Highly Porous SnO$_2$ Nanosheet Arrays Sandwiched within TiO$_2$ and CdS Quantum Dots for Efficient Photoelectrochemical Water Splitting

Zhiwei Wang,$^{1,+}$ Xianglin Li,$^{1,2,+}$ Chiew Kei Tan,1 Cheng Qian,3 Andrew Clive Grimsdale,1 Alfred Iing Yoong Tok1,*

1School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
2Hunan First Normal University, No.1015, Fenglin Road (the 3rd), Yuelu District, Changsha, Hunan, China 410205
3Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Email: Prof. Alfred Iing Yoong Tok MIYTok@ntu.edu.sg

[+] These authors contributed equally to this work.

Abstract

A porous SnO$_2$ nanosheets/TiO$_2$/CdS quantum dots (SnO$_2$ NSs/TiO$_2$/CdS QDs) sandwich structure has been designed and fabricated as a “host-guest” photoanode for efficient solar water splitting applications. In this novel photoanode design, the highly porous SnO$_2$ NSs serve as the host skeleton for efficient electron collection, while CdS QDs serve as efficient visible light absorbers. A thin interlayer of TiO$_2$ is introduced for band alignment and reduction of charge recombination. Enhanced photoelectrochemical performance of the as fabricated photoanode is observed with introduction of the TiO$_2$ interlayer. The optimized host-guest SnO$_2$ NSs/TiO$_2$/CdS QDs photoanode shows a photocurrent density as high as 4.7 mA cm$^{-2}$ at 0 V versus
Ag/AgCl, which is 7 times higher than that of the SnO$_2$ NSs/TiO$_2$ reference photoanode (0.7 mA cm$^{-2}$). Furthermore, it also shows lower charge recombination rate compared to the SnO$_2$ NSs/CdS QDs reference photoanode. Due to the high porosity and transparency of the as developed SnO$_2$ NSs arrays host, it has great potential in various applications, such as solar energy conversion and energy storage.

Keywords photoanode, host-guest, SnO$_2$ nanosheet, CdS

1. Introduction

Photoelectrochemical (PEC) water splitting is an effective method to convert unlimited solar energy into clean and storable chemical energy-hydrogen.[1-3] Recently, the host-guest type nanostructured photoelectrodes have attracted much attention due to their high charge collection ability, efficient light absorption and effective charge separation.[4-7] For such structures, the host skeletons generally have high conductivity and large specific surface area, while the photoactive guest materials coated on the host skeleton surface would have high visible light absorption efficiency. Various host-guest photoelectrodes, such as WO$_3$ nanorod/BiVO$_4$,[8] antimony-doped SnO$_2$ macropore/Fe$_2$O$_3$-nanorod[9] and Al-doped ZnO inverse opals/BiVO$_4$,[10] have been reported for PEC water splitting. A host with high conductivity and specific surface area coupled with an efficient light-absorber guest as well as having good interface band alignment are essential for fabricating efficient host-guest photoelectrodes.[11-15] In PEC water splitting applications, the energy conversion efficiency of the host-guest photoelectrode-based devices are usually undermined by the low electron mobility of the host, inefficient light absorption as well as high charge recombination rate at the interface.[16-19]

Due to its abundance on earth, high stability, high transparency, and potential for
doping with fluorine or antimony, SnO₂ has been considered an ideal host material for photoelectrodes.[20-24] For example, antimony-doped SnO₂ nanorods have reportedly boosted the PEC performance of BiVO₄ based photoanode.[25] A fluorine-doped SnO₂/TiO₂ based composite inverse opal structure photoanode has been reported with enhanced PEC performance for solar water splitting applications.[26] Recently, 3D porous SnO₂ nanosheets (NSs) coated on carbon fiber cloth have been reported for lithium battery and electrocatalyst applications due to their high specific surface area.[27, 28] SnO₂ NSs grown on transparent conductive oxide, such as fluorine-doped tin oxide (FTO), can be an ideal host skeleton for host-guest type photoelectrodes because of the high stability, high specific surface area as well as the excellent transparency of SnO₂. CdS quantum dots (QDs) have also been extensively employed as absorber guests in various hybrid photoanodes for PEC applications due to their suitable band structure and efficient visible light absorption.[19, 29-32] The uniform dispersion of CdS QDs on three dimensional SnO₂ host skeletons has been reported for PEC water splitting, such as screw-like SnO₂ nanostructures/CdS QDs.[33] However, the energy conversion efficiency of SnO₂/CdS host-guest photoanodes is greatly limited by the high charge recombination rate at the host/guest interface. TiO₂ has been introduced by researchers to reduce the charge recombination at the SnO₂/CdS host-guest interface.[34, 35]

In this work, we report a 3D SnO₂ NSs/TiO₂/CdS QDs structure as host-guest photoanode for efficient PEC water splitting. Uniform and transparent SnO₂ NSs were grown on the FTO substrate through a hydrothermal reaction followed by a calcination process. Thin TiO₂ interlayer was conformally coated on SnO₂ NSs by atomic layer deposition (ALD), while CdS QDs were assembled on SnO₂ NSs surface by successive ionic layer adsorption and reaction (SILAR) method. The as-prepared
SnO$_2$ NSs/TiO$_2$/CdS QDs host-guest photoanode showed better PEC performance than SnO$_2$ NSs/TiO$_2$ and SnO$_2$ NSs/CdS QDs reference photoanodes. The enhanced PEC performance of the SnO$_2$ NSs/TiO$_2$/CdS QDs can be attributed to strong visible light absorption from CdS guest, high specific surface area and light trapping effect of the transparent host as well as the good band alignment from the ALD TiO$_2$ interlayer.

2 Experimental section

2.1 Materials

Tin (IV) chloride pentahydrate (SnCl$_4$·5H$_2$O), thiourea (C$_2$H$_5$NS), isopropanol, cadmium nitrate tetrahydrate and sodium sulfide nonahydrate were purchased from Sigma-Aldrich. FTO substrates with a surface resistivity of 8 Ω/sq were procured from Pikington.

2.2 Synthesis of SnO$_2$ NSs on FTO substrates

FTO substrates (1.5 cm x 5 cm) were sequentially cleaned with acetone, methanol, ethanol and deionized (DI) water and dried with nitrogen flow. The precursor solution was prepared based on existing literatures with SnCl$_4$ (100 mg), C$_2$H$_5$NS (100 mg) and isopropanol (25 ml).[27, 28] Then, four pieces of clean FTO substrates were placed standing at opposing walls of a 100 ml Teflon autoclave containing the as-prepared precursor solution. After sealing, the autoclave was transferred to an oven and kept at 200 °C for 24 h. After the hydrothermal reaction, the obtained SnS$_2$ nanosheet samples were washed with DI water and annealed at 500 °C in an atmospheric environment for 2 h to convert them into SnO$_2$.

2.3 Coating of SnO$_2$ NSs with TiO$_2$ by ALD
A homebuilt ALD system was utilized to deposit a thin film of TiO$_2$ on the surface of SnO$_2$ NSs at 80 °C.[36] TiCl$_4$ and water were used as the Ti and oxygen precursors, respectively. A total of 400 ALD cycles were used to deposit ~15 nm TiO$_2$ conformal layers on the SnO$_2$ NSs. After ALD of TiO$_2$, the as-prepared samples were annealed at 500 °C in air for 1 hour for the crystallization of TiO$_2$.

2.4 Preparation of CdS QDs

The CdS QDs were deposited on the surface of SnO$_2$ NSs/TiO$_2$ using the typical SILAR method.[37, 38] Specifically, a SnO$_2$ NSs/TiO$_2$ sample was immersed into cadmium nitrate methanol solution for 1 minute and then rinsed with methanol for another minute, followed by drying with nitrogen flow. Next, the sample was immersed into the sodium sulfide solution for 1 minute and rinsed with ethanol solution for another minute, followed by drying with nitrogen flow. The entire procedure was repeated for 15 times. Finally, the sample was annealed at 400 °C for 30 minutes under argon protection.

2.5 Materials Characterization

Field-emission scanning electron microscope (SEM), JEOL, JSM 7600F was used to investigate the microstructure and morphology of the as-prepared samples. X-ray diffraction (XRD) pattern was carried out on a Bruker D8 X-ray diffractometer, equipped with Cu Kα radiation source. UV-Vis diffuse reflectance spectra were collected on a Varian, Cary 5000 spectrum system. Raman spectra were collected on a Renishaw in Via Raman system using 477 and 532 nm as the excitation wavelengths.

2.6 PEC measurements

The PEC performance measurements of the as-prepared samples were carried out on
an Autolab 270 workstation with a three-electrode electrochemical system under AM 1.5G simulated sunlight illumination (100 mW cm$^{-2}$) from a solar simulator (300W Xe lamp, Newport). The as-prepared photoanodes, Ag/AgCl (3M KCl) and platinum mesh were used as the working electrode, reference electrode and counter electrode, respectively. 0.25 M Na$_2$SO$_3$ and 0.35 M Na$_2$S were used as the electrolyte during the PEC water splitting test. The light intensity of the solar simulator was calibrated to 100 mW cm$^{-2}$ using a standard reference silicon solar cell. The photocatalytic hydrogen generation was measured by a gas chromatograph (Shimadzu GC-2014; Molecular sieve 5A, TCD detector, Ar carrier gas) with 0.25 M Na$_2$SO$_3$ and 0.35 M Na$_2$S as electrolyte under AM 1.5G simulated sunlight illumination. The applied voltage was 0 V versus AgCl and the size of the photoanode is 1.5 cm x 4 cm.

3 Result and discussion

3.1 Fabrication and Characterization of SnO$_2$ NSs/TiO$_2$/CdS QDs

The fabrication process of SnO$_2$ NSs/TiO$_2$/CdS QDs photoanodes is schematically shown in Figure 1. Firstly, SnS$_2$ nanosheet arrays are grown on the FTO substrates through a hydrothermal reaction. After calcination, the as-grown SnS$_2$ nanosheet arrays are converted into 3D vertically aligned SnO$_2$ NSs. Next, conformal TiO$_2$ films are deposited on the surface of SnO$_2$ NSs by ALD. Finally, CdS QDs are deposited on the surface of TiO$_2$ through SILAR method.

For PEC water splitting applications, full coverage of the FTO substrate with photoanode materials is required. Otherwise, the direct contact of the FTO and electrolyte will cause significant dark current and depress the charge separation, hence reducing the entire PEC efficiency. We have found that the amount of chemicals used
in the precursor solution played an important role in the coverage of as-grown SnO$_2$ NSs on FTO substrates, as shown in Figures 2(a)-(c). When 40 mg of SnCl$_4$ and 40 mg of C$_2$H$_5$NS were used for preparing the precursor solution, the SnO$_2$ NSs coverage of the final product was very poor where a few clusters of SnO$_2$ NSs were sparsely grown on the FTO surface as shown in Figure 2(a). Figures 2(b&c) show the SEM images of the SnO$_2$ NSs samples grown with 80 mg of SnCl$_4$ and C$_2$H$_5$NS each and 100 mg of SnCl$_4$ and C$_2$H$_5$NS each, respectively. Figure 2b clearly show that the more clusters of SnO$_2$ NSs were grown on the FTO substrate with an increased amount of chemicals used in the precursor solution. Full coverage of SnO$_2$ NSs on FTO were achieved when 100 mg of SnCl$_4$ and C$_2$H$_5$NS each were used in the precursor solution, as shown in Figure 2(c). It should be noted that the SnS$_2$ NSs would partially peel off from FTO substrate after rinsing with DI water when even more SnCl$_4$ and C$_2$H$_5$NS were used. Before the thermal conversion of SnS$_2$ NSs to SnO$_2$ NSs, SnS$_2$ NSs were adhere to the FTO, indicating that the mechanism for the increased coverage of SnS$_2$ NSs may involve heterogeneous nucleation and the following growth and aggregation.[39] In the early stage of the hydrothermal reaction, some SnS$_2$ nuclei were formed on the FTO substrate due to the heterogeneous nucleation. Through the ion-by-ion process, more nuclei would form subsequently, providing sites for the growth of the SnS$_2$ NSs. When low concentrations of precursors were used, small density of nuclei with large sizes formed on the FTO substrate, thus only few clusters of SnS$_2$ NSs were obtained. With higher concentrations of precursors, higher density of nuclei of smaller sizes were formed and more SnS$_2$ NSs were grown on the FTO substrate. Thus, full coverage of SnS$_2$ NSs, which would be converted to SnO$_2$ NSs after calcination, on the FTO substrate could be achieved.

The as-prepared SnO$_2$ NSs nanosheets stand vertically on the FTO substrate,
instead of being randomly stacked together, which is beneficial for loading of photoactive guest materials. The vertically growth of SnS\textsubscript{2} NSs can be ascribed to the formation of metal-thiourea complex, which can decrease the amount of free metal ions and sulfur ions, favoring for the oriented growth of SnS\textsubscript{2} NSs.\cite{40} Figure 2(d) shows the magnified SEM view of the as-grown SnO\textsubscript{2} NSs on FTO substrate. A large number of nano-pores could be observed on the SnO\textsubscript{2} nanosheets, indicating high porosity of the as-grown SnO\textsubscript{2} NSs. The high specific surface area of the as-fabricated SnO\textsubscript{2} NSs arrays is also beneficial for loading of more photoactive guest materials and for increasing the contact area of the entire photoanode to electrolytes as well. This enhances the PEC performance of the photoanode.

Due to the self-limiting growth mechanism of ALD, it can be used for deposition of nano-films over 3D nanostructures with excellent conformality. In our study, the as-fabricated SnO\textsubscript{2} NSs were coated with a thin layer of TiO\textsubscript{2} using ALD. In the customized ALD system, N\textsubscript{2} was used as the carried gas while TiCl\textsubscript{4} and H\textsubscript{2}O were used as precursors. In each cycle of ALD process, TiCl\textsubscript{4} reacted with the hydroxyl groups on the surface of SnO\textsubscript{2} NSs and formed Cl\textsubscript{3}Ti-O-SnO\textsubscript{2}. After the purge of excess TiCl\textsubscript{4} and byproduct HCl by N\textsubscript{2}, H\textsubscript{2}O gas was introduced into the chamber to react with Cl\textsubscript{3}Ti-O-SnO\textsubscript{2}. Thus, one layer of TiO\textsubscript{2} film was conformally coated on the SnO\textsubscript{2} NSs while excess H\textsubscript{2}O and the byproduct HCl gas were purged by N\textsubscript{2}. The thickness of TiO\textsubscript{2} films can be controlled by varying the number of ALD cycles. From Figures 2(e), it could be clearly seen that the sheet-like structure remains unchanged, indicating the conformal coating of TiO\textsubscript{2} films over SnO\textsubscript{2} NSs. The average thickness of the SnO\textsubscript{2} NSs increases from a few nanometers to around 30 nm after 400 cycles of ALD TiO\textsubscript{2} films. The uniform coating of TiO\textsubscript{2} films over SnO\textsubscript{2} NSs could also be observed from the smooth surface. After loading of CdS QDs, the smooth surface

becomes coarse and the thickness of the nanosheet further increases to around 40 nm, as shown in Figure 2(f). During the SILAR process, Cd\(^{2+}\) ions were first adsorbed onto the TiO\(_2\) surface and then reacted with S\(^{2-}\) ions to form CdS particles. Energy-dispersive X-ray spectroscopy study further confirmed the existence of Cd, S, Ti, O and Sn elements in the SnO\(_2\) NSs/TiO\(_2\)/CdS QDs photoanode, as shown in Figure S1.

XRD was utilized to determine the crystallinity and constituent of the as-prepared samples. Figure 3(a) shows the XRD patterns of bare FTO substrate, SnO\(_2\) NSs, SnO\(_2\) NSs/TiO\(_2\) and SnO\(_2\) NSs/TiO\(_2\)/CdS QDs. The diffraction peaks of SnO\(_2\) NSs at 27°, 34°, 38°, 52° and 55° correspond to (110), (101), (200), (211) and (220) planes of the rutile structure of SnO\(_2\). As both SnO\(_2\) NSs and FTO are comprised of rutile SnO\(_2\), the XRD peaks of SnO\(_2\) NSs and FTO overlap. However, the XRD peaks can be distinguished by their different full width at half maximum (FWHM). The FWHM of the XRD peaks for SnO\(_2\) NSs are much broader than that for FTO substrate, indicating that SnO\(_2\) NSs are composed by nanosized SnO\(_2\) crystals, which is consistent with our SEM study, as shown in Figure 2(d). After coating of ALD TiO\(_2\), small but obvious diffraction peaks located at 28°, 36° and 41° could be observed, which can be ascribed to the (110), (101) and (200) planes of rutile phase TiO\(_2\). Through the comparison of the XRD patterns of SnO\(_2\) NSs/TiO\(_2\) and SnO\(_2\) NSs/TiO\(_2\)/CdS QDs, two new obvious diffraction peaks located at 29° and 44° could be observed after deposition of CdS QDs, and they can be ascribed to the (101) and (110) planes of hexagonal phase CdS. Raman spectroscopy was further utilized to determine the compositions and crystal structures of the as-prepared hybrid nanostructures. Figure 3(b) shows the Raman spectra of FTO substrate and SnO\(_2\) NSs. Due to the high transparency of SnO\(_2\) NSs, the incident light is able to penetrate through the SnO\(_2\)
NSs array and reach the FTO substrate, which causes unavoidably strong background signals of FTO substrate. The pure FTO substrate has one obvious peak located at 557 cm\(^{-1}\), which is consistent with previous reports.\(^{[41]}\) After growth of SnO\(_2\) NSs, another weak but obvious peak located at 632 cm\(^{-1}\) could be observed, which can be ascribed to \(\text{A}_{1g}\) mode of SnO\(_2\). As compared to XRD, Raman could clearly indicate the successful fabrication of SnO\(_2\) NSs on FTO substrate. Figure 3(c) presents the Raman spectra of SnO\(_2\) NSs/TiO\(_2\) and SnO\(_2\) NSs/TiO\(_2\)/CdS QDs. For the spectrum of SnO\(_2\) NSs/TiO\(_2\) (red curve in Figure 3c), the peaks located at 236 cm\(^{-1}\) (broad band), 443 cm\(^{-1}\) (E\(_g\)) and 610 cm\(^{-1}\) (A\(_{1g}\)) can be ascribed to rutile phase of TiO\(_2\),\(^{[41]}\) which is consistent with our XRD study. The new peak located at 304 cm\(^{-1}\) observed in the Raman spectrum of SnO\(_2\) NSs/TiO\(_2\)/CdS QDs corresponds to the 1LO optical phonons of CdS.\(^{[35]}\) Thus, both Raman peaks of TiO\(_2\) and CdS can be observed. The disappearance of Raman peaks of SnO\(_2\) at 632 cm\(^{-1}\) might be caused by the limited penetration depth of laser used in the Raman testing or the relative weak signals of SnO\(_2\). The step by step Raman testing as well as XRD characterization indicate the successful fabrication of the composite SnO\(_2\) NSs/TiO\(_2\)/CdS QDs.

Figure 3(d) shows the UV-Vis absorption spectra of SnO\(_2\) NSs/TiO\(_2\) and SnO\(_2\) NSs/TiO\(_2\)/CdS QDs. The SnO\(_2\) NSs/TiO\(_2\) sample has light absorption merely in the UV range due to the wide bandgaps of SnO\(_2\) (3.6 eV) and TiO\(_2\) (3.2 eV). However, the light absorption spectrum edge of SnO\(_2\) NSs/TiO\(_2\) extends to the visible area of up to around 550 nm. This is due to the introduction of CdS QDs which have a smaller bandgap of 2.4 eV. Since visible light accounts for a large part of solar energy, photoanodes with strong visible light absorption should have higher PEC performance for water splitting application.

3.2 PEC performance of SnO\(_2\) NSs/TiO\(_2\)/CdS QDs photoanode
The PEC performance of the as-prepared samples was evaluated by linear sweep voltammetry with a three-electrodes system. The as-prepared samples, platinum sheet, Ag/AgCl were used as the photoanode, cathode and reference electrode respectively. A 0.25 M Na$_2$S and 0.35 M Na$_2$SO$_3$ aqueous solution was used as the electrolyte. As counter electrode platinum sheet has little effect on the generated photocurrent, the photocurrent density-potential characteristics can be used to determine the performance and nature of the photoanode. With higher photocurrent, larger amount of photogenerated electrons can be involved in the hydrogen evolution on the counter electrode platinum sheet.[42] Figure 4(a) shows the comparison of linear sweep curves of the SnO$_2$ NSs/TiO$_2$, SnO$_2$ NSs/CdS-QDs, and SnO$_2$ NSs/TiO$_2$/CdS QDs photoanodes collected under both dark and illumination conditions. It can be clearly observed that the SnO$_2$ NSs/TiO$_2$/CdS QDs photoanodes show much better PEC performance than the SnO$_2$ NSs/TiO$_2$ and SnO$_2$ NSs/CdS QDs photoanodes. The photocurrent density of the SnO$_2$ NSs/TiO$_2$/CdS QDs photoanode reaches 4.7 mA cm$^{-2}$ at 0 V versus AgCl, which is almost 7 times higher than that of the SnO$_2$ NSs/TiO$_2$ photoanode (0.7 mA cm$^{-2}$). The reason behind this is due to the introduction of CdS QDs which increases the light absorption in the visible range. This is consistent with our UV-Vis study, as shown in Figure 3(d). Besides the increase in photocurrent density, the onset potential of SnO$_2$ NSs/TiO$_2$/CdS-QDs photoanode has also dropped from -0.75 V for SnO$_2$ NSs/TiO$_2$ photoanode to -1 V and that could also be due to the introduction of CdS QDs in the photoanode. To further determine the role of TiO$_2$ interlayer, the linear sweep curve of SnO$_2$ NSs/CdS QDs photoanode was also collected, as seen in the black curve in Figure 4(a). It could be clearly seen that the photocurrent density of SnO$_2$ NSs/CdS QDs photoanode is much smaller than that of the SnO$_2$ NSs/TiO$_2$/CdS QDs photoanode with the applied voltage near the onset
potential of SnO₂ NSs/CdS QDs photoanode at around -0.8 V versus Ag/AgCl. This could be due to the charge recombination rate of SnO₂ NSs/CdS QDs photoanode being much higher than that of the photoanode with TiO₂ interlayer.[43] With increased applied voltage, the photocurrent difference between the SnO₂ NSs/CdS QDs and SnO₂ NSs/TiO₂/CdS QDs photoanodes becomes smaller, which is understandable as the increased applied voltage can depress the charge recombination process. Figure 4(b) shows the linear sweep curves of the SnO₂ NSs/TiO₂, SnO₂ NSs/CdS QDs and SnO₂ NSs/TiO₂/CdS QDs electrodes under chopped light illumination, which agrees well with the difference between their photocurrent and dark current showed in Figure 4(a).

The measurement of actual hydrogen evolution of SnO₂ NSs/TiO₂/CdS QDs was performed at 0 V versus Ag/AgCl in a 0.25 M Na₂S and 0.35 M Na₂SO₃ mixture electrolyte solution. The amount of produced hydrogen gas in the sealed PEC cell was determined by a gas chromatograph. As shown in Fig. S2, the overall hydrogen generated increases with the illumination time with almost constant hydrogen generation rate, indicating the high stability of the as-prepared photoanode. The hydrogen generation rate of SnO₂ NSs/TiO₂/CdS QDs is 7.6 µmol mA⁻¹ h⁻¹, which is comparable to hydrogen generation rate reported for another CdS-based photoanode in the literature.[44]

The band alignment and charge transfer process of SnO₂ NSs/TiO₂/CdS QDs photoanode are schematically shown in Figure 5(a). The band edge position of SnO₂, TiO₂ and CdS are favorable for charge transfer.[34, 35] Under light illumination, photo-generated electrons of CdS are sequentially transported from its conductive band (CB) level to lower CB of TiO₂ and then to even lower CB of SnO₂. These photogenerated electrons would then to the conductive FTO substrate and finally to
the counter Pt electrode for hydrogen evolution. The holes transfer conversely from the valence band (VB) of SnO₂ to higher VB of TiO₂ and even higher VB of CdS for oxidation of S\textsubscript{2}2- to 2S2-. The enhancement in the photocurrent of SnO₂ NSs/TiO₂/CdS QDs photoanode compared to that of SnO₂ NSs/TiO₂ can be ascribed to the visible light absorption of CdS QDs with a band gap of 2.4 eV, while TiO₂ (3.2 eV) and SnO₂ (3.6 eV) can only absorb UV light. As visible light accounts for a larger part in the sunlight as compared to UV light, with the same light illumination, more absorption of visible light means there will be more photogenerated electron-hole pairs in the photoanode. In addition, the good band alignment between CdS QDs, TiO₂ and SnO₂ provides fast and direct electron pathways, hence enhancing charge separation and reducing the charge recombination rate. Furthermore, the vertically aligned sheet-like and porous structures provide high specific surface area for loading of CdS QDs without stacking. Transparent SnO₂ NSs also ensure effective light transmission inside the hybrid nanostructures, as schematically shown in Figure 5(b). The light illuminated on one side of a single hybrid nanosheet can penetrate through the transparent SnO₂ NSs and reach the CdS and TiO₂, and even the adjacent dwarf nanosheets, on the other side. This means that the incident light can be absorbed for multiple times by CdS QDs.

The photocurrent of some SnO₂/CdS based hybrid photoanodes collected at 0.9 V versus RHE with AM 1.5 illumination (100 mW cm-2) is summarized in the Table 1. It can be seen that the nanostructure and composition have a great impact on the PEC performance. Although the photocurrent of the as-prepared SnO₂ NSs/TiO₂/CdS QDs is not the highest, the improved PEC performance due to the introduction of TiO₂ layer points out a possible solution to enhance PEC performance of CdS and other existing semiconductors. The PEC performance of the SnO₂ NSs/TiO₂/CdS QDs
photoanode could be further improved by increasing the conductivity of SnO$_2$ NSs host via doping with antimony or fluorine, which will be part of our future work.

4. Conclusion

In summary, a SnO$_2$ NSs/TiO$_2$/CdS QDs host-guest type photoanode has been designed and fabricated for solar water splitting application through a combination of hydrothermal method, ALD technique and typical SILAR method. The density of the as-grown SnO$_2$ NSs can be tuned by the amount of chemicals used in the precursor solution for the hydrothermal reaction. To reduce the charge recombination rate between CdS guest and SnO$_2$ host, a thin TiO$_2$ interlayer has been introduced for band alignment of the host-guest photoanode. The optimized SnO$_2$ NSs/TiO$_2$/CdS QDs guest-host photoanode shows better PEC performance compared to SnO$_2$ NSs/CdS QDs and SnO$_2$ NSs/TiO$_2$ reference photoanodes. This enhanced PEC performance is attributed to the high visible light absorption of the CdS guest, large specific surface area and effective light trapping effect from the SnO$_2$ NSs host as well as the good band alignment from the ALD TiO$_2$ interlayer. Due to the high porosity and transparency of the as-developed SnO$_2$ NSs array host, it has great potential in applications in various fields, such as photoelectrodes for solar hydrogen generation, energy storage and smart windows.
Figure 1 Schematic illustration for the fabrication process of the SnO$_2$ NSs/TiO$_2$/CdS QDs.
Figure 2 SEM images of: (a) SnO$_2$ NSs prepared with SnCl$_4$ (40 mg) and C$_2$H$_5$NS (40 mg), (b) SnO$_2$ NSs prepared with SnCl$_4$ (80 mg) and C$_2$H$_5$NS (80 mg), (c) SnO$_2$ NSs prepared with SnCl$_4$ (100 mg) and C$_2$H$_5$NS (100 mg), (d) SnO$_2$ NSs with high magnification. (e) SnO$_2$ NSs/TiO$_2$, (f) SnO$_2$ NSs/TiO$_2$/CdS QDs.
Figure 3 (a) XRD patterns of FTO substrate, SnO$_2$ NSs, SnO$_2$ NSs/TiO$_2$ and SnO$_2$ NSs/TiO$_2$/CdS QDs. (b) Raman spectra of FTO substrate, SnO$_2$ NSs. (c) Raman spectra of SnO$_2$ NSs/TiO$_2$ and SnO$_2$ NSs/TiO$_2$/CdS QDs. (d) UV-Vis absorbance of SnO$_2$ NSs/TiO$_2$ and SnO$_2$ NSs/TiO$_2$/CdS QDs.
Figure 4 (a) Linear sweep voltammetry measurement of SnO$_2$ NSs/TiO$_2$, SnO$_2$ NSs/CdS QDs and SnO$_2$ NSs/TiO$_2$/CdS QDs. (b) Linear sweep voltammetry measurement of SnO$_2$ NSs/TiO$_2$, SnO$_2$ NSs/CdS QDs and SnO$_2$ NSs/TiO$_2$/CdS QDs under chopped light illumination.

Figure 5 (a) Scheme of band alignment and charge transfer process in the SnO$_2$ NSs/TiO$_2$/CdS QDs photoanode. The bandgap of CdS, TiO$_2$ and SnO$_2$ are 2.4 eV, 3.2 eV and 3.6 eV, respectively. (b) Scheme of light transmission inside the hybrid SnO$_2$ NSs/TiO$_2$/CdS QDs photoanode.
Table 1 Comparison of PEC performance of reported SnO$_2$/CdS based nanostructured photoanodes.

<table>
<thead>
<tr>
<th>SnO$_2$/CdS based photoanodes</th>
<th>Electrolyte</th>
<th>Photocurrent density [mA cm$^{-2}$]a</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$ NSs/TiO$_2$/CdS QD</td>
<td></td>
<td>4.7</td>
<td>This work</td>
</tr>
<tr>
<td>SnO$_2$ nanorods/CdS films</td>
<td></td>
<td>1.38</td>
<td>[45]</td>
</tr>
<tr>
<td>SnO$_2$/TiO$_2$ sea urchinlike nanotube arrays/CdS QDs</td>
<td>a mixture of 0.25 M Na$_2$S and 0.35 M Na$_2$SO$_3$ aqueous solution</td>
<td>2.8</td>
<td>[34]</td>
</tr>
<tr>
<td>SnO$_2$ nanobowl arrays/CdS-NRs</td>
<td></td>
<td>3.5</td>
<td>[46]</td>
</tr>
<tr>
<td>SnO$_2$ nanowires/TiO$_2$ nanoneedles/CdS QDs</td>
<td></td>
<td>9</td>
<td>[35]</td>
</tr>
<tr>
<td>Screw-like SnO$_2$ nanostructures/CdS QDs</td>
<td></td>
<td>10</td>
<td>[33]</td>
</tr>
</tbody>
</table>

aThe photocurrent density was collected at 0.9 V vs. reversible hydrogen electrode under AM 1.5 illumination (100 mW cm$^{-2}$).

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgments

The authors would like to acknowledge funding support from the Singapore Ministry of Education Tier 2 Academic Research Fund (MOE2014-T2-2-082) for this project.
The authors would like to thank Dr. Zhao Xin for his help on the measurement of hydrogen evolution.

References

[23] L. Wang, A. Palacios-Padrós, R. Kirchgeorg, A. Tighineanu, P. Schmuki, Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:

[46] W. Wang, C. Jin, L. Qi, Hierarchical CdS nanorod@SnO$_2$ nanobowl arrays for