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Summary
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This doctoratethess focuses on thelesign, fabrication anéxperimental
characterizatiof novel onchip spectrometersSpecifically,two differenttypes of
onchip spectrometerhave been designed, fabricated amperimentally
demonstrad Fabrication proceses ba®l on nanaosiliconphobnic (NSP)
fabrication technology are developed.

The first part of the thesis reportsr onchip spectrometecalled pre
dispersed spectrometevith both high resolution and large bandwidth using
thermally tunable microring esonator(MRR) array with an aayed waveguide
grating (AWG) before th&RR array.The AWG functions as a fixed filter to pre
disperse the input spectrum while the following tunable MRRs retrieve the
corresponding dispersed spectrawhigh resolution. By adoption of AWG before
the turable MRR array, the workingpectral band can be broadened while
maintaining final resolution of thepectrometedue tothat the resonance wavelength
of MRR can befinely tuned. Besides, the tunable MRRrray has much higher
fabricdion toleranceand is nore compact compared to the approaches using the
stationarymicroringresonators arrayl.he predispersed spectrometer achieves high
resolution (0.1 nmand large bandwidth hm)within only 9 channealin a compact
size of3 x3 mm?. The model oMRR thermal tuning exploiting thermeoptic (TO)
effectis built andtheoretically analyseddeater optimization and thermal isolation
trenchesareimplementedo improve the heating effiency.

The secondoart of the thesisfocuseson thedevelopment of amicroring
resonatorassistedouriertransform(RAFT) spectrometerin this design, Fourier

transform (FT) spectrometer is realized with a thermally tunable photonic Mach

X
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Zehnder interfometer (MZI). A micronmg resonator with hig quality factor is
cascaded Wbere the MackhZehnder interferometer to pfédter the input spectrum
while the MZI is exploited to reconstruct thee-filteredspectra. The propos&AFT
spectrometer has bothghi resolution (0.47 nmand very large banddih (@0 nm)
due to the large @mnsparency widow of MaeBehnder interferometer and high
quality factor(Q) of microring resonator. It has a small footprint of 2.2 infiihe
model of MZIthermaltuningexploiting TO effectis built andtheoretically analysed
Low-loss Sirib waveguide islesigned, fabricated and experimentally testgedduce
insertion loss and imprewesolution.A low loss rate of 0.1 dB/ris experimentally
tested. Thermal isolation renches are implemented and expentally tested to
reduce themal consumption and thienal crosstalk.

The hird partof the thesidocuses orthe development otore fabrication
technology ofnanasilicon-photonic fabricationdchnology including silicon strip
waveguide,nverse tapefibre-chip coupler rib waveguias, directional couples,
and titanium nitride (TiN) heates and thermal isolation trencheSisNa4 strip
waveguide, microring resonator, and directional coupler are also designed and
fabricated. The fabrication processes areettged.The problemsencoungred in
optical lithogaphy are discussed. The fabrication procestasvaveguidecoupled
Geon-SOI photodetectofPD) are alsopresentedThe dark current is 4.4 nA at O
bias. The responsivity 8.81 A/W at 1538.5 nmA spectrometer using a thmally
tunable MRR integrated th a Geon-SOI PD is designed and experimentally

demonstrated.

Xi
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Chapter 1 Introduction

INTRODUCTION

1.1 Motivations

This PhD research topicmsotivated bythe potentialmpactof the integrated
photonic techalogyin developingon-chip spectromeers.

Integrated photonic or integrated optics platfdhas the advantage of high
compactness, lowost, and highrobushess,compared to the bentp ogics. Free
space optics requires various components such as |gms@ss, mirrors, beam
splitters, attenuatorgratings optical detectorsand so on. ® make the whole optical
systemwork well, eaclcomponent neextjood alignment in the optical transsion
space. Besides, feespace optical components are expensael lulky. The
emergence of optical fibre makes the delivery of optical signal much mvemient
andmakesthe longdistance transmigm possiblelntegrated optics targets to make
the tical system on a single chipalled photonic integrated circuit$ICs),
eliminating theassembly and alignment messes and theinstablenesslue to
environment fluctuationsBesides, the trend of datransmission and processing
carried byoptical signals instead of electric signalakes the integrated optics more
promisng to be applied in the data communication and computation [dje&any
possibilities havéeeninvestigatedn integrated photoniplatform such as LEDs,
lasersyarious caunterparts of conventional optical componeptstodetectorsand
so on The rapiddevelopment irfabrication technologhpas madéhe structure size
downto submicroameter The sacalled nanotechnologlyas opened new physical

areas such as najphobnics
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Photonic naneavaveguides or nanowisare basic components in tRdCs.
Lightwaveis basically a kind of electromagnetic waveprbpagates in waveguides
by total internal reflectiorNanotechnology based @ilicon-on-insulator SOI) has
made thewaveguide strudure size to be several hundrednemetersso thatthe
waveguie canonly transmit fundamental moderhichenable bette manipulation,
delivery of optical signals in PICs angetter performanceof various optical
components Microring re®nata can enormously increase the light intensity
propagating in it. It has shca high inesse that it can be exploited as a filterhwit
very fine pass bandwidth and low loss. Theromtic effect (TO effect) can be
harnessed ttunethe refractive indexf amaterial. It is used in applications such as
temperature sensor, phase t@rifand nodulator.

Optical spectrometels an importanfapparatus to measure the properties of
light andhas been one of the most important insients for spectrum analysis a
wide range ofpplications such asubstance identification, biological andemical
analysis, environment monitoringemote sensing satellites and so ofthe visible
wavelength (VIS) range is mostly utilized to characterize the fluorescence or
aborption of many types of fluorophorephotoluminescent markers, LEDand
photovoltaics The absorption bands in theearinfrared (NIR) range(0.7-2.5 m)
are relatively broadue toovertones and combination band@ibe NIR ranges often
usedto detectfood, pharmaceuticals, polymerpetrotiemical productsaqueous
solutions etc. The mid-infrared(MIR) range(2.55 m) is useful for amospheric
sensing, materialidentification chemical and biomolecule sensing, elige to strong
fundamental vibration band¥he optical spectrometdras been nae smaller and
smaller formore convenience andbwer cost[2-5] as it is critical to bring the

chemical/biological sensing, spectroscopy, and spectral imaging into robust, compact
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and costeffective devicesHence, o-chip spectrometdras been a hot reseatopic
with the development of devices requirisgectrum analys such aswavelength
monitoring [6-8], photonic sensors and -@hip spectroscopy9-16] based on
photonic inegrated circuitdt has the advantages of lmest, high comactness, high
robustness and high ability for integratimnenable portable sensing instruments and
integrated spectroscopy systemige maturity in building the PIC in optical
telecommunicatin band enables the various stat¢he-art integrated spectroeters.
The increasing need for wavelength monitoring ptical communication networks
also boosts the development of integrated spectrometers. The fast development in
various material platfons, such as silicon, silicon nitride, germanjustuminium
nitride, etc, dramatically extends the spectral range, whigmiges broad sensing
and spectroscopic applicatiorengingfrom VIS to IR rangeAs a resultscientists
have been trying differenparoaches to realize optical spectrometer simgle chip.
The maturity of nanasilicon-photonic fabricationtechnologyand availability of
foundrieshas enablethe integration of large scale gbaic devices on a single chip
[17]. And actually, he nanasilicon-photonic fabrication line has beeperfectly
applied in integated photonic devices fabrication. Howevew performancéssues
such asarrow bandwidth and low SN&eencountered when scaling down optical
spectrometers. Some approaches adopted digpensys like array waveguide
gratings(AWG) [18-21], planar concave gratisgPCG)[13, 18, 21, 22}vhich are
quite similarwith the conventional gratingased counterpat Some exploited the
characteristics of photandevices to fhricate tiny structures to disperse light such
as photonic crystaPCs)[8, 23-25] andphotonicrandom structurel26]. And there
are also other approaches suchtaionarymicroring resonator6SMRR)array[27],

speche pattern recaostruction by spiral waveguidef28] and digital planar
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holography(DPH) [29, 30] The tradeoff between resolutioand bandwidth as well
as low signato-noise réio (SNR)due todispersion limit their applicatioifCascaded
configurations are adopted tealize both high resolution and large bandwidiB,
31]. Conventional Foudrtransform (FT) spectrometer using Michelson
interferometer is known for high resolutionsobdband and high SNR, which is
suitable forinfrared (R) applications[32]. On-chip FT spectrometers aralso
demonstrateduch as=T spectrometer based omcro-electromechanical systems
(MEMS) technology[33-36], stationarywave integratedrT spectromete(SWIFT)
[37, 38] atialheterodyne speaameters (SHY)L6, 3944], thermally tunable ME
[45, 46] co-propagative FT (CPFT) spectromefé¥] and dgital Fouriertransform
(DFT) spectromete@d8, 49] The similar tradeff between chanel count and SNR
is encountered in most FT theds.For thernally tunable MZI, challenges lie in

improvement of MZI arm length and refractive index modification.

1.2 Objectives

The objective of thishesisis toexplore and investigagotential applications
of photonic devices based antegrated photdn circuits plaform. Specifcally,
applications in developing an ahip spectrometeare investigated.The frst
objectiveis to innovatehigh-resolution and laye-bandwidth orchip spectrometers
for on-chip spectrum analysigpplicationssuch asvavelermgth monitoring n optical
networks, integrated photonic sensing, -ohip spectroszpy and environmental
monitoring etc Besides, fabrication processes based rhaaosilicon-photonic
fabrication technologyare also to be developed, including fabricatioh rane
waveguids, inverse taper fibrehip coupley directional couplers, heatersnetal
wires,Ge-on-SOI photodetectors, trenches, etc.

4
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In this PhD thesistwo different types of onchip spectrometersvill be
developed

The first approachfor onchip spectrometertakes advantage ofarrayed
waveguide gratingand tunable microring resonataio realize a pralispersed
spectrometeto achieve sumanometer resotion and large bandwidi100 nm) A
TMRR array ¢ cascaded with the AWG amwaythat each outt waveguide othe
AWG is connected to a tunable MRRNd there is an integrated eSOl
photodetector in the drop port of each MRR\ arrayedwaveguide gratingjirstly
pre-dispersesthe input spectrum tceveral separated spectral barid the
correspondingTMRRs cascaded in each output channel of the AWermaooptic
effectis exploitedto tunethe resonance wavelength of the microring rasanto
realize a continuously tunable filter with ultrearrov bandpassiue to high finesse
of the resonancpeaks of the MR. Tunable MRRhas higler fabrication tolerance
and is more compacbmpared to thetationary MRRarray27].

The secondapproachdemonstrates anicroring resonateassisted-ourier-
transform (RAT) spectrometerto achieve sulmanometer resolution and large
bandwidth (~100 nm)The RAFT spectrometeemploysa thermally tunable Mach
Zehnder interferometer configuration as t@mporal tuning Fouriertransfom
spectrometefThetunable MZlhaslarge tranparency windovand presentsio trade
off between resolution and bandwidffhus it canresolve the tradeff between
resolution and badwidth which isinherent indispersion apmaches To reduce
optical pah length and temperature change while maintginthe resolutio, a
thermallytunableMRR is cascaded before the FT8th the drop port of MRR as
input of thetunableMZI. The MRRpre-filterstheinput spectrunto a spectrum with

sparsely spaced wavelengthmponentsThis spectrum can be easily diféetiated
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by thetunable MZI The MRR can be tuned to change the filtered spectrum. All the
filtered spectrarerecoveed by the tunable MZand combined to reconstruct the
input spectrumSince MRR presentsigh quality factorit can be tuned with antué

fine value Hence, by time serializing the tunable MRR, thk input spectrum can

be continuously filtered by thdRR. Thus, the resolution is dramatically enhanced
by the MRR far beyond the Rayleighterion of thetunable MZI Therefore high
resdution can be alievedwithout compromising the bandwidth. Besides, only one
detector is required for one singleuice, which promises high SNR and small
footprint.

Theproposedn-chip spectrometensill hawe high potential to be applied in
spectral angkis applicatios such as handheld spectrometd®, image
spectrometry38], integrated sensing systefd®, 13]and onchip speatoscopy{14,

50].

The fabrication processes usiteghnology corpatible with thetechnology
of complementary metaixide-semiconductorGMOS) will be developedsuch as
nanaosilicon-photonic waveguidesinverse taper fibrehip coupler directional
couplers, heaters, therinsolation trenches and waveguideupled Geon-SOl

photodetetor.

1.3 Major Contributions

The major contributionef this research includearious aspds oftheoretical
analysis, design, fabricahoand experimentof two types of nanophotonic
spectrometex
(a) A tunable microring resonatoffilter coupling with two wavegides is

designed Thetuningthrough thermeoptic effectis analyzedtheoretically

6
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(b)

(©)

(d)

(e)

(f)

(9)

andthemodel ofmicroring resonatothermaltuningis built.

The infuence of KH D Wikhéh§ivns andsoldion trenches on heating
efficiency and tempetare response ar theoretically analyzed and
experimentally tested.

Pre-dispersedspectrometemwith an arrayed waveguide gratintunable
microring resonatoarray, and Gen-SOI photodetector arrag designe,
fabricated anaéxperimentally testedHigh resolution of0.1 nm and large
bandwidth of Z nmareachievedn 9 detection channels

The advantages of tunable microring resonatgar stationary microring
resonatorare experimentally tested.he tunable nicroring resonatoiis
more compact tharstatiorary microring reonator array Resonance
wavelength oftietunable microring resonatis easier to control
Thermaltuning of tunableMZI through thermeoptic effectas a Fourier
transform spectrometer is dywed theoreticallyand themodel of MZI
therma tuningis built. A microring resonatowith high quality fator Q
~9,661 is adopted hermal consumption #RR and MZI arel.23 mW/nm
and P : @Eespectively.High resolution (0.47 nmand large
bandwdth (90 nm) areexperimentallyachieved in one single detection
channel

Thermaltuningwith TO effect of Si with high efficiencfl.23 mW/nm for
MRR and 2P : or MZI) and large rangel9 nm for MRR andnore than
80 periods for MZ) areachievedHigh response speéaslalsoachieved~10
kHZz).

SisN4 waveguide with relatively low loss andsSk MRR with high quality

factor are fabricated and experimentally testedevelop a SN4 platform
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potential for applications inearinfrared (NIR) range.

(h) Low lossSirib waveguidas designedfabricatedand experimentally tested.
The fabrication processof strip waveguiderib waveguides, TiN heater,
thermal isolation trencheand Geon-SOI phobdetectorsare developed
based on SOI wafers

) Experimentswere carred outto characterize the performancé the
spectrometedevices

(), High resolution 0.1 nm and large tunable range of ~19 nm are realized with
a single tunable MRRntegrated with a Gen-SOI photodetectorThe

thermal consumption is3:8 mW/nm

1.4 Organisation

Thisthesisreport consists of sighapters.

Chapter lintroducesthe motivations, objectives and major contributiafs
this projectas presented in this chapt&he motivatios secton explains whyand
how the PhD researcis carried out. Tie objedlve part presentthe main focus of
this thesis Innovations,importantoutcomes and main work are described in the
contribution section

Chapter2 firstly gives reviews oguided wavecluding guide wavespw-
loss waveguide,photonic microring resonatoand MackhZehnder interferometer
Threerefractive index modification methods photonic chip areeviewed including
electric fied effect plasma effecand thermeoptic effect.Basic ©ncepts of ptical
spectrometersare introduced Various stateof-the-art on-chip spectrometers are
reviewedand discussedFinally, integratedohotodetect@on Si PICsare introduced.

Chapter 3 gives the detailed description ontheoretical analysis and

8
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experimental demonstration of pre-dispersedspectrometerwith an arayed
waveguide gratingunable microring resonatarrayand Geon-SOI photodetector
array Theoretical mode of microring resonator thattuningis analyzedncluding
heat transfer amgsis, heater optimization, eténd the theoretical modat built.
Experimensg arecarried outand results are discussétkperimental results show the
advantages of tunable MRR over stationary MRR array.

Chapter 4 gives detailed description of tligeoetical analysis and
experimenth demonstration of amicroring resontr-assistedFouriertransform
spectrometerThe thermaltuning of the MachZeder interferometer is analyzed
and the theoretical model is buiixperimental results agresentegnd dscussed.
The approaches of improving the performance inclgdisolaion trenches and
waveguide loss implementatiane discussed and demonstrated

Chapter Soresents théabrication processes basedmamaosilicon-photonic
fabrication technology. &hosilicon-photonic processefor stripe waveguide, rib
waveguidesinverse taper fibrechip coupleranddirectionalcouplersarepresented
SisN4 waveguide with lower loss and microring resonator with higher quality factor
are designed, fabricated andperimentally tested to provide promising platform in
the NIR rangeFabrication processes of TiN heater and thermal isolation trenches are
presentedi-abrication processes oaweguide coupled Gen-SOI photodetector are
developed and presented. Tdeerimenthresults of an ofthip spectrometer using
a tunable microring resator integrated with a Gen-SOIl photodetectorare
presentecénd discussed

Chapter &raws onclusionsandgivesrecommendations



Chapter 2 Lit erature Su rvey

LITERATURE SURVEY

2.1 Guided Waves

Photonic waveguide is the basiomponent in the PIC platform. It not only
plays a role in transmitting light wave irsaucture with dimensions from hundreds
of nanometres to several micrometres, blgo critical tothe development of many
photonic devices, such as lmmiplersbranhes wavelength filter$51], wavelength
or mode (demultiplexers[52-54], modulaors[55-57], switchegd58], phase shifters
[59], etc.Photonic waveguidalso offes an efficient approach for nonlinear optics
dueto thehigh confinement of optical fieldhe emergence of PIC platform with the
development of nantabrication technology paves the waydompact waveguide
system fononlinear optisfor applications inntegrated light sourc¢60-63]. There
are many types of optical waveguidgaschas planar waveguid@lso called slab
waveguidg, strip waveguide rib waveguide,optical fiboreand so or{64]. Hence,
photonic waveguide is critical to bring bulky optical components onto a photonic
integrated circuit (PIC), a highly integed platform duto its ultrasmall geometrical

structurego enabé compact, robust aridw cost photonic systefé5].

2.1.1 Low-lossWaveguide

The important characteristic afwaveguide ishie optical attenuatioar loss
that a light wave experiencewhen it propagates along the waveguidehe
propagtion lossmust be reduced fqracticalapplication in PIG. The losses o&
waveguide aréenducedby manymechanismgsincluding absorption, sdgering and

10
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radiationloss[1, 66].

In semiconductorghe absorptiois due tanterband (or band edge absorption)
and free carrier absorptioBoth can induce significatoss.The interbad absorption
occurs wien the photorenergyis largerthan the bandgap energy the waveguide
material Hence, light with longer wavelengths sitd be adopted to propagate in the
corresponding material to avoidterband absorptior-ree carrier absorption also
called intrabandabsorption, occurs when a phottosesits energyto excite an
electron or holdrom an already existing state anothemormally different higher
state in the same band

The scatterindoss is induced by volume scattering and surface scattering.
The fomeris due toimperfectionsacting asscattering centresithin the volume of
the waveguidgincludingvoids, contaminardatoms and crystalline defectSurface
scattering is more dramatsincethe optical field especially higlorder modesan
interact stongly with the waveguidsurfaces ointerfaces with cladding materials
And normally thesurfaces omnterfaces areot smoothin planar waveguide circuits,
the scattering losses duedidewall roughnesaremore significantlue to imperfect
etching pocesseg67]. Normally higher index contrast between the core and the
cladding will induce more scattering loss¢67, 68] Hence, the scattering loss can
be reduced by improving material djtya, optimizing etching processes for smooth
surface$69, 70] adopting materials with a lower refractive indexlae core material
and using higkaspectratio waveguides.

Optical loss can alsbte induced by radiation effect whiabccurs when
photons propagating a waveguidetransmitinto thesurrounding materiabnd are
no longer guideddence for a certain weltonfined modethe change of theut-off

conditions will induce the loss of confined engngto the surrounding material, such

11
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asbendingwith small bending radiug'1], tapering, andize variety etc.The poorly
confined highorder mode is more likely to badiated into theurrounding material
The lowerorder optical mode may be transformed to higheorder modes due to
nonuniformity of the waveguid@&leverthelss,the bewing or curving of waveguides
dominatesn inducingradiationloss

Many approaches kia been attempted to achieve Hngs waveguides. A
low-loss (0.3 dBcm) slicon waveguide is developéa[72], where hermaoxidation
is exploited to define the waveguide profile without physical etghimgs resulting
in a smooth interface between the waveguide and the 8#&alding. The modal
profile of the fundameit TE mode is showim Fig. 2.Xa). Theapproach of adopting
rib waveguide has been tried teducewaveguiddosses [73, 74] Shallow ridge is
made to reduce interaction of the optical field with rough sidewaitsievinga low
loss of 0.274 dB/cni73]. The modal profilds shown inFig. 2.1(b). A high-aspect
ratio SeN4 waveguide with an ultrbow loss of 0.1 dB/cm is demonstratgcb].
Figure 2.1(c) shows the profile ofhe fundamentalE mode The upper and lower
cladding are made dhermaly grown SiO,. Thewidth of the waveguide is3L m
and thethickness of the ceris only 40 nm. With high aspect ratio cross section, most
electricfield is exposed to the thick claddj and there is only a very smalbrtion
of electric field interacting with rough etched sidewallse claddings areery thick
(up to 15 pm) to avad interaction with the interfadeetween cladding anair. And
the low impurities further reducethe optical lossesDelay lines made of low
refractive index material Silica is developaal a Si chipachieving a ultrdow loss
rate 0.08 dB/nj76]. Etched Silicasurface has higher quality and the optical mode is

designed to have less interference with rough sidewalls.
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Figure2.1: FundamentadjuastTE modal profile ofa)the etchless Si waveguid®)

the shallowridge Si waveguidand(c) thehigh-aspectratio SN+ waveguide

Many photonic devices require nanowire waveguide since nanowire is single
mode waveguide which is easier to be harnedseskrateof the stateof-the-art Si
nanowire is ~1 dB/cnilhe SisN4 materialhas lower refractive index than Si, thus it
is preferredfor lower loss. Lowoss SiN4 nanowires have been developed the
NIR range with a loss ratel dB/cm from 532000 nm[77]. Different methods have
been tried to further reduce the la#sSizN4 waveguidesuchas the double strip
structure withaloss rate 0D.2 dB/cm[78], rectangulacrosssectionfilled with and

13
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encapsulated by silicon dioxide (S)Qwith aloss rate 0.1 dB/cm[79] and strip
waveguidespecially fabricated by etching Si@renchbefore deposition with 8.4
dB/cm lossat 1.55 pm [80]. The lowloss waveguide can ba&pplied in orchip
routing which requires a wagaide length of up to dozens of centimetig$, 81}
Ultra-low-loss waveguide can also enable realization etlup delay lines which

require dength up to several metrg&, 82]

2.1.2 Photonic Micror ing Resonator

Optical microcavities are important basic comeots in modern optid83].
They are widely applied as optical filters and means for accurateureasnt, laser
devicesnhonlinear optics, etclhe opticalmicrocavitiesinclude FabryPerotcavity,
photonic aystal and whispery gallery mode ring resonaiiod so onTheschematic
configuration of @ adddrop microring resonato(MRR) is shownin Fig. 2.2(a). It
is composeaf two unidirectional waveguides aad MRR. If the second waveguide
is removed, it is called an gllass MRR[84]. MRR has the characteristics of an
optical filter according tothe filter characteristic as shown in Fig2@) and (c)
Transmision spectra fromhtoughputand dropport are denoted witBolid anddash
line, respectivelyThe wavelength position where the dips or peaks appegar:(

3« LV WKH UHVRQDQFH ZDYHOHQJWKwhié5Sep¥sda OOHG |1U
the wavelength or frequencyfidirence between twadjacent resonance wavelengths
or frequenciesand / is the full width at half maximumFAWHM) of the resonance
line shapeOnly the light at the resonance wavelength ofieR ( 2) will resonate
in the MRR. The resonating light intensity will be enhanced dramatically and then
coupled into another waveguide and output from the drop Ploetremaining light
(off-resonance wavelengths:) will be output from the throughput port. Light can

also be added throughe add port.If the wavelength overlaps with the resonance
14
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wavelength( o), the light will finally be output from the throughput padormally
in a purely pssive MRR, the loss coefficienis a fixed value (0< <1). Hence, the
way to achieve minimuror maximum transmission from throughout or drop port is

to change the coupling coefficients of the two unidirectional couplets[84].

Figure2.2: (a) Schematiof an add-dropMRR. Filter Characteristic ofc) an altpass

MRR and (¢ an adddropMRR.
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The dispersion of the propagation constzan be expressed

WE kK
w O n, (2.1)

whereng is grouprefractive indexand is expressed as

n, ng of (2.2)

9

s

Thus,thefree spectral rangé-GR) is
o
FSR ' 0 —
nL (2.3)

Thequality factorQ standingfor the sharpness of the resonansexpressed as

Q =2 (24

The effective index of theMRR will change with different surrounding
substanceandconcentrationsf the substanceslence, MRRcan enable very high
sensitivity on sensing applicatiossich agefractive index sensdB5], gassensor
[12, 8688] and biochemical detectiofi9, 89, 90]due to its higkQ characteristic
Optical MRR can also be used as an optomecharieglceto enhance interaction
between light ad mechanics to realize the amplification of rafifequency signals
[91, 92] motion amplification and coolin@3], and &tuaion [94, 95] A wide-range
tunable laser is developed in twitdouble coupled resonatof86]. Microring

resonators can also be ugedfilters [97-99] and nonlineaapplicationd100, 101]

2.1.3 Mach-Zehnder Interferometer

The MachZehnder InterferometefMZl) is extenssely used in the PIC
platform such asfilters [102], modulators[103], and switcheq104], etc The
schematic of aMZI is shown in Fig. &. The inputlight is split by the splitter téwo

beams int@arm 1 and arm 2. If the splitter is a 50/50 beam splitter, the light intensities
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in arm 1 and arm 2 are equdlfter propagating in the arms, the two beams will

recombineat the output waveguid@roughthe waveguide combiner.

Figure2.3: Schematic of Mach-Zehnder Interferometer

Suppose the electric fiedaf the propagating mode in armafhd arm 2areE; andEy,
respectively, and the amplde of both electric field is Eo, the transfer function of
the MZI is expressed as

S S"ElL cos( MI (25)
whereSr = S(E1 + E2)? is the intensity at the output waveguidée phase difference
between the two beams 3is either due to the different propagating constants
between the two arms or imbalance arm lengtius, the output intensity changes
cosinusoidallywith the phase differenc&he maximumintensityoccurswhen ~ 3
equals to 2 (Bwhile the minimum intensity occur&#hen ~ 3equals to gnt+1) GE
wheremis an integerThus,the transmittedight intensity can be changdéem the
minimum tothe maximum valueby changing the phase differenegia manipulating

propagation constant arm length.

2.2 Refractive Index Tuning

Opticaltuningis required in integrated optical systermbe refractive index
is a complex numbezxpressed ad =n + i . The real parh is the refractive index

indicatingthe phase velocity and the imaginary pars the extindbn coefficient
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which describes how easily it can be penetrated by a beam of lighitegrated
optics, there are three main waysunethe refractive index of a materjalamely by
electric fieldeffect carrier injection or depletiosffectand thermo-optic effect.

The change in the real refractive indéxdue to applied electriteld is called
electrorefractionwhile the change in imaginary part of the refractive indexis
called electroabsorptiof105]. The primary electric field effects to cause
electrorefraction and electroabption are the Pockskffect, the Kerr effect, and the
FranzKeldysh effect.Pockes$ effect also known aghe linear electraptic effect
causes a change in reafmactive indexn, whichis proportional to electric fiel&.
The change depends tre angle betweethe direction othe applied electric field
andthe crystal axes. Thus, the effect is polarization depenidibpte is almost no
Pockels effect in silicon concerning tigeametry of the silicon crystal structure.
Hence, it is not an option for opticainingin silicon. To utilize the largest electro
optic coefficient of a certain material, the electric field is applied to align with one of
the principal axesThe Kerr efect is the second ordeelectric effect. The real
refractive index change is proportional to the square of the applied electridfield.
Kerr effect is not polarization dependehhe Kerr effect in silicon as a function of
applied electric field, at 3K and = 1.3um is shown in Fig4.23 in[105]. The
refractive index changes from @ 10* when electric field is changed from“itd
10° V/cm.Hence, the Kerr effect is rather weak in Si and is hard to be harn€hsed.
FranzKeldysh effect induces both eleatrefraction and electroabsorptioBut it
mainly causes thelectroabsorptionThe energy band of the semiconductor is
distorted by tk electric field, resulting in the change of absorption properties,
particularly at the wavelengths close to the band Bigjpire 4.24n [105] shows he

FranzKeldysh effect in silicon at 308 and for = 1.07 mand =1.09 m. The
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refractive index changes from$@ 10* when electric field changes fronx410* to
4 x 10° Vicm.

Free carries in a materiawill affect both the reaand imagnary refractive
indices. The Drude model shows that the carrier dengiffuencesthe plasma
frequency, and thus affectise refractive index17]. It is called the plasma effect.
According to Drudd.orenz equatiofil05], for carrier injection concentratiaf 5 x
10" cm® for both electroa and holesthe chages of refractiveindicesin Si at 1550
nmare 'n=1.67x 10%and " . = 7.25 Therefractiveindex change is in the order of
103, However, the additional loss due to carrier injection is 7.25, owhich
corresponds to a losate of 31.465 dB/cnThus, the refractive index modification
by carrier injection or depletion Siwill inducelarge Iass.

Thermaoptic (TO) effectis that the refractive index of a material will change
as a function of its temperatufe The thermeoptic coefficient (TOC) depends on
the temperatur@ and wavelength of light propagating in the materifl06], thus
refractive indexn can be expressed aé , T) [106]. The advantage adtrongTO
effect in silicon(TOC 8§1.84 x10%/K) is frequently exploitetb implementefractive
index tuning in various componentsn integrated photonic circuitsuch as
temperature sensfit07, 108] moduktor[56] andphase shiftergL09-111].

Since the electric field effect is too weak in 8ie carrig injection and
thermaoptic effect arewidely exploitedon Si photonic [atform. Thermeoptic
effect dlows larger refractive indemodificationthan carrier injectionHowever, the
tuningspeed using carrier injectig@Hz level)is much faster than that using thermo

optic effect(kHz level)
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2.3 Spectrometers

An optical pectraneter is an apparatus to measpreperties of lightto get
the spectrumlts applicationsrange from material identification, environmental
sensing, food and beverage safety, health monitdoingmote sensing in satellites
etc There ar¢hreetypes of spectrometers based on working piecthe dispersive,
filter-based and Fouridransform (FT) spectrometer.The fast development of
nanophotonic fabrication technologiesducesthe structuresize to nanometers.
Many miniaturized spectrometers have been demonstrated, typichlly havethe
advantages of robustss costeffectiveness and compatillity to integrate with
photonicintegrated circuitsetc There are many promising applications such as on
chip sensing andpectroscopyl4, 112, 113]food and beverage quality control and

environment monitoringl14], etc.

2.3.1 Fundamental Concepts of Spectrometers

The conventional dispersive spectromeiiizesopticalgratings [5, 115]to
disperse light by frequency.he schematicof the Hamamatsuini-spectrometer
usingreflective gratingss shown in Fig. 2i(a). Light is coupled to the devitbrough
an optical fibreAfter collimation, the light will be focused to the reflective gratings
The dispersiorangle is wavelength dependeAfiter dispersed andocused, light
components will be detected bye image sensolhe schematigvorking pringple
of a diffractive grating is sbwn in Fig. 24(b). The dispersion characteristic of the
grating is due to integfence of lightTo create constructive interference, the optical
path difference (OPD) of the twodident beams to adjacent slgsexpresed as

OPD d(sini sin ) n7 (2.6)

wherem is an integer stamag for the diffraction orderd the grating periodi the
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incident angle of the light beam andhe dispersive angle. Then we can obtain the
spread of spectrum of orderbetween wavelengthand ~

d_ m sinf  sini
d O dcos T @0s

D (2.7)

Thus, the spread of spectrum D of ordetlepend®n the incident weelength. The
resolving power indicating the smallest resolvable waveletiff¢érence is given by

R -2 mn 2.8)
)

whereN is the slit number of the grating.

fibre

\

slit

\

: image sensor
grating 1age Seho

glass body

collimating function focusi‘ng function

Figure2.4: (a) Schematioof the Hamamatsu mirgpectraneterTF series C14486GA

(b) Schematiavorking principleof adiffractive grating.
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Febry-Perot filter

flat mirror
highly

reflective
coating

SOI MEMS
structure

Figure 2.5: AxsunfV 0 (ebdised spectrometer exploitirgtunable Fabry-Perot

filter taken from[4].

A spectrometer exploiting Bay-Perot tunable filterbased onmicro-
electromechanical systenl§IEMS) fabrication technologys developed by Axsun
Technologie$4]. It is a tunable Bbry-Perot cavitywith the schematic shown in Fig.
25. The upper mirror can be tunbg electrostatic force to change the cavity gap to
tune the filtered output walength.

The schematiof a conventionalFourer-transform spectrometansing a
Michelson interferometef116] is shown in Fig. . The mirror in one arm is
staticnary for reference and the other is movable to generate OPD between the two
arms.The OPDequals tax. - x1. The two beamwill interfere afterrecombining in
in the beam splitterAs a resultthere will be atime-varyingsignal in the output of
the photaetector i.e. interferogramsBy applying Fourier transfornfFT) to this
signal the input spectrum igetrieved [32]. The interferograms with different input
spectra are shown in Fig. 2The resolution/ lis given by 1/L. The parametef=
1/ is wavenumber andL is the maximum OPD[CHence, the resolution depends on
the maximum travel range of the movabharor. The FT spectrometer has many

advantages ovesther cowentional optical spectrometerBhe multiplex advantage
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andthroughput advantagenableshorter detection time aridgher SNR. The stray

light is negligible andthe resolution(in wavenumberis constant throughout the
detectedspectral rangeSince the interference length should be less than the coherent
length of the light source to obtain better and more interferogrdmmsnaximum

OPD "L or resolution is limited by the coherent length. Thedgiight sources used
includeincoherent soursesuch as incandescent light bulb and silicon carbide rod,
and coherent sources such asMtelaser and laser diode. The coherent length equals
to ¢/ Q ', wherec is the speed of lighty is refractive index in the material aridlis

the bandwidth. Incoherésources have a short coherent length (tens of micrometres),
while coherent sources have a much longer coherent length (tens of centimetres).

Hence, coherent source is required for high resolution applications.

Figure 2.6: Schematic of a conventional Fourgansform spectrometaising a

Michelson interferometer
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Figure2.7: Interferograms with different inpgpectra(a) One infinitesimally narrow
line. (b) Two infinitesimally narrow lines witequal intensity(c) Lorentzian shape

spectrum centred at the mean of the lines in (b).

2.3.2 On-chip Dispersive Spectrometes

In dispersive methods, the input spectrum is spatially demultiplexed
according to wavelength or frequendye filter-basedspectromeer adopts filtering
elements to direct light into different channels according to wavelength or frequency
Hence, the filtetbased type is included in the dispersive type l@nechipdispersive
spectrometer includes arrayed waveguide gratings (AJ¥&21, 117121], planar
concave gratingPCG) [18, 21, 122] photonic crysta (PCs) [23-25, 123125],
stationarymicroring resonato(SMRR) array[27], random structureg6, 126]and

digital planar holographyDPH) [29, 30] There is inherent traesf between
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resolution and channebunt. Hence, large channel count is required to achieve high
resolution and wide bakwidth.

Arrayed waveguide grating (AW&Iso calledwaveguidegrating routers
(WGR) orphasedarrays (PHASAR)has long been used as (de)multiplexer in fibre
optic communtations.In recent years, AWG has been a critical component in
integrated photonic syems [17, 105, 127] with applicatios ranging from
(de)multiplexers, addrop filters[128]to N x M wavelength routindt hasalso been
adopted as oohip spectrometerfd 8, 19, 21, 31, 117, 119, 12Higure 28 shows
the schematic working principle of th&VG [129]. There are two starouplers also
called free propagation region (FPR). One is input FPR and the other output FPR.
When thanput light coming from the input waveguides (left) reaches to object plane
of thefirst FPR, the light will diffract ito the waveguides array. The length increment
between adjacentaveguids equals taan integer of the centre wavelengthAfter
propagating through th&econdFPR, the input light can be recovered in the image
plan by constructive interference between ltiple beams with light at cental
wavelength ¢ in the centre. When the input light ¢ ¢, the position in the image
plan will shift by a certain value along the focal line. As a result, the input light with
different wavelength qoaponents can be digped into corresponding output
waveguideslf the light is input from the waveguides in the right side. All wavelength
components will combine in the waveguide in the left side after transmitting through
thefirst FPR.

The length difference between adjacamayed waveguided. is

(2.9)

wherem is an integer namely the order of the waveguide arrais the central

wavelength andnet is the effective index of the optical mode the arrayed
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wavegudes Theschematic response of the AWG in the image plane is shown in Fig.

2.9(a).

Figure2.8: Schematiavorking principle ofan AWG taken from[129].

Theoptical field will fall on the same position at® phase difference. This
shows the periodic characteitsbf the AWG.The schematic spectral response of
output waveguide channels is shown in Fi@(l2. The period in the frequency
domain is called free spectral range (FSR). The condition is th&etheency shift

“fesrcauses the phase difference to iE#ence,
(2.10

whereng is the group inderf the optical mode ithe arrayed waveguideshus, the

FSRis

(2.11)

where . To function as a spectrometer, the bandwidth equals to the

FSR "frsr Theresolution equals tchannel spacingf, whichis expressed a¥rsdM,
where M is channel countnamelythe number of output waveguidebklence, the

resolution is inversely proportional to channel count.
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Figure2.9: (a) Sctematicresponse of the AWG in the image plafi®. Schematic

spectral response olutput waveguide channels.

Planar concave grating (PCG) is similar to the grating basedsfraee
counterpartA lot of work have been done in NIR3, 122]andmid-infrared MIR)
ranges [18, 21] The schematic view oPCGfrom [21] is shown in Fy. 210. The
arean blue is etchd and the area in red is the Si afidee input light diffracts in the
input aperture and propagates in BRR Grating structures are fabricated along the
Rowland circleThe light rays reflected by each grating facetgehdifferent optical
path delaysThe adjacent mtical paths have equaptical delay length L. Hence,
they will interfereat the output waveguideghus, the operating principle of a PCG

is similarto that d an AWG.The optical delay lengthiL determines the FSR.
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Figure2.10: Schematic view o planar concave gratirigken from[21].

The super psm phenorenon of photonic crystals (PCsyith strong
dispersion[130] can also be utilized to realize disperse lig®, 24] Photonic
crystals have properti@nd compatibilitywith PIC. Hence the PCs céae utlized as
a spectrometewithin a small footprint The schematic of a®s spectrometefrom
[23] is shown in Fig. 2.1, where light experiencesnly in plane propagationA
spectrometedemonstratea resolution of 1.2 nm in 10 nm bandwidth the SisN4
on SIQ platform near 655nm in [24]. A resolutionlarger than5 nmin 50 nm
bandwidth on SOI platform ned550 nmis also demonstrate®Csbased a-chip
spectrometexr where light has inplane input and oubf plane outputare also
demonstrated25, 123, 125] Though the PCs structure has compact sike,
resolution ismoderateandthe bandwidth isinited. Besides, ierequiremenbf off-
chip detectiorfor PCs deliveringout of planeoutputlight reducesrobustness and

compactness.
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Figure2.11: Schematiavorking principle ofPCsbasedspectrometetaken from[23].

The schematiavorking principle ofa sped¢rometer with stationary MRR
(SMRR)arrayis shown in Fig2.12(a) from [27]. Figure 212(b) shows thepectrum
reconstruction processeBhe MRRs have an ultrasmall radiusincrement eachfor
different wavelengthsThe wanted wavelengths will be directed into the scatter
array and then intoff-chip detector array or CCD array. The scatterer array can be
replaced with orchip waveguidecoupled detector array in real applicatioibe
resolution depends on the resoce wavelength differenaar radius difference
between adjacent MRRThe bandwidth equals to the FSR of the MRR. Thus, to
achieve large bandwidth, the radius should be as small as po$silalehieve high
resolution, tle adjacenMRR radiusdifference fould be as small as possilitence,
the MRR isfabricatedoy ebeam lithography to achieve wtsmall feature sizand
to precisely control the MRR radius to change the resonance wavelength of each
MRR. A resolution of0.6 nm in 56 nm spectral rangeashieved in 84 detection
channelsWhereaghe small radius chandge 1 P)is hard tdberealized using mass
production technology, namely fabrication technology usipgcal lithography.
Besides, large channel count liequired to achievehigh resolution reducing

compactness arsNR
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Figure2.12: On-chip spectrometer witlBMRR arraytaken from[27].(a) Shematic

working principle (b) Spectrum reconstruction processes.

Random structures are exploitediEmamstrate an owchip spectrorater.The
scanning electron microscoffeEM) image of the fabricated spectromeiem [26]
is shown in Fig2.13. Light are scatterenh the random media. THms with photonic
crystal structures act as channels to direct wanted diffused light into corresponding
detection channels. Thereafter, the light will be statt offplane by the waveguide
ridgealongthe semicircle anddetected by anicroscope. In real application,-@hip
integrated photodetectors will be usethe multiple scattering in the random
structure increases the optical pailinich enablegine spectral resolutionA high
resolution of 0.7%imin 25-nm bandwidticentred ail512.5nm is achievedvith 25
m-radius structureThe bandwidth™ is expressed as
(2.12
whereM is detectionchannel counand / is resolutionHence, large channel count
is required to achieve practical resolution and bandwititinever, the channel count

is limited in the small footprintEven tiough the implementation of paralleled
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structuress proposed to extend working bandith, the limit of bandwidth in each
structureleads to large number of structuréer example, 4 structures are required
to achieve 100 nm bandwidth. The total detection chacmahtwill be 100. This

will causeincreasedootprint andow SNR.

Figure2.13: SEM image of théabricated spectrometasing random structurégken

from [26].

The schematic adn integratedilgital planar holograph¢DPH) spectromete
from [29] is shown in Fig. 24. Input light is split by a directional coupler according
to the bandwidth requirement. The split beams are directed to the DPH structures and
reflected. Therefore, the light is demultipdel. The demultiplexed light is direct
into corresponding detectiatannelsacording to thewavelengthsHowever, large

footprint (2 cnf) and low SNR due to large channel count lisitapplication.
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Figure2.14: Schematic o&in integrated DPH spectrometaken from[29].

Methods of ascading dispersive elementsatthieve high resolution as well
as large bandwidtlare developed such asscaded tunable microring resonator
(TMRR) and PC@13], andcascaded AWG an8MRRarray[31]. They are limited
either by tradeoff between SNR and bandwidth fabrication variation.

Cascadedunable MRR and PCG@s shownin Fig. 215, achieving 0.1 nm
resolution and 10 nm bandwidth in 100 detection chanfidks The resolution
depends on thenewidth of MRR resonance peak and the bandwidth equals to the
FSR of the PCGThe FSR of MRR and the channel spgcof PCG should be well
alignedduring thermal tuning both MRR and PCG for timeltiplexing This is
quite challenging because the fabrigat variation of the nanasilicon-photonic
technology will induce phase error both MRR and PCGHence, it putsstringent
requirements on the designing and thermal tuning of &R and PCG

Cascaded AWG and SMRR arrigghown in Fig. 2L6[31]. A highresolution
of 0.1 nmin 10 nmspectral range withO0 detection chrnelsis achievedSimilarly,
the resolution depends dime linewidth of MRR resonance peak and the bandwidth
is the FSR of the AWGThe lightis predispersed by the AWG. The pdispersed
spectra will transmit into corresponding anals, where there are 10 SMRRs filters.

The wavelength components will be filtered by each SMRR and read aheby
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following detectors.Like spectromete using oty SMRR array, the resonance
wavelength is very hard to cwal due to fabrication variatiorBesides, the large

detection channel count reduces the SNR and increases the footprint.

Figure2.15: Micrographof the cascaded spectrometer with tunable MRR and PCG

from [13].

Figure2.16: Schematic of the casdad spectrometer with AWG and stationary MRR

array from[31].

2.3.3 On-chip Fourier-transform Spectrometers

Fouriertransform spectrometean overcome the lirration of resolution and
channel countradeoff in dispersive approaches to achieve high resolution and high

SNR On-chip FT spectrometers are demonstrated such as FT spectrometer using
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MEMS technology (MEMS FTS|33, 35, 36] stationarywave integrated Fourier
transfom (SWIFT)[37, 38] spatial heterodyne spectrometers (SHE-42, 131]
tunable MZI [45, 46] co-propagative FT (CPFT) spectromefdi7], and digital
Fouriertransform (DFT) spectrometed8, 132] However, tradeoff between
reolution and detection channel count still existsaipproaches detecting spatial
interferogramsOther methods are limited either by limitegtical path difference
(OPD)or undersampling.

The FT spectnmeter based on MEMS technologysing a Michelson
interferometer configuratiof83-36]is shown in Fig2.17. MEMS electrostatic comb
driver actuators are adopted to scan the optical path I1€@drh). The advanced
MEMS technologies have enabled many advanced micctgmeeterd5, 133] An
MEMS FT spectrometer is commercialized byw&ire with practical resolutio(l6
nm) and bandwidtt{>1 m) with acompact siz€7 mn?). A large travel rangef 1
mm is obtainedThe resolution depends on the travel range of the comb driver.
Compared to spectrometers based on PIC, the MEMS FT Sssfuffer unstableness
of the comb driverand limited travel rangeThe requirements of offhip light

sources and detectaamsoreduces its robustness.

Figure2.17: SEM image o MEMS-based FT spectrometiken from[36].
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Many works have been done to realizZeetFT spectrometer do a nance
silicon-photonic chip. Stationarwave integrated Fouriertransform (SWIFT)
spectrometer is demonstrate@ith a 4nm spectral resolution and 96 nm bandwidth
centred on 1500 nii87] as shown in Fig. 2.18 he two countepropagating wave
interfere and brm a standing wav@amely the spatial interferograalong the
waveguideNear field optical probes with gold nanowiee®e implemented ahgthe
waveguideand interacts with the evanescent wavditectly detect light intensity
The gold nanowires are plasited on the top surface of thev@veguide Far field
imaging is requied to detect the scatter light frahe near field probes. Theeare no
movable or tuning parts in the highly compact spectrometer chip (0%L iawever,
off-chip far field imaging will add toits size and weight and reduces its robustness.

The finite nanowires may cause undempling, resulting in lower resolution

Figure2.18: Different configurations ofSWIFT spectrometaakenfrom [37].

Spatial heterodyne spectrometé8HS)aredemonstratedvhich are suitable
for on-chip detectiorf16, 3943, 134, 135]Sationary MachZehnder interferometer

array is employe@s shown in Fig. 2.1 helight is input by the multiaperture or

35



Chapter 2 Lit erature Su rvey

multiple beam splitters into each M4tihasN Mach-Zehnder interferometsrThere
is an OPDincrement L between adjacent MZI The first MZI haszeroOPD and

theNth MZI has & OPD ofN "L. The minimum MZI quantity is givehy [39]

(2.13)

where ” is the bandwidth and is the resolutionThus, there is &deoff between
MZI counts (or bandwdth) and resolutionHence, to achieva l-nm resolution at
50-nm bardwidth, 100MZI's are requiredThe splitting of input light throughulti-

aperture or raltiple beam splitterfurther reduces the SR

Figure2.19: Optical micrography of the SHS spectrometer taken {etih

The typical configuration of the FT spectrometer mirroring the conventional
structure is a thermally tunable M5, 46]as shown in Fig. 2.20. Interferogram is
continuously sampled vile continuously changing the OPD between the two arms
of the MZI in the timedomain. Only one detection channel is required. Hence, it can
deliver large bandwidth and high SNRpmpared to those probing spatial
interferograms. A resolution of 3.05 nm hdseen demonstrated with arm length of

30.407 mm and maxium temperature excursion of 54[45].
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Theresolution/ 1depends on the maximum OPD and is expressed as
(2.149)

where . is the thermeoptic coefficient of the waveguide,T is the maximum
temperature change andis the MZI arm lendt. Thus, to further improve the
resolution, long arm length and large temperagxeursionis required.However,

there is a limit in arm length concerning the optical (s dB/cm)in the Si photonic
chip. Higrer temperature changeill induce largerthemal expansiorand increase

power consumptian

Figure2.20: Schematic of theunable MackZehnder interferomete¢aken from[46].

Co-propagative FT(CPFT) spectrometeusing one stationary MZI is also
demonstrated47] as shown in Fig. 2.21The two arms i@ designed tallow
propagation oftlifferentoptical modes to generate phase dalayg the propaagion
direction Grating structures are implemented between the two arms to reflect the
spatial interferogram ofplane through evanescent wave probiygesolution of 6
nm is achieved in bandwidthlarger thanl00 nmcentred at 850 nrwithin compact

size (0.1 mm) on the SiN4 on SiQ platform
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The resolution/ can be expressed ]

(2.15)

where is central wavelengtandL is the interferogram lengthlence, the resolution
is easy to improve wittonger sampling lengthlhe interferogram period should

satisfy

(2.16)

where "nert is the effective index difference between two optical motikesvever,
the requirement ofoff-chip detection reduces the compactness and robustness.
Besides, probing weak evanescent wawel large detection channel coumil

reduce theSNR.

Figure2.21: Schematic of theo-propagative stadnary FTStaken from[47].

Digital Fourer-transform (DFT) spectrometadopting multiple switches in
MZI arms to manipulate optical path differerisedeveloped and demonstra{é@,
49, 132] The switches arkined through thermaptic effect. The DFT spectrometer
detects discrete temporal interferogram by cdlitigp the switches inthe time-

domainas shown in Fig. 22
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The spectral channel count is exgsed as

2.17)

wherej is thecount of the switched.he resolution/ is expressed as

(2.19)

where ng is the group index of the designed waveguide dnis lengthdifferenceof
the two armsbetween adjacent switchdderce, both spectral channel courind
resolution scale up with the switch coultthigh resolution of 0.2 nm with 6 switches

is achiered. The finite switches will induce undersamplimgducingthe resolution.

Figure2.22: Diagram illustrating the structure o&T spectrometer frorfl32].
As a result, it remains challenging to develop acarchip spectrometer

achieving high resolution, large bandwidth, and high SN specifications of

various methods to realize a spectrometer are summarized in Table 2.1.
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Table2.1: Specifications of various methodts achievea spectrometer.

/ Range BW Size
Principle Finesse| Channel
/nm / m /nm /mm?
Free space grating 5 0.951.7 750 | 150 - 5.76¢
Free space FIS | 1 0.92.6 3700| 3700 1 2.3¢
MEMS FTS™ 16 1.352.5 1150| 71.88 1 7
AWGHI] 0.2 1.541.55 10 50 50 64
PCQ@tsl 3.2 | 1.5371.563 | 25.6 8 8 0.56
9.1
PC$4 1.2 0.650.66 10 8.33 8
X103
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2.4 Integrated Photodetectoss

A photodetector is an optoelectronic tevto convert light or photon signals
to electric signals and used for detection of optical sigh@bsgrated photodetectors
are of great use iphotonic integrated circuitPata transmission at a bit rate of 10
Gb/s over a long distance makes phatsnintegration a more easier approach to
implement that electrical interconn€ldt36]. They canalso be apled to enable
compact and costffective ghotonic sensingnd spectroscopsystem[11, 14, 137,
138]. For a semiconductor photodetecttre intern& photoelectric effect occurs
when the incidet photon energy is no less thtie bandgap of thebsorbingnaterial.

A semiconductophotodiode light detection circuit shownin Fig. 2.23(a). The
photodiode is reverdgiased. When it sensé¢he light, electron and holepairs are
generated, and swept across the absorbing matetiathe application of external
voltage resulting in aphotocurrentl, proportional to the incident intensitffhe
schematic of photgensing of a PN junction with zebias isshown in Fig. 2.3(b).

The absorption of a photon excites an electron in P side from valence band to
conduction band, resulting indhgeneration of an electtwle pair. If there is an
external reverse biased voltage, under the influence of the elegdtliatiese carriers

will move through the material and result in a current in the external circuit.
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Figure2.23: (a) Schematic of semiconductophotodiode lightdetection circuit(b)

Schematic of photsensing of a PN junction.

The commonly use@hotodiode types areiipn type metatsemiconductor
metal (MSM) typeand avalanche typerhe p-i-n type enables lower junction
capacitancand more freedom to changettihickness of depletion regi@ompared
to a simple m type In a normalincidence pi-n photodetector,hicker absorimg
region allows higher quantum efficiency, whilecreaseghe carrier transit time
degrading the bandwidtihe capacitancean be reducetb improve the bandwidth
by adoptilg small active area The capacitance can also be reduced by adopting
thicker absorbingegion which in turn increases the carrier transit titneen MSM
photodiode, carriers are prevenfeoim entering the semiconductors, which enables
lower dark curret) leading to higher sensitivityrhe capaitance is also lower. The
responsivity is dramatically degraded by the elet#riingers. Hence, thick absorbing
region is requireénd space betwaeslectrodes needs to be enlargédwever, this

increase transittime and reducedsandwidth.Hence, both typesncountethe trade
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off between quantum efficiency and bandwidthus, thee should be&compromise
between variousparameters(quantum efficiency, bandwidth, SNR, etc) in
photodiodalesign The avalanche phatiode (APD) has much higher sensitivity due
to the internal gin mechanism in the structuren®©photon can gendeamultiple
electronhole pairs, which producesamaticallyhigher sensitivity.

Waveguide photodiode structuresing side illuminatingis deweloped to
overcome the tradeff between quantum efficiency and bandwidthe absorber can
be madethinnerto reduce transit timed hus,to achieve largebandwidth without
sacrificing the responsivityWaveguidecoupled photdiode allows more uniform
absorption along the absorber lengttence, the waveguigdeoupled structure has
been widely used in the PICs.

Conventional optical components in data communication system are typicall
[1I/V compound materials such as GaAs and thi¢ to high absorption éffency,
high drift carrier velocities, and good material qual[t439]. With the fast
development of silicon photonics, germanium has been a preferable matedat sin
can be grown on silicorhe development afelectivearea epitaxial growth of high
qguality Ge on Si as enabled the waveguideupled Ge-on-SOI with high
performancehotodiode®n SOI platform. There are roughly two types of integrated
photodiodes on Si photonic integrated platform, namely gatmmbased and hybrid
[1I/V -silicon [140]. Integration of photodetectors made of 11I/V materials on Si chip
is difficult. The IlI/V layer stack is usually baed to SOI wafer but can also be
epitaxially grown on Sj139, 141] Any IlI/V material that can be grown onRrcan
be used in hybrid 11I/VSi PICs. However, the multiplepitaxy processes of IlI/V
materials are complicated, and the bonding technology is not good enough to make

good alignment between Si waveguides and hybrid PDs. Germanium is a good
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absorbing matgal in the NIR wavelength band including the entire 13d0Owindow
and C and L band§&ermaniumis especially attracted due to its good compatibility
with nanasilicon-photonic fabrication line compared to the Ill/V materials. Selective
area growth by damical vapor deposition is theommon way to integrate Ge
waveguidecoupled photodiodes into the Si PIEgure 2.2(a) shows the schematic
of a typical vertical configuration of waveguide coupled-@peSOIl photodiode.
Figure 2.2(b) shows the schematic af typical configuration of hybrid l/VSi

waveguide coujgld photodiode.

Figure 2.24: (a) Schematic of aypical vertical waveguide coupledse-on-SOI

photodiode(b) Schematic of &ypicalhybrid 111/V-Siwaveguide coupled photodiode.

2.5 Summary

In this chapterpasic concepts dbw-loss waveguides, photonic microring
resonator, Mactzehnder interferometergfractive index modification in photonic

chip are introduced. Three refractive index modification rodghare introduced
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including electridield effect, plasma effect and therroptic effect. Among the three,
the latter two are widely harnessed on Si photonic platform. Theptio effect can
achieve larger refractive index excursion than carrier injeabio depletionon Si
photonic chip, whe the tuningspeed using carrier injection or depleti@Hz) is
much faster than that of therroptic effect(kHz). The fundamental concepts
spectrometers are presentebeBtateof-the-art onchip spectrometerare reviewed

and discussednntegrate photodetectors on Si photonic platform are also introduced.
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PRE-DISPERSED SPECTROMETERS

This chapter presents the desifpbrication an@xperimentatlemonstration
of a predispersedspectrometer withan arrayed waveguide gratinAWG) and
thermally tunable microring resonatgMRR) array integrated with Gen-SOI
photodetectofPD) array. The AWG predisperes the input spectrum to sepach
spectral bands. And the tunable MRR arrayieees the spectral bands witigh
resolution. The orginal input spectrum is retrieved by combining the retrieved
spectra from each channdlhe final resolution depends on the linewidgub
nanometrg of the MRRresonance pealhe bandwidth equals to the free spectral
range (FSR) of the AWG, which can be as large as 10BHence, he proposegre-
dispersed spectrometer can achieve high resolution as well as large bandwidth using
only a few channels.

The thermaltuning of thewaveguideeffective indexexploiting thermeoptic
(TO) effectis theoretically analysecbncerning waveguide dispersion, theropiic
nonlinearity and thermal expansiofhe resonance wavelendiiming modelof an
microring resonatois built andtheoretically analysedlhe relationthat resonance
wavelengthis proportional toheating power igheoretically andexperimentally
obtained Heating efficiencyand temperature respons&ng atitanium nitride TiN)
heaer aretheoreticallyanalyzedconcerning heater dimensions, microring resonator
dimensions, andhermal isolation trenches implementatioifhe fabricatedpre-
dispersed spectrometsrexperimentally testedhe advantage of tunable microring
resonator over stationary mocraginresonato are theoretically analysed and

experimentally tested.he experimentalesultsarepresented andiscusse.
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3.1 Design of a Predispersed Spectrometer

The schematiof the predispersedspectrometer is shown in Fig.1(a). It
consists ofin arayedwaveguide gratingunable MRR arrayand integrateGe-on-
SOl photodetectoarray.The waveguides and heaters are spaced withc&@dng.
The light to be analyzed is input into thgectrometechip through ainverse taper
fibre-chip couplerin eachchannel theoutput waveguide of AWG is connected to a
thermally tunable MRRinda PD is connected to the drop port of each MBBnd
pads are used to wire bond the spectrometer chip to external PCHBfdroalettric
connectiongo supply electric sigal to heaterspower photodetectorsnd readbut
electric signal from the photodetectoFsgure 31(b) shows the working principle.
The working spectrabandsof MRRs match therénsmission spectra of the AWG.
The working spectral bandwidth of the MRRuatp to the FWHM of the transmission
peak in each channélhe AWG is exploited to m-disperse the input spectrum to
several separated spectral bands astwespondinghannelsCh1,Ch2, «, Chn).
The numbeinf channeln equals to the amount of AWG tpuit waveguidesEach
tunable MRR functions as a highsolution tunable filtedue to its ultranarrow
linewidth of the resonance pedk Chn, the predispersed speatm transmis into
the tunable MRRand deteted by the PDHence the predispersed smtrumcan be
reconstructé with the tunable MRRThe same reconstruction process applies to all
channels.Since ach MRR works in a certain spectral band aligned with the
transmission spectra of the AW@gefull initial input spectrum can betreeved by
combinng the reconstructespectra by the tunable MRR arrdicroheaters are
employed to separatelyningthe corresponding MR&by independently controlling
the applied voltages. The output signal wél $eparately detected by photodetectors

and readout through bond pad3he final resolution depends on the linewidth of
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MRR resonance peak, which is sadnometer level. With multiple channels, the
spectral range can be extended. The bandwidth equaks ESR of the AWG, which
can be as large as 10tnnHence, the prdispersed spectrometer is promising to
achievehigh resolution (suimanometerand large bandwidth (100 nmijth only a

few detectionchannels

Figure 3.1: (a) Schematiof a predispersedspectrometer with an AWG, tunable
MRR array and integrated PD array. (b) Working principle of thedpspersed

spectrometer. Working basdf MRRs should match the AWG transmission spectra.
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3.2 Theoretical Analysis

Theschematic of ghermally tunable MRREs shown in Fig. 3.2(a). ttonsists
of two waveguides a microring resonatora microheaterand an integrated
photodetector (PD)Thermal tuning is exploited hete generate large refracév
index changedue tothe large thermaptic coefficient of SiDirect current (DC)
voltagecan be applied on metal padgower the heateElectric signafrom the PD
can beread out through the metal pad$ie 2D schematiof the thermally tunable
microring resonatais shown in Fig. 2(b). The waveguides for coupy light in and
out of the MRR namely waveguide 1 and waveguide 2 are designed to be nanowire
strip waveguidsfor the best transmission of thendamentatjuasi tansverse electric
(quastTE) mode Input light is coupled into theunable MRRfrom the input port.
Wavelength componentsill resonate irthe MRR if the wavelengths equal to the
resonance wavelengths of the MRBue to the coupling between tidRR and
waveguide2, they will finally transmit intothe drop portand detected by the PD
Otheroff-resonancavavelengthcomponentsvill transmit through thevaveguidel
into the throughput porThe resonance wavelengtican beunedby modifying the
refractive indexof the MRR with the microheater above litence, the resonance
wavelength will bauned by changing thelectric power applied otihe heater

The working principleof a tunable MRR as a tunable filisrstown in Fig.
3.3. Figure 3.3(a) slows the schematicof the input spectrum.The resonance
wavelength iged-shifted whileincreasinghe dectric powerP appliedon the heater
asshown in Fig. 3(b). Lines with different colors denote differetuining states of
the MRR (1, 2 « n). Figure3.3(c) shows the reconstructiggrocess.The PD
detects a tim&arying electric signaldenoted by back dashed linghile tuningthe

power P. Electric pwer P, corresponds to the position where the resonance
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wavelength is n. Thus, by detecting the outpupower while tuning the applied
heating powerP on the heater, theinput spectrumof the tunable MRRcan be

reconstruted.

Figure3.2: (a) 3D Schematic of thermallytunablemicroring resonator integrated
with a Geon-SOI photodetecto(b) 2D schematic of the thermally tunable microring

resonator.
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Figure3.3: Working pinciple ofatunable MRR as tnable filter (a) Schematiof
the input spectrum. (b) MRR resonance waveleng#rmaltuning (c) The input
spectrum econstrudgbn process.

3.2.1 Light Propagating in an MRR

Whenlight is resonéing in the MRR the phase delayof the lightin the ring

is expressed as

(3.1)

wheremis an integer.
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Hence the resonance wavelengthis expressed as

(3.2)

Figure 3.4 shows thamsulation resilts of transmission characteristic af a
MRR. The fundamstal quasiTE mode isharnessedor the MRR Hence, the
waveguides are designed to mainly transmit the gliasmode The core and
cladding materials are silicon and silica, respectivEthe averag radius is 5 m; the
waveguide core width is 450 nm; the waveguide core hesgB20 nm the gap
between straight waveguide and the MRR is 200 Time simulation grid size 40
nmin x, y, andz directions.Thesimulatedree spectral rangé&ER) is around 18 nm.
Wed& resonance peaks are detected frivm add port. This is due to the light

reflection in the MRRThe light reflectiormay causeresonancenode splitting
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Figure3.4: Simulated tansmission speciof an MRR from (a) throughput port(b)

drop port and (c) add port.

3.2.2 Resonant Wavelengthluning through TO Effect

DC wvoltage is applied offiN heater to generate joule heating to thermally

tunethe MRR. Figure 3.5 shows theschematiaross seabn of theMRR with TiN
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heaterabove The SiQ cladding thickness between heater and the MRR i 1o
avoid excess loghirough optical absorptiony the heater.The static temperature
of MRR is proportional to the heating powerDFFRUGLQJ WR *U42HQYV IXQF
Thermal isolation trenches can reduce heat dissipation from TiRrlte&i subtrate
and the surrounding SgOHence, solation trenches are adopted to improve heating
efficiency. The schematictop view of a MRR with TiN heater above without
isolationtrenches is showm Fig. 36(a). The schematic top view ohaViIRR with
TiN heate abovewith isolationtrenchess shownin Fig. 36(b). The 3D view of
simulated static temperature distribution in tlumable MRR without isolation
trenchesis shown in Fig. J.(a) The total heating power on TiN heater is 2.8 mW.
Ambient temperature get as 297.15 Klheaverage radius of the MRR the is3.3

m; thedimensions oMRR cross sectiomre450 x 220 nnt; theaverage radius of
the heater is 3.2m; thedimensions oheater cross secticare1 x 0.15 m? the
thickness of Si@cladding sandwiched between MRR and heater isnlthe gap
between trencland MRR is 2 m. The static temperature distribut®im the cross
section of MRR withoutsolationtrenclesand withisolationtrenctesapplied with
the same heating powareshown in Fig. 3(b) and(c), respectivelyThe dimensions
of thethermalisolation trenches are shown in Fig. 3.7{d)e maximumémperature

is improved with isolation trenches.
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Figure3.5: Schematic cross section@f MRR with TiN heater above

Figure3.6: Schematic top views oftanableMRR with TiN heater abové) without

and(b) with isolationtrenches
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Figure3.7: (a) 3D view of smulated static temperature distribution ire tanable
MRR. Simulated static temperature distributiarthe cross section dfie MRR(b)

withoutisolationtrenchesand (c)with isolationtrenches

The simulation result athe relation between the static temperature and the
heating power of heatés shown in Fig. 38(a), whereby thestatictemperaturd is

proportional tcheating poweP.
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Therefore, the static temperatusexpressed as
(3.3)

where kt is a constantdending the heating efficiency The coefficientkry with
isolation trencles is largerthan kr> without isolation trenches It meansthat the
heating efficiency withisolation trenckes is higher than that withouisolation
trenches specificallykt: = 1.6kr2 from Fig. 3.8(a) Therefore, the heating efficiency
is 1.6 times that withousolationtrenches The simulatiorresultof MRR temporal
temperature witikonstanheating poweapplied on the heaté2.8 mW on TiN heater)
is shown in Fig. 3(b). The tempeature firstly rises quickly and thereaches a
constant value namely static temperature. fEngperatureise timeit takes forheat
to transfeifrom heater to Si waveguide is about ZOwithoutisolationtrenctesand
38 us with isolationtrenches Hence,the response wittsolationtrenclesis slower

than that withoutsolationtrenches
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Figure 3.8: (a) Simulation result of the relation between static temperafuaed
heating poweP. (b) Temporal tempetare of theMRR with constant heating power

with and without isolation trenches.

Simulation isperformed to investigate the effect of heater width on the
heating efficiencykr. Figure 39(a) shows the simulation result of the relation
between static tempsture and heater width Wit2.8 mW total heating power. It
shows that the static temperature decreases with increasing heater width from 0.5
to 3 m. The temporal temperature at different heater widths without isolation
trenches is shown in Fig.9%b). There is no obvious influence on the rise time when

changng the heater width.
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Figure3.9: (a) Relation between static temperature and heater width with the same
heating power. (bPynamic temperature change at different heater widitisout

trench

The infuence of microring resonator radius on heating efficidadg also
theoretically anlysed Figure 3.0 showsthesimulation result of theetation between
heating efficienckr and MRR average radiusThe MRR average value is set from
3 to 20 m. The heater width is the same for all the MRR®e heating efficiency
data are well fit to the average radiuseman eponential curve fitting is used with

fitting R-square value of 0.99999. Thus, the heagfiigiency can be expressed as

(3.4)
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Hence, the heating efficiengy is inversely proportional to MRR average radius

perimeter.

Figure3.10: Relation between heatrefficiencykr and MRR average radius

Refractive indexis wavdength and temperature dependg@6, 143] The
thermoeoptic coefficient TOC) of silicon has a secondrder dependent on
tempeature as shown in Fi§.11(a). The thermal expansion coefficient also presents
an obvious dependea on temperatufd44] as shown in Fig3.11(b). The effective
index of the fundamental quaBE mode depends on both the core and cladding
material, namely silicon and silica, respectivelyThe modal profile of the
fundamental quasiE mode of thé&i strip waveguide with dimension 450 x220 Aim
is shown in Fig. 3.2 Figure 3.8 shows the simulatioresult that the effective index
of the fundamental qua3iE modeat 1550 nmis proportional to temperaturéhe

effective index is well fit to temperatudata with a secondrder polynomial curve.
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Figure 3.11: (a) Relation betweenhermooptic coefficient (TOC) of Siand

temperature(b) Relation between thermakpansion coefficient and temperature.

Figure3.12 Modal profile of the fundamental quaBE mode of thestripwaveguide.
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Figure3.13: Relation between effective index of theasiTE mode and temgrature

The calculated parameter values of waveguide dispersion, tregrticceffect
and thermal expansion aroumgl= 300 K andvo= 193.414 THz are shown in Table
3.1. The partial derivative islenotedas e/ ~ [= “xn. The dispersion an@iOC are
obtained for the quasiE mode of the waveguid&he refractive indexodelof SiO»
is obtained based on tBellmeier model considering both dispersion and temperature
dependent thermoptic coefficient{143] on the condition thathe TOC of SiO2 is
nearly constanfThe TOC model of Si ibased o011145] consideringhetemperature
range(>300 K), while the dispersion of Si isased on th&ellmeier mode]106].
Resonance wavelength of the MRBnsidering effective index dispersian

expressed as

(3.5)

wherethe resonance wavelethg , of MRR is proportional to effective index change
“neft. Hence, the resonance wavelength is proportional to temperature excirsion

or heating poweP.
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Table3.1: Parameter values of waveguide disperdioermaooptic effect and thermal

expansion.
Parameter Value Unit Parameter| Value Unit
2.23 - 2.5x107 K2

1.1x102 THz?! -4.6X10° K2 THz?!
4.8x10° THz? 1.7410° K2 THz?
-2.340% | THz® 7.040%° | K2THz®

Parameter Value Unit Parameter| Value Unit
1.9x10* K1 1 2.5X10° K1
3.5x107 K1THz?! .2 8.5x10° K1
-6.4x108 K1 THz? .3 -2.3x101 K
-2.0x10°8 K1THZ®

3.2.3 Spectral Range Extension with MRR Array

For a single tonable MRR, to work as a spectromethg working bandwith

equals to the FSR of the MRBinceFSR is inversely pqmortional to the average

radius,large FSR can be obtained with a smaller MRBwever, low resolutioand

high lossare encountered wém reducing theradius.Hence, to extend the spectral

range, tunable MRR array is adoptdad. implement the tunable MRR array, pre

dispersion is requiredHere,an arrayed waveguide gratiirsgexploited to perform the

pre-dispersionThe channel countd of anAWG is expressedsa
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where FSR is free spectral range andn is channel spacingrhus, to achieve
practical resolution using osingleAWG, the channel count will bieo large due to
the tradeoff between resolutiori ¢» and channel cou. Therefore tunable MRR
arraywith the predispersion by aAWG makes it possible tachieve high resolution
without resorting to large channel count
A broadband light is firstly coued through an input waveguide into the

AWG, through which the light is prdispersed to several separated spectral bands.
Thus, the input spectruba( ) is decomposed to several separated spectral bgdnds
Io(  « In( ), whereNis thetotal number 6 output channels. The intensity is shaped
by an envelop&( ), wherenis an integer (0 1 0 N). Thus, the decomposed spectral
bandinto channeh is expressed as

(3.7
The pe-dispersed spectral bandsll thereaftertransmit into the MRR array and
detected by the PD array accordingly. The working bands of MRRs match the
transmission spectra of the AWThe tunable NRR in each channel works as a high
resolutiontunablefilter to reconstructhe spectral banidh channeh. The output light
intensity detected by the F( ) in channeh can be expressed as

(3.8
where () is the coefficient due to loss and dispersion during transmiskipn,is
the transmission factor of the MRR in channeind is within the spectral band of
the MRR. As a result, the input spectrlint ) in the working band of channglis

expressed as

(3.9)

The factorl/(n( )fn( )T( )) can be btained by proper calibration with a tunable laser
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source.Thus, the input spectrurin( ) within the working band of the MRR in

channeln is reconstructed. The same reconstruction processes apply to all channels.

Therefore, theoriginal input spectrumin( ) can be retrieved bgombinirg all the
reconstructed spectra from ahannels. Hence, the resolution of the-gispersed
spectrometer depends on the MRRRonance linewidtmstead of the AW&hannel
spacing And the bandwidth equals to the FSR of MW¥G, which can be as large as

100 mm throughoptimizeddesign

3.3 Experimental Results and Discussios

The predispersed spectrometisrfabricated using the narsdicon photonic
fabrication technology. After fabricating the Si waveguides structures, severa
implantation processes and Ge epitaxy aerformed for fabrication of the
waveguideFRXSOHG SKRWRGHW H F WtRitk uppxrisiicdnrdiokidz W O \
(SiOy) cladding layer is deposited and then a thin layer of titanium nitride (TiN) is
formed to act as the resistive layer for heaters. An alwmir{Al) thin film is then
patterned for electrical connection to power the heaters and photodeté@tters.
detailed fabrication processae presenteith Chapter 5.

The optical micrograph of an integrateck-dispersedspectrometeis shown
in Fig. 314. It consists a arrayedwaveguide gratingtunablemicroring resonator
arrayand Geon-SOl photodetectoarray The AWG has 9 outpwaveguidesEach
output channel has an integrated-@eSOI photodetector in the drop port of the
MRR. Bond pads are for wire bonditige dip to a printed circuit board (PCB) to
apply electric signal to thheaters of theunable MRRspowerand detect electric
signal fromthe PDsThe SEM image ofamicroring resonatois shown in Fig. 35.

The opticalmicrographof an AWG is shown in Fig. 36 with 5 input waveguides
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and 9 output waveguidesvo free propagation regions (FPR) andaaray of 19
waveguidesThe input waveguide in the center of the FPR 1 is aseithe inputn

the demonstration of the pdispersed spémmeter Rib waveguidesare designed

for waveguidearray so that the fabrication tolerance has less influence on the
effective index. On the other hand, the waveguide with rib has less optical loss than
that of thestrip waveguide.The SEM image of the P2 is shown in Fig. 37.

Figure 318 shows the optical micrograph of a-@Ge-SOI photodetectofThe pre-

dispersed spectrometer chimise-bonded to # CBfor testing as shown in Fig.1®.

Figure 3.14: Optical micrograph ofhe integratedpre-dispersedspectrometer with

tunable MRR array cascaded wghAWG and integrated with PD array
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Figure3.15: SEM image ofmicroring resonatowithout SiQ cladding

Figure 3.16: Optical micrograph of an arrayed waveguide grating-PR: free

propagation region.
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Figure3.17: SEM image of the FPR of anarrayed waveguide grating

Figure3.18: Optical micrograplof aGe-on-SOI photodetector.
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Figure3.19: The devicewith spectrometer chigire-bonded to a PCBor testing

3.3.1 Experimental Setup

The exrimental setup for characterizatiofthe predispersed spectronest
is shown in Fig.3.20. Two tunable laser sourcesL(S-1: Santec TSE510andTLS-
2 (ANDO AQ4321D) are usedSince the resonance of light in MRR requires
interferences of light and the OPof MRR is hundreds of micrometresoherent
sources such as LED and lasers are required farédispersedpectrometein real
applications.Polarization beam splitter (PB&nd polarization controller (PC) are
used toensurethe input lightinto the pre-dispersed spectrometer TE-polarized.
Device under testOQUT) namely the pralispersed spectrometer chipith a
thermoelectric coolefTEC) under it is mounted on the heldof the XYZ stage for
fibre-chip coupling.The temperature is controlled bycontroller (CTL).A digital-
to-analog converter (DAC) is used to convert digital signal to analog signal
containing voltage informatiorAn off-chip PD (Thorlabs, PDAOCSEC) is used
to detect the output light intensity from output channdisrocontrdler is adopted
to supplypower to the MRR heateend process electric signal fraime PD. The

optical lossrateof the fabricated waveguide with 45®20 nnt dimensiondor the

69



Chapter 3 Pre-dispersed Spectrometers

fundamental quasiE modein the targeted wavelength range 2 OB/cm.The

optical loss otheinverse taper fibrehip couplelis 3 dB.

Figure 3.20: Experimental setufor characterization of th&WG predispersed

spectrometer

3.3.2 MRR and AWG Characterization

The MRR characterizatin is experimental tested. broadband light source
(Amonics C+L Band ASE broadband lightusoe) is used to perform MRR
characterizationAn optical spectrum analyser (OSA, Yokogawa AQ6370D) is used
to view the output spectra from the throughput porthef MRRs.The detailed
transmission spectrufmom channel 1 with ASE source input showing thsonance
dips of the MRR is shown in Fi@.21(a). The average radius of the MRR is ~33.9

m. The FSR otheMRR is 2.676 nm at 1555.496 nm. The linewidth ofrésonance
peaks from drop port of MRR is 0.07655 nm with quality factor of ~20,531 at
1571.68 nm.

The relation between the resonance wavelength and the electric power on
MRR heater in channel 3 is shown ilgF3.21(b). The experimental resonance
wavelengh data can be well fit to the heating power with a linear equation. Hence,
we assume a lire relation betweeresonance wavelengndheating powerThe
power consumption is 0.07 nm/mW. The maximum temperagxairsion is
estimated to be 20.938 K. Thuke heating efficiency is ~558 K/W.
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Figure3.21: (a) Transmission spectrum froohannel 1 with ASE source inpiib)
Relation between resonance wavelength atettric power on MRR heater in

channel 3The error bars denote standard deviation

Figure 322 shows the resonance wavelersgthh 7 microring resonatorat
resonating ordem and m-1 with identical designed value$he designe@verage
radiusr = 33.9 m. The resonance wavelength at the same resonating order is

different for each MRR with a maximum shift of ~1.2 nm due to the fabrication
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variation The slicon (core)with SiO» (cladding) has a high index contrast. Hence
the resorance wavelength of MRS sensitive to the size change.eTiesonance
wavelength at the same resonating order will vary from one MRR to another. And it
cannot be neglected if the desigmedonance wavelength tolerarisdess than the
resonance wavelengtblerarce due to the farication variation The electron beam
lithography(EBL) canbe used tdabricate structures with much smaller feature size
and higher tolerancg27]. However, mass production hast been relized using

EBL so far. Hence active tuning is promising ircontrolling the resonance

wavelengthof the MRR.

Figure3.22: Resonance wavelength at resonating ondandm-1 of 7 MRRs.

AWG characterization is experimentatesed usingASE source OSA is
used to view the output spectra from the throughput port of the MRRs.
transmission spectra of the 9 channels of the AWG with ASE source input is shown
in Fig. 323(a). Lines in different coloursorrespond to different outpahannelsThe
FSR ofthe AWG is ~28 nm anthechannel spacing is ~3 nm. The dips in the spectra
are the resonance dips of the MRRhe detailed transmission spectra of the AWG

with ASE source input witin one FSR is shown in Fig. 3(®). The FSR is 21m.
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The channel spacing 3.306 nm and the FWHM is 2.312 nm at 1553.616 nm in

channel 4. The crosstalk-4$9.3 dB.

Figure3.23: (a) Transmissions spectra of the 9 channels of AWG with ASE source

input. (b) Transmission spé&@ of the AWG with ASE source input within one FSR.

3.3.3 Characterization of the Pre-dispersedSpectrometer

The experimental setup to characterthe pre-dispersed spectrometer is

shown inFig. 320. TLS-1 is used for single wavelengtthaacterization.The
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normalized retrieved spectra frdrchannet are shown in Fig3.24, where ines in
different colors correspond to different input wavelengihss-1 is set with @ nm

wavelength increment.

Figure3.24: Normalized retrieved spectra from the 9 chanmatls TLS-1 input

The normalizedretrieved spectra from channe® are shown inFig. 3.25,
Fig. 3.26, Fig. 3.7, Fig. 328, Fig. 329, Fig. 330, Fig. 331, Fig. 332 andFig. 333,
respetively. Linesin different colors correspond to different input wavelengths
There are twgeaks in theetrieved spectra shown kig.325, Fig. 326, Fig. 327,
Fig. 328, Fig. 330 and Fig. 31. This iscaused byhe mode splittinglue tolight
reflecion in MRR.

TLS-1 and TLS2 are used simultaneously for double wavelength
characterizatiorthrough an optical couplehe normalized retrieved spectra with
TLS-1 and TLS2 input simultaneously with varying input pemfrom channel &re
shown in Fig. 34. TLS-1 and TLS2 are set at 6 nm and 166.1 nm, respectively.
The two wavelength components with.1 mm wavelength separatiorare
differentiated. As a resultiigh resolution of0.1 nmis achieved.This 0.1 nm

resolution achieves the designed targetud>nanometers.
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Figure 3.25: Normalized etrieved spectra from channklwith TLS-1 input The

wavelength increment is set to 0.1 nm.

Figure 3.26: Normalized etrievedspectra from channé with TLS-1 input. The

wavelength increment is set to 0.1 nm.
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Figure 3.27: Normalized etrievedspectra from channdé with TLS-1 input. The

wavelength increment is st 0.2 nm.

Figure 3.28 Normalized etrievedspectra from channel with TLS-1 input. The

wavelength increment is set to G,
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Figure 3.29: Normalized etrieved spectra from channdél with TLS-1 input. The

wavelength increment is set to 0.1 nm.

Figure 3.30: Normalized etrievedspectra from channd with TLS-1 input. The

wavelength increment is set to G,
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Figure 3.31: Normalized etrievedspectra from channél with TLS-1 input. The

wavelength increment is set to 0.1 nm.

Figure 3.32 Normalized etrievedspectra from channel 8 withLS-1 input The

wavelength increment is set to 0.1.nm
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Figure 3.33: Normalized etrievedspectra from channel 9 withiLS-1 input. The

wavelength increment is set to 0.1 nm.

Figure3.34: Normalized retrieved spectra with Ti1Sand TLS2 (set atLl566 nm and
1566.1 nm, regectively) input simultaneously with vanyg input power from

channel 8.
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The experimentally measured workingestral ranges dhe9 channels of the
AWG areshown in Table8.2. The onchip predispersed spectrometer works from
1542.1 nm to 1569.hm, which covers a range of 2im. The bandwidth can be
increased to 100 nm be optimizing the AWG desighe finessej.e. the ratio
betwen bandwidth and resolutiois, 270consideing the 0.1 nm resolution and 27
nm bandwidthThe finesse is larger than the stafehe art spectrometers listed in
Table 2.1 The discontinuity between adjacent channels is due to tjre stismatch
of the transmission spectra ¢iie AWG andthe MRR. And this can be solved by
optimizing the MRR to match the AWG transmission profile be&ershown in Fig.

3.3, the FWHM values othe peaks in transmission spectra of AWG from channel
3 ard channel 4are 2.151 nm and 2.312 nm, respectively.means that the
transmissiorwithin the FWHM range is at ést 2 folds of the transmissiautside

the FWHM range. Besides, working within ti&VHM region will reduce the
crosstalk between adjacent ohals. Hence, the MRR should be tuned to cover the
range of FHWM of the corresponding channel.

The AWG crosstalk will affect the SNR. Suppose the FSR of the MRR equals
to "1 (equal to bandwidth ahe MRR working range) as shown in Fig.36a). The
crosstalk ranges are denoted by range A and B. The working resonance position
denoted in red in Fig. 3680) is tuned from™ =0to "~ = " n. When the MRR is
tuned to” = " «, resonance position on theft of the working resonance position
enters crosstalk range A, and resonance position on the right of the working resonance
position enters crosstalk range B. The two resonance positions will add noisy power
to the detected posv from PD. This noise leVis increased with decreasing crosstalk
value, inducing smaller SNR and dynamic range. Here. the working bandwidth equals

to FWHM of the AWG. When the FSR of the MRR equals'tpwhich equals to
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bandwidth of working range plus half of crosstalk ranigetd is only one resonance
position, i.e. the working resonance position in the crosstalk range and working range.
Hence, wherMRR FSRis larger than™,, the influence of channerosstalk can be
decreased. Hence, the SNR will be improved with larger ti&ssalue and/or
optimized FSR of MRRInsertion loss will also reduce the SNR. The insertion loss

is ~9 dB considering the loss in polarization beam spl{{8eddB), polarizaton
controller (3 dB) and fibrechip coupler(3 dB). This loss can be reduced/ b

integratingthe PBS and PC on thepectrometer chip.

Table3.2: Experimentally measured working spectral rangab@® channed of the

AWG.

Channel Working range Channel Workingrange
number (nm) number (nm)
Channel 1 1542.31544.6 Channel 2 1544.71547.1
Channel 3 1549.91552 Channel 4 1552.51554.9
Channel 5 15551556.7 Channel 6 1556.91559.3
Channel 7 1561.91564.5 Channé8 15651567.5
Channel 9 1566.71569.1
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Figure3.35: Transmission spectrum fro@h 3 and Ch with ASE sourceinput

Figure3.36: Analysis of AWG crosmlk. (a) Transmission frontchanneh with ASE

source input(b) Schematic transmissiaf MRR while tuning theViRR.
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3.4 Summary

In this chapter, @re-dispersedn-chip spectrometer iagrated withon-chip
Geon-SOI photodetectorarray is designed, fabricate and demonstratedlhe
spectrometer is realidewith an arrayed waveguide grating and thermally tunable
microring resonator array.he thermal tuning of theffective indexof waveguide
fundamental quast E modeis theoretically analyse@he influencesfoheater width,
isolation trenches and MRR pereteron heating efficiencgre theoreticallgtudied
The approaches to improving heating efficiency are proposed and investiaed.
model of the thermally tunable MRR is built and theoretical analysesiniddel of
the predispersed spectrometer isilband theoreticallystudied.

The predispersed spectrometer is demonstrated by inputting with single laser
sources and double laser sour@esigh resolution o0.1nmand a largdandwidth
of 27 nmareachievedwith only 9 channelsThe MRR thermal tuning power @607
nm/mW. The maximum temperature excursigrestimated to be 20.938 K aritbt
heating efficiency is ~558 K/WIt is very compact with a small footprint of>x33
mn?. It has high potentiato innovae a spectrometefor various spectrometric
applications such asavelength monitoring in optical networkategrated sensing

andspectroscopgystems
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MRR-ASSISTED FTS

This chapter presents the design, fabrication and experiment demonstration of
a microring resonateassisted Fourietransform (RAFT) spectrometer on mge
photonic chip.The proposed RAFT spectromeimonsists ofa tunable microring
resonator MIRR) and a tunabléMach-Zehnder interferometer (MZI)The input
spectrum is firstly filtered by the MRR to a tuned spectrum with sparsely spaced
wavelength compeents such that the wavelength separation is sufficiently large to
be resolved by the tunableaVl Thereafter, the MRR will be finely tuned to shift the
fillered spectrum for the recovery of whole input spectrum. Hence, the final
resolution depends on theéning resolution of the resonance wavelength of the MRR,
which is in subnanometrdevel due o the ultranarrow linewidth of the resonance
peak. The resolution isramatically boosted by the MRRwr beyond the classic
Rayleigh criterion of the FBpectrometer without resorting to large optical path
difference (OPD) of the MZIlt achieves high redution and large bandwidth in a
single channel to realize high SNR.

Thethermal tuning of Fourietransform spectrometer using a tulealllach
Zehnder inerferometerexploiting thermeoptic effect is theoretically analysed.
Effective index thermal tuning itheoretically analyse@he thermal tuning modeff
the MZI is built. The fabricated RAFT spectrometer is experimentally tested. The
experimental resust are presented andliscussed. And the implementations of
thermal isolation trenches and low loss @wveguideo improve the performance of

the RAFT spectrometare also developed and experimentally tested.
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4.1 Design ofan FTS Enhanced withan MRR

Figure 4.1 shows the schematif a microring resonateassistedrourier
transformspectrometerlt consists © a thermally tunable microring resonataer,
thermally tunable MackzZehnder interferometer and a waveguideoupled
photodetectorThe MRR is cascaded witthe MZI to boost resolutiarThe average
radius of the MRR is 3.2 pm to accommodate the resolutiche FTspectrometer
The schematidransmission spectra from throughput port and drop port of MRR are
shown in Fig.4.2. The wavelengthsvhere dips or peaks appear assonance
wavelengthsThe wavelength or frequency difference between adjacent dyesaks
is free spectral range (FSR)he schematic input spectrum is shownFig. 4.3(a).
The ight is input to the MRR firsand then parof the light transmits to the drop port
of the MRR namely the input of theunable MZI Thereis also part of lighthat
transmisinto the throughput port of the MRR. Healeis used to tune the resonance
wavelength of the MRR and heateis used taunethe optical path differend®PD)
between the two arms of the MZI. In Fi§3(b) and €), linesin different colours
(styles)denote differentuning states of the MRR. Fige 4.3(b) shows theuned
spectraoutputfrom the drop port of MRRvhere he spectrum is reghifted when
MRR is thermally tued. Thetunable MZIwill retrieveeachtuned spectrum as shown
in Fig. 4.3(c). The MRR will betuned tofinely shift the spectrum{ 1, "2, "3 «

" n) as to achieve a high resolutidrhe tuning resolution depends on the linewidth
of MRR resonance peak which is ssédnometre levelThe resonance wavelength
shift = =" n " 1< FSR).By combining theetrievedspectra, theriginalinput
spectruncan be finallyretrievad. The desiged resolution of the tunable MZItisns

of nanometreand the designed linewidth of MRR resonance peak isyxanbmetre

level. Hence the final restution can be significantlipooted. The bandwidth depends
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on the components in theansmission paths which can be as largel@3 nm.
Therefore, theproposedRAFT spectrometer allows both high resolutisub

nanometreand large bandwidtfLOO nm)in one detection channel.

Figure4.1: Schematiof the designechicroring resonateassisted-ouriertransform

spectrometer

Figure4.2: Schemati¢ransmission spectra from throughput port and drop pan of

MRR.
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Figure4.3: (a) Schematiénput spectrum k) Outputtuned spectrdrom the drop port
of MRR at differat tuned states of the MRR. Thiifferenttuned states arelenoted

by lines with different colors (styleg. (c) Retrieved spectra lihe tunable MZI

4.2 Theoretical Analysis

Thefundamental quastE mode of thevaveguides in MZI armis harnessed.
Hence, the wavegte dimensions are 450 220 nm?. We will only consider the
thermaoptic tuning induced effect on effective indes of the fundamental quasi
TE mode In practice, some effects should be consideredn analysing the thermal
tuning of MZlas discussed in ChapterRrstly, the eféctive indexner of silicon (Si)
waveguide has a strong wavelength dispersion. Secondly, the tbetioo
coefficient (TOC) has a nonlinear behawiaduring thermal tunig. The thermal
expansion due to temperature excursion also induces waveguide leagtecL.

The fabrication variationvill induce effective index difference/ (p and imbalance
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(//) between two armsThe second order of TOC iseglected for temperature
excursion of 100 K due to the maximum contribution of 1.2% compared to the first
ordercontribution of 13.5% as shown in Fig. 4.4(&he third order term of thermal
expansion coefficient has a neglectable contribution (maximum 1.7%) for
temperature excuisn of 100 K compared to lower orders, i.e. 34.2% for the first

order and 9.9% for theecond order as shown in Fig. 4.4(b).

Figure4.4: Relation between term contribution and temperagxairsion (a) TOC

of silicon. (b) Thermal expansion coefficient

Hence, the effective index changessris modified as

(4.1)
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where "T =T - Towith To = 300 K.The effective index considering up to the third order

aroundvo = 193.414 TH4Zs expressed as

4.2
TKH PRGLILHG HIIHFWrefsHvrliten@$l [ FKDQJH -~

(4.3
The effective index difference induced by fabricatio@s expressed as

(4.9
The totaldifference ofarm length is expressed as

(4.5)
The modified arnfength is expressed as

(4.6)

The input spectrumi(v) firstly transmitsinto the MRR. The transmitted
spectrumm(V) output fromthedrop portis expresseas
4.7
whereT(v) is the transmission factor tdie MRR. One arm of the MZI is thermally
tuned by heater.Zor an input spectrum with single wavelengtfvo) asthe input
of the tunable MZI, theutput intensity of MZlis expessed as

(4.8)

where / = "nerl is the optical path difference of the MZI with arm lengthin
practice, there are some factors that will influetheesignal intensitgetected by the
detector. The beam splitter is not perfect to give 50% reflection and 50% transmission.
Light will experience losses in beam splitters and in waveguides of MZI arms, etc.
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As a result, the output intensiymodified &

4.9
whereH(vo) and G(vo) are wavelength dependent correction factors for imperfect
beam splitters and optical losses, respectively. The coefficier{t)8(vo)G(vo) can
be set toB(vo). Thus, the output intensity B(vo)li(vo)(1+cog2 G ¥ JJ, where the
modulated portioB(vo)li(vo)cog2 e ¥ Fconstitutes the interferograas shown in
Fig. 4.5 Thus, taking the modulated portion only, the output intensitytfooadband

input spectrum is

(4.10)

where 2= //c. After applyng Fourier transform to the above equation, the input

spectrumli( 3 can be obtained as

(4.12)

Taking account of waveguide dispersion, temperature dependent TOC and thermal

expansion, the phase difference between two arms is simplified to

(4.12
with the modified time delay

(4.13
and modified optical frequency

(4.19)

Realtime delayds linearized as modified time delasto match the phase difference.
The modified optical frequency stretches the original frequency anpuryda factor

1+ 1. According to the definitions ok and 1in [46], 2is expressed as
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(4.15)

and the parametes is expressed as

(4.16)

Hence, TOC nonlinearity antdérmal expansion broaden and shift the spectrum to
higherfrequencies. Waveguide dispersion contributes to stretched retrieved spectrum

aroundvo [46]. Replaces with uin Eq.4.11, we obtain

(4.17)
Hence, the modified input spectrum is expressed as

(4.18
Finally, the original input spectrum is retrieved by transforningyv,

(4.19)

The calibration of absolute optical frequency » D Q Gcan be performed by a
tunable laser source at different laser frequencies (on resonance and at least three)
[46]. The time delay can be written & P. The interferogram with a laser source
input is

(4.20)
whereK(v) = £1+ 1 v+ w»and w= 2 2. The coefficienK(v) and w can be
obtained by curwitting the interferogramswith Eq. 4.21 a nonlinear cosine
function B(u) can be obtained through experimental power calibration for each
optical frequency. The same retrieval process applies to all MRR thermal tuning
states. By scanning the MRR resonance waveleigthfrom 0 to FSR, the origal
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input spectrum will be retrieved by combining all retrieved sparse spectra.

Figure4.5: Schematic nterferogram inMZI outputwith single wavelength source

input.

The sinulated relation between OPD and the resolution otuhable MZI
and the heating power on heater 2 is shown in4&yHere we mainly focus on the
variation trends of OPD and resolution with chandingndL. Considering that the
first-order tem of TOC contributes far less than the zemraer term, a constant TOC
is assumed in the simulation for simplicilyhe temperature excursion is fixed at a
moderate value of 24.9 Khe conditionswith different parameters are shown in
Table4.1. Therefore the esolution of the tunable MZI can be improved either by
increasing the arm length and/or increasing the heating efficiency. The maximum arm
length depends on the tolerable optical loss. For waveguide with Si core and SiO
cladding adopted here, the losserat 1~2 dB/cm, resulting in 120 dB loss with 10
cm length. The loss experienced in the device will add to the total insertion loss,
leading to low throughput namely low SNR. One efficient way to improve heating
efficiency is to fabricate isolation trdmes near MZI arms to remove Si substrate to

reduce heat dissipatigh46]. Another way is to change heater material and put it on
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the waveguide ripl46]. The two approaasto improuvng heating efficiency are also
viable for reducing heat consumption of MRR. Without the MRR, to achieve 0.47
nm resolution, the OPils ~102 cm akt = 14.9 K/W without increasing the maximum

temperature excursiomhich will induce >100 dB loss.

Figure4.6: Relation between OPD and heating powerratation between resolution

and heating powet (a)fixed arm lengthL and (b)fixed heating efficiencya.
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Table4.1: Simulation conditions wh different parameters.

Effective TOC | Heating efficiency Arm length
Conditions

K (/K) a (K/w) L (cm)
C1l 1.95d10* 14.9 2.46
C2 1.95d10* 50 2.46
C3 1.95d10* 100 2.46
C4 1.95d0* 14.9 5
C5 1.9540* 14.9 10

By cascadingan MRR before thetunable MZI, the resolution can be
dramatically boosted by taking advantage of the high finesse of the MRR resonance
peaks.Therefore, high resolution can be achieved at a moderate optical path length

and temperature change.

4.3 Experimental Results and Discussios

The microring resonateassisted Fourigiransform (RAFT) spectrometer is
fabricated using the narsilicon photonicfabrication technologyThe fabrication
steps aralescribedin Chapter 3 The final stepis that theisolation trenches are
formed through ehing SiQ top cladding and Si substraiEhe detailed fabricated
processesare presentedn Chapter 5.The microgmaph of the fabricatedRAFT
spectrometenfter Ge epitaxial growtlis shown in Fig4.7. A tunablemicroring
resonatoris cascadedvith a tundle MachZehnder interferometeifhe output of
MZI is split by a 50/50 beam splitter into tvparts Eachparthas50% of the input
light. One is outputhroughfibre-chip couplerfor experimental testingnd the other

is detected y an integrated PDFigure 48 shows theSEM imageof a microring
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resonatorFigure 4.9 shows the optical micrographof a tunable MRRwith thermal
isolation trenchegrigures 4.10 shows the SEM image of TiN heatdr. Figure 4.1
shows the SEM image efaveguides irthe arm ofan MZI. Figure4.12 shows the
SEM image 0f50/50 beam splitter ian MZI. The RAFT spectrometer cpiis wire

bonded to a PCB boardrftesting as shown in Fig. 8.1

Figure4.7: Opticalmicrographof theRAFT spectrometeafter Ge epitaxial growth

Figure4.8: SEMimage of a microring resonator.
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Figure 4.9: Optical micrographof a tunable microring resonatowith thermal

isolation trenches

Figure4.10. SEM image otheTiN heatelf.
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Figure4.11: SEM imageof waveguides ithearmof aMachZehnder interferometer

Figure4.12: SEM image o&50/50 beam splitter.
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Figure4.13: The devicewith spectrometer chigire-bonded to a PCBor testing

4.3.1 Experimental Setup

Figure 4.14 shows the experimental setup of demonstration ofRAET
spectrometefTLS-1 and TLS2 are used for the testingheworking oftunableMZI
requires interferences of lighbeams from both armand the OPDof the MZI is
hundreds of micrometres. Henccoherent sources such as LED and lasers are
required for th&RAFT spectrometein real applicationsThe PBS and P@ill control
thelight input into the orchip RAFT spectrometer to be TE polarized. A laptop is
usedto control the microcontroller to pply DC voltages to heatdrand heateg.
DACs are used to convert digital signal to analog signal containing voltage
information. An operational power amplifier (OPA) is used to amplify the output
voltage signal to sypy direct current (DC) voltage onteeater2. Thelight from the
output of the RAT spectrometers detected by an offhip PD. The electric signal
from the PD is detected by tineicrocontroller © be processed ke laptop.DUT
with anunderlying TEC to make temperature stable is mouatethe holder of the
XYZ stage for coupling light into and out of the DUHigure 4.5 shows the DUT is

mounted on the XYZ stage for fibre alignment. Figure64shows the electronic
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circuit control blo& with a PCB board controlled by Arduino module.

Figure4.14: Experimental setup afemonstration of thRAFT spectrometer

Figure4.15: Device under tegDUT) mounted on XYZ stage.
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Figure4.16: Electroniccircuit controlblock with an OPA and DACs.

4.3.2 Thermal Tuning of MRR and MZI

Thermal tuningof the tunableMRR is experimentally testedSE source is
adopted. The light output from the throughput port of tHRRMs detected by OSA.
The transmission spectrum from throughput port of the MRR is shown id.E.
Based on the transssion spectrum, the resonance wavelengthseare 1528.256
nm, ore =1555.776 nm, anths = 1584.296 nmThemeasuredrSR is ~8 nm. The
linewidth is 0.15819 nm when = 1528.256 nmThus the quality factor is ~9,661.
The transmission spectra within one FSR from throughput port are shown in Fig.
4.18(a). The resonance wavelength is+sdfted with increasing applied voltage on
heated. 7TKH UHVLVWDQFH R1 055TKetuDing polwercansumptionN
is 1.23 mW/nm(~34.44 mW/FSR)The maximum estimated temperature chargye
188.8 K and the MRR heater efficiency is around 5.5X0W. The resonance

wavelength of the MRR iproportional to the heating power MRR heaterl as
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shown n Fig. 418(b), which agrees well with théheoreticalanalysisin Chapter 3

The resonance wavelength is well fit to the heating power with a linear equation.

Hencewe asume a linear relatidnetweerresonance wavelength and heating power.
When heatingMZI only, the resonance wavelength will alse red-shifted

due to thermal crosstalk that the heat will be conducted from MZI heater to MRR. A

linear relation is also obtained between the resomavavelength and the heating

poweron MZI heater 2asshown in Fig. 419. The value of resonance wavelength

shift is from 0 to ~1.1 nmSincethere is no obvious influence on MZI by heating

MRR from experimeral observationtheinfluence ofheating poweof MRR heater

1 on MZl is neglected.

Figure4.17: Transmission spectrum from the throughput pbthe MRR with ASE

source inputietected by OSA.
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Figure4.18: (a) Transmission spectra within one FSR from the throughpubpdne
MRR with ASE source inputetected by OSA at different applied voltages on heater

1. (b) Relation between resonance wavelength and heating power on MRRIheater
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Figure4.19: Relation betweeresonance wavelengshiftand heating power ddZl|

heater2.

The interfeogramcan be obtainetly detecting the intensity in MAutput
while applying dixed voltage on heater 1 ardswegingvoltage signal on heatér
The experiment setup is shown in Hgl4 The interfeogramwith TLS-1 input
before temperature compensatisrshown in Fig. £20(a). The amplitude is quickly
decreasedbecause ofresonance wavelength shift due to thdrncaosstalk.
Temperature compensatiorpsrformedo reducanfluence bythe thermal crosstalk.
Figure 420(p) shows theinterferogramafter temperature compensatiomlore

interferogram periods agcquiredaftertemperatureompensation

103



Chapter 4 MRR-assiste d FTS

Figure4.20: Interferogrars with TLS-1 input (a) before compensatioand (b)after

compensation.

4.3.3 Characterization of MRR -assistedFTS

Characterization of thRAFT spectrometeis performed with expanental
setup shown irrig. 4.14 Figure 4.21(a) showsthe output interfexgramfrom MZI
output port withTLS-1 input(set aton-resonance wavelength 1584.620 nm) with 6
mW input power whemMRR tuning state” 3.38 nm.The features namely the

gradually decreasing amplitude and the-sarooth envelope of peaks are doi¢he
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misalignment betweechip andoptical fibres andarealsodue tothe vibration of the
optical fibres as a result ofhermal expansionfahe chipwhile heating46]. There is
aphase delay in the interferogram without power apgischus¢he two arms othe
MZI are not balanced due to fabrication viaoa. However, the features and the
initial phase delay will affect the intensibut not the frequency position aftéast
Fourier transform (FFT)And fortunately the intensity can be retrievatirough
proper calibration[32]. The misalignment anthe vibration will n@ appear in
practical applicaons as the optical files will be permanently fixed to the chilklore
than 80 periods arebservel with a maximum OPD adipproximatelyl28.354 pm
which corresponds to a theoretical resolutiod©B1 cmt (19.32 nm af584.62 nm)
The resistance ahe MZI heater2 LV a . TRe power consumption dhe
tunableM =, LV DSSUR|[LP DW HKyure4.21(b)Bhows the FFT result of
the interferogram A single peak appearsf which the positioncorresponds to the
wavelength of TLSL.

Curvefitting the interferogamswith TLS-1 input is performed to obtain the
coefficients ofK(v) and w. As sown inFig.4.22(a) the mean power intensity of the
interferogram is subtracted to obtain the black curve. The envelope (red) is obtained
by Hilbert transform. Here; the nomalized power intensity is obtainédata points
in red)asshown in Fig4.22@). The curve in black is the fitting result. Henkgy)
and  are obtained by linear fitting of at least three data points as shown in Fig.
4.23(a) and (h)respeately. Theparameter orelating heating power to time delay
is 0.245 ps/W. The stretching parameteis 0.55. The parametes is 8 X10° ps™.
The parameter; equals to ffefho .1+ “N)L/C § T 14 Hence, the maximum
temperature excursion iST = 2Pmmax 1 824.9 K and the heating efficiengy =

“T/Pm-max 8 . :For temperature excursion of MZI less than 30 K in our
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experiment, the first order contribution of TOC is less thanBéth the maximum
temperatureexcursion (up to 15€) and thearm kengthcan be further increased

considering optical loss and the material toleratzéncreas€OPD, which enable

higher resolution ofhe tunable MZI

Figure4.21: (a) The interfeogramwith TLS-1 input (at onresonance wavelength

1584.62 nm)(b) FFT result of the interfegram
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Figure4.22: Calibration withTLS-1. (a) Interferogram (black) after the mean value
is subtracted. The envelop (red) obtainedHbgert transform(b) Interferogram (red)

after normalizationThe data are fittedith Eq.4.20.
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Figure 4.23. (a) ParameteK(v) from the fitting.(b) Parameter,, from thecurve

fitting of interfelogramswith TLS-1 input

The resonance wavelengtage om = 1528.488 nm, onz = 1556.02 nm and
o3 = 1584.62 nmwhen MRR tuning state”™ = 3.38 nm Figure 4.24 shows the
retrieved spectra witliLS-1 input (set athethreeon-resonance wavelengtiagen

© = 3.38 nm with 8 mW input power for eaclhiavelength
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Figure 4.24: Retrieved spectra witfLS-1 input (set at the thre®n-resonance

wavelengtswhen © =3.38 nn).

Figure4.25 shows the retrieved speg with TLS-1 input (set atbn-resonance
wavelength on=1528.488 nmandthreeoff-resonance wavelengthsi, of, and
of3), respectivelywith 8 mW input power for each wavelengthen ™~ =3.38 nm
The detuned wavelengt® is defined as off - on. The values ofG are 0.3 nm, 0.47
nm, and 1 nm in Figd.25(a), (b), and (¢)respectivelyThe retrieved powelPon of
onrresonance wavelengtis much larger than that ohé¢ detuned off resonance
wavelengthPo. The power ratio is defined a$on/Port. The power ratiosirelarger
than 11 dBSimilarly, Fig. 4.26 shows the retrieved spectra wikhS-1 input(set at
ore = 1556.02 nm andthreeoff-resonance wavelengthespectively)with 8 mwW
input power for each wavelengithen © = 3.38 nm Thevalues of G are0.3 nm,
0.47 nm, and 1 nm in Fig.26(a), (b), and (¢)respectivelyThe power ratios are
largerthan16.46dB whend >0.47 nmFigure4.27 shows the retrieved spectra with
TLS-1 input (set at o3 = 1584.62 nmand three off-resonane wavelengths

respectively)with 8 mW input power for eactvavelengthat © = 3.38 nm The
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values of Gare 0.3 nm, 0.47 nm, and 1 nm in Fg7(a), (b), and (¢)respectively.
The power ratios arelargerthan10.1dB whend > 0.47 nm To effectivelyblock
the detuned offesonance wavelength, ¢ 10 dB. Therefore, onresonance
wavelength components can effectively suppress the detuned -wHsonance
wavelengh componergawhend > 0.47 nmwith a power ration > 10 dB Thus, the
resolution of theRAFT spectrometers 0.47 nm.The resolution meets the design
target (sumanometrs). And it could be further improvelly optimizing theMRR
for finer FWHM orincreasingthe temperatureexcursion(~100 K) of MZI arm for
largerrefractive index change withoabmpromising the bandwidth.

Figure 4.28 shows the retrieved spectra williLS-1 input set at all on
resonance wavelengtiighen MRR tuning state” =3.38 nm 7.38nm, 11.38nm,
15.38nm, 19.38 nm, 23.38 nm, and Z.38 nm, respectively It is shown that the
tunable MZIcan retrieve eactunedspectrum output from the drop port of the MRR

with singlewavelength inputvhenMRR is tuned to covethe FSRof 28 nm.

Figure4.25: Retrieved spectra witRLS-1 input (set at on1 = 1528.488 nnand 3 off
resonance wavelengthespectively with detuned wavelength (d) = 0.3 nm, (b)

G=0.47 nmand(c) G=1nm.
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Figure4.26. Retrieved spectra withLS-1 input(set at o = 1556.02 nm and 3 off
resonance wavelength®spectively with detuned wavelength (&b = 0.3 nm, (b)

G=0.47 nmand(c) G=1 nm.

Figure4.27: Retrieved spectra witliLS-1 input (set at o3 = 1584.62 nmand 3 off
resonance wavelengthespectively with detuned wavelength (&b = 0.3 nm, (b)

G=0.47 nmand(c) G=1 nm.
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Figure 4.28: Retrieved spectra witRLS-1 input (set atall on-resonance wavelengths

when” =0, 4 nm, 8 nm, 12 nm, 16 nm, 20 nm, and 24 maspectively).

Figures4.29 and 430show the retrieved spectra witlhS-1 and TLS2 input
simultaneouslywith wavelengthsset at the adjacent eresonant wavelengthat
different input power valueslhe tuning stateis ©~ = 0. The input orresonant
wavelengths areon = 1525.00 nmand o2 = 1552.844 nm in Fig4.29. And the
input onresonant wavelengths arge = 1552.84knmand o3 =1581.249 nm in Fig.
4.30. The retrieved power is proportional to the input poweds shown that the two
adjacent ofresonant wavelength components cam dmsily differentiated and

recanstructed byhetunable MZI
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Figure 4.29: Retrieved spectra witiLS-1 and TLS2 input simultaneouslywith
different input power. TLS issetat on-resonancevavelengths o1 = 1525.400 nm

andTLS-2 is ¢t at o2 = 1552.844nm.
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Figure 4.30: Retrieved spectra with TL$ and TLS2 input simultaneously with
differentinput power. TLS1 is set at omesonance wavelengthsy = 1552.844nm

and TLS2 is sefat o3 =1581.240 nm.

A broadband signal measurement is performed to further evaluate the
performance of the RAFT spectrometdrbroadband ASE light source (Amonics
ALS-CL) covering C and L band is used as the inpiie calibration process for
broadbad source measurement is as followke broadband ASEourceis used as
the input. For the demonstrated RAFT spectrométerbandwidth is 90 nm and FSR
of the MRR is ~28 nm. Hence the number of the retrieved resolution elements is 3

for each tuning statef the MRR. After completing the MRR thermal tuning to aove
114



Chapter 4 MRR-assiste d FTS

one FSR, all the sampled interferograms from input source are obtained. There are
two steps to perform wavelength/frequency calibration. The first step is to coarsely
determine the frequencie$ the sparse spectra by performing FFT to the sampled
interferograms. The second step is to finely determine the frequencies according to
the tuning state of the MRR. Subsequently, we normalize the retrieved power to the
input power for each wavelength tbtain a normalization coefficient matrii
including MRR tuwing states, wavelengths and their corresgjpmn transmission
coefficients as shown in Fig. 4.3Hence, for broadband signal inpai,thedetected
sparse spectrareretrievedusing thenormalzation coefficient matriXA and then the

retrieved spectrara combined to produce the original input spectrum

Figure 4.31. Normalization coefficient matrix A including MRR tuning states,

wavelengths andheir corresponding transmissioaefficients.

The retrieved spectrum and input broadband source are shown in the same
figure in Fig. 4.3 for comparison. The retrieved spectrum agrees with the input
spectrum very well. The small discrepancy is due to ligisaent between lensed
fibre and inversetaper waveguide coupleresonance position variation due to
thermal crosstl& and fibre vibration. By packaging the lensedrdilbo the input
waveguide, the misalignmeand fibre vibrationvould not be present.nE thermal
crosstalk mainly origates from silicon substrate since the buried oxide layer (BOX)
is not thick enough to effectively isolate the heat from the heater above the MZI to Si
substratethe % 2; LV in Bhe experiment The residue thermal crosstalk can be

mitigated throughfabrication and optimization ofhermalisolation trenches near
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MZI arms. It will also be reduced by making both MRR and MZI fully suspend and/or
using thicker BOX Moreover, it will be well compensated with a feedback control
circuit.

Large bandwidth of 9Gm is experimentally demonstrated due to three FSRs
are utilized, which meets the broadband design target. The transmission band is as
large as 100 nm since working spral window depends on the transmission band of
various components such as waveguidesplers, beam splitters, etc. The working
spectral band caalsobe largely extended by paralleling several RAFT elements with
each working in different spectral randgée finesse of the RAFT spectrometer is
191.49 considering the 0.47 nm resolution @@dm bandwidthThe finesse is larger
than thestateof-the artspectrometexlisted in Table 2.1The insertion loss is ~9 dB
considering the loss in polarization beaplitter (3 dB), polarization controller (3 dB)
and fibrechip coupler (3 dB)This loss can be reduced by integrating the PBS and

PC on the spectrometer chip.

Figure4.32: Normalized reteved spectrumb{ack) with ASEsource input (red).

Temperature responsagf the tunableMZI is experimentallytested The
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experimental setup is shown as Figl#4.TLS-1 is usedand set at omesonance
wavelength The temperature response can be obtaiyedebecting theesponsef
light intensityin the MZI output portvhile applying a square voltage sigroal MZI
heaterl. The temperature responiseshown in Fig4.33(a). Therise and fall time
DUH V D,@Spectivaly.

Temperature responsé the tunable MRR ialsoexperimentallytested The
experimental setup Emilar to Fig. 414, except that the throughput port of the MRR
is detected by the PD. TEB is used ath set at orresonance wavelengtifhe
temperature response can be obtaineddiecting the response of light intensity in
the throughput port of the MR while applying a square voltage signal on MRR
heater 1The temperature responsetioé tunableMRR isshown in Fig4.33(b). The
ULVH DQG IDOO WLPH rd3péttively.Thée ogpdase tim&/ of bothe
tunableMRR andthe tunabléViZIl arefast(maximum 10 kHto enable fast response

of the device.

117



Chapter 4 MRR-assiste d FTS

Figure4.33: (a) Respons signal othe tunableMZIl with square waveoltage signal
on MZI heater 2(b) Response signalf the tunable MRRvith square wave voltage

signal on MRR heater 1.

4.3.4 Thermal Isolation Implementation

MRR resonance wavelength is affected by both heater heatdr 2During
the experiment, thermal compensatiopésformedto offsetthe influence of hater
2 onthe MRR. Since he resonance wavelength is proportional to power apphed
heaterl Py, the resonance wavelengths expresseds

4.21)

whereA; andB; are constants he resonance wavelength is also proportional to the

heating power on heat2Pn,
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Hence it can also be expressed as
(4.22

whereA,, andB; areconstantsThe parameteP; is defired as
(4.23)

where P, {lis the correponding valueapplied on heaterl, which causes equal
resonance wavelength shift Bs. The maximum resonance wavelengtfidue to
MZI thermaltuningwhenP; = 0 isexpressed as

(4.24)
where Pmmax IS the maximum applied power on heaZeiSupposehe wavelength
shift © =0(MRR initial tuning stat) when the MRResonance wavelength is shifted

to 'by heate®. Thereforethe initial value ofPr when * = 0 is expressed as

(4.25)

On condition thatesonance wavelengthift is tuned by heated to ~ , the value of

P: on heated should be
(4.26)

Due to influence oPm, to make thduning statestalle at = , the value ofP; after

compensatioshould be

(4.27)

As a resultfor agiven Pm, the resonance wavelength can be stabillaeddjusting
Pr. Thereforemoreinterferograncan be acquired.
To improve heating efficiay and reduce thermal crosstatkermal isolation

trenches are adopteligure 4.34 shows the SEM imagef the tunable MRRwith
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thermal isolation trenche$he SiQ cladding is etchedway and the underlying Si
substratas partially etchedising isotropt etching methodsThus,the structure is
suspenddto reduce thermal dissipatidoenable higher heating efficiency and lower

thermal crosstalk

Figure4.34: SBEM image of the tunabI®RR with thermal ischtion trenches

Figure4.35(a) shows the tunabllZI structurefor thermalisolation trenches
testing Isolation trenches are fabricate@ar both arms.Dashedisolation trench
structures are designed to prevent the waveguides from collapsijouge 4.35(b)
shows that the power consumption is reduced by more than 4dmi/ thermal
isolation trenchesBesides,power consumption can be dramatically reduced by
minimizing the gap between trench edge and waveguide edgeondition that
optical losses of thevaveguideswill not beincreasedSmaller gap meanthatthere
are lessSi substrate remaining in the suspended struct®@ser consumption with
isolationtrenches at gap 2.5 m is 7 folcs less than that withousolationtrenches.
Figure4.35(c) showsthatlongertrench length. can also effectively reduce the power
consumptionon condition thathe MZI arm wll not collapse.In the experiment,
lower power consumption for MZI heater (1.8 W) is required due to shorter tuning
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OPL. The power consumptidar MZI heater will be further reduced by fabrication

of isolation trenches along the waveguides of MZI arms.

Figure4.35: (a) Isolationtrenchtestng structure using tunableMZI. (b) Relation
between pwer consumptiomndgap between isolation trench and waveguide edge

(c) Relation betweengwer consumptioandisoldion trench length..
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4.3.5 Waveguide Losdmplementation

According to previous analysisncreasing the arm length of MZI, the
resolution oftunable MZIcan be improved. The typical los§ the Si singlemode
waveguide is 2 dB/cm.According to the experimeaitresult 2.46 cm arm length
corresponding to a resolution 6fl= 77.91 cmt with an optical lossfrom 2.46 dB to
4.92 dB.If the resolutiorof the tunable MZIs further increased to 40 cinthe arm
lengthL is increased tal.76 cm leading toan optical losof at least 4.76 dBThe
optical losgsin fiber-chip couplers beam splitterand waveguides account to the
total insertion loss of thRAFT spectrometeHigher insertion lossausesower SNR
andlower sensitiviy. Hence it is necessary teedu® the waveguidéossto improve
the performance.

The electricfield intensity profile of the fundamentguasiTE modeof a
silicon rib waveguide is shown in Fig.36(a). Therib thickness is 340 nmlrhe
electric field mode is weakly confinedhus the electric fiel along therough
sidewalkis weak. Besides, the weguide $ partially etched to formrib waveguide
which futherreduces thareaof the rough sidewadl Theelectricfield intensity of
the fundamentauasiTE mode along the sideWsand the top surface of thio in
magentan Fig. 4.36(a) is calcdated. The simulation resultbat the electric field
intensity changes with ridge widtit different rb thicknessesre shown in Fig.
4.36(b). Theelectricfield intensity decreasavith increasingidge width. When rib

thickness increases, tb&ectricfield intensity firstly increases and then decreases.
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Figure4.36: (a) Theelectric fied intensty profile of the fundamental qua$E mode
of a siliconrib waveguide (b) Simulation results of the influee of ridge width and
rib thickness on thelectricfield intensity along th sidewall and the top sudaof

the rib

The schematiof the designed rib waveguide is shown in EH@7(a). The
design parameters are also shoWwme ridge width is desigaeas3 m. The center
to-center spacing is designed5 pm to avoid optical mode overlapetween two
adjacent waveguide3he rib thikness is designed to be 180 niaigure 4.37(b)
shows thd@ransmission electron microscope (TEMhiageof the cross sectioof the

Si rib waveguideawith SiO, cladding Figure4.38 shows theoptical micrograplof
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the rib waveguided-igure 4.3%hows the SEM image of the rib waveguides.

Figure 4.37: (a) Schematiccross sectiorof the designed rib waveguidé) TEM

imageof the cross section of tliabricatedrib waveguide.

Figure4.38: Optical micrographof therib waveguids.
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Figure4.39: SEM image othe rib waveguide

The experiment resulor the designedi low-lossrib waveguide ishown in
Fig. 4.40. Three waveguidetesting structureswith the same dimensions #iree
different lengthsare designed and fabricatdde tolimited space The losses are
tested and linearly fitted. The average loss is 0.2 dBtctB50 nmHowever, ideally,

more data points are needed to be certain about the waveguide loss.

Figure4.40: Experimental test resuldf the Si low-loss rib vaveguide
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4.4 Summary

This chaptepresentshe design, fabrication and experimsmtemonstration
of amicroring resonateassisted-ouriertransform(RAFT) spectrometer fabricated
using SOl waferbased on nansiliconphotonicfabricationtechnology The model
of the thermally tunable MZlis built and theoretical analysed The RAFT
spectrometeis demonstrated by inpirig with single laser sources and double laser
sources.The temperature response agperimentallytested. The approacts to
improving heating efficiency and reducing thermal crosstalk progposed and
investigated.

The performance of the athip RAFT spectrometers very promising and
viable for both high resolution and broadband applicatidhe idea that tunable
MRR and tunable MZI working collaloratedly resolves the traddf between
resolution and bandwidth intrinsic in dispersive approaches anchdoesjuire the
large tuning OPL in tunable M&lesign.High resolution (0.47 nm) as well as large
bandwidth (~90 nm) for @&ingle RAFT spectrometer device is achieweith a
compact size a2.2 mnt. The 90 nm bandwidth is experimentally demaatsid The
power consumption of MRR heater is effectively reduced with isolation trenches
adopted for MRRThe performance (resation, insertion loss, SNR, etacan be
further improved to adopt lowoss Si waveguidelg2-74] which can enabléigher
throughput and larger optical path length of the MAlrther, this desigis easy to
be extended to middiefraredrange since Si has a transparency window up to the

mid-IR range.
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FABRICATION PROCESSES

This chapter presents theore fabrication technologyfor onchip
spectrometersncluding nanesilicon-photonicfabricationprocesdlow, TiN heater
and thermal isolatiotrenchesThe fabricatiorprocesses of a waveguideupledGe-
on-SOI photodetector aralso developednd presentedExperimenal results ae

presented and discussed.

5.1 Fabrication Technology Development

The fabrication process flobased omanaosilicon-photonictechnologyis
shown in Fig.5.1. The fabrication stastfirstly with an &inch silicon-on-insulator
(SOl wafer. Thethickness of théop Si crystalline layenamely the device layes
220 nm and the buried Si@ioxide (BOX) layer thickness is |2m to prevent the
optical field mode in théop Si layerfrom penetratingo the Si substrate

The grating coupler and waveguide structureseguide are firstly formed
by partially etching the Si layeGC dentes grating couplerSlot-WG denotes slot
waveguide Ch-waveguide denoteshannel waveguideMOD denotes modulator.
Boron and phosphorus airaplantedfor modulatoranto P++ and N++ daoig area,
respectively.Thick SiG cladding is deposited and planarized througlengicat
mechanical planarizatio(lCMP) processTiN heater is thereafter formedfter
depositing another Sidayer, the first v@hole for heater and the second viahole for
Si layer contact for modulator are opened. Sujoently, Al wires are formeds
electric contacts. Thereafter, a thin layer of S€deposited. Then bond pads and

window are formed. Total Sgxladding in thethermalisolation trench and dicing
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trench areas removed. Then, isotropic etching of Si substrate is performémtito
thermal isolation trenches tmake the targeted structures suspend. Finally,

anisotropic etching of Si substrate is performefbtm deep dicing trench.
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Figure5.1: Thefabricationprocess flonbased omanasilicon-photonictechnology
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5.1.1 Optical Lithography

All device patterns are defined by patterning processes uWh8gnm
techrology. In optical lithography process, there are tmain parameters that will
determine the quality of profile after developmemamelythe exposure focus and
energy.The patterning of each layer is done with dedpaviolate UV optical
lithography. It includes three steps. The pattern processes inahoteresist PR)
coating, optical lithography and develop. The photoresist coating process is to
dispense a layer of the RiRto the waferThe optical lithography process uske
deep UV light to change the properties of the photoresist. The devgfmpcess is
to etch away the PR exposed or unexposed by UV light. iexipesedareais to be
etched, it iscalled the positive PR. And if the unexposedais etched awayit is
known asthe negative PR. Here, all pattern processes use positive PRbé\ftgr
patternedthe targetedayer is etchedvith PR as the masK he various exposure
problems are shown in Fig. 5.2. The exposure quality mainly depends on the energy
and fows conditions. If the exposure energy is too small, it will not be fully exposed
resulting in the feature size smaller than the desired one and if the energy is too strong,
the size will become largefhe UV light focalpoint is supposed to be in the cant

of the PR. If the focus shifts away from the center, the profile will behtoug

Figureb5.2: Various profiles after exposure.
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Figure5.3: SEM imags of (a) a misalignment problem during exposure process

(b) well aligned photoresi for rib and waveguide

Another problemmay occur during exposure, which tise misalignment
between the light beam and therrest exposure positiolThe SEM image of a
misalignment problemafter development shown in Fig. 5.@&). The central line 1
(the central line of the waveguide) is supposed to be collinear with central(thne 2
central line of the photoresist for ribjhe misalignment occurred during exposure.
Once etching is finished, the misalignment will transfer to the rib layer. Figi(® 5
shows the SEM image of the well aligned photoresist for rib and waveguide after
removing the misaligned photoresist and adjusting the alignment during exposure

processes using compensation dateninimum misalignment of 50 nms achieved.
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5.1.2 NSP WavegudesFormation

Waveguide structures are fabricated using the Si layer. Thus, the optical loss
of waveguides should be as small as possible. Therefore, the sidewall of the etched
Si waveguide structure should be smodtbr grating couplers and waveguides
fabrication, a70 nmthick layer of USG Si@is firstly deposited to serve #sehard
mask for theRIE etchingof Si. USG SiQ is undoped silicon glass via low
temperature plasmenhanced chemical vapor deposition (PECVD)hen,
lithography is performed fa5iO, hard mask etch. In the lithography processé$: a
nm BottomAnti-Reflective Coating (BARCis firstly coated to reduce reflectance
from the bottom layer of R Smaller line roughness of PR after exposure is achieved
with BARC. Then, a layer of PR g coated followed with exposure and develop
processesThereafter, hard mask fsllly etched,and photoresist is stripped@he
nanophotonic structures such waveguides and grating couplers are formed by
partial Si etch with the remairarSi thickness awaveguide rib Finally, thesecom
lithography forrib etch is performed and the Si layer is fully etched to form
waveguideib structures. Thus, the naisdicon-photonicstructures are formedhe
minimum feature size (linewidth or gpling gap) is 20Gim, limited bythe exposure
wavelength of the lithographtgchnology The thickress of the Si layer is2B nm
since the standard 220m SOI wafer is usedrigure 54(a)shows the TEM image of
the cross section of the fabricated nanowire Si wavegiide.SEM image ofthe
fabricatedwaveguide taper couplg@resenting a smooth sidewal shown in Fig.
5.4(b). The SEM image of the fabricatediabatic taper with ritvaveguiddas shown
in Fig. 54(c). The rib width is gradually changing from O to a certairugdb reduce
loss during the optical modédransition betweenhe nanowire waveguidand rib

waveguide.
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Figure5.4: TEM image of thecross section of thiabricated Si nanowige (b) SEM
image of the inverswpercoupler (c) SEM image of théabricatedadiabatictaper

with rib waveguide

5.1.3 SisNs Waveguide and MRR

There is certain tolerance in the size of the structdres to fabrication

variation Hence, the resonance wavelengths of MRRs with the samaedésagius
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will not be exact} aligned. Figure 5.5hows the transparent window of some
materials compatible with the nasdicon-photonic fabrication technology. They
cove from ultraviolet (UV) to MIR range. Silicon is a good material for NIR and
MIR range and SNs can cover from visible range to the MIR range with most
applications in VI§147]. Si has high refractive index ~3.5 and high index contrast
to cladding material (Si®©1.5 or air 1), which makes it most adopted in integrated
photonic circuis[17]. SisN4 has lower refractive index.9 and much lower thermo
optic coefficient, which enables higheoldrance to fabrication variatioand
temperature fluctuain. There are various applications in VIS and NIR range
including environment monitoring, atmdsgric remote sensing, etcThus,
developing photonic devices &iNa4 platform will bring breakthrough into the wide

range of sensing and detection application

Figure5.5: Transparent window of some matds compatible with the narsilicon-

photonic fabrication technology.

The SgNa4 thin film is deposited through PECVD process. After deposition,
CMP process is performed to planarize and smooth the top surface. The waveguide
structures are etched throughisotropic dry etching with PR as the makigure
5.6(a) shows the SEM imag# adirection coupler between aaight waveguide and

an MRR. Figureb.6(b) shows the SEM image of the singl®de SiN4 waveguide
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array. Figure5.6(c) shows the SEM image afabricatedaperedvaveguide coupler.
Figure5.6(d) shows the TEM image of tlenglemode S§N4 waveguide arrayThe
maximum thickness is 400 nffihe minimum feature size (linewidth or coupling gap)
of SisN4 waveguide is 200 nntimited by the exposureavelength of the lithography
technology Figure5.7 shows the loss rate of the singi®mde S§N4 waveguide from
1520 nm to 1620 nnT.he insert shows thmodal profile of the designed singieode
SisN4 waveguidewith width 1000 nm and height 400 nm. THeeetive index of the
fundamentafjuasiTE mode isnegt = 1.626.The minimum loss rate is approximately
0.5 dB/cm at ~1610 nm. The loss rate is less than that of the Si-sindke

waveguide (~1 dB/cm).
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Figure5.6: SEM images of (a) direction coupler between a straight waveguide and
an MRR (b) singlemode SiN4 waveguide array, and (c) a tapered waveguide

coupler. (d) TEM image of the singleode SiN4 waveguide array.
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Figure5.7: Loss rate of the designed singfede Si3N4 waveguide. Insert shows the

modal profile of the designeds8is singlemode waveguide.

Figure5.8(a) shows the schematic design of the tapered waveguide coupler
for chip-fiber coupling.The Bapered waveguide width starts from e from the
chip edge and gradually changes to the singbele waveguide widttWs. The
designed taper widths are 300 nm, 400 nm, 500 nm, and 600 nm for testing,
respectivelyW- is designed to be 1m to satisfy the singlenode condition. The
thickness of all theSisN4 waveguides is designed to be 400 nm for simgbele
condition.Thetaper length is designe$200 m. Figure5.8(b) shows the coupling
lossedor different waveguide tapgrThe minimum coupling loss occurs whéh =

400 nm.
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Figure5.8: (a) Schematic of thdesigned tapered waveguide coupler for dhipe

coupling. (b) Coupling losses of different designed waveguide tapers.

To test tle SeNs4 microring resonator, 11 MRR with identical designed
dimensions are fabricated. The designed width is 1000 nm; thlet €400 nm; the
average radius is 100.5n. Figure5.9shows the resonance wavelengths of 11 MRRs
at different resonating ordens1, m, andm+1. The maximum wavelength shift due
to fabrication is ~1.4 nm. It means even though th#l.Smaterial has sniler
fabricated tolerance in terms of loefractive index, the resonance wavelength still

cannot be precisely contted due to fabrication variation
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Figure5.9: SisNs MRR resonancevavelength shift due to fabricatiamriation

5.1.4 Heater Fabrication

There are many materials which can serve as heatepatible with nano
silicon-photonic fabrication technologyliN is adopted here considering its high
resistivity and compatibility withhite nanasilicon-photonicfabricationtechnology

TiN layer is d@osited through physical vapor deposition (PVD) process.
After TiN deposition, a thin SIN4 layer (500 A) is deposited. ThesNk layer will
protect the TiN layer during the etching procesgét a smoother sidewakigure
5.10shows the SEM image of TiNeater. It shows the sidewall is quite smodthe
space between TiN layer and the top surface of Si layemstd avoid excess optical
loss due to absorption by Tithe minimum feature sizginewidth and gapdf the

TiN heater is 1 m limited by etching capabilityThe thickness is 150 nm
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Figure5.10: SEM imag of the TiN heater showing the smooth sidewall.

5.1.5 Thermal I solation Trenches

The thermal isolation trenches are designed and fabricated to improve heating
efficiency thus @ reduce power consumption atigermal crosstalk between MRR
heater and MZI heateThe fabrication processes thfermalisolation trenches and
deep trenchef dicing are showfrom step 12 to step 14 in Fig. 5.1

Whenall thefabricationstefs for devices areompletedbefore fabrication of
the dicing trenches, the isolation trenchesformed.Thefabrication of the isolation
trenches aims to make the wavegside MRR structures suspend to reduce heat
dissipation from the underlying Si substrate and surrounding G&dding. After
lithography, the total Si@cladding isremoved byansotropic dry etchingThen the
Si substrateinder the targeted waveguides or MRR structures is partially removed
by isotropic etcing. Thereafter the waveguides or MRR structures are suspended
with designedSiO, beans and the remaining underlying Si striage assupportas
shown inFig. 5.11. Figure 511(a) shows the SEM image of the cregstion of the

tunable MRR with thermal isolation trench&sgure 511(b) shows the SEM image
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of the cross section of suspended/eguide structure inreMZI arm with isolation
trenchesSinceisotropic etching is used for the thermal isolation tremicbaspect
ratio equals to .IThe suspended structuregh deep isolation trenches will affect the
uniformity of thecoated photorest in lithography The SEM image ofhe spoiled
suspended waveguides structures are shown in Fig(a.after deep trenches
etchingfor dicing. As a resultthe deep trenches for dicing should be forraethe
same timavith the isolation trencto avoidadditional lithographyThus,anisdropic
etching of Si substrafer deep dicindgrenchis performedafter Si isotropic etchrhe
SEM image of the cross section of fitere-chip edgecoupling region with thermal
isolaion trenches is shown in Fig.2(b). The SiQ cladding extrudg without
collap= after dicing.Thus, the coupling between the tapered fibre and the inverse

taper waveguide edge coupler is not harmed byhienalisolation trenches.
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Figure5.11: SEM imags of (a) the crosssection of the tunable MRR with thermal
isolation trenchesnd (b)the cross section of suspended waveguide structuae

MZI arm with thermalisolation trenches.
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Figure5.12: SEM imagse of (a) the spoiéd suspended waveguide structuaesl (b)
the cross section of thibre-chip edgecoupling region withthermal isolation

trenches

5.2 Ge-on-SOI Photodetector

The Geon-SOI photodetector is fabricatedsing fabrication technology
compatible with the standardanasilicon-photonic processes.The fabrication
process flow ishown in Fg. 513. After the Si waveguide structures are fabricated,
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P+type dopingusing Boronis done to Si substrate. ThereafteR++type is
performedfor contact area oPD. Then,a filed SiO; layer is deposited and the Ge
epitaxy window is open by etching the field Si@ expose the Si substrafehe
absorption materigbeis thenselectivelygrownon the substrate of crystalline i8i
the Ge windowthrough epitaxy proces$he thicknes of Ge is 500 nnThen,SiO,
upper cladding is removel++-type doping igerformedo implant phosphorus into
the topsurfaceof Ge.A thick layer of SiQ cladding is deposited as passivation and
CMP is performed tglanarizethe surface of the wafeThereafter, theviaholeis
opened by etching away all the Si€kadding on the contaerea ThenAl wires are
formedto contact the dopecbntact region of PDdn the deposition of Al, firstly a
layerof 50 nmthick TaN is deposited. TheX layer is depsited by PECVD process.
A thin film of TaN acts as an interlayer to strength glakesion of Al layer to the
wafer.

The false-colored SEM image of thselectively grownGe after epitaxially
processes are shown in Fig.1&a). The optical micrograph of #&eon-SOI
phaodetector is shown in Fig.BYb). The input light from the nanoveris gradually
input to the Si substrate beneath the Ge though a taper. Then, thedigintescently
coupled to the absorption layer Gehe contacfl and contac® are usd to supply

voltages.
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Figure5.13: Fabrication process floof Ge-on-SOI photodetector.
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Figure5.14: (a)FalsecolouredSEM image of the Genthe Si substateafter epitaxy

process(b) Optical micrograph of a Gen-SOI photodetector.

The characteristic of thghotodetector isxperimentally testedrigure 515(a)
shows thd-U curve with input wavelength of 1570 nm. The voltage of scanned from
-4 to 2 vots. When the input light power is changed, the current in theseveiased
range changes accordingly and clearly while that in the forward biased range is not

clear enough. The dark current is as low as 4.4 nA at 0 biasebig5(b) shows the
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responstity at 0 bias. The responsivity can achieve up to 0.81 A/%638.5 nm.

Figure5.15: (a) I-U curve of the photodetectdb) Responsivity at O bias.

Therelevant parameters of different materialduding Si waveguides, SN

waveguides, TiNeaterand Gepased on theurrent fabrication processare shown

in Table5.1.
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Table5.1: Relevant prameterof different materialdbased orcurrent fabrication

processes.
Material Minimum linewidth Minimum coupling gap | Thickness
Si 200 nm 200 nm 220 nm
SisNg 200 nm 200 nm 400 nm
TiN P P 150 nm
Ge - - 500 nm

5.3 Spectrometerintegrated with Photodetector

The optical micrograptof the fabricated on-chip spectometer using a
thermally tunable MRRs shown in Fig. 84.6. Voltage is applied on metal pads for
TiN microheater to generate joule heating to therm@aihethe MRR.The output
light from the drop port of the MRR is split by a 50/50 beam splitter to taarutls.
One channel will be detected byfpthotodetectarThe other channeln be coupled
out throughfiber-chip coupler for calibrationThe SEM image of the directional

coupler between the MRR and strdiglaveguide is shown in Fig. %1

Figure5.16: Optical micrograph of the echip spectrometer integrated with a-Ge

on-SOI photodetector.
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Figure5.17: SEM image of coupling gap between thaveguide antRR.

5.3.1 Experimental Setup

Figure 518 shows the xperimental setup facharacterizatiomf theon-chip
spectrometemtegratedwith a PD. TLS-1 and TLS2 are used through an optical
coupler.All the optical devices are connectedsioglemode optical fibore4SMF).

The polarization beam splittex used to convert the laser source to two separate parts
of polarized light. Then the polarization controller will control the polarization state
of the input light. Here, we ensure the ibpght is TE polarized. fie source measure
unit (SMU) is used to apply DC voltage on metal paidtie heaterThe output light

from drop port is detected by thetegratedPD. The electric signal fronthe PD
amplified by an OPA. The amplified signal ieeh ead out by an oscilkzope DUT

with TEC cooler under it for thermal stabilization is mounted on the holder of the

XYZ stage. TEC cooler is controlled by a controller.
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Figure 5.18: Experimental sip for characterization ahe onchip spectrometer

using thentegratedPD.

5.3.2 Characterization of the Spectrometer

The thermal tunability of the MRR is experimentally tesfgee output light
from throughput prt of the DUT is detected B9 SA. The resonance wavelength is
red-shifted wth increasing voltage. The free spectral range (FSR) is ~19 nm. The
power consumption is 3.8 mW/nm. The resonance wavelength is proportional to the
heatingpoweron MRR heatewhich agrees well with theoreticahalysisn Chapter
3.

Firstly, the charact&zation of the onchip spectrometewith an offchip PD
(Artifex OPM 150)to detectight intensity in the drop pors performedThe electric
signal fromthe PD is read out by an oscilloscopéhe rormalizedinput spectrum
viewed with OSA with TLSL andTLS-2 input simultaneously is shown in Fig.
5.19a).TLS-1 and TLS2 are set at 1558 nm and 1558.2 nm, respectively. The input
power of TLS1 is set at 6 mW and the input power of T2$ set at 1, 1.5, 2nd3
mW, respectivelyThenormalized retriegd spectra by the eohip spgectrometer are
shown in Fig. 5.9(b). The two peaks atifferent power values can be differentiated
Therefore, the wavelength separation at 0.2 nm can be resolved by theusavice

an off-chip PD
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Figure5.19: (a) Normalized input spectra viewed withSA with TLS-1 and TLS2
(set at1558 and 1558.2 nm respectively input simultaneously.(b) Normalized
retrieved spectray the oAchip spectrometer with an ethip PD.TLS-1 and T.S-

2 (set at 1558 and 1558.2 nm, respectivahginput simultaneously.

The characterization of the @hip spectrometer with thategratedGe-on-
SOI PD detecting light intensity in the drop p@tperformed with the expienental
setup shown in Fig. B8. Single wavelength characterization is firstly performed
using TLS1. Thedetectedsoltageby theintegratedohotodetectowhile applying a
linearvoltagesignal on the heater with TES(set at 1562 nm) inpig shown in Fig.
5.2((a). On the conditionthat the applied voltage is constahand that a single laser
source with wavelengthy is input the resonance wavelength will be fixed atlf

in * r, the light in MRR is off resonance. As a result, the photodetector in the drop

port will detect a very low voltage. If, = r, the resonance conditieaametand the

light in the MRRwill be dramatically amplified. As a result, there will be a high
151



Chapter 5 Fabrication Processes

voltage detected by the photodetector of thapdrort. Therefore, there &svoltage
peak detected by the photodetector in the drop port while applyjlingaavoltage
signal on the heatewith a sirgle laser sourcénput Figure 520(b) shows the
retrieved spectrumlhe normalized retrieved spectra with FILSnput areshown in
Fig. 5.21 and Fig. 5.2 he input wavelength is 1558 nm and the irgmwer values
are 10, 14and16 mW,respetively in Hg. 521. The input wavelength is 1562 nm
and the input power values are Bhd 18 mW, respectively in Fig. 2. The
fabricated integrated spectrometecapable to reconstruct the input spectrum with

single laser source input.

Figure5.20: (a) Detected voltage by the integrated PD while applying a linear voltage
signal to the microheater with TEB(set at 1562 nm) input. (Retrieved spectrum

with TLS-1 (set at 1562 nm) input.
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Figure5.21: Retrieved normalized spectra with single laser source input (1558 nm)

at different poweralues.
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Figure5.22: Retrieved normalizedpectra with singlealser source input (1562 nm)

at different poweralues.

Double wavelength characterization is then performed usingIT&sd TLS
2. Figure 523 shows thenormalizedretrievedspectra withTLS-1 and TLS2 (set at
1558and1558.1 nmregectively input simutaneously The input power of TLS
is 10 and 16 mW, respectively. The input power of TLS 6 mW Figure5.24shows
thenormalizedretrieved spectrdLS-1 and TLS2 input simultaneously with varying
input power.The inputwavelengh pairs are 1558 antb58.3 nm1558and 1558.5
nm, 1565.3and 1557 nmand 1558.8 and 1570 nm respectively The double
wavelength components are well diffetiated with a minimum resolvable value of
0.1 nm The retrieved power is proportional the input powerAs a result the

designedn-chip spectrometer with integrated-ohip PD is capablé reconstruct
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the inputspectrum with digh resolutionof 0.1 nm.

The temperature response of the tunable MRR is experimentally tested using
TLS-1. A square wave voltage signahigplied on the heater. The affiip PD is used
to detect the change of the output light intensity. Figure 5.25 shows the response time
of thethermally tunable MRR. The rise and fall time are $and 48 s, respectively.
Thus, the thermal response is very fast to realize an integrated spectrometer with high

speed (~9.33 kHz).

Figure5.23: Normalizedretrieved spectra witiLS-1 and TLS2 (set atl558and

1558.1nm, respectivelyinput simultaneouslwith varying input power
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Figure 5.24: Normalized retrieved spectra with TLS-1 and TLS2 input

simultaneouslyvith varying input power
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Figure5.25: (a) Rise time of the tunable MRRb) Fall time of the tunable MRR.

5.4 Summary

In this chaptg the fabrication processebased onnanasilicon-photonic
fabrication technology are present&doblems encouated in optical lithography
and solutions argresentedand analysed The approaches to achieve sitier
sidewall are investigatedThe fabrication processes of nasdicon-photonic
structures are developed based on rslwonphotonic fabrication teclology
including nanowire waveguidenversetapered fibrechip coupler,rib waveguide,
directional coupler.SisNs singlemode waveguidedirectional coupler, inverse

taperedfibre-chip coupler andmicroring resonator are designed, fabricated and
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experimenally tested.The fabrication processes are developed based on the NSP
fabrication technologyl' he heater fabricatigorocesses aevebpedand presented

The thermal isolation trenches aesignedand fabricated. fie fabrication processes

are developedThe fabrication processes of the wavegwidapled Geon-SOI
photodetector are developed and presentear’chip spectrometer withthermally
tunable microring resomar integrated with the Gen-SOlphotodetector idesigned
fabricatedand experimetally demonstratedHigh resolution of 0.1 nm and large

working band of 1% '1mis experimentally demonstrated
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CONCLUSIONS

6.1 Conclusions

Two types of orchip spectrometers using nanophotonic componasng
been investigated theoreticalgnd experimentally. The firss a pre-dispersed
spectrometer usingn arrayed waveguide grating amuhable microring resonator
array. The second type isFouriertransform spectrometer with resolution enhanced
by a tuinable microring resonatoBoth approaches havegh potential to inneate a
spectrometer applied spectral analysis applications such handheld spectrometers,
image spectroetry, integrated sensing systamd onchip spectroscopy.heoretical
analyss, system design, fabricatiotevelopmenand experimentatharacterization
have been presented. The major conclusions drawn are listed here.

The first approachfor onchip spectrometeemploysarrayed waveguide
grating and tunable microring resonatoo realize a pralispersed spectrometer.
Arrayed waveguide gtamg presents a wavelength dispersion characteristic. The
resolutionis inversely proportional to channel count. Thus, the channel count will be
toolarge to achieve a practical resolution resgliim large footprint and low signal
to-noise ratio.The woking bandwidth for a single tunable microring resonator is
limited to its free spectral rang&he pre-dispersedspectrometeusing an arrayed
waveguide grating antlinable microring resonat@nrray is aimed to achieve high
resolutionandlarge bandwidthwith small channel countThe viability of thermal
tuning of the microring resonator is explored and analyZée&rmacoptic effect can

induce a large refractive index change to enable large turaigde.The resonance
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peak of the microring resonatbas an ultranarrow linewidth(subnanometerfue

to high quality factor. Hence, the microring resonator cariubedwith a high
resolution. Thermal tuning of microring resonator is theoretically ayzéd and
experimentally tested.

(a) The onchip spectrometer using aarrayed waveguide grating artdnable
microring resonator is firstly demonstratethe arrayed wavegde grating is
cascaded withtunable microring resonator arraf. Ge-on-SOI photodetdor is
connected to the drop port of thaable microring resonatar each channel

(b) Thermaooptic effect is exploited to tune the microring resonatortinuouslyto
cover theworking spectrakrange. The heating of Si waveguide by TiN heater on top
is theoretically studied. Linear relation betwestatic temperature of Si waveguide
andheating power on the heaisttheoreticallyobtained.

(¢) The influencesof heater dimensionand microring esonator dimensionsn
heating efficiency are theoretibaktudied The influence®f heater dimensions on
temperature response are theoretically studied.

(d) Thermal isolation trenches are designed and implemented to improve heating
efficiency. The influencesof thermal isolation trench implementatiem heatng
efficiency are theoretically studiedThe influencesof thermal isolation trench
implementatioron emperature response dneoreticallystudied.

(e) Thermal tuning of refractive index isheoretically analyzedconsidering
waveguide dispersion, thermroptic nonlinearity and thermal expansidorhermal
tuning of microring resonator is theoretically analyzed and the model is built and
experimentally verified.

(f) The resonance waveleng#ifeded by fabrication variatioms experimentally

tested. The tundd MRR is promising for resonance wavelength control and tuning.
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(9) High resolutionof 0.1 nmis achieved. Brgeworking spectral range of 27m
with only 9 output channels i®alized The device is very compact with a small
footprint of 3x 3 mn?. The hiermalconsumptiorof thetunable microring resonat

is approximatelyl4.28mW/nm.

The second approachnovates a Fourieftransform spectrometer with
resolution enhancedyba tunable microring resonatoA tunable photonic Mach
Zehnder interferometethe typicalconfigurationis adoptedisthe Fouriertransform
spectrometer. Thermaoptic effect is employed tthermallytunethe Mach-Zehnder
interferomeer. Thetunable MZlhaslarge transparency windofup to 100 nmpand
presents no tradeff between reslution andbandwidth.Henceit canresolve the
tradeoff between resolution and bandwidth, which normally existsdispersion
approachesSince the resolution is limited by short maximum optical path difference
between MZI arms due to smadifractive irdex modification andghortarm length
To achiese high resolution(subnanometer) a tunable microring resonatais
cascaded befe thetunable MZlwith the drop port ofmicroring resonatoas the
input of the MZI. The MRR préilters the input spectrum tspectrum with sparsely
spaced wavelength componeniBhe wavelength difference between adjacent
wavelength componengegjualsto the free spectral range of the microring resonator.
The resolution of thetunable MZI matches the free spectral ranffens @
nanometers)Hence the tunable MZlcan differentiatethe sparsespectrum easily
The microring resonataran be tuned to change the filtered speatréll the filtered
spectra ar¢ghusrecovered by théunable MZI Therefore, i the recovere spectra
can becombined toetrievetheoriginal input spectrum. The microring resonator can
be tuned with an ultrine value (subnanometer) Thus, the resolution is

dramatically boostelly the microring resonatdar beyond the Rayleigh criterion of
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the tunable MZI. Besides, only one detector is required for one single device
producing high throughput and high SNR

(a) Themicroring resonateassisted Fourietransformspectrometer is demonstrated
for the first time. Photonic tunable Ma&ghnder interferometes adopted to work

as a Fourietransform spectrometer. A microring resonator acts as a tunable filter
with ultra-narrow band pass to dramatically enhanced the final resolution.

(b) Thermaltuningof Mach-Zehnder interferometer is theoretically analysed ttue
model is built.For thetunable MZ| the relation between optical path difference,
resolution, and heating power on heater is theoretically analysed

(c) Thermaltuning power consumption of the tunable microring resonator is 1.23
mW/nm.The heating ficiency is 55 x10° K/W Thermaltuningpower consumption

of the tunable MaciZehnder iterferometer is P : .&Ehe heating efficiency

is 13.8 K/W. Thermal responsef both the Macfzehnder interferometer and the
microring resonatois experimentally tested.emperature responses of the tunable
MRR and tunable MZI are experimentally t$tand lgh sped (~10 kHz)is
achieved.

(d) High resolution of 0.47 nm and large bandwidth of 90 nm are experimentally
demonstrated. The demonstrated spectrometer has a small footprint of 2 Pham
resolution can be further improved by optimizing thBR®1coupler.The bandwidth

can be easily extended by a paralleled spectrometer array.

(e) Thermal solation trenchesear microring resonatoare implementedand
experimentally tested to improve heating efficieacglreduce power consumption.
Tunable micoring resonators partially suspended by etching away underlying Si
substrate to reduce heat dissipation to the Si subsiitag¢einfluences of the design

parametersuch agapbetween waveguide and trerenid widthof isolation tenches
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areexperimentally testediith MachZehnder interferometer testing structures.

() Low-lossSi rib waveguide is theoretically studied and experimentally teRtidd.
waveguide with large width and thick rib is designed to reduce optical field
interaction with rough sidewalls due to etajirow loss rate of 0.1 dB/cm is
obtainedlt is promising to be implemented in the Fowti@msform spectrometer to
reduce insertion losandimprove signato-noise ratio.

The fabrication processes usimgo-silicon-photonicfabrication technolgy
aredeveloped and presented includinghaxailicon-photonicstrip waveguidesyib
waveguide inverse tapersdirectional couplersSisN4 waveguidestructures,TiN
heater, thermal isolation trerehand waveguideoupled Geon-SOl photodetectaor
The integratio with an onchip spectrometer using taermally tunable MRR is
presented and experimentally demonstrated.

(a) The fabrication processes of nasibicon-photonic structureare developed based
on nanesilicon-photonic fabrication technologincluding nanowre waveguide,
inversetapered fibrechip coupleryib waveguideand directional coupleProblems
encounteredn optical lithography and solutions are analysed and presenied.
approaches tachieve smoother sidewall are investigated and presented.

(b) SisN4 waveguide with relatively low loss ancsBi MRR with high quality factor
are fabricated and experimalty tested to develop a $Bls platform potentialfor
applications in NIR range.

(c) Fabricaion processe®f TiN heaterare developedand preseted which are
compatiblewith the NSPfabricationtechnology Thermal isolation trenches are
designedand fabricatedThe fabrication processes are developedl presented,

which are compatible with the NSP fabrication technology.
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(d) The fabrication proessesithe waveguidecoupled Geon-SOlphotodetector are
developed and presenteddn onchip spectrometer using tnermally tunable
microring resontr integrated with the Gen-SOI photodetector is experimentally
demonstratedHigh resolution of 0.1 nmand large working band of 19nm is

experimentally demonstrate

6.2 Recommendations

Recommendations for future research are summarized as follows
(a) For the predispersedpectrometer typeheé radius of each microring resonator in
the predispersed speametemeeds to be optimizddr the purpose that ttveorking
band of microring resonator match the arrayed waveguide grating bé&ttermal
isolation trenches need to be implemented to increase heating effidi#gactyonic
control circuits need to bdeetterdesigned for parallel working die 9 channeland
spectral retrieval.
(b) For theRAFT spectrometer type, thermal isolation trenches need optimization to
further improve heating efficiency of both microring resonator and Mastinder
interferomete  Methods of interference pattern correction and temfre
fluctuation need be done for better performariitlectronic control circuits need to
be optimized forbetter thermal compensatioautomated sampling and spectral
retrieval.
(c) Methodsof increasing heating efficiency will be investigated sucplasing the
TiN heater on the waveguide rib and optimization of thermal isolation trendhes.
inverse taper coupler is fragile due to suspension after fabrication of thermal isolation
trenches. Theabrication processes will be optimized to protectitkrerse taper.
(d) Low loss Si waveguides will be adopted and implemented in the system of the
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bothtypes of spectrometer to reduce insertion loss as to reduce d@naise ratio.

(e) Both types of m-chip spectrometermtegrated with Gen-SOI photodetector
array will be fabricated, tested and demonstrateéflerchip bondingwill be
performed to constai a prototype fospectroscopimeasuremeniand testing

() SisN4 has the advantage of low ®and low index contrastSisN4 microring
resonator has a higher quality factor thart tresed orSi platform It has a large
transparency window from UV tblIR range The spectrometer based on SN4
platform to extend the spectrum batwdNIR andVIS rangewill be developedThe
thermal tuning willbe optimized due to low thermaptic coefficient of the SN4
material. Other tuning methods will also be investigated and validated.

(g) The working bandwill be further extendedy employingparalleledon-chip
spectrometer array.Waveguides with different dimensions have different
transmission spectrurithe dimen®ns of various components such as inverse taper
coupler, nanowire waveguide, rib waveguide, directional coupler, beam splitter, etc,
need to be dégnedso that the spectrometers can work in other spectral ranges (NIR
and MIR due to large transparency danv of Si).The Geon-SOI detector also needs

to be designed to detdajht in certain spectral range.
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