot achieve its requested MIPS. Furthermore, network congestion can

increase the response time for a request and lead to SLAV.

The percentage of SLAV represents the level at which the performance require-

ments negotiated between Cloud provider and user are not met. The Cloud provider

is liable to pay a penalty for SLAV. The second metric is the average energy consump-

tion of the physical hosts measured in kWh. The third metric is the average execution

73

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

time of the simulation expressed in second (s). The average execution time and the

percentage of SLAV are in close correlation. The lower the average execution time,

the lower the percentage SLAV would be. The last metric is the average number of

migrations generated by the algorithm during optimization of VM placement. Each

VM migration may impose high network overhead to the data center. Hence, the

author believes studying the average number of VM migrations can help to identify

the efficiency of the proposed approaches.

4.3.2 Experiment Setup

The targeted system in this study is illustrated in Figure 4.3. In fact, conducting a

reproducible experiment on a real data center to evaluate the suggested algorithm is

incredibly difficult. Hence, simulation has been used to ensure the reproducibility of

the experiments. CloudSim toolkit [23] is used as a well-known simulation framework

for Cloud computing environment. CloudSim has been extended to enable combined

power and network aware simulations as the main framework does not provide this

feature. Apart from that, an extensible workload model for modern 3-tier web appli-

cations has been incorporated.

A data center with 24 heterogeneous physical hosts is simulated, half of which are

HP ProLiant DL160 G5 servers, and the other half composed of IBM System x3250

M3 servers. The idea of choosing two power models is inspired by [121]. The reason

why these models are chosen is that they are already provided as part of CloudSim.

Moreover, it is experimentally determined that they have enough resources for VM

consolidation. The configuration of the servers and their energy consumption are

presented in Section 4.1.1.

Customers submit requests for provisioning of 60 heterogeneous VMs out of which

20 VMs are used as web servers, 18 VMs are chosen as application servers, and 22 are

selected as database servers. The number of VMs allotted to the physical machine

were determined experimentally. The VMs are initially allocated according to the VM

instance type specifications assuming 100% CPU utilization. Nevertheless, during

the lifetime, VMs consume less CPU resources according to the workload demand,

74

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H22 H23H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21

Edge Switch (1 Gbps)

V12

V49

V76

V13

V40

V80

V14

V33

V60

V92

V16

V52

V85

V17

V44

V81

V99

V05

V46

V66

V87

V18

V35

V39

V45

V72

V06

V31

V37

V74

V07

V25

V55

V67

V75

V86

V10

V32

V77

V23

V29

V56

V89

V11

V26

V38

V59

V68

V50 V42 V02 V34 V98 V54 V19 V82 V94 V21 V58 V22

‘H’ stands for ‘Host’

‘V’ stands for ‘VM’

Figure 4.3: The simulated data center consisting of 24 hosts and 60 VMs connected
by a 1-Gbps edge switch.

providing opportunities for dynamic VM consolidation. Four types of VMs are used,

similar to what is used in [121] including [2500 MIPS, 0.85 GB], [2000 MIPS, 3.75 GB],

[1500 MIPS, 1.7 GB], and [500 MIPS, 613 GB]. The configuration of VMs corresponds

to the Amazon EC2 instant types 2. The mere exception is that each VM has only

one core, which is due to the fact that the workload trace used in this experiment is

obtained from single-core VMs (Section 4.1.4). The specified threshold of the response

time for measuring the SLAV is experimentally determined to be 50 seconds.

Without the loss of generality, it is assumed that DCN consists of a single 1 Gbps

full-duplexed edge switch because implementing routing algorithms in CloudSim from

scratch is a complex task that falls out of the scope of this research work. Each

experiment was repeated 10 times and the average results are depicted in Section

4.3.4. As a future work, it is planned to evaluate the algorithm coupled with different

routing algorithms on a typical 3-tier DCN architecture which is made up of edge,

aggregation, and core switches.

4.3.3 Workload Data

In order to generate representative evaluation results, it is crucial to carry out the

experiments based on server and traffic traces from real-world systems. It is necessary

in CloudSim to have the CPU utilization for each NC. Nevertheless, workload traces

of web applications [145,146] rarely contain such information. Hence, without the loss

of generality, the PlanetLab workload trace files [121,147] are used in the experiment.

2Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-types/

75

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

It is assumed that each workload trace represents the CPU utilization of one NC.

Hence, three workload traces are used for a single AR. Furthermore, realistic traffic

traces are used in the experiment. The system load is changed from 500 ARs to 5000

ARs. Moreover, it is assumed that each AR consists of 1800 individual requests.

Figure 4.4 illustrates the eight scenarios used in the experiment. The main rational

behind the configuration of Figure 4.4 is to simulate a more realistic three-tier web

application on which each tier runs on a separate VM (e.g. scenario 1) or even

on multiple VMs (e.g. scenario 8). Eight scenarios are used to cover all possible

combinations with respect to the number of VMs involved on each tier. For instance,

the first scenario has one operational VM on each tier. This implies that all Web tier

NCs are processed by VM 34, all App tier NCs are executed by VM 50, and all DB

tier NCs are handled by VM 59. A more complicated, yet realistic, scenarios could

consist of shared databases on which the App VMs communicating with more than

one DB VM. An example of shared databases is implemented in scenario 8, in which

four DB VMs (i.e. VM 23, Vm 29, VM 56, and VM 89) on host 22 (H22) are shared

among four App VMs running on H13.

4.3.4 Simulation Results and Analysis

In this section, three algorithms are compared. The first one is called No Migration

(NM), which does not apply any type of optimization methods. This implies the

cases where VMs are not migrated even if the network is congested due to high

demand. The second and the third algorithms are respectively MST and MLB, in

which the network-aware optimization heuristic presented in Section 4.2 is used. All

three algorithms benefit from the MBFD initial VM placement algorithm [92].

The simulation results of the average SLAV, average energy consumption, average

execution time, and average number of migrations are presented. Figure 4.5 shows

that an increase in the number of ARs has negative effect on the SLAV. This is mainly

caused by the growing demand for network resources that can rapidly over-utilize the

communication links and increase the response time. Moreover, an increase in the

76

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

H8 H19 H14

V58

WEB-TIER APP-TIER DB-TIER

V16

V52

V85

V19

(Scenario 5)

H23 H17
H15WEB-TIER APP-TIER

DB-TIER

V94

V11

V26

V38

V59

V68

V7

V25

V55

V67

V75

(Scenario 6)

H11 H16H0
WEB-TIER APP-TIER DB-TIER

V5

V46

V66

V87

V12

V49

V76

V82

(Scenario 7)

H6 H1 H9
WEB-TIER APP-TIER DB-TIER

V34 V50 V54

(Scenario 1)

H3 H5 H12
WEB-TIER APP-TIER DB-TIER

V2

V18

V35

V39

V45

V72

V42

(Scenario 2)

H21 H18H20
WEB-TIER APP-TIER DB-TIER

V21V22

V10

V32

V77

(Scenario 3)

DB-TIER
H10 H2H7

WEB-TIER APP-TIER

V98

V13

V40

V80

V17

V44

V81

V99

(Scenario 4)

DB-TIER
H4 H13 H22

WEB-TIER APP-TIER

V23

V29

V56

V89

V6

V31

V37

V74

V14

V33

V60

V92

(Scenario 8)

V86

Figure 4.4: The simulated scenarios. In this Figure, ”H” and ”V” stand for Host and
VM, respectively.

77

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
L

A
 V

io
la

ti
o
n
 [

%
]

Total Number of Aggregation Requests (ARs)

NM
MST
MLB

 0

 2

 4

 490 500 510

Figure 4.5: The comparison of the average SLA Violations. The figure is zoomed in
to demonstrate the efficiency of the proposed network-aware algorithm, even for low
load.

number of requests can lead to both communications and computation load, that

subsequently results in longer completion time (Figure 4.6).

 0

 100

 200

 300

 400

 500

 600

 700

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
ce

cu
ti

o
n
 t

im
e

[s
ec

]

Total Number of Aggregation Requests (ARs)

NM
MST
MLB

 65

 66

 67

 490 500 510

Figure 4.6: The comparison of the average execution time. The figure is zoomed in
to demonstrate the efficiency of the proposed network-aware algorithm, even for low
load.

Furthermore, the high load increases the energy consumed by the data center

(Figure 4.7) because it increases the operational time of the servers. Additionally,

increasing the load generates high network traffic. Hence, as shown in Figure 4.8,

the optimization algorithm triggers more migrations in order to alleviate the network

congestion. Figures 4.5, 4.6, and 4.7 are zoomed in to demonstrate the efficiency of the

proposed network-aware algorithm, even for low load. The mean and 95% Confidence

78

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 [

k
W

h
]

Total Number of Aggregation Requests (ARs)

NM
MST
MLB

 0.024

 0.026

 0.028

 0.03

 500 1000

Figure 4.7: The comparison of the average energy consumption. The figure is zoomed
in to demonstrate the efficiency of the proposed network-aware algorithm, even for
low load.

Interval (CI) values of the SLAV, energy consumption, execution time, and number

of migrations for the NM, MST, and MLB algorithms are presented in Table 4.3.

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u
m

b
er

 o
f

V
M

 m
ig

ra
ti

o
n
s

Total Number of Aggregation Requests (ARs)

NM
MST
MLB

Figure 4.8: The comparison of the average number of VM migrations.

The author has conducted t-test to compare three algorithms and determine the

one that minimizes the SLAV and energy consumption (Table 4.4). The results have

shown that NM lead to a statistically significantly higher values of the SLAV, energy

consumption, and execution time with the p-value < 0.0001. Furthermore, MST

leads to significant reduction of SLAV and energy consumption compared to MLB.

Nonetheless, there is no significant difference between MST and MLB in terms of

execution time and number of migrations with the p-value = 0.1238 and p-value

79

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

Table 4.3: The final simulation results including the means and 95% CIs

Algorithm SLA Energy Execution VM
Violation Consumption Time Migrations

NM 89.158 0.137 334.131 -
(83.430, 94.886) (0.123, 0.152) (299.173, 369.088) -

MST 47.590 0.038 121.187 29.00
(43.433, 51.747) (0.037, 0.040) (113.909, 128.466) (27.31, 30.69)

MLB 65.535 0.044 129.812 31.46
(60.066, 71.004) (0.042, 0.046) (121.467, 138.157) (29.22, 33.70)

Table 4.4: Comparison of different algorithms using paired t-test

Algorithms Metric Difference p-value
(means and 95% CIs)

NM vs MST SLA Violation 41.569 p-value < 0.0001
(34.535, 48.602)

Energy Consumption 0.099 p-value < 0.0001
(0.085, 0.113)

Execution Time 212.943 p-value < 0.0001
(177.455, 248.431)

NM vs MLB SLA Violation 23.623 p-value < 0.0001
(15.752, 31.494)

Energy Consumption 0.093 p-value < 0.0001
(0.079, 0.108)

Execution time 204.318 p-value < 0.0001
(168.599, 240.037)

MLB vs MST SLA Violation 17.945 p-value < 0.0001
(11.118, 24.773)

Energy Consumption 0.006 p-value < 0.0001
(0.003, 0.008)

Execution time 8.625 p-value = 0.1238
(-2.380, 19.630)

VM Migration 2.46 p-value = 0.0829
(-0.32, 5.24)

= 0.0829, respectively. Hence, it is concluded that MST leads to the minimum SLAV

and energy consumption. This can be explained by the fact that some migrations are

delayed by MLB algorithm such that the expected CPU utilization of the target host

falls below the average utilization of the system.

The data obtained from log files of 5000 ARs is used to illustrate an example of

the effect of MST and MLB on the migration time (Table 4.5). It can be seen from

the table that MST is able to start migration of VM 82 (from Host 16 to Host 0) at

80

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

t = 26.48 s. This is the time at which the congestion is detected in the DCN and

VM 82 is selected by VSP as a VM with the maximum migration gain. Nonetheless,

the same VM migration can not start earlier than t = 55.31 s in the MLB algorithm.

The reason for delay is attributed to the overloading detection policy used in MLB

algorithm. The details are explained below.

Table 4.5: Comparison of MST and MLB in terms of migration time. VM migration
starts at t =26.48 second in MST and t =55.31 second in MLB.

Description Time (second) MST MLB
CPU utilization (Host 0) t =26.48 s 42.81% 42.81%

t =55.31 s 4.14% 11.98%
Upper Utilization Threshold t =26.48 s 80.0% 5.87%
(UUT) t =55.31 s 80.0% 14.0%

In Table 4.5, the CPU utilizations of Host 0 and UUT of the system are depicted

at two times (t = 26.48 s and t = 55.31 s). The UUT in MST is 80% regardless of the

time. However, it is 5.87% at t = 26.48 s and 14.0% at t = 55.31 s in MLB. Therefore,

MST can start migration of VM 82 at t = 26.48 s because the host utilization is less

than the UUT (i.e. 42.81% < 80%). However, CPU utilization in MLB exceeds the

UUT of the system (i.e. 42.81% > 5.87%). Hence, MLB delays the migration to t =

55.31 s where the host utilization falls below the system threshold (i.e. 11.98% <

14.0%).

The overloading detection policy in MLB could result in the VM migration that

not necessarily removes the maximum network traffic from the network. Hence, al-

though the optimization algorithm still improves the SLAV compared to NM, the

DCN remains congested for longer time compared to MST. This leads to more VM

migrations in MLB than that of MST. Consequently, the overhead of more migrations

in MLB increases the SLAV, energy consumption , and execution time compared to

those of MST.

4.4 Summary

This chapter proposed an adaptive network-aware migration algorithm with the ob-

jective of minimizing the SLA violation for three-tier web applications. Moreover, the

81

Chapter 4. Network-Aware VM Migration Heuristic for Improving the SLA
Violation of Three-tier Web Applications on the Cloud

high energy consumption of data centers is addressed by using MBFD power-aware

VM placement algorithm proposed in [92]. Furthermore, CloudSim is extended to

enhance its ability to simulate energy and network aware VM allocation algorithms

for three-tier web applications and is used to evaluate the algorithm.

Two host overloading detection policies are compared. First, the MST policy that

sets a static upper utilization threshold for all hosts. Second, the MLB policy that

considers the average load of the system as the upper utilization threshold. The

experimental results and the statistical analysis clearly confirm that the network-

aware migration algorithm coupled with either of MST or MLB can meet the main

objective of this research work by providing significant improvement in terms of SLA

violation and energy consumption.

The author wants to draw the reader’s attention to the fact that MBFD algorithm

is only applied for initial VM placement. The proposed network-aware heuristic iden-

tifies congested links, calculates the Network Gain (NG) for all candidate VMs, and

migrates the one with the maximum NG, regardless of its effect on energy consump-

tion. The next chapter extends the network-aware heuristic with energy-awareness

capabilities in order to make further improvement in the energy saving of the system

with negligible effect on the SLA.

82

Chapter 5

Combined Energy Efficient and
Network Aware VM Migration
Heuristics for Improving the SLA

Chapter 4, addressed the high energy consumption and network usage of three-tier

web applications running on Cloud data centers. This chapter extends the network-

aware migration heuristic presented in Chapter 4 with energy-awareness capabilities

to make further improvements in the total energy consumption of the data center.

In particular, once a congested link is identified, the algorithm monitors its traffic

flows and calculates network gain and power gain values for all contributing VMs.

Accordingly, the network gain list and power gain list are created for each congested

link and eventually, the VM with the lowest sum of ranks is selected for migration.

In the case of multiple options with the lowest sum of the ranks two final selection

policies are studied: 1) Network Priority (NP) policy and Power Priority (PP) policy.

Moreover, two methods for calculating the power gain are compared: Power Balancer

(PB) and Power Saver (PS). An extensive simulation study is conducted in CloudSim

to achieve the best integration of final selection policy and power gain calculation

method.

In summary, this chapter presents the following contributions:

• Firstly, the network-aware migration heuristic is extended to include energy-

awareness capabilities. In particular, once a congested link is identified, the

algorithm monitors its traffic flows and calculates network gain and power gain

values for all contributing VMs. Accordingly, the network gain and power gain

83

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

lists are created for each congested link and eventually, the VMs with the lowest

sum of ranks, based on the network gain list and power gain list, are selected

for migration.

• Secondly, to verify the effectiveness of the proposed heuristic, CloudSim version

3.0, a well-known cloud simulator, is extended with power-network awareness

capabilities for three-tier web applications running on the Cloud.

The rest of the chapter is organized as follow. Section 5.1 presents the system

model. In Section 5.2, the methodology is proposed and explained. Section 5.3

analyzes the results of experiments. Finally, Section 5.4 summarizes the findings.

5.1 System Model

A new power module is developed, which was integrated into the system model used

in Chapter 4. In fact, three server types are used in order to highlight the efficiency

of the proposed energy-aware technique.

5.1.1 Power Model

The physical host, network devices, and cooling systems are known as the key con-

tributers of energy consumption in data centers [121], [1], [143]. Nonetheless, it is

shown that physical hosts consume the larger portion of energy [92]. In fact, devel-

oping an accurate power model for modern multi-core CPU is a difficult task. There-

fore, this chapter uses the actual energy consumption data obtained from SPECpower

benchmark [148]. The proposed system consists of the following servers: HP ProLiant

DL580 G5 (16 x [Intel Xeon processor L7345, 1860 MIPS], 16 GB, 1 Gbps), Dell Power

Edge 2950 III (8 x [Intel Xeon E5440, 2833 MIPS], 8 GB, 1 Gbps), and Acer AC100

(4 x [Intel Xeon E3-1260L, 2400 MIPS], 4 GB, 1 Gbps). The average active power

values of the selected servers are illustrated in Table 5.1.

It is worth mentioning that different servers and power models are used compared

to those in Table 4.1. The main reason was to provide three different power models

with significant variability of idle power consumption for each scenario in order to

highlight the power-awareness efficiency of the suggested algorithm in this chapter.

84

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Table 5.1: Average active power of the selected servers at different load levels in Watts
(W)

CPU HP ProLiant DL580 G5 Dell Power Edge 2950 III Acer AC100
utilization
0% 271 157 21.5
10% 280 173 24.3
20% 294 189 28.9
30% 309 204 31.9
40% 322 217 34.9
50% 335 230 38.9
60% 347 243 44.6
70% 359 253 47.5
80% 368 262 53
90% 376 270 54.6
100% 387 276 58

5.2 Methodology

New advances in virtualization technology has enabled consolidation of multiple VMs

onto smaller number of physical hosts. Chapter 4, proposed an efficient VM man-

agement according to the DCN traffic in order to reduce communication delay of

three-tier web applications. This chapter is an effort to enhance the proposed algo-

rithm with energy-awareness capability in order to increase the energy saving in data

center.

5.2.1 Energy and Network Aware VM Migration Algorithm

The basic idea of the proposed energy and network aware algorithm (see Algorithm

5.1) is to find the list of candidate migrations for each congested link, rank the list

based on the NG and Power Gain (PG), and select the candidate with the lowest sum

of ranks for migration.

The operation of Algorithm 5.1 is illustrated in Figure 5.1. Essentially, the first

step is very similar to the network-aware Algorithm proposed in Chapter 4. The only

difference is that instead of finding the VM with the maximum migration gain, the

network gain is calculated for all VMs and NG list (LNG) is formed (Algorithm 5.1,

lines 10-23). In step 2, the algorithm calculates the PG for the migration candidate

corresponding to each entry of LNG and forms the PG list (LPG) (Algorithm 5.1, lines

85

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Algorithm 5.1 The power and network aware VM migration algorithm

Input: Hswitches ← list of hot switches
Output: Mmap ← migration map

initialization :
1: Mmap ← ∅
2: for each hot switch hswitch ∈ Hswitches do
3: for each hot link hlink of hswitch do
4: LNG ← 0
5: hostd ← The host with direct connection to hlink
6: Lvm ← list of VMs on hostd
7: for each VM vm ∈ Lvm do
8: Lvmc ← list of VMs in communication with vm
9: Lhostc ← list of hosts in communication with vm
10: for each host hostc ∈ Lhostc do
11: if (NGF (vm, hostc) > 0) then
12: mcandidate ← 〈vm, hostc〉
13: NG← NGF (mcandidate)
14: LNG ← LNG + 〈NG,mcandidate〉
15: end if
16: end for
17: for each VM vmc ∈ Lvmc do
18: if (NGF (vmc, hostd) > 0) then
19: mcandidate ← 〈vmc, hostd〉
20: NG← NGF (mcandidate)
21: LNG ← LNG + 〈NG,mcandidate〉
22: end if
23: end for
24: for each Migration mcandidate ∈ LNG do
25: PG← PGF (mcandidate)
26: LPG ← LPG + 〈PG,mcandidate〉
27: end for
28: rank LNG and LPG

29: mcandidate ← LSOTRF (LNG, LPG)
30: Mmap ←Mmap +mcandidate

31: remove hlink from hswitch

32: end for
33: end for
34: end for
35: return Mmap

86

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Capture the list of migrations at this
optimization cycle and form the NG list.

Gets the migration list and
form the PG list.

Rank the migration list based on NG.

Rank the migration list based on PG.

Return the migration candidate
with the lowest sum of ranks .

Step 1

Step 2

Step 3

Step 4
Power Balancer

method

Power Saver
method

Network Priority
policy

Power Priority
policy

Figure 5.1: The operation of Algorithm 5.1. The PG in step 2 is calculated by two
methods: Power Balancer method, and Power Saver method. Furthermore, if there
are more than one candidate for migration in step 4, two policies are used to select
the best candidate for migration.

Table 5.2: Definition of variables in algorithm 5.1

Term Description
Mmap The migration map
Hswitches Set of hot switches in DCN
hswitch An individual hot switch
hlink An individual over-utilized link (i.e. hot link)
vmc The candidate VM for migration
mcandidate The candidate for migration
vmselected The selected VM for migration
hostd The host with direct connection to hlink
Lvm Set of VMs allocated to hostd
Lvmc Set of communicating VMs with Lvm

Lhostc Set of communicating hosts with Lvm

hostc An individual member of Lhostc

NGmax Maximum network gain
NGF (vm, host) Calculate the network gain for vm to host migration
PGF (vm, host) Calculate the power gain for vm to host migration
NG The network gain
LNG The network gain list
PG The power gain
LPG The power gain list
LSOTRF return the candidate with the lowest sum of the ranks

24-26). In this chapter, the PG is determined by two different methods: the Power

Saver method and the Power Balancer method (see Section 5.2.2). In step 3, the

algorithm ranks LNG and LPG (Algorithm 5.1, line 28). In the last step, the algorithm

87

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

returns the migration candidate with the lowest sum of the ranks (Algorithm 5.1, line

29).

In the case of having more than one migration candidates with the lowest sum of

the ranks, two different selection policies are implemented to pick the best migration

candidate: the Network Priority policy and the Power Priority policy (Section 5.2.3).

Extensive simulation test has been conducted in Section 5.3.4.2 to identify the best

integration of PG calculation method in step 2, and migration candidate selection

policy in step 4. Table 5.2 describes the definitions of terms being used in Algorithm

5.1.

5.2.2 PG Calculation Methods

In this chapter, two different methods are implemented to calculate the PG. Figure 5.2

illustrates an example of changing in energy consumption before and after migration

from the current host (source host) to destination host. It is assumed that a VM, vm,

is migrating from the old host, HostA, to the destination host, HostB. The x axis

indicates the simulation time in sec and the y axis displays the energy consumption

in kWh. On the x axis, the t1 and t2 represent time before and after migration,

respectively.

t1
Simulation time (sec)

E
ne

rg
y

co
n

su
m

p
ti

o
n

(k
W

h)

M1

P3: idle power of old host
Methods:

Method 2 (Power Balancer):
Power Gain = (P2 – P1) – P3

Power balance list will be sorted ascendingly

Method 1 (Power Saver):
Power Gain = (M1 – M2) + P3

Power saver list will be sorted descendingly

t2

P1A

P2A

t1

E
ne

rg
y

co
n

su
m

pt
io

n
 (

kW
h

)

t2

P2B

P1B

M2

Simulation time (sec)
t1

Simulation time (sec)

E
ne

rg
y

co
n

su
m

pt
io

n
(k

W
h)

M1

P3: idle power of old host
Methods:

Method 2 (Power Balancer):
Power Gain = (P2 – P1) – P3

Power balance list will be sorted ascendingly

Method 1 (Power Saver):
Power Gain = (M1 – M2) + P3

Power saver list will be sorted descendingly

t2

P1A

P2A

t1

E
ne

rg
y

co
n

su
m

p
ti

o
n

 (
kW

h
)

t2

P2B

P1B

M2

Simulation time (sec)

(a) (b)

Figure 5.2: The change in energy consumption before and after migration. This
example assumes migration of vm from HostA to HostB. (a) Energy consumption on
HostA, (b) Energy consumption on HostB

Once vm is removed from HostA, its energy consumption drops from P1A at t1

to P2A at t2. However, resuming the vm on HostB increases its energy consumption

88

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

from P1B to P2B. It is worth nothing that the M1 and M2 are not necessarily equal

because HostA and HostB are not homogeneous. The idle energy consumption of

HostA is assumed to be Aidle.

5.2.2.1 Power Saver Method

Equation 5.1 shows a calculation of PG in the Power Saver (PS) method. The addi-

tional energy consumption imposed by vm on HostB, i.e. M2, is subtracted from the

saved energy due to removing vm from HostA, i.e. M1. Furthermore, Aidle is added

to PG provided that vm is the last VM on HostA. This is because HostA can be

turned off after migration. In this method, the larger the PG is, the greater energy

saving can be achieved.

The calculation of M1 and M2 are based on the CPU utilization of the hosts and

migrating VM. To get the M1 value, firstly, the CPU utilization on HostA namely

UA, is calculated. Next, the CPU utilization of the vm is captured right before stating

the migration (Uvm). Using Table 5.1, UA, and Uvm, the values of P1A and P2A can

be calculated. Finally, the M1 is obtained as P1A − P2A. To get the value of M2,

firstly, the CPU utilization on HostB, called UB, is calculated. Using Table 5.1, UB,

and Uvm, the values of P1B and P2B are obtained. Subsequently, the M2 is calculated

as P2B − P1B.

PG =


M1−M2 if vm is not the last VM

on HostA

(M1−M2) + Aidle otherwise

(5.1)

5.2.2.2 Power Balancer Method

The PG in Power Balancer (PB) method is determined by the actual energy consump-

tion of hosts at t2 (Equation 5.2). In particular, the actual energy consumption after

migration on HostB, i.e. P2B, is subtracted from its corresponding value on HostA,

i.e. P2A. Moreover, the Aidle is deducted from PG, in the case that vm is the last

VM on HostA because the host can be turned off once the migration is completed. In

the PB method, the smaller the PG is, the more energy is saved.

89

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

PG =


P2B − P2A if vm is not the last VM

on HostA

(P2B − P2A)− Aidle otherwise

(5.2)

5.2.3 Migration Selection Policies

In fact, the final step in the proposed energy and network aware algorithm is to return

the migration candidate with the lowest sum of ranks. However, it is possible to have

more than one migration candidates with the lowest sum of ranks. An example is

shown in Figure 5.3. The upper part of the figure depicts the ranked PG and NG lists.

This example assumes that PG is calculated using the PS method. The lower part

of the figure shows two migration candidates with the lowest sum of ranks: VM 115

from Host 18 to Host 16, and VM 65 from Host 16 to Host 18. Two selection policies

are implemented for such examples to eventually obtain one migration candidate.

5.2.3.1 Network Priority Policy

As evident by its name, the Network Priority (NP) policy selects the migration can-

didate that is ranked ahead of others in the ranked NG list. In the example shown in

Figure 5.3, the NP policy returns VM 115 from Host 18 to Host 16.

5.2.3.2 Power Priority Policy

In the Power Priority (PP) policy, the main preference is given to the PG. This policy

returns the migration candidate that is ranked first among others in the ranked PG

list. Hence, the output of step 4 in Figure 5.3 would be VM 65 from Host 16 to Host

18.

5.3 Analysis

5.3.1 Performance Metrics

This section defines the performance metric used in this study to evaluate the efficiency

of proposed Algorithms. The performance metrics including average SLAV (in %),

90

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Ranked NG List

Rank NG (Mbits) Migration Candidate

1 48825.408 VM115 (H18 → H16)

2 35885.260 VM065 (H16 → H18)

3 25002.450 VM044 (H09 → H17)

Ranked PG List

Rank PG (kWh) Migration Candidate

1 210.987 VM065 (H16 → H18)

2 89.6870 VM115 (H18 → H16)

3 75.4760 VM044 (H09 → H17)

Migration Candidates with the Lowest Sum of Ranks

VM115 (H18 → H16), VM065 (H16 → H18)

NP Policy

Returns: VM115 (H18 → H16)

PP Policy

Returns: VM065 (H16 → H18)

In this example, PG is calculated using PS method.

Figure 5.3: An example of having more than one migration candidates with the lowest
sum of ranks

average energy consumption (in kWh), average completion time (in sec), average

over-utilization time (in sec), and traffic gain (in Mbps) are described as follow.

• Average SLAV: represents the average percentage of requests whose average re-

sponse time are longer than guaranteed values in SLA contract. SLAV may

occur due to over-subscription of CPU on which VM’s allocated CPU is lower

than its requested amount. Furthermore, congestion in DCN increases the com-

pletion time of requests and consequently leads to SLAV. In fact, cloud providers

are interested to reduce the SLAV as much as possible because they are obliged

to pay penalty for SLAV.

• Average energy consumption (kWh): is used to evaluate the energy efficiency

of algorithms. In this chapter the average energy consumption is a function

of CPU utilization which is calculated based on the three linear power models

presented in Section 5.1.1. The energy consumption of network devices will be

studied as future work.

• Average completion time (sec): indicates the average time taken to complete the

execution of ARs. Apparently, an AR is completed once its NCs have finished

execution. The main reasons that increase the average completion time are the

over-subscription of CPU and congestion in DCN.

91

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

• Average over-utilization time (sec): depicts the average duration of time during

which, the average CPU utilization of physical hosts exceed 80% of their maxi-

mum computing capacity. The over-subscription of CPU is mostly observed on

destination hosts once VM migration is completed. This is due to the fact that

completion of migration increases NCs with almost no communication delay on

destination hosts that consequently leads to high CPU utilization.

• Average traffic gain (Mbits): expresses the average amount of traffic that the

optimization algorithm can remove from the DCN. In fact, the network-aware

Algorithm suggested in Chapter 4 is expected to have larger average traffic

gain compared to that of energy and network aware algorithm proposed in this

chapter. The reason is that the former algorithm uses one optimization criterion

and is always able to selects migration with the maximum traffic gain. However,

the latter considers two criteria and may not necessarily choose the maximum

traffic gain.

5.3.2 Experiment Setup

In practice, it is very difficult to conduct repeatable experiments in real data centers,

which is particularly vital for comprehensive evaluation and comparison of the pro-

posed algorithms [92]. Hence, simulation has been adopted in this chapter. CloudSim

toolkit [23] is used to assess and compare the efficiency of the proposed heuristics.

CloudSim has been extended with new packages to enhance it’s energy and network

awareness specifically for three-tier web applications.

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H22 H23H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21

Edge Switch (1 Gbps)

16
40

33
55

35
57

39
61

9
25

34
56

13
29

38
60

14
30
52
66
79

‘H’ stands for ‘Host’
‘V’ stands for ‘VM’

Vm allocation for Project 3 (The Journal Paper)

5
21
45
73
95

1
17
41
69
91

10
26
49
63

12
28
51
65
78

2
18
42
70
90
98
112

3
19
43
71
92
99
113

4
20
44
72
93
100
114

36
58
85
107

8
24
48
62
76

6
22
46
74
94
101
115

15
31
53
67
80

37
59
86
108

32
54
81
103
117

7
23
47
75
102
96
116

11
27
50
64
77

Figure 5.4: The simulated data center consisting of 24 physical hosts and 103 VMs
interconnected by a Gigabit Ethernet edge switch.

92

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Table 5.3: The host types in Figure 5.4

Server HP ProLiant Dell Power Edge Acer
DL580 G5 2950 III AC100
H0 H1 H2
H3 H4 H5
H6 H7 H8

Host H9 H10 H11
no. H12 H13 H14

H15 H16 H17
H18 H19 H20
H21 H22 H23

Figure 5.4 illustrates the architecture of data center in the simulation. This in-

cludes 24 heterogeneous physical machines which are adopted from three different

server: HP ProLiant DL580 G5, Dell Power Edge 2950 III, and Acer AC100 (See

Table 5.3). The servers are selected according to their computing capacity and their

power consumption. In particular, it is aimed to have three levels of power consump-

tions: 271-387 Watt (high-level), 157-276 Watt (medium-level), and 21.5-58 Watt

(low-level) to evaluate the proposed energy aware approach. The configuration of the

selected servers along with their average active power consumption are presented in

Section 5.1.1. The specified threshold of the response time for measuring the SLAV

is experimentally determined to be 50 seconds.

The idea of choosing multiple power models is inspired from [121]. The reason why

three models are chosen is that they are already available as part of CloudSim package.

Furthermore, it is experimentally determined that they have enough resources for

VM consolidation. The main reason for using different configuration compared to

that of Figure 4.3 is to have three different power models with variable range of

power consumption in order to signify the power-awareness efficiency of the proposed

algorithm in this chapter.

This chapter simulates a three-tier web application consisting of 34 web server

VMs (WEB-VMs), 34 application server VMs (APP-VMs) and 35 database VMs

(DB-VMs). The number of VMs allocated to physical machines are obtained ex-

perimentally. The VMs are distributed across the physical machines, resulting in

eight scenarios (Figure 5.5). The scenarios are distinguishable from one another by

93

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

H0 H19 H5 H4 H20 H15 H22 H3 H8 H10 H14 H6

Scenario 1 Scenario 2 Scenario 3 Scenario 4

H9 H7 H17 H12 H13 H2 H18 H23 H16 H1 H21 H11

Scenario 5 Scenario 6 Scenario 7 Scenario 8

16 38 9 33 14

5
21
45
73

1
17
41
69

39 10 35
12
28

2
18
42
70

13

3
19
43
71

34

8
24
48
62

4
20
44
72

36

6
22
46
74

15
31
53
67

37
32
54

7
23
47
75

11
27

40 60 25 55

30
52
66
79

95 9161

26
49
63

57
51
65
78

90
98
112

29
92
99
113

56 76
93
100
114

58
85
107

94
101
115

80
59
86
108

81
103
117

102
96
116

50
64
77

WEB-VM

APP-VM

DB-VM

Host

Figure 5.5: The eight scenarios simulated in this chapter. Each scenario contains at
least two communication paths. For example, {VM 16↔ VM 38↔ VM 9} and {VM
40 ↔ VM 25 ↔ VM 60} are the two communication paths in the first scenario.

the number of VMs running on each tier. For example, in Scenario 1 there is only

one VM for each tire which are VM 16 (WEB-VM), VM 38 (APP-VM), and VM 9

(DB-VM). A more realistic scenarios could consist of shared databases on which the

APP-VMs are communicating with more than one DB-VM.

An example of such scenario, is Scenario 2 which has one WEB-VM (i.e. VM

33), one APP-VM (i.e. VM 14), and multiple DB-VMs (i.e. VM 5, VM 21, VM 45,

VM 73). Different from Figure 4.4, each scenario is designed to have three physical

hosts with different power models and at least two separate communication paths to

increase migration opportunities with different PGs. For example, the communication

paths in Scenario 1 include {VM 16 ↔ VM 38 ↔ VM 9} and {VM 40 ↔ VM 25 ↔

VM 60}.

Four types of VMs are used in the simulation which are already reported in the

literature [121] with the exception that they have similar computing capacities: [1800

MIPS, 0.870 GB], [1800 MIPS, 3.840 GB], [1800 MIPS, 1.740 GB], and [1800 MIPS,

0.613 GB]. The focus of this chapter is to figure out the efficiency of proposed migration

algorithms on reducing the SLAV and energy consumption. The main reason for fixed

94

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

MIPS is to cancel the effect of CPU on request completion time. The MIPS value

is determined by an extensive set of experiments. The number of VMs allocated to

physical machines are obtained experimentally.

As shown in Figure 5.4, the DCN is composed of a single edge switch. This is

because designing a new routing algorithm in CloudSim and integrating that with the

proposed migration algorithms is a complex mechanism which is out of the scope of

this study. The edge switch interconnects a cluster of 24 hosts via full-duplex Gigabit

Ethernet (GbE) links. As a future work, it is planned to evaluate the efficiency of the

proposed migration algorithms in a more realistic network topology such as Fat-Tree

made up of edge, aggregation, and core switches.

5.3.3 Workload Data

To achieve representative results, it is essential to conduct the experiment using real

trace data. The available workload traces for web applications [145,146] seldom con-

tain the CPU utilization data that is required to be used for NCs. Therefore, Plan-

etLab trace files [121, 147] are used in the experiments. The system load is variable

from 500 ARs to 5000 ARs and each experiment is repeated ten times. The average

results are reported in Section 5.3.4.

5.3.4 Simulation Results and Analysis

This section compares the network-aware Algorithm proposed in Chapter 4 with the

suggested energy-efficient network-aware algorithm in terms of average SLAV and en-

ergy consumption. The experimental setup in this chapter is different from that of

Chapter 4. In order to have a fair comparison, the analysis consists of two parts. In

the first part, the network-aware algorithm is compared against MST and MLB over-

loading detection policies. This confirms the experimental results shown in Chapter

4 that MST has better SLAV and energy consumption compared to that of MLB.

Therefore, the second part adopts the MST overloading detection policy.

In the second part, the network-aware algorithm is compared with the energy

and network aware algorithm. Moreover, the energy and network aware algorithm is

95

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

evaluated to determine the most efficient power gain method and final selection policy.

Similar to Chapter 4, all the experiments in this chapter use the MBFD algorithm [92]

for the initial VM placement.

5.3.4.1 Network-Aware Algorithm

This part answers the question of which overloading detection policy performs best

in terms of SLAV, energy consumption, and completion time. In particular three

approaches are compared. The first approach, known as No Migration (NM), does

not use any optimization method. The second approach (named NA-MST), uses the

proposed network-aware optimization method with MST overloading detection policy.

Finally, the third approach, called NA-MLB, uses the network-aware optimization

method with the MLB overloading detection policy.

The simulation results, including the average SLAV, the average energy consump-

tion, and the average completion time, are shown in Figure 5.6. The three plots in

the left column, depicts the improvement of optimization approaches (NA-MST and

NA-MLB) compared to NM and the the three plots in the right column compare the

NA-MST and NA-MLB. An increase in the number of ARs negatively affects the aver-

age SLAV (Figures 5.6(a), 5.6(b)). The higher SLAV is attributed to rising demands

for network resources and consequently higher network congestion. Furthermore, the

increase in number of ARs enlarges the average energy consumption (Figures 5.6(c),

5.6(d)) and lengthens the average completion time (Figure 5.6(e), 5.6(f)). The mean

and 95% Confidence Interval (CI) values of the average SLAV, average energy con-

sumption, and average completion time of the three approaches are presented in Table

5.4.

A statistical test (t-test) has been conducted to compare the three approaches.

Table 5.5 shows that NA-MST ans NA-MLB approaches have significantly lower av-

erage SLAV, energy consumption, and completion time compared to NM approach

with the p-value < 0.0001. Furthermore, it can be seen from the table that NA-MST

shows significant reduction of average SLAV, energy consumption and completion

96

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NM
NA-MST
NA-MLB

 10

 12

 14

 16

 18

 490 500 510

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NA-MST
NA-MLB

(a) (b)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NM
NA-MST
NA-MLB

 0.06

 0.08

 0.1

 500 1000

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NA-MST
NA-MLB

(c) (d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NM
NA-MST
NA-MLB

 40

 41

 42

 43

 44

 490 500 510

 40

 50

 60

 70

 80

 90

 100

 110

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NA-MST
NA-MLB

(e) (f)

Figure 5.6: Comparing the efficiency of MST and MLB overloading detection policies
in the proposed network-aware algorithm

97

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Table 5.4: The simulation results including the means and 95% confidence intervals
(CIs)

Algorithm SLA Violation Energy Consumption Completion Time
(%) (kWh) (sec)

NM 91.140 0.282 265.626
(86.023, 96.257) (0.254, 0.311) (237.311, 293.942)

NA-MST 58.067 0.093 68.774
(54.663, 61.472) (0.090, 0.095) (66.240, 71.308)

NA-MLB 70.379 0.105 80.588
(66.449, 74.308) (0.101, 0.108) (77.062, 84.113)

time compared to that of NA-MLB. Hence, it is concluded that MST overloading de-

tection policy is preferable to MLB. This is because, from the information contained

in the log files, the UUT in MLB is much lower than that of MST. Therefore, MLB is

not always able to select the VM with the maximum NG at each optimization cycle.

Table 5.5: Comparison of different algorithms using paired t-test

Group 1 = NM
Group 2 = NA-MST
Metric Difference (means and 95% CIs) p-value
SLA Violation (%) 33.072 (26.963, 39.180) p-value < 0.0001
Energy Consumption (kWh) 0.189 (0.160, 0.218) p-value < 0.0001
Completion Time (sec) 196.852 (168.598, 225.105) p-value < 0.0001
Group 1 = NM
Group 2 = NA-MLB
Metric Difference (means and 95% CIs) p-value
SLA Violation (%) 20.760 (14.348, 27.173) p-value < 0.0001
Energy Consumption (kWh) 0.177 (0.148, 0.206) p-value < 0.0001
Completion Time (sec) 185.038 (156.680, 213.397) p-value < 0.0001
Group 1 = NA-MST
Group 2 = NA-MLB
Metric Difference (means and 95% CIs) p-value
SLA Violation (%) 12.311 (7.143, 17.478) p-value < 0.0001
Energy Consumption (kWh) 0.012 (0.007, 0.016) p-value < 0.0001
Completion Time (sec) 11.813 (7.498, 16.128) p-value < 0.0001

Table 5.6 illustrates an example of migration time, from the fifth run of 5000

requests. In this example, VM 58 is going to migrated from Host 13 to Host 2 using

MST and MLB. The CPU utilization of the destination host (i.e. Host 2) and the

UUT of system in both MST and MLB are depicted. It can be seen that at t = 35.27

s the CPU utilization (36.01%) is lower than UUT (80%) in MST and therefore the

98

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

Table 5.6: Comparison of MST and MLB in terms of migration time. Migration of
VM 58 from Host 13 to Host 2 starts at t =35.27 second in MST. However, the same
VM is migrated at t =88.34 second in MLB. CPU shows the CPU utilization of Host
2 and UUT stands for Upper Utilization Threshold.

Time (sec) MST MLB
t =35.27 CPU = 36.01% CPU = 1.42%

UUT = 80% UUT = 1.13%
Migration is triggered Migration is not possible

t =88.34 CPU = 1.09% CPU = 2.01%
UUT = 80% UUT = 3.48%
— VM Migration is triggered

migration is triggered. This is the time at which migration of VM 58 from Host 13 to

Host 2 has the highest NG. Nonetheless, at the same time MLB is not able to trigger

migration of VM 58 because the CPU utilization of Host 2 (1.42%) is not lower than

the UUT (1.13%). Instead, MLB triggers the VM migration at t = 88.34 s.

5.3.4.2 Energy and Network Aware Algorithm

This part presents the simulation results for the energy and network aware algorithm

and aims to determine the optimized PG calculation method and final selection policy

to be coupled in the algorithm. In the first stage, the PP and NP policies are compared

for both PB and PS methods. The results show that NP is preferable in both methods

due to its lower average SLAV, energy consumption and completion time. In the

second stage, NP is adopted and PB is compared with PS. In the remaining of this

chapter the MST overloading detection policy is adopted. This is due to the better

efficiency of MST policy compared to MLB.

Three performance metrics are used in stage 1, namely, average SLAV, average

energy consumption, and average completion time. This stage begins by studying

the effect of final selection policies on the performance metrics whilst PB method is

used. Four approaches are compared: the No Migration (NM) approach, the network-

aware approach (NA), the power-network aware approach with PB method and NP

policy (PNA-PB-NP), and the power-network aware approach with PB method and

PP policy (PNA-PB-PP). The simulation results are depicted in Figure 5.7.

99

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PB-NP
PNA-PB-PP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NA
PNA-PB-NP
PNA-PB-PP

(a) (b)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PB-NP
PNA-PB-PP

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NA
PNA-PB-NP
PNA-PB-PP

(c) (d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PB-NP
PNA-PB-PP

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NA
PNA-PB-NP
PNA-PB-PP

(e) (f)

Figure 5.7: Comparing the efficiency of Network-Priority (NP) and Power-Priority
(PP) final selection policies while Power Gain (PG) is calculated with Power Balancer
(PB) method.

100

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

The three plots in the left column compare the NM approach with the three

optimization approaches. Not surprisingly, the significant improvement is observed

in terms of all the performance metrics. Nonetheless, it is difficult to distinguish

between optimization approaches particularly for the average energy consumption

and the average completion time. The three plots in the right column displays the

difference between NA, PNA-PB-NP, and PNA-PB-PP approaches. The mean and

95% CI of average SLAV, average energy consumption, and average completion time

presented in Figure 5.7 are illustrated in Appendix A, Tables A.1, A.2, and A.3,

respectively.

Furthermore, t-test is used to compare the optimization approaches. The t-test

results for the average SLAV, energy consumption, and completion time are illustrated

in Appendix A, Tables A.4, A.5, and A.6, respectively. The aim of this comparison is

to identify the power-network aware approach (either PNA-PB-NP or PNA-PB-PP)

that increases the energy saving compared to NA approach. However, the average

SLAV should not exceed that of NA approach. Three zones are discussed in this

chapter: low load level from 500 to 2000 requests (zone 1), medium load level from

2500 to 3500 requests (zone 2), and high-load level from 4000 to 5000 requests (zone

3).

The t-test results can be summarized as follow: Firstly, Appendix A, Tables A.4

shows that the PNA-PB-NP approach does not have any negative effects on the

average SLAV compared to the NA. Nonetheless, it can be observed that the SLAV in

PNA-PB-PP is significantly higher than that of NA especially for high load conditions

(zone 2 and 3).

Secondly, the same observation holds true for the average completion time in

Appendix A, Tables A.6. While the average completion time in PNA-PB-PP in zone

2 and 3 are higher compared to that of NA, no statistical difference is observed

between PNA-PB-NP and NA. Thirdly, Appendix A, Tables A.5 reveals that the

average energy consumption in PNA-PB-NP is lower in zone 1 compared to that of

NA. However, the difference of average energy consumption between PNA-PB-PP

and NA is not statistically different. Hence, it is concluded that PNA-PB-NP is the

101

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

winner of this comparison because it can save more energy than other approaches

while its average SLAV and completion time are not higher than those of NA.

Stage 1 is continued by analyzing the effect of NP and PP policies on the perfor-

mance metrics whilst PS method is used. Four approaches are studied: the No Migra-

tion (NM) approach, the network-aware approach (NA), the power-network aware ap-

proach with PS method and NP policy (PNA-PS-NP), and the power-network aware

approach with PS method and PP policy (PNA-PS-PP). Figure 5.8 illustrates the

simulation results. Obviously, the optimization approaches results in the significant

improvement compared to NM approach (Figures 5.8(a), 5.8(c), and 5.8(e)). The

mean and 95% CI of the average SLAV, average energy consumption, and average

completion time are presented in Appendix A, Tables A.7, A.8, and A.9, respectively.

The optimization approaches are compared using t-test.

The t-test results in terms of average SLAV, energy consumption and completion

time are displayed in in Appendix A, Tables A.10, A.11, and A.12, respectively. In

the following, a brief description of the results is given. First, Appendix A, Table A.10

and Appendix A, Table A.12 show that the average SLAV and the completion time in

PNA-PS-NP and PNA-PS-PP approaches are significantly higher compared to that of

NA when load increases (i.e. zone 2 and 3). However, no statistical differences in terms

of average SLAV and completion time is observed in zone 1. Additionally, Appendix A,

Table A.11 clearly shows that PNA-PS-NP consumes lower energy compared to NA

in zone 1, but PNA-PS-PP and NA consume statistically similar energy in all zones.

Thus, despite the better efficiency of PNA-PS-NP over PNA-PS-PP, the former is

only preferable to NA in zone 1. From the results in stage 1, the author concludes

that PNA-PB-NP approach is the optimal substitution for the NA approach in all

zones.

In the second stage, the NP policy is adapted as the final selection policy and PB

is compared with PS in more details. In particular, this stage determines the main

parameters that contribute to the lower average completion time in PB compared to

that of PS. The simulation results are illustrated in Figure 5.9. The PB and PS meth-

ods are represented by PNA-PB-NP and PNA-PS-NP, respectively. Furthermore, the

102

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PS-NP
PNA-PS-PP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 S
LA

 V
io

la
tio

n
[%

]

Total Number of Aggregation Requests (ARs)

NA
PNA-PS-NP
PNA-PS-PP

(a) (b)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PS-NP
PNA-PS-PP

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
[k

W
h]

Total Number of Aggregation Requests (ARs)

NA
PNA-PS-NP
PNA-PS-PP

(c) (d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NM
NA

PNA-PS-NP
PNA-PS-PP

 40

 50

 60

 70

 80

 90

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

NA
PNA-PS-NP
PNA-PS-PP

(e) (f)

Figure 5.8: Comparing the efficiency of Network-Priority (NP) and Power-Priority
(PP) final selection policies while Power Gain (PG) is calculated with Power Saver
(PS) method.

103

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

mean and 95% CI of the values are given in Appendix A, Table A.13. Based on the

results from the t-test (refer to Appendix A, Table A.14), the average completion

time in PB is lower than that of PS in zone 2 with p-values of 0.000005, 0.000024,

and 0.002791 for 2500, 3000, and 3500 requests, respectively. However, no significant

difference is observed between PB and PS in the other two zones (i.e. zone 1 and 3).

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
[s

ec
]

Total Number of Aggregation Requests (ARs)

PNA-PS-NP
PNA-PB-NP

Figure 5.9: Comparing the average completion time of Power-Balancer (PB) and
Power-Saver (PS) calculation methods. In this comparison the Network-Priority (NP)
is adopted for the final selection policy.

Essentially, the average completion time is affected by two parameters: computing

power and network bandwidth. When the system load increases, the CPU utilization

grows and possibly exceeds the UUT. Certainly, this increases the average comple-

tion time because the highly loaded VMs receive less than their demanded CPU.

Additionally, the total amount of steady traffic that is removed from the DCN has

direct influence on the average completion time, and the influence becomes even more

apparent when network-intensive applications are running.

Figure 5.10 illustrates the average traffic gain on PB and PS methods. The mean

and 95% CI of the values can be seen in Appendix A, Table A.15. The t-test results

(Appendix A, Table A.16) reveal that PB and PS are statistically similar in zone 1,

but PB achieves higher traffic gain compared to that of PS starting from zone 2.

The average over-utilization time of PB and PS are depicted in Figure 5.11 (The

mean and 95% CI of values are shown in Appendix A, Table A.17). The t-test results

(Appendix A, Table A.18) demonstrates that the average over-utilization time between

104

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 T
ra

ff
ic

 G
ai

n
[M

bi
ts

]
Total Number of Aggregation Requests (ARs)

PNA-PS-NP
PNA-PB-NP

Figure 5.10: Comparing the average traffic gain of Power-Balancer (PB) and Power-
Saver (PS) calculation methods. In this comparison the Network-Priority (NP) is
adopted for the final selection policy.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 O
ve

r-
U

til
iz

at
io

n
Ti

m
e

[s
ec

]

Total Number of Aggregation Requests (ARs)

PNA-PS-NP
PNA-PB-NP

Figure 5.11: Comparing the average over-utilization time of Power-Balancer (PB) and
Power-Saver (PS) calculation methods. In this comparison the Network-Priority (NP)
is adopted for the final selection policy.

PB and PS are statistically similar in zone 1 and zone 2. Hence, it is concluded that

the difference of average completion time between PB and PS is not very significant

in zone 1, but it is statistically notable in zone 2 (see Figure 5.9) because while there

is no difference between their average over-utilization time, PB can achieve higher

traffic gain.

5.4 Summary

This chapter proposes an energy and network aware VM migration heuristic for three-

tier Web applications running on the Cloud. The objectives of this chapter are to min-

105

Chapter 5. Combined energy efficient and network aware VM Migration heuristics
for improving the SLA

imize the average SLA violation and energy consumption of a data center. This work

consist of two parts. Firstly, a network-aware VM migration heuristic presented in

the previous chapter is evaluated under a new system configuration consisting of three

host models. The experimental results confirm that MST overloading detection pol-

icy is much more effective in terms of average SLA violation and energy consumption

compared to MLB one.

Secondly, the proposed network-aware VM migration algorithm is extended to

include energy-awareness capabilities. The new algorithm calculates NG and Power

Gain (PG) for each candidate VM and creates NG and PG lists for each congested

link. The PG is calculated using Power Balancer (PB) and Power Saver (PS) methods.

Eventually, the VM with the lowest sum of ranks is selected for migration. In the

case of multiple options with the same rank, two final selection policies are applied:

Network Priority (NP) and Power Priority (PP). An extensive simulation study is

conducted to determine the best integration of PG calculation methods and final

selection policies. The simulation results indicate that integration of PB method with

NP policy leads to the best performance.

106

Chapter 6

Conclusions and Future Works

This chapter summarizes the key findings and contributions of this thesis. Moreover,

it presents several avenues for future research directions on VM migration in cloud.

6.1 Conclusions

The main contents of the thesis can be summarized as follows:

• Chapter 1: The fundamental background of cloud computing is provided and

some applications of VM migration are presented.

• Chapter 2: The research works related to VM management algorithms are

presented and the current trend and novelty of this dissertation is discussed.

• Chapter 3: In this chapter, WPress is proposed as an open-source perfor-

mance benchmark for three-tier Web applications running on public clouds.

WPress is tested for small and large VM instances of Amazon EC2, Microsoft

Azure and Rackspace Cloud. Three different workload types (Read, Write and

Read/Write) are considered. Furthermore, WPressClient is implemented as an

open-source client and load generator application. WPressClient can generate

representative workloads for WordPress and calculate the average response time

and total cost of VMs for each provider. Moreover, the CPU micro-benchmark

presented in [74] is employed to analyze CPU performance on the clouds under

study and its impact on WPress results is identified.

107

Chapter 6. Conclusions and Future Works

The experimental results have shown that Rackspace Cloud and Microsoft Azure

are the best cloud solutions for small and large VM instances, respectively. Fur-

thermore, it is noticed that average response time has substantial fluctuations

on large instances that are due to undesirable effect of CPU affinity and sig-

nificant performance variation of CPU. This shows that an efficient resource

optimization method is crucial.

• Chapter 4: This chapter proposed an adaptive network-aware migration al-

gorithm with the objective of minimizing the SLA violation for three-tier Web

applications. The high energy consumption of data centers is addressed by

using MBFD power-aware VM placement algorithm proposed in [92]. In addi-

tion, CloudSim is extended by adding a new module that integrates the energy-

efficiency of the power module [92] with the communication models introduced

in the network module [109]. The new module is able to model three-tier web

applications running on clouds and implements packet-switching transmission

system. The new module enables researchers to simulate the various energy and

network aware VM allocation and migration algorithm.

Two host overloading detection polices are compared. First, the MST policy

that sets a static upper utilization threshold for all hosts. Second, the MLB

policy which considers the average load of the system as the upper utilization

threshold. The experimental results and the statistical analysis clearly demon-

strate that the network-aware migration algorithm coupled with either MST or

MLB can meet the main objective of this research work by providing significant

improvement in terms of SLA violation and energy consumption.

The author wants to draw the reader’s attention to the fact that MBFD algo-

rithm is only applied for initial VM placement. The proposed network-aware

heuristic identifies congested links, calculates the Network Gain (NG) for all

candidate VMs, and migrates the one with the maximum NG, regardless of its

effect on energy consumption.

108

Chapter 6. Conclusions and Future Works

• Chapter 5: This chapter proposes combined energy efficient and network aware

VM migration heuristic for three-tier Web applications running on the cloud.

The objectives of the heuristic is to minimize the average SLA violation and

energy consumption of a data center. This work consist of two parts. Firstly, a

network-aware VM migration heuristic presented in the Chapter 4, is evaluated

under a new system configuration consisting of three host models. The exper-

imental results confirm that MST overloading detection policy is much more

effective in terms of average SLA violation and energy consumption compared

to MLB one.

Secondly, the proposed network-aware VM migration algorithm is extended to

include energy-awareness capabilities. The new algorithm calculates NG and

Power Gain (PG) for each candidate VM and creates NG and PG lists for each

congested link. The PG is calculated using Power Balancer (PB) and Power

Saver (PS) methods. Eventually, the VM with the lowest sum of ranks is se-

lected for migration. In the case of multiple options with the same rank, two

final selection policies are applied: Network Priority (NP) and Power Priority

(PP). An extensive simulation study is conducted to determine the best inte-

gration of PG calculation methods and final selection policies. The simulation

results indicate that integration of PB method with NP policy leads to the best

performance.

6.2 Future Works

As stated in Chapter 2, several research works have been done in the field of bench-

marking application for three-tier applications. However, designing a comprehensive

benchmark, suitable for cloud environments, with unknown hardware configurations

and pay-as-you-go pricing model, is a challenging task. Moreover, it is shown that

energy efficient and network aware VM management policies have been receiving a

lot of attention. Nonetheless, there are still some research problems that have not

been well studied in this topic. This section presents some of the potential avenues

for future research.

109

Chapter 6. Conclusions and Future Works

6.2.1 A Comprehensive Benchmark Application

In this thesis, the first steps are made towards designing a comprehensive benchmark

suit for three-tier enterprise applications. The proposed benchmark suit consists of

a single three-tier Web application and two performance metrics including average

response time and average operational cost. In fact, this work is an effort to investigate

the effect of CPU virtualization on the performance metrics. The author makes a few

suggestions to improve the reliability of the proposed benchmark suit.

Firstly, it is very beneficial to incorporate more diverse set of applications in the

benchmark suit including three-tier Web applications, High Performance Computing

(HPC), e-commerce, and social networks [109]. This helps to have more accurate

performance evaluation of the cloud under test. Another suggestion is to consider new

metrics to evaluate disk and network performance of a cloud provider. These metrics

are important because three-tier Web applications typically interact with millions of

users. This makes a large amount of data to be stored on data bases and huge amount

of traffic to be transmitted over the data center network.

6.2.2 Energy-Efficient Network-Aware VM Migration Algo-
rithm

In this thesis, an energy-efficient network-aware VM migration heuristic is proposed

for three-tier Web applications running on clouds. However, several assumptions

are made without which the simulated system would be more realistic. The author

offers the following suggestions towards approaching a comprehensive VM migration

algorithm for three-tier Web applications in clouds.

6.2.2.1 Over-Loading Detection Policies

In this thesis, the MST [92] and MLB [141] overloading detection policies are com-

pared and it is shown that MST results in lower SLA violation and energy consumption

compared to those of MLB. Nonetheless, there are several adaptive overloading de-

tection policies that can be studied as future work. One suggestion is to compare the

adaptive overloading detection policies proposed in [121] including Median Absolute

110

Chapter 6. Conclusions and Future Works

Deviation (MAD), Inter Quartile Range (IQR), and Local Regression (LR) with MST.

This helps to identify the most efficient overloading detection policy to be integrated

with the proposed heuristics in terms of SLA violation and energy consumption.

6.2.2.2 Fault Tolerant VM Migration Algorithm

This thesis considers the effect of network congestion on the SLA violation and energy

consumption of data centers on a fault-free system. However, there are several factors

that have negative influences on the performance and energy consumption of clouds.

One of the important factors is the failure occurrence in data centers. A failure may

occur in the hardware layer including servers, power supplies, network links, switches,

and routers. It also may happen in the software layer affecting the cloud hypervisor

or the client’s jobs.

Fault-tolerant approaches are mainly categorized in three groups including failure

detection policies, failure rollover techniques, and failure prediction algorithms [149].

In particular, the VM migration approaches are very helpful in failure rollover and

failure prediction algorithms [150]. Therefore, a good research direction is to integrate

the proposed VM migration algorithm with new fault-tolerant capabilities.

6.2.2.3 Three-Tiered Data Center Network Architecture

The current work assumed a data center with a single edge switch. This is due to the

fact that at the time of writing this thesis, it is one of the first works to implement an

energy-efficient network-aware VM migration algorithm for three-tier applications in

CloudSim. Hence, for the sake of simplicity, integration of complex routing algorithm

with the proposed method is not considered. However, real data centers typically

use three-tiered architecture including edge, aggregation, and core switches organized

in several topologies such as tree, fat-tree, and VL2 [105]. Hence, one direction for

future work is to consider a complete data center and find the most efficient routing

algorithm to be integrated with the proposed heuristics.

111

Chapter 6. Conclusions and Future Works

6.2.2.4 VM Migration in WAN Environments

This thesis proposes several VM migration heuristics within a single data center. The

concept of VM migration algorithm in the WAN environment is an interesting research

topic that has been discussed in previous literature [115, 151, 152]. On one hand, in

the WAN environment, the high bandwidth over-subscription causes limited available

bandwidth between data centers. On the other hand, VM migration is known to be

a costly operation in terms of network bandwidth and CPU utilization [153]. These

may impose new constraints on the VM selection policies and the destination selection

methods proposed in this thesis.

6.2.3 Resource Management for HPC-type Applications

This dissertation has mainly studied the resource management problem for three-tier

Web applications running on cloud. In fact, cloud data centers are able to provide

massive computing resources. This makes cloud computing attractive for High Per-

formance Computing (HPC) applications [154–156]. An interesting research avenue

includes modifying the proposed energy-efficient network-aware VM migration algo-

rithm for HPC applications running on cloud. As an example, readers are encouraged

to study how the proposed approach can be used in the genomic data analysis.

6.2.3.1 Genomic Data Analysis in Cloud

Genomics is used to study the similarities and differences of the entire mammalian

genome [157,158] which encompasses sequencing, mapping and analyzing an extensive

range of Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) codes [159].

Introduction of modern data collection approaches has reduced the cost of genomic

data collection which had been a big challenge historically. Nonetheless, handling

and analyzing the substantial amount of genomic data requires powerful systems in

terms of computing power, network bandwidth and storage capacity. To address this

issue, cloud computing has been introduced as a substitution for high performance

computing (HPC) systems [160].

112

Chapter 6. Conclusions and Future Works

Apparently, analyzing the huge amount of genomic data stored on the distributed

data centers generates significant traffic on the network. An interesting area for

future study is to integrate the VM migration heuristics proposed in this thesis for

the genomic analysis applications.

113

Appendix A

The Statistical Analysis of Section 5.3.4

This appendix shows the mean, confidence interval (CI), and t-test analysis of the

experimental results depicted in Section 5.3.4.

Table A.1: The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP for
Average SLAV (%). The mean values are presented in Figure 5.7(a).

Requests NM NA PNA-PB-NP PNA-PB-PP
500 14.200 11.140 11.140 11.820

(13.790,14.610) (9.325,12.955) (9.325,12.955) (9.454,14.186)
1000 97.320 45.370 43.880 44.820

(97.182,97.458) (43.016,47.724) (41.504,46.256) (42.947,46.693)
1500 99.880 63.600 63.447 62.980

(99.850,99.910) (61.717,65.483) (61.807,65.087) (61.670,64.290)
2000 100.000 63.795 63.070 70.105

(100.000,100.000) (61.887,65.703) (61.245,64.895) (68.112,72.098)
2500 100.000 62.680 63.696 71.648

(100.000,100.000) (61.458,63.902) (62.263,65.129) (69.880,73.416)
3000 100.000 63.393 66.083 70.597

(100.000,100.000) (61.635,65.152) (64.776,67.391) (68.719,72.475)
3500 100.000 66.391 67.689 72.671

(100.000,100.000) (64.446,68.337) (65.663,69.714) (70.351,74.992)
4000 100.000 67.680 69.695 75.110

(100.000,100.000) (66.176,69.184) (66.779,72.611) (72.742,77.478)
4500 100.000 68.158 70.804 75.247

(100.000,100.000) (65.905,70.410) (68.184,73.425) (72.901,77.593)
5000 100.000 68.470 70.138 75.624

(100.000,100.000) (66.041,70.899) (66.962,73.314) (73.229,78.019)

114

Chapter 6. Conclusions and Future Works

Table A.2: The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP for
average energy consumption (kWh). The mean values are presented in Figure 5.7(c).

Requests NM NA PNA-PB-NP PNA-PB-PP
500 0.066 0.064 0.064 0.063

(0.066,0.067) (0.063,0.064) (0.063,0.064) (0.063,0.064)
1000 0.100 0.078 0.074 0.076

(0.099,0.100) (0.077,0.078) (0.074,0.075) (0.073,0.079)
1500 0.150 0.087 0.086 0.087

(0.150,0.150) (0.086,0.088) (0.085,0.087) (0.086,0.089)
2000 0.203 0.095 0.099 0.099

(0.203,0.204) (0.088,0.102) (0.090,0.109) (0.091,0.107)
2500 0.260 0.095 0.094 0.094

(0.259,0.260) (0.091,0.098) (0.093,0.095) (0.093,0.095)
3000 0.311 0.095 0.094 0.098

(0.311,0.311) (0.092,0.098) (0.092,0.095) (0.094,0.102)
3500 0.361 0.100 0.101 0.100

(0.361,0.362) (0.098,0.103) (0.095,0.107) (0.095,0.105)
4000 0.406 0.101 0.101 0.100

(0.406,0.407) (0.099,0.104) (0.099,0.102) (0.098,0.103)
4500 0.459 0.103 0.101 0.101

(0.457,0.461) (0.102,0.104) (0.099,0.102) (0.098,0.104)
5000 0.508 0.114 0.108 0.109

(0.508,0.508) (0.110,0.117) (0.106,0.111) (0.107,0.111)

115

Chapter 6. Conclusions and Future Works

Table A.3: The mean and 95% CI of NM, NA, PNA-PB-NP, and PNA-PB-PP for
average completion time (sec). The mean values are presented in Figure 5.7(e).

Requests NM NA PNA-PB-NP PNA-PB-PP
500 43.274 40.931 40.931 41.110

(43.170,43.378) (40.355,41.508) (40.355,41.508) (40.444,41.777)
1000 91.067 53.093 52.203 52.699

(90.926,91.207) (52.218,53.968) (51.359,53.047) (52.135,53.263)
1500 140.929 65.744 65.819 64.259

(140.728,141.129) (64.438,67.049) (64.609,67.028) (63.002,65.515)
2000 192.198 67.830 68.564 72.939

(191.989,192.406) (66.262,69.397) (66.933,70.194) (71.742,74.136)
2500 242.849 70.070 71.227 74.777

(242.481,243.217) (68.733,71.408) (70.118,72.335) (73.608,75.947)
3000 292.233 70.668 71.748 74.251

(291.934,292.532) (68.898,72.437) (70.693,72.802) (73.155,75.348)
3500 340.080 76.440 77.166 79.451

(339.611,340.550) (74.845,78.034) (75.643,78.688) (77.773,81.129)
4000 388.311 78.276 80.528 82.535

(387.682,388.940) (76.286,80.266) (78.638,82.417) (80.372,84.699)
4500 437.373 80.301 81.509 84.056

(436.754,437.992) (77.738,82.864) (79.201,83.817) (81.385,86.727)
5000 487.955 84.395 85.118 90.166

(487.581,488.328) (81.843,86.947) (82.737,87.499) (87.994,92.338)

116

Chapter 6. Conclusions and Future Works

Table A.4: The t-test results to compare average SLAV (%) between NA, PNA-PB-
NP, and PNA-PB-PP. The original values are presented in Figure 5.7(b).

Group 1 = PNA-PB-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-2.384, 2.384) 1.000
1000 -1.490 (-4.597, 1.617) 0.326
1500 -0.153 (-2.472, 2.166) 0.891
2000 -0.725 (-3.177, 1.727) 0.542
2500 1.016 (-0.733, 2.765) 0.238
3000 2.690 (0.655, 4.725) 0.013
3500 1.297 (-1.311, 3.905) 0.309
4000 2.015 (-1.032, 5.062) 0.187
4500 2.647 (-0.563, 5.856) 0.100
5000 1.668 (-2.046, 5.382) 0.358
Group 1 = PNA-PB-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.680 (-2.089, 3.449) 0.612
1000 -0.550 (-3.344, 2.244) 0.684
1500 -0.620 (-2.750, 1.510) 0.549
2000 6.310 (3.747, 8.873) < .001
2500 8.968 (6.972, 10.964) < .001
3000 7.203 (4.814, 9.593) < .001
3500 6.280 (3.468, 9.092) < .001
4000 7.430 (4.825, 10.035) < .001
4500 7.089 (4.068, 10.110) < .001
5000 7.154 (3.986, 10.322) < .001
Group 1 = PNA-PB-PP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 0.680 (-2.089, 3.449) 0.612
1000 0.940 (-1.870, 3.750) 0.491
1500 -0.467 (-2.416, 1.482) 0.621
2000 7.035 (4.525, 9.545) < .001
2500 7.952 (5.838, 10.066) < .001
3000 4.513 (2.388, 6.639) < .001
3500 4.983 (2.122, 7.844) 0.001
4000 5.415 (1.926, 8.904) 0.004
4500 4.442 (1.175, 7.709) 0.010
5000 5.486 (1.791, 9.181) 0.006

117

Chapter 6. Conclusions and Future Works

Table A.5: The t-test results to compare average energy consumption (kWh) be-
tween NA, PNA-PB-NP, and PNA-PB-PP. The original values are presented in Figure
5.7(d).

Group 1 = PNA-PB-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-0.000, 0.000) 1.000
1000 -0.004 (-0.004, -0.003) < .001
1500 -0.002 (-0.003, -0.000) 0.026
2000 0.004 (-0.007, 0.015) 0.422
2500 -0.001 (-0.004, 0.002) 0.470
3000 -0.001 (-0.005, 0.002) 0.402
3500 0.001 (-0.005, 0.006) 0.821
4000 -0.000 (-0.003, 0.002) 0.725
4500 -0.002 (-0.004, -0.001) 0.006
5000 -0.005 (-0.009, -0.002) 0.006
Group 1 = PNA-PB-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 -0.000 (-0.000, 0.000) 0.865
1000 -0.002 (-0.005, 0.001) 0.142
1500 0.000 (-0.002, 0.002) 0.982
2000 0.004 (-0.006, 0.014) 0.430
2500 -0.001 (-0.004, 0.003) 0.713
3000 0.003 (-0.002, 0.008) 0.282
3500 -0.001 (-0.005, 0.004) 0.821
4000 -0.001 (-0.004, 0.002) 0.602
4500 -0.002 (-0.005, 0.001) 0.172
5000 -0.005 (-0.008, -0.001) 0.015
Group 1 = PNA-PB-PP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 -0.000 (-0.000, 0.000) 0.865
1000 0.002 (-0.001, 0.004) 0.256
1500 0.002 (-0.000, 0.003) 0.054
2000 -0.000 (-0.012, 0.011) 0.943
2500 0.001 (-0.001, 0.002) 0.355
3000 0.004 (-0.000, 0.008) 0.070
3500 -0.001 (-0.008, 0.006) 0.729
4000 -0.000 (-0.003, 0.002) 0.782
4500 0.000 (-0.003, 0.003) 0.840
5000 0.001 (-0.002, 0.004) 0.567

118

Chapter 6. Conclusions and Future Works

Table A.6: The t-test results to compare average completion time (sec) between NA,
PNA-PB-NP, and PNA-PB-PP. The original values are presented in Figure 5.7(e).

Group 1 = PNA-PB-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-0.757, 0.757) 1.000
1000 -0.890 (-2.019, 0.239) 0.114
1500 0.075 (-1.578, 1.728) 0.925
2000 0.734 (-1.367, 2.834) 0.472
2500 1.156 (-0.457, 2.769) 0.150
3000 1.080 (-0.833, 2.993) 0.254
3500 0.726 (-1.322, 2.774) 0.466
4000 2.252 (-0.296, 4.801) 0.079
4500 1.208 (-1.996, 4.411) 0.438
5000 0.723 (-2.519, 3.964) 0.645
Group 1 = PNA-PB-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.179 (-0.639, 0.997) 0.651
1000 -0.394 (-1.360, 0.573) 0.405
1500 -1.485 (-3.168, 0.198) 0.080
2000 5.109 (3.277, 6.941) < 0.001
2500 4.707 (3.057, 6.357) < 0.001
3000 3.583 (1.650, 5.517) 0.001
3500 3.011 (0.861, 5.161) 0.008
4000 4.260 (1.529, 6.990) 0.004
4500 3.755 (0.317, 7.193) 0.034
5000 5.771 (2.658, 8.883) 0.001
Group 1 = PNA-PB-PP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 0.179 (-0.639, 0.997) 0.651
1000 0.497 (-0.446, 1.439) 0.285
1500 -1.560 (-3.179, 0.060) 0.058
2000 4.375 (2.497, 6.253) < 0.001
2500 3.551 (2.054, 5.047) < 0.001
3000 2.504 (1.090, 3.917) 0.001
3500 2.285 (0.181, 4.389) 0.035
4000 2.007 (-0.661, 4.675) 0.131
4500 2.547 (-0.731, 5.826) 0.120
5000 5.048 (2.055, 8.041) 0.002

119

Chapter 6. Conclusions and Future Works

Table A.7: The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for
Average SLAV (%). The mean values are presented in Figure 5.8(a).

Requests NM NA PNA-PS-NP PNA-PS-PP
500 14.200 11.140 11.140 11.800

(13.790,14.610) (9.325,12.955) (9.325,12.955) (9.472,14.128)
1000 97.320 45.370 43.880 44.870

(97.182,97.458) (43.016,47.724) (41.504,46.256) (43.155,46.585)
1500 99.880 63.600 63.487 61.007

(99.850,99.910) (61.717,65.483) (61.830,65.143) (60.075,61.938)
2000 100.000 63.795 63.575 66.250

(100.000,100.000) (61.887,65.703) (61.811,65.339) (64.865,67.635)
2500 100.000 62.680 66.904 69.584

(100.000,100.000) (61.458,63.902) (65.360,68.448) (69.016,70.152)
3000 100.000 63.393 67.503 69.650

(100.000,100.000) (61.635,65.152) (66.346,68.660) (68.348,70.952)
3500 100.000 66.391 68.666 71.877

(100.000,100.000) (64.446,68.337) (67.431,69.900) (70.496,73.258)
4000 100.000 67.680 68.710 69.640

(100.000,100.000) (66.176,69.184) (67.167,70.253) (68.041,71.239)
4500 100.000 68.158 68.598 67.480

(100.000,100.000) (65.905,70.410) (67.315,69.880) (66.247,68.713)
5000 100.000 68.470 68.258 66.022

(100.000,100.000) (66.041,70.899) (66.668,69.848) (64.905,67.139)

120

Chapter 6. Conclusions and Future Works

Table A.8: The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for
average energy consumption (kWh). The mean values are presented in Figure 5.8(c).

Requests NM NA PNA-PS-NP PNA-PS-PP
500 0.066 0.064 0.064 0.064

(0.066,0.067) (0.063,0.064) (0.063,0.064) (0.063,0.064)
1000 0.100 0.078 0.074 0.076

(0.099,0.100) (0.077,0.078) (0.074,0.075) (0.073,0.079)
1500 0.150 0.087 0.086 0.089

(0.150,0.150) (0.086,0.088) (0.084,0.087) (0.088,0.090)
2000 0.203 0.095 0.097 0.100

(0.203,0.204) (0.088,0.102) (0.088,0.106) (0.092,0.108)
2500 0.260 0.095 0.097 0.096

(0.259,0.260) (0.091,0.098) (0.096,0.098) (0.093,0.099)
3000 0.311 0.095 0.097 0.097

(0.311,0.311) (0.092,0.098) (0.095,0.098) (0.094,0.100)
3500 0.361 0.100 0.102 0.102

(0.361,0.362) (0.098,0.103) (0.100,0.105) (0.098,0.106)
4000 0.406 0.101 0.104 0.103

(0.406,0.407) (0.099,0.104) (0.102,0.105) (0.101,0.105)
4500 0.459 0.103 0.105 0.106

(0.457,0.461) (0.102,0.104) (0.103,0.107) (0.103,0.109)
5000 0.508 0.114 0.107 0.110

(0.508,0.508) (0.110,0.117) (0.103,0.110) (0.106,0.115)

121

Chapter 6. Conclusions and Future Works

Table A.9: The mean and 95% CI of NM, NA, PNA-PS-NP, and PNA-PS-PP for
average completion time (sec). The mean values are presented in Figure 5.8(e).

Requests NM NA PNA-PS-NP PNA-PS-PP
500 43.274 40.931 40.931 41.035

(43.170,43.378) (40.355,41.508) (40.355,41.508) (40.375,41.696)
1000 91.067 53.093 52.203 52.555

(90.926,91.207) (52.218,53.968) (51.359,53.047) (52.027,53.084)
1500 140.929 65.744 65.478 63.229

(140.728,141.129) (64.438,67.049) (64.133,66.823) (62.570,63.887)
2000 192.198 67.830 68.734 69.890

(191.989,192.406) (66.262,69.397) (67.875,69.594) (68.843,70.937)
2500 242.849 70.070 75.346 74.704

(242.481,243.217) (68.733,71.408) (74.463,76.229) (74.233,75.175)
3000 292.233 70.668 75.336 74.346

(291.934,292.532) (68.898,72.437) (74.360,76.313) (73.568,75.125)
3500 340.080 76.440 81.104 80.330

(339.611,340.550) (74.845,78.034) (79.067,83.141) (78.481,82.178)
4000 388.311 78.276 82.016 82.683

(387.682,388.940) (76.286,80.266) (80.806,83.226) (80.852,84.515)
4500 437.373 80.301 83.554 83.942

(436.754,437.992) (77.738,82.864) (82.043,85.065) (82.207,85.678)
5000 487.955 84.395 83.535 83.873

(487.581,488.328) (81.843,86.947) (81.096,85.973) (82.459,85.287)

122

Chapter 6. Conclusions and Future Works

Table A.10: The t-test results to compare average SLAV (%) between NA, PNA-PS-
NP, and PNA-PS-PP. The original values are presented in Figure 5.8(b).

Group 1 = PNA-PS-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-2.384, 2.384) 1.000
1000 -1.490 (-4.597, 1.617) 0.326
1500 -0.113 (-2.443, 2.216) 0.919
2000 -0.220 (-2.633, 2.193) 0.850
2500 4.224 (2.395, 6.053) < 0.001
3000 4.110 (2.155, 6.065) < 0.001
3500 2.274 (0.135, 4.414) 0.040
4000 1.030 (-0.972, 3.032) 0.293
4500 0.440 (-1.968, 2.848) 0.706
5000 -0.212 (-2.908, 2.484) 0.870
Group 1 = PNA-PS-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.660 (-2.081, 3.401) 0.619
1000 -0.500 (-3.205, 2.205) 0.702
1500 -2.593 (-4.545, -0.642) 0.015
2000 2.455 (0.265, 4.645) 0.031
2500 6.904 (5.652, 8.156) < 0.001
3000 6.257 (4.224, 8.289) < 0.001
3500 5.486 (3.270, 7.701) < 0.001
4000 1.960 (-0.079, 3.999) 0.058
4500 -0.678 (-3.063, 1.707) 0.560
5000 -2.448 (-4.931, 0.035) 0.059
Group 1 = PNA-PS-PP
Group 2 = PNA-PS-NP
Requests Difference (means and 95% CIs) p-value
500 0.660 (-2.081, 3.401) 0.619
1000 0.990 (-1.732, 3.712) 0.455
1500 -2.480 (-4.245, -0.715) 0.010
2000 2.675 (0.592, 4.758) 0.015
2500 2.680 (1.152, 4.208) 0.003
3000 2.147 (0.529, 3.765) 0.012
3500 3.211 (1.491, 4.932) 0.001
4000 0.930 (-1.134, 2.994) 0.356
4500 -1.118 (-2.770, 0.534) 0.172
5000 -2.236 (-4.041, -0.431) 0.019

123

Chapter 6. Conclusions and Future Works

Table A.11: The t-test results to compare average energy consumption (kWh) between
NA, PNA-PS-NP, and PNA-PS-PP. The original values are presented in Figure 5.8(d).

Group 1 = PNA-PS-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-0.000, 0.000) 1.000
1000 -0.004 (-0.004, -0.003) < 0.001
1500 -0.002 (-0.003, -0.000) 0.049
2000 0.002 (-0.008, 0.013) 0.660
2500 0.002 (-0.001, 0.005) 0.262
3000 0.002 (-0.002, 0.005) 0.323
3500 0.002 (-0.001, 0.005) 0.235
4000 0.002 (-0.000, 0.005) 0.097
4500 0.002 (-0.000, 0.004) 0.107
5000 -0.007 (-0.011, -0.002) 0.004
Group 1 = PNA-PS-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 -0.000 (-0.000, 0.000) 0.993
1000 -0.002 (-0.005, 0.001) 0.123
1500 0.002 (0.001, 0.003) 0.003
2000 0.005 (-0.005, 0.015) 0.317
2500 0.001 (-0.003, 0.005) 0.559
3000 0.002 (-0.003, 0.006) 0.400
3500 0.001 (-0.003, 0.006) 0.518
4000 0.002 (-0.002, 0.005) 0.301
4500 0.003 (0.000, 0.006) 0.054
5000 -0.004 (-0.009, 0.002) 0.162
Group 1 = PNA-PS-PP
Group 2 = PNA-PS-NP
Requests Difference (means and 95% CIs) p-value
500 -0.000 (-0.000, 0.000) 0.993
1000 0.001 (-0.001, 0.004) 0.275
1500 0.004 (0.002, 0.005) < 0.001
2000 0.003 (-0.008, 0.014) 0.615
2500 -0.001 (-0.004, 0.002) 0.668
3000 0.000 (-0.003, 0.003) 0.928
3500 -0.000 (-0.005, 0.004) 0.871
4000 -0.001 (-0.003, 0.002) 0.511
4500 0.002 (-0.002, 0.005) 0.379
5000 0.003 (-0.002, 0.009) 0.203

124

Chapter 6. Conclusions and Future Works

Table A.12: The t-test results to compare average completion time (sec) between NA,
PNA-PS-NP, and PNA-PS-PP. The original values are presented in Figure 5.8(e).

Group 1 = PNA-PS-NP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.000 (-0.757, 0.757) 1.000
1000 -0.890 (-2.019, 0.239) 0.114
1500 -0.266 (-2.007, 1.475) 0.751
2000 0.905 (-0.756, 2.565) 0.271
2500 5.276 (3.787, 6.764) < 0.001
3000 4.669 (2.792, 6.546) < 0.001
3500 4.665 (2.262, 7.067) < 0.001
4000 3.740 (1.577, 5.903) 0.002
4500 3.253 (0.490, 6.016) 0.026
5000 -0.860 (-4.139, 2.418) 0.588
Group 1 = PNA-PS-PP
Group 2 = NA
Requests Difference (means and 95% CIs) p-value
500 0.104 (-0.711, 0.918) 0.792
1000 -0.538 (-1.487, 0.411) 0.252
1500 -2.515 (-3.873, -1.157) 0.001
2000 2.060 (0.310, 3.811) 0.025
2500 4.633 (3.317, 5.950) < 0.001
3000 3.678 (1.883, 5.474) < 0.001
3500 3.890 (1.623, 6.157) 0.002
4000 4.408 (1.896, 6.920) 0.001
4500 3.641 (0.767, 6.516) 0.017
5000 -0.522 (-3.232, 2.188) 0.691
Group 1 = PNA-PS-PP
Group 2 = PNA-PS-NP
Requests Difference (means and 95% CIs) p-value
500 0.104 (-0.711, 0.918) 0.792
1000 0.352 (-0.572, 1.277) 0.435
1500 -2.249 (-3.640, -0.858) 0.004
2000 1.155 (-0.103, 2.414) 0.070
2500 -0.642 (-1.572, 0.287) 0.169
3000 -0.990 (-2.150, 0.170) 0.090
3500 -0.775 (-3.329, 1.780) 0.532
4000 0.668 (-1.371, 2.706) 0.501
4500 0.388 (-1.749, 2.525) 0.707
5000 0.338 (-2.280, 2.957) 0.789

125

Chapter 6. Conclusions and Future Works

Table A.13: The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of
average completion time (sec). The mean values are presented in Figure 5.9

Requests PNA-PB-NP PNA-PS-NP
500 40.931 (40.355,41.508) 40.931 (40.355,41.508)
1000 52.203 (51.359,53.047) 52.203 (51.359,53.047)
1500 65.819 (64.609,67.028) 65.478 (64.133,66.823)
2000 68.564 (66.933,70.194) 68.734 (67.875,69.594)
2500 71.227 (70.118,72.335) 75.346 (74.463,76.229)
3000 71.748 (70.693,72.802) 75.336 (74.360,76.313)
3500 77.166 (75.643,78.688) 81.104 (79.067,83.141)
4000 80.528 (78.638,82.417) 82.016 (80.806,83.226)
4500 81.509 (79.201,83.817) 83.554 (82.043,85.065)
5000 85.118 (82.737,87.499) 83.535 (81.096,85.973)

Table A.14: The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms of
average completion time (sec). The original values are presented in Figure 5.9

Group 1 = PNA-PS-NP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 0.000 (-0.757, 0.757) 1.000
1000 0.000 (-1.109, 1.109) 1.000
1500 -0.341 (-2.021, 1.339) 0.674
2000 0.171 (-1.541, 1.883) 0.836
2500 4.119 (2.803, 5.436) < 0.001
3000 3.589 (2.254, 4.923) < 0.001
3500 3.939 (1.577, 6.300) 0.002
4000 1.488 (-0.596, 3.572) 0.153
4500 2.045 (-0.517, 4.607) 0.113
5000 -1.583 (-4.749, 1.582) 0.307

Table A.15: The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of
average traffic gain (Mbits). The mean values are presented in Figures 5.10

Requests PNA-PB-NP PNA-PS-NP
500 14148.352 (13962.940,14333.764) 14148.352 (13962.940,14333.764)
1000 22367.114 (21782.328,22951.901) 22367.114 (21782.328,22951.901)
1500 29390.157 (28827.500,29952.815) 29390.080 (28564.989,30215.172)
2000 38889.888 (37916.771,39863.004) 38527.697 (37598.077,39457.317)
2500 46626.286 (45836.414,47416.158) 45313.417 (44230.253,46396.581)
3000 56073.872 (54844.466,57303.278) 53228.263 (52061.448,54395.078)
3500 63102.446 (62159.925,64044.967) 59189.998 (58060.424,60319.571)
4000 69828.285 (68374.022,71282.549) 65120.141 (64146.145,66094.136)
4500 77709.765 (76197.772,79221.758) 71771.688 (70640.980,72902.396)
5000 85739.243 (83788.207,87690.278) 80714.980 (79652.475,81777.485)

126

Chapter 6. Conclusions and Future Works

Table A.16: The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms of
average traffic gain (Mbits). The original values are presented in Figures 5.10

Group 1 = PNA-PS-NP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 0.000 (-243.532, 243.532) 1.000
1000 0.000 (-768.096, 768.096) 1.000
1500 -0.077 (-927.609, 927.456) 0.999
2000 -362.191 (-1612.105, 887.724) 0.550
2500 -1312.869 (-2557.941, -67.797) 0.041
3000 -2845.609 (-4419.821, -1271.397) 0.001
3500 -3912.448 (-5278.793, -2546.104) < 0.001
4000 -4708.145 (-6333.752, -3082.537) < 0.001
4500 -5938.077 (-7691.595, -4184.560) < 0.001
5000 -5024.263 (-7087.584, -2960.941) < 0.001

Table A.17: The mean and 95% CI of PNA-PB-NP and PNA-PS-NP in terms of
average over-utilization time (sec). The mean values are presented in Figures 5.11

Requests PNA-PB-NP PNA-PS-NP
500 0.000006 (0.000001,0.000010) 0.000006 (0.000001,0.000010)
1000 0.000015 (0.000006,0.000023) 0.000015 (0.000006,0.000023)
1500 0.000442 (0.000404,0.000481) 0.000434 (0.000384,0.000485)
2000 0.000449 (0.000375,0.000523) 0.000420 (0.000347,0.000492)
2500 0.000779 (0.000732,0.000826) 0.000678 (0.000636,0.000719)
3000 0.001071 (0.000981,0.001161) 0.000979 (0.000885,0.001074)
3500 0.001413 (0.001288,0.001539) 0.001185 (0.001099,0.001270)
4000 0.001651 (0.001492,0.001810) 0.001414 (0.001308,0.001521)
4500 0.001740 (0.001597,0.001884) 0.001474 (0.001393,0.001555)
5000 0.002085 (0.001917,0.002253) 0.001637 (0.001489,0.001785)

Table A.18: The t-test results to compare PNA-PB-NP and PNA-PS-NP in terms of
average over-utilization time (sec). The original values are presented in Figures 5.11

Group 1 = PNA-PS-NP
Group 2 = PNA-PB-NP
Requests Difference (means and 95% CIs) p-value
500 0.000000 (-0.000006, 0.000006) 1.000
1000 0.000000 (-0.000011, 0.000011) 1.000
1500 -0.000008 (-0.000067, 0.000051) 0.775
2000 -0.000029 (-0.000126, 0.000067) 0.528
2500 -0.000101 (-0.000159, -0.000043) 0.001
3000 -0.000092 (-0.000213, 0.000030) 0.131
3500 -0.000228 (-0.000370, -0.000087) 0.003
4000 -0.000236 (-0.000414, -0.000058) 0.013
4500 -0.000267 (-0.000420, -0.000114) 0.002
5000 -0.000448 (-0.000656, -0.000240) < 0.001

127

Author’s Publications

[1] Amir Hossein Borhani, Terence Hung, Bu-Sung Lee, and Zheng Qin, “Power-

network aware VM migration heuristics for Multi-tier web applications”, Cluster

Computing, submitted.

[2] Amir Hossein Borhani, Terence Hung, Bu-Sung Lee, Zheng Qin, Zahra Bagheri,

“Network-Aware VM Migration Heuristics for Improving the SLA Violation of

Multi-Tier Web Applications in the Cloud”, IEEE 25th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (PDP), pp.

454-462, St. Petersburg, Russia, March, 2017.

[3] Amir Hossein Borhani, Philipp Leitner, Bu-Sung Lee, Xiaorong Li, Ter-

ence Hung, “WPress: An application-driven performance benchmark for cloud-

based virtual machines”, IEEE 18th International Enterprise Distributed Object

Computing Conference (EDOC), pp. 101-109, Ulm, Germany, September, 2014.

128

References

[1] M.-T. Chen, C.-C. Hsu, M.-S. Kuo, Y.-J. Cheng, and C.-F. Chou, “GreenGlue:

Power optimization for data centers through resource-guaranteed VM place-

ment,” in Proceedings of the IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (Green-

Com), and IEEE Cyber, Physical and Social Computing (CPSCom). IEEE,

2014, pp. 510–517.

[2] P. G. J. Leelipushpam and J. Sharmila, “Live vm migration techniques in cloud

environment - A survey,” in Proceedings of the IEEE Conference on Information

& Communication Technologies. IEEE, 2013, pp. 408–413.

[3] L. Columbus. Roundup Of Cloud Computing Fore-

casts And Market Estimates, 2016. [Online]. Avail-

able: http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-

cloud-computing-forecasts-and-market-estimates-2016

[4] J. Geelan et al., “Twenty-one experts define cloud computing,” Cloud Comput-

ing Journal, vol. 4, pp. 1–5, 2009.

[5] E. Knorr and G. Gruman, “What cloud computing really means,” InfoWorld,

vol. 7, pp. 20–20, 2008.

[6] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing:

Vision, hype, and reality for delivering it services as computing utilities,” in

Proceedings of the 10th IEEE International Conference on High Performance

Computing and Communications. IEEE, 2008, pp. 5–13.

[7] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the

clouds: towards a cloud definition,” ACM SIGCOMM Computer Communica-

tion Review, vol. 39, no. 1, pp. 50–55, 2008.

129

REFERENCES

[8] R. L. Grossman, “The case for cloud computing,” IT professional, vol. 11, no. 2,

pp. 23–27, 2009.

[9] R. Prodan and S. Ostermann, “A survey and taxonomy of infrastructure as a

service and web hosting cloud providers,” in Proceedings of the 10th IEEE/ACM

International Conference on Grid Computing. IEEE, 2009, pp. 17–25.

[10] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing

systems,” in Proceedings of the 5th International Joint Conference on INC, IMS

and IDC. IEEE, 2009, pp. 44–51.

[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Com-

munications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[12] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale data

management approaches in cloud environments,” IEEE Communications Sur-

veys & Tutorials, vol. 13, no. 3, pp. 311–336, 2011.

[13] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing,” in Pro-

ceedings of the 2nd International Conference on Advanced Computing & Com-

munication Technologies. IEEE, 2012, pp. 394–398.

[14] U. Moghe, P. Lakkadwala, and D. K. Mishra, “Cloud computing: Survey of

different utilization techniques,” in Proceedings of the CSI 6th International

conference on Software engineering. IEEE, 2012, pp. 1–4.

[15] S. Bera, S. Misra, and J. J. Rodrigues, “Cloud computing applications for smart

grid: A survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

no. 5, pp. 1477–1494, 2015.

[16] P. Mell and T. Grance, “The nist definition of cloud computing,” Communica-

tions of the ACM, vol. 53, no. 6, p. 50, 2010.

[17] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and

research challenges,” Journal of Internet Services and Applications, vol. 1, no. 1,

pp. 7–18, 2010.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” vol. 37, no. 5, pp.

164–177, 2003.

130

REFERENCES

[19] C. A. Waldspurger, “Memory resource management in vmware esx server,”

ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 181–194, 2002.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux

virtual machine monitor,” in Proceedings of the Linux symposium, vol. 1, 2007,

pp. 225–230.

[21] D. Adami, B. Martini, M. Gharbaoui, P. Castoldi, G. Antichi, and S. Giordano,

“Effective resource control strategies using openflow in cloud data center,” in

Proceedings of the IFIP/IEEE International Symposium on Integrated Network

Management. IEEE, 2013, pp. 568–574.

[22] C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,”

IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1021–1036, 2012.

[23] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice

and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[24] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather to-

morrow?: Towards a benchmark for the cloud,” in Proceedings of the 2nd In-

ternational Workshop on Testing Database Systems. ACM, 2009, pp. 9:1–9:6.

[25] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. S. Qureshi, H. Hussain, I. Ren-

tifis, N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu et al., “Survey on grid

resource allocation mechanisms,” Journal of Grid Computing, vol. 12, no. 2, pp.

399–441, 2014.

[26] G. Galante and L. C. E. de Bona, “A survey on cloud computing elasticity,” in

Proceedings of the 5th International Conference on Utility and Cloud Comput-

ing. IEEE, 2012, pp. 263–270.

[27] D. Sullivan. IaaS Providers List: 2014 Comparison And Guide - Tom’s IT

Pro. [Online]. Available: http://www.tomsitpro.com/articles/iaas-providers,1-

1560.html

[28] ——. Paas providers list: Comparison and guide. [Online]. Available:

http://www.tomsitpro.com/articles/paas-providers,1-1517.html

131

REFERENCES

[29] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation for software

as a service provider (saas) in cloud computing environments,” in Proceedings

of the 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing. IEEE, 2011, pp. 195–204.

[30] H. Jin, S. Ibrahim, T. Bell, W. Gao, D. Huang, and S. Wu, “Cloud types and

services,” in Handbook of Cloud Computing. Springer, 2010, pp. 335–355.

[31] S. Khoshnevis and F. Rabeifar, “Toward knowledge management as a service

in cloud-based environments,” International Journal of Mechatronics, Electrical

and Computer Technology, vol. 2, no. 4, pp. 88–110, 2012.

[32] Helena. Top 10 software as a service (saas) companies. [Online]. Available:

http://zeendo.com/info/top-10-software-as-a-service-saas-companies/

[33] RightScale Ltd, “State of the cloud report,” December 2016.

[34] K. Xiong and H. Perros, “Service performance and analysis in cloud computing,”

in Proceedings of the 4th IEEE World Congress on Services. IEEE, 2009, pp.

693–700.

[35] A. Alzahrani, N. Alalwan, and M. Sarrab, “Mobile cloud computing: advantage,

disadvantage and open challenge,” in Proceedings of the 7th Euro American

Conference on Telematics and Information Systems. ACM, 2014, p. 21.

[36] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud com-

puting—the business perspective,” Decision support systems, vol. 51, no. 1, pp.

176–189, 2011.

[37] AWS — Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.

[Online]. Available: https://aws.amazon.com/ec2/

[38] M. Copeland, J. Soh, A. Puca, M. Manning, and D. Gollob, “Microsoft azure

and cloud computing,” in Microsoft Azure. Springer, 2015, pp. 3–26.

[39] R. Kumar, K. Jain, H. Maharwal, N. Jain, and A. Dadhich, “Apache cloudstack:

Open source infrastructure as a service cloud computing platform,” Proceedings

of the International Journal of advancement in Engineering technology, Man-

agement and Applied Science, pp. 111–116, 2014.

132

REFERENCES

[40] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-source

solution for cloud computing,” International Journal of Computer Applications,

vol. 55, no. 3, 2012.

[41] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov, “The eucalyptus open-source cloud-computing system,” in Pro-

ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Com-

puting and the Grid. IEEE Computer Society, 2009, pp. 124–131.

[42] G. Singh, G. Garg, P. Jain, and H. Singh, “The structure of cloud engineering,”

International Journal of Computer Applications (0975–8887), vol. 33, no. 8,

2011.

[43] Google Cloud Platform. [Online]. Available: https://appengine.google.com/

[44] Amazon Web Services (AWS). [Online]. Available: https://aws.amazon.com/

[45] E. Arzuaga, “Using live virtual machine migration to improve resource efficiency

in virtualized data centers,” Ph.D. dissertation, Department of Electrical and

Computer Engineering, The Northeastern University, 2012.

[46] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6,

pp. 34–45, 1974.

[47] Y. Xing and Y. Zhan, “Virtualization and cloud computing,” in Future Wireless

Networks and Information Systems. Springer, 2012, pp. 305–312.

[48] H. F. Cervone, “An overview of virtual and cloud computing,” OCLC Systems

& Services: International digital library perspectives, vol. 26, no. 3, pp. 162–165,

2010.

[49] C. Rong, S. T. Nguyen, and M. G. Jaatun, “Beyond lightning: A survey on

security challenges in cloud computing,” Computers & Electrical Engineering,

vol. 39, no. 1, pp. 47–54, 2013.

[50] M. T. Jones. Cloud computing with Linux. [Online]. Available:

https://www.ibm.com/developerworks/linux/library/l-cloud-computing/

[51] B. Furht, “Cloud computing fundamentals,” in Handbook of cloud computing.

Springer, 2010, pp. 3–19.

133

REFERENCES

[52] C. Xu, Z. Zhao, H. Wang, R. Shea, and J. Liu, “Energy efficiency of cloud

virtual machines: From traffic pattern and cpu affinity perspectives,” IEEE

Systems Journal, vol. PP, no. 99, pp. 1–11, 2015.

[53] K. Adams and O. Agesen, “A comparison of software and hardware techniques

for x86 virtualization,” ACM SIGOPS Operating Systems Review, vol. 40, no. 5,

pp. 2–13, 2006.

[54] J. Fisher-Ogden, “Hardware support for efficient virtualization,” University of

California, San Diego, Tech. Rep, 2006.

[55] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and X. Zhu,

“Vmware distributed resource management: Design, implementation, and

lessons learned,” VMware Technical Journal, vol. 1, no. 1, pp. 45–64, 2012.

[56] vCloud Air Infrastructure as a Service (IaaS) Hybrid Cloud. [Online]. Available:

http://www.vmware.com/cloud-services/infrastructure.html

[57] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring con-

tainer virtualization in iot clouds,” in Proceedings of the 2nd IEEE International

Conference on Smart Computing. IEEE, 2016, pp. 1–6.

[58] M. Rouse. What is containerization (container-based virtual-

ization)? - definition from whatis.com. [Online]. Avail-

able: http://searchservervirtualization.techtarget.com/definition/container-

based-virtualization-operating-system-level-virtualization

[59] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A.

De Rose, “Performance evaluation of container-based virtualization for high

performance computing environments,” in Proceedings of the 21st Euromicro

International Conference on Parallel, Distributed and Network-Based Process-

ing. IEEE, 2013, pp. 233–240.

[60] R. Shea, H. Wang, and J. Liu, “Power consumption of virtual machines with

network transactions: Measurement and improvements,” in Proceedings of the

33rd IEEE International Conference on Computer Communications. IEEE,

2014, pp. 1051–1059.

[61] J. Che, C. Shi, Y. Yu, and W. Lin, “A synthetical performance evaluation

of openvz, xen and kvm,” in Proceedings of the IEEE Asia-Pacific Services

Computing Conference. IEEE, 2010, pp. 587–594.

134

REFERENCES

[62] B. des Ligneris, “Virtualization of linux based computers: the linux-vserver

project,” in Proceedings of the 19th International Symposium on High Perfor-

mance Computing Systems and Applications. IEEE, 2005, pp. 340–346.

[63] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine

live migration in clouds: A performance evaluation,” in Proceedings of the 1st

International Conference on Cloud Computing. Springer, 2009, pp. 254–265.

[64] D. Kapil, E. S. Pilli, and R. C. Joshi, “Live virtual machine migration tech-

niques: Survey and research challenges,” in Proceedings of the 3rd IEEE Inter-

national Advance Computing Conference. IEEE, 2013, pp. 963–969.

[65] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, and

A. Iyer, “Remedy: Network-aware steady state VM management for data cen-

ters,” in Proceedings of the 11th International IFIP TC 6 Networking Confer-

ence. Springer, 2012, pp. 190–204.

[66] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang,

“Secondnet: a data center network virtualization architecture with bandwidth

guarantees,” in Proceedings of the 6th International conference on emerging

Networking Experiments and Technologies. ACM, 2010, pp. 15:1–15:12.

[67] W. Iqbal, M. N. Dailey, and D. Carrera, “Sla-driven dynamic resource man-

agement for multi-tier web applications in a cloud,” in Proceedings of the 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing.

IEEE, 2010, pp. 832–837.

[68] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud computing:

A view of scientific applications,” in Proceedings of the 10th International Sym-

posium on Pervasive Systems, Algorithms, and Networks. IEEE, 2009, pp.

4–16.

[69] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[70] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolidation of virtual

machines in self-organizing cloud data centers,” IEEE Transactions on Cloud

Computing, vol. 1, no. 2, pp. 215–228, 2013.

135

REFERENCES

[71] WordPress - Blog Tool, Publishing Platform, and CMS. [Online]. Available:

https://wordpress.org/

[72] Microsoft Azure: Cloud Computing Platform & Services. [Online]. Available:

http://www.microsoft.com/azure/

[73] Rackspace: Managed Dedicated & Cloud Computing Services. [Online].

Available: https://www.rackspace.com/

[74] G. Wang and T. E. Ng, “The impact of virtualization on network performance

of Amazon EC2 data center,” in Proceedings of the 29th IEEE International

Conference on Computer Communications. IEEE, 2010, pp. 1–9.

[75] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the

cloud: observing, analyzing, and reducing variance,” Proceedings of the VLDB

Endowment, vol. 3, no. 1-2, pp. 460–471, 2010.

[76] L. Zhao, A. Liu, and J. Keung, “Evaluating cloud platform architecture with the

care framework,” in Proceedings of the 17th Asia Pacific Software Engineering

Conference. IEEE, 2010, pp. 60–69.

[77] M. Klems, D. Bermbach, and R. Weinert, “A runtime quality measurement

framework for cloud database service systems,” in Proceedings of the 8th Inter-

national Conference on the Quality of Information and Communications Tech-

nology. IEEE, 2012, pp. 38–46.

[78] D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual? an eval-

uation of amazon s3’s consistency behavior,” in Proceedings of the 6th Workshop

on Middleware for Service Oriented Computing. ACM, 2011, p. 1.

[79] D. Bermbach, L. Zhao, and S. Sakr, “Towards comprehensive measurement of

consistency guarantees for cloud-hosted data storage services,” in Proceedings

of the 5th TPC Technology Conference on Performance Evaluation and Bench-

marking. Springer, 2013, pp. 32–47.

[80] C. A. Curino, D. E. Difallah, A. Pavlo, and P. Cudre-Mauroux, “Benchmarking

OLTP/web databases in the cloud: The OLTP-bench framework,” in Proceed-

ings of the 4th International workshop on Cloud data management. ACM, 2012,

pp. 17–20.

136

REFERENCES

[81] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in Proceedings of the 1st ACM sym-

posium on Cloud computing. ACM, 2010, pp. 143–154.

[82] A. Floratou, J. M. Patel, W. Lang, and A. Halverson, “When free is not really

free: What does it cost to run a database workload in the cloud?” in Proceedings

of the 3rd TPC Technology conference on Topics in Performance Evaluation,

Measurement and Characterization. Springer, 2011, pp. 163–179.

[83] K. Huppler, “The art of building a good benchmark,” in Proceedings of the 1st

TPC Technology Conference on Performance Evaluation and Benchmarking.

Springer, 2009, pp. 18–30.

[84] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun, “Bench-

marking in the cloud: What it should, can, and cannot be,” in Proceedings of

the 4th TPC Technology Conference on Performance Evaluation and Bench-

marking. Springer, 2012, pp. 173–188.

[85] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation of alternative architec-

tures for transaction processing in the cloud,” in Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data. ACM, 2010, pp.

579–590.

[86] D. Kossmann and T. Kraska, “Data management in the cloud: promises, state-

of-the-art, and open questions,” Datenbank-Spektrum, vol. 10, no. 3, pp. 121–

129, 2010.

[87] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early observations

on the performance of Windows Azure,” in Proceedings of the 19th ACM In-

ternational Symposium on High Performance Distributed Computing. ACM,

2010, pp. 367–376.

[88] T. Chen and R. Bahsoon, “Self-adaptive and sensitivity-aware qos modeling

for the cloud,” in Proceedings of the 8th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems. IEEE Press, 2013, pp.

43–52.

[89] W. Dawoud, I. Takouna, and C. Meinel, “Dynamic scalability and contention

prediction in public infrastructure using internet application profiling,” in Pro-

ceedings of the 4th IEEE International Conference on Cloud Computing Tech-

nology and Science. IEEE, 2012, pp. 208–216.

137

REFERENCES

[90] H. Wu, A. N. Tantawi, and T. Yu, “A self-optimizing workload management

solution for cloud applications,” in Proceedings of the 20th IEEE International

Conference on Web Services. IEEE, 2013, pp. 483–490.

[91] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource provi-

sioning for read intensive multi-tier applications in the cloud,” Future Genera-

tion Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[92] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing,” Future

generation computer systems, vol. 28, no. 5, pp. 755–768, 2012.

[93] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance, and re-

liability tradeoffs for energy-aware server provisioning,” in Proceedings of the

30th IEEE International Conference on Computer Communications, 2011, pp.

1332–1340.

[94] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization. Athena

Scientific Belmont, MA, 1997, vol. 6.

[95] A. J. Younge, G. Von Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers,

“Efficient resource management for cloud computing environments,” in Proceed-

ings of the International Conference on Green Computing. IEEE, 2010, pp.

357–364.

[96] E. Feller, C. Rohr, D. Margery, and C. Morin, “Energy management in iaas

clouds: A holistic approach,” in Proceedings of the 5th IEEE International Con-

ference on Cloud Computing. IEEE, 2012, pp. 204–212.

[97] E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and autonomic virtual

machine management framework for private clouds,” in Proceedings of the 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

IEEE Computer Society, 2012, pp. 482–489.

[98] B. Kaur and A. Kaur, “An efficient approach for green cloud computing using

genetic algorithm,” in Proceedings of the 1st International Conference on Next

Generation Computing Technologies. IEEE, 2015, pp. 10–15.

[99] N. Kord and H. Haghighi, “An energy-efficient approach for virtual machine

placement in cloud based data centers,” in Proceedings of the 5th Conference on

Information and Knowledge Technology. IEEE, 2013, pp. 44–49.

138

REFERENCES

[100] M. A. H. Monil, R. Qasim, and R. M. Rahman, “Energy-aware vm consolidation

approach using combination of heuristics and migration control,” in Proceedings

of the 9th International Conference on Digital Information Management. IEEE,

2014, pp. 74–79.

[101] N. K. Sharma and R. M. R. Guddeti, “On demand virtual machine allocation

and migration at cloud data center using hybrid of cat swarm optimization

and genetic algorithm,” in Proceedings of the 5th International Conference on

Eco-friendly Computing and Communication Systems. IEEE, 2016, pp. 27–32.

[102] R. A. da Silva and N. L. da Fonseca, “Energy-aware migration of groups of

virtual machines in distributed data centers,” in Proceedings of the 59th IEEE

Global Communications Conference. IEEE, 2016, pp. 1–6.

[103] W. Wang, Y. Jiang, and W. Wu, “Multiagent-based resource allocation for en-

ergy minimization in cloud computing systems,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 205–220, 2017.

[104] M. Alicherry and T. Lakshman, “Network aware resource allocation in dis-

tributed clouds,” in Proceedings of the 31st IEEE International Conference on

Computer Communications. IEEE, 2012, pp. 963–971.

[105] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Silvera,

“A stable network-aware vm placement for cloud systems,” in Proceedings of the

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting. IEEE, 2012, pp. 498–506.

[106] H. Chen, H. Kang, G. Jiang, and Y. Zhang, “Network-aware coordination of vir-

tual machine migrations in enterprise data centers and clouds,” in Proceedings of

the IFIP/IEEE International Symposium on Integrated Network Management.

IEEE, 2013, pp. 888–891.

[107] K.-T. Chen, C. Chen, and P.-H. Wang, “Network aware load-balancing via

parallel vm migration for data centers,” in Proceedings of the 23rd International

Conference on Computer Communication and Networks. IEEE, 2014, pp. 1–8.

[108] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval re-

search logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

139

REFERENCES

[109] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling parallel applications

in cloud simulations,” in Proceedings of the 4th IEEE International Conference

on Utility and Cloud Computing (UCC). IEEE, 2011, pp. 105–113.

[110] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Plan: Joint policy-and

network-aware vm management for cloud data centers,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 4, pp. 1163–1175, 2017.

[111] Ns-3. [Online]. Available: http://www.nsnam.org

[112] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow: Leveraging

VM mobility to reduce network power costs in data centers,” in Proceedings of

the 10th International IFIP TC 6 Networking Conference. Springer, 2011, pp.

198–211.

[113] J. T. Piao and J. Yan, “A network-aware virtual machine placement and mi-

gration approach in cloud computing,” in Proceedings of the 9th International

Conference on Grid and Cooperative Computing. IEEE, 2010, pp. 87–92.

[114] A. Stage and T. Setzer, “Network-aware migration control and scheduling of dif-

ferentiated virtual machine workloads,” in Proceedings of the 2009 ICSE work-

shop on software engineering challenges of cloud computing. IEEE Computer

Society, 2009, pp. 9–14.

[115] H. Liu and B. He, “Vmbuddies: Coordinating live migration of multi-tier appli-

cations in cloud environments,” IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 4, pp. 1192–1205, 2015.

[116] JMOB - RUBBoS Benchmark. [Online]. Available:

http://jmob.ow2.org/rubbos.html

[117] H. T. Vu and S. Hwang, “A traffic and power-aware algorithm for virtual ma-

chine placement in cloud data center,” International Journal of Grid & Dis-

tributed Computing, vol. 7, no. 1, pp. 350–355, 2014.

[118] D. Kliazovich, P. Bouvry, and S. U. Khan, “DENS: data center energy-efficient

network-aware scheduling,” Cluster computing, vol. 16, no. 1, pp. 65–75, 2013.

[119] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “Greencloud: a packet-

level simulator of energy-aware cloud computing data centers,” in Proceedings

of the 53rd IEEE Global Communications Conference. IEEE, 2010, pp. 1–5.

140

REFERENCES

[120] S. Alhiyari and A. El-Mousa, “A network and power aware framework for data

centers using virtual machines re-allocation,” in Proceedings of the IEEE Jor-

dan Conference on Applied Electrical Engineering and Computing Technologies.

IEEE, 2015, pp. 1–6.

[121] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation of

virtual machines in cloud data centers,” Concurrency and Computation: Prac-

tice and Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[122] W.-C. Lin, C.-H. Liao, K.-T. Kuo, and C. H.-P. Wen, “Flow-and-vm migration

for optimizing throughput and energy in sdn-based cloud datacenter,” in Pro-

ceedings of the 5th IEEE International Conference on Cloud Computing Tech-

nology and Science, vol. 1. IEEE, 2013, pp. 206–211.

[123] Open Networking Foundation. [Online]. Available:

https://www.opennetworking.org/

[124] The Network Simulator - ns - 2. [Online]. Available:

http://www.isi.edu/nsnam/ns/

[125] V. R. Reguri, S. Kogatam, and M. Moh, “Energy efficient traffic-aware virtual

machine migration in green cloud data centers,” in Proceedings of the 2nd IEEE

International Conference on High Performance and Smart Computing, IEEE

International Conference on Intelligent Data and Security, and 2nd IEEE Inter-

national Conference on Big Data Security on Cloud. IEEE, 2016, pp. 268–273.

[126] J. Huang, K. Wu, and M. Moh, “Dynamic virtual machine migration algorithms

using enhanced energy consumption model for green cloud data centers,” in

Proceedings of the International Conference on High Performance Computing

& Simulation. IEEE, 2014, pp. 902–910.

[127] I. Takouna, R. Rojas-Cessa, K. Sachs, and C. Meinel, “Communication-aware

and energy-efficient scheduling for parallel applications in virtualized data cen-

ters,” in Proceedings of the 6th IEEE/ACM International Conference on Utility

and Cloud Computing. IEEE Computer Society, 2013, pp. 251–255.

[128] I. Takouna, W. Dawoud, and C. Meinel, “Analysis and simulation of hpc appli-

cations in virtualized data centers,” in Proceedings of the IEEE International

Conference on Green Computing and Communications. IEEE, 2012, pp. 498–

507.

141

REFERENCES

[129] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime distributions

for dynamic load balancing,” ACM Transactions on Computer Systems, vol. 15,

no. 3, pp. 253–285, 1997.

[130] The 15 Best Blogging Platforms on the Web Today. [Online]. Available:

http://thenextweb.com/apps/2013/08/16/best-blogging-services/

[131] L. Wolfe. Five key benefits of using wordpress for your website. [Online].

Available: https://www.thebalance.com/five-key-benefits-of-using-wordpress-

for-your-website-3515362

[132] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud com-

puting and emerging IT platforms: Vision, hype, and reality for delivering com-

puting as the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6,

pp. 599 – 616, 2009.

[133] K. Huppler, “Benchmarking with your head in the cloud,” in Proceedings of the

3rd TPC Technology Conference on Topics in Performance Evaluation, Mea-

surement and Characterization. Springer-Verlag, 2011, pp. 97–110.

[134]

[135] J. Russell. The 15 Best Blogging Platforms on the Web Today. [Online].

Available: http://thenextweb.com/apps/2013/08/16/best-blogging-services/

[136] T. Holz, S. Marechal, and F. Raynal, “New threats and attacks on the world

wide web,” IEEE Security & Privacy, vol. 4, no. 2, pp. 72–75, 2006.

[137] A. K. Singh. WordPress Use Cases. [Online]. Available:

http://www.slideshare.net/teamphp/word-press-use-cases

[138] Selenium - Web Browser Automation. [Online]. Available:

http://docs.seleniumhq.org/

[139] A. H. Borhani. WPressClient Source Code. [Online]. Available:

http://figshare.com/articles/WPressClient source code/978486

[140] D. T. McWherter, B. Schroeder, A. Ailamaki, and M. Harchol-Balter, “Priority

mechanisms for OLTP and transactional web applications,” in Proceedings of

the 20th International Conference on Data Engineering, 2004, pp. 535–546.

142

REFERENCES

[141] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load

balancing in dynamic structured p2p systems,” in Proceedings of the 23rd An-

nual Joint Conference of the IEEE Computer and Communications Societies,

vol. 4. IEEE, 2004, pp. 2253–2262.

[142] K. Djemame, I. Gourlay, J. Padgett, G. Birkenheuer, M. Hovestadt, O. Kao,

and K. Voss, “Introducing risk management into the grid,” in Proceedings of the

2nd IEEE International Conference on e-Science and Grid Computing. IEEE,

2006, pp. 28–28.

[143] H. Rong, H. Zhang, S. Xiao, C. Li, and C. Hu, “Optimizing energy consumption

for data centers,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 674–

691, 2016.

[144] D. Huang, B. He, and C. Miao, “A survey of resource management in multi-tier

web applications,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3,

pp. 1574–1590, 2014.

[145] UMass trace repository. [Online]. Available:

http://traces.cs.umass.edu/index.php/

[146] B. Godfrey. Repository of availability traces, 2010. [Online]. Available:

http://pbg.cs.illinois.edu/availability/

[147] K. Park and V. S. Pai, “CoMon: a mostly-scalable monitoring system for Plan-

etLab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp. 65–74,

2006.

[148] Standard performance evaluation corporation. [Online]. Available:

https://www.spec.org/power ssj2008/

[149] L. Rongheng, W. Budan, Y. Fangchun, Z. Yao, and H. Jinxuan, “An efficient

adaptive failure detection mechanism for cloud platform based on volterra se-

ries,” China Communications, vol. 11, no. 4, pp. 1–12, 2014.

[150] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proactive fault

tolerance using preemptive migration,” in Proceedings of the 17th Euromicro

International Conference on Parallel, Distributed and Network-based Processing.

IEEE, 2009, pp. 252–257.

143

REFERENCES

[151] J. Lee, H. Yu, and J. Gil, “A virtual machine migration management for multi-

ple datacenters-based cloud environments,” in Advanced Computer Science and

Information Technology. Springer, 2011, pp. 198–205.

[152] T. S. Kang, M. Tsugawa, J. Fortes, and T. Hirofuchi, “Reducing the migration

times of multiple vms on wans using a feedback controller,” in Proceedings

of the 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing Workshops and PhD Forum. IEEE, 2013, pp. 1480–1489.

[153] L. Nie, C. Xie, Y. Yin, and X. Li, “Context-aware qos assurance for smart grid

big data processing with elastic cloud resource reconfiguration,” in Proceedings

of the ICA3PP International Workshops and Symposiums on Algorithms and

Architectures for Parallel Processing. Springer, 2015, pp. 177–186.

[154] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious

scheduling of hpc applications on distributed cloud-oriented data centers,” Jour-

nal of Parallel and Distributed Computing, vol. 71, no. 6, pp. 732–749, 2011.

[155] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi, “Skie: a heterogeneous

environment for hpc applications,” Parallel Computing, vol. 25, no. 13, pp.

1827–1852, 1999.

[156] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study for running

hpc applications in public clouds,” in Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing. ACM, 2010, pp. 395–

401.

[157] J.-K. Yu, M. La Rota, R. Kantety, and M. Sorrells, “Est derived ssr markers for

comparative mapping in wheat and rice,” Molecular Genetics and Genomics,

vol. 271, no. 6, pp. 742–751, 2004.

[158] A. Zlot, A. Newell, K. Silvey, and K. Arail, “Peer reviewed: Addressing the

obesity epidemic: A genomics perspective,” Preventing chronic disease, vol. 4,

no. 2, 2007.

[159] A. Jaiswal and A. Upadhyay, “An enhanced framework of genomics using big

data computing,” in Computer, Communication and Control (IC4), 2015 In-

ternational Conference on. IEEE, 2015, pp. 1–7.

[160] P. C. Church and A. M. Goscinski, “A survey of cloud-based service computing

solutions for mammalian genomics,” IEEE Transactions on Services Computing,

vol. 7, no. 4, pp. 726–740, 2014.

144

