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Abstract

This paper studies the economic implications of ambiguous correlation in a non-zero-sum game

between two insurers. We establish the general framework of Nash equilibrium for the coupled

optimization problems. For the constant absolute risk aversion (CARA) insurers, we show that

the equilibrium reinsurance strategies admit closed-form solutions. Our results indicate that the

ambiguous correlation leads to an increase in the equilibrium demand of reinsurance protection for

both insurers. Numerical studies examine the effect on the quality of the correlation estimations.
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1. Introduction

The optimal reinsurance and investment (IR) problems under different stochastic environments

have been extensively studied in the fields of insurance and control theory. Representative works

include but not limited to [1, 3, 10, 12, 13]. However, the aforementioned studies do not take

into account the effect of interactions among the insurance companies. In fact, economical and

sociological studies have pointed out that human beings or firms tend to compare themselves to
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their peers, and that such relative performance concerns have significant impacts on one’s decision-

making. For example, [4] shows that the concept of relative performance concerns is relevant to

financial bubbles and excess volatility. [6] establishes the unique existence of the Nash equilibrium

for the optimal investment problems subject to the relative performance concerns in a N-agent

economy under the Brownian motion framework. Subsequently, [2] extends the tractability of the

non-zero-sum game framework to the IR problems with two insurers under the mixed regime-

switching framework. [14] introduces model uncertainty into the associated IR games in [2], but

does not effectively address the sensitivity of the correlation to the equilibrium strategies of the

insurers.

In this paper, we study the robust reinsurance games between two insurers. Our present work

differs from [2] in two key aspects. First, we treat the correlation coefficient (ρ) between two

insurers’ surplus processes as an ambiguous parameter which could be stochastic, whereas the

correlation coefficient is a constant in [2]. Secondly, we allow the insurers to be either cooperative

or competitive to highlight the impact of the ambiguous correlation in the non-zero-sum games

between two competitive as well as two cooperative insurers, whereas only the case of competitive

insurers is considered in [2]. Each insurer has her own confidence interval for ρ, where the bounds

could be different (different constraints sets), and she maximizes her expected utility of her relative

terminal surplus with respect to that of her counterparty by choosing her proportional reinsurance

protection under the worst-case scenario of ρ. We show that the associated reinsurance game with

ambiguous correlation fits naturally into the two-dimensional G-Brownian motion framework that

is first introduced in [11] and has been subsequently applied to other stochastic control problems,

as shown in [5, 7].

Using the dynamic programming principle, we provide the Nash equilibrium of the robust non-

zero-sum stochastic differential reinsurance game as the solution of a system of coupled Hamilton-

Jacobi-Bellman-Isaacs (HJBI) equations, for general utility functions. More importantly, we show

that the Nash equilibrium reinsurance strategies and value functions of the insurers admit explicit

solutions for the case of constant absolute risk aversion (CARA) insurers. Our results indicate

that the ambiguity in correlation leads to an increase in the demand of the reinsurance protections

for both insurers, whether they are cooperative or competitive. Furthermore, our welfare analysis
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shows that the nature of externalities in the game between competitive insurers is different from

that in the game between two cooperative insurers. To the best of our knowledge, the ambigu-

ous correlation risks in the non-zero-sum reinsurance game has not been studied in the existing

literature.

The rest of this paper is organized as follows. Section 2 formulates optimization problems

of our interest with the surplus processes defined using G-Brownian motions. In Section 3, we

apply the dynamic programming principle to the optimization problems and provide the sufficient

conditions that the Nash equilibrium for the coupled problems exists. We also provide an explicit

solution for the case of exponential utilities. Section 4 provides the numerical examples for the

case of the CARA insurers, together with economic interpretations. Section 5 concludes the paper

and discusses the possible extensions.

2. Problem Formulation

We formulate the non-zero-sum game problem between two insurers using two-dimensional

G-Brownian motion, which is introduced in [11]. That is, the associated game problem is studied

in a complete space generated by the corresponding G-expectation. However, to best motivate

the necessity of the G-Brownian motion framework, we shall begin with the standard insurance

models under a physical measure P generated by the standard Brownian motion, and point out

the ill-defined components under the assumption of the ambiguous correlation. We then apply

the G-framework to reformulate our original game problem such that the mentioned ill-defined

components become well-defined under the G-framework.

2.1. The Model

We begin with the model of the surplus process of each insurer. Following [2], we adopt the

standard Cramér-Lundberg diffusion approximation to model the surplus process of the insurer

k ∈ {1, 2}, denoted by {Xk(t)}t≥0. See [9] for the treatise on diffusion approximation in insurance

models. Specifically, Xk(t) satisfies the stochastic differential equation (SDE)

dXk(t) = (pk − λkE[ηk])dt+
√
λkE[η2

k]dWk(t), (1)
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where pk > 0 is the premium rate, λk > 0 is the arrival rate of the claims, ηk 6= 0 is a random

variable representing the size of the claims with E[η2
k] < ∞ and {Wk(t)}t≥0 is a standard P-

Brownian motion for k = 1, 2. The dependence between two insurers is reflected by the correlation

between {W1(t)}t≥0 and {W2(t)}t≥0, i.e. dW1(t)dW2(t) = ρ(t)dt, but ρ(t) is uncertain and

possibly stochastic, in the sense that the insurer k only knows ρ(t) ∈ [ρ
k
, ρk]. In what follows,

we shall assume that the parameters of the model dynamics are constants and independent of

time. We do so to explicitly capture the consequence of the ambiguous correlation on the Nash

equilibrium in the associated non-zero-sum game. The extension to the time-varying parameters

is rather immediate but yields no additional economic insights.

Suppose that there is a reinsurance company, then the insurer k ∈ {1, 2} can manage her

insurance risks through purchasing proportional reinsurance protection at the premium rate θk >

pk > 0. Let 1 − qk(t) be the reinsurance proportion of the insurer k ∈ {1, 2} at time t. Then the

reinsurance company will cover (1 − qk(t))100% of the claims while the insurer k will cover the

remaining. The reinsurance strategy of the insurer k ∈ {1, 2} is characterized by {qk(t)}t≥0, which

is a Ft-progressively measurable process valued in [0, 1] and Ft = σ({(W1(s),W2(s))}ts=0). We

denoteQk = {qk(t) ∈ Ft|qk(t) ∈ [0, 1]} the set of convex reinsurance strategies of insurer k. With

reinsurance, the surplus process {Xqk
k (t)}t≥0 of the insurer k ∈ {1, 2} becomes

dXqk
k (t) = [pk − θk(1− qk(t))− λkE[ηk]qk(t)]dt+

√
λkE[η2

k]qk(t)dWk(t),

=: [δk + µkqk(t)]dt+ σkqk(t)dWk(t), (2)

where δk = pk−θk < 0 is the premium difference, µk = θk−λkE[ηk] is the relative safety loading

and σk =
√
λkE[η2

k] is the volatility of the claims process. We assume the initial reserve of the

insurer k ∈ {1, 2} is Xqk
k (0) = xk > 0.

2.2. Objectives of the Insurers

Suppose that the insurer k ∈ {1, 2} has a utility function, denoted by Uk, which is increasing

and strictly concave function valued in R and satisfies Inada conditions:

∂Uk
∂x

∣∣∣∣
x→−∞

= +∞, ∂Uk
∂x

∣∣∣∣
x→+∞

= 0.
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To incorporate the ambiguity of the correlation and the interaction between two insurers, we as-

sume the objective of each insurer is to maximize the expected utility of a linear combination of

both insurers’ surpluses at terminal time T > 0 under the worst-case scenario of the correlation.

Mathematically, we consider the following optimization problem for the insurer k ∈ {1, 2}:

sup
qk∈Qk

inf
ρ∈[ρ

k
,ρk]

E [Uk(X
qk
k (T )− κkXqm

m (T ))] (3)

for m 6= k ∈ {1, 2}, where κk ∈ [−1, 1] reflects the level of relative performance concern of the

insurer k. Indeed, when κk = 0, for k = 1, 2, we return to the single-agent optimal reinsurance

problem, in which ambiguous correlation would play no role in the insurer’s optimization problem.

In light of this, we shall hereafter assume that κk 6= 0. When κk ∈ (0, 1] (resp. κk ∈ [−1, 0)),

for k = 1, 2, insurer k treats insurer m, for k 6= m ∈ {1, 2} as competitor (resp. cooperator),

as her optimization problem in (3) would indicate that she would optimally purchase reinsurance

protection to maximize the difference between her terminal surplus against (resp. the sum of her

terminal surplus with) that her competitor under the correlation estimate that yields the worse

expected payoff. Although the Nash equilibrium in Section 3 also includes the case when insurer

k is competitive (κk > 0) and insurer m is cooperative (κm < 0), for k 6= m ∈ {1, 2}, we choose

not to study this case for there is no clear economic rationale on the establishment of a game

between one competitive and one cooperative insurers. See [2, 6, 14] for the optimization under

the relative performance concerns when κk ∈ [0, 1]; and [7] for the maximin formulation of the

robust portfolio optimization with ambiguous correlation.

Major technical hurdle arising from our problem formulation is that the underlying measure

of the expectation and the admissible set of the reinsurance strategies in (3) are not clear. More

specifically, we denote X̄qk,qm
k (t) = Xqk

k (t)−κkXqm
m (t) the relative surplus (performance) process

of the insurer k for k 6= m ∈ {1, 2}. Then the dynamics of X̄qk,qm
k (t) is given by

dX̄qk,qm
k (t) = [δk − κkδm + µkqk(t)− κkµmqm(t)]dt+ σkqk(t)dWk(t)− κkσmqm(t)dWm(t)

= [δ̄k + µkqk(t)− κkµmqm(t)]dt+ (σkqk(t),−κkσmqm(t))d ~W(k)(t) (4)

with X̄qk,qm
k (0) = xk − κkxm =: x̄k, where δ̄k = δk − κkδm and ~W(k)(t) = (Wk(t),Wm(t))′. The

dynamics of { ~W(k)(t)}t≥0 is uncertain and thus the admissibility of qk(t) is not well-defined.
5



Similar to [7], we characterize the problem of our interest through the G-framework of [11].

Because two insurers are heterogeneous (different confidence regions of ρ and different utility

functions), we need to introduce two sets of G-expectation and G-Brownian motion. We then

study the insurers’ optimization problems respectively on two G-expectation spaces. To this end,

we establish the probabilistic setup from the perspective of the insurer k 6= m ∈ {1, 2}. We

first define by Θk the set of all insurer k’s feasible correlation (ρ ∈ [ρ
k
, ρk]) choices that ensure

a unique strong solution to the SDEs (1). Then the set of (non-equivalent) priors PΘk is defined

as the set of probability measures Pρ on (Ω,Ft) induced by P: PΘk = {Pρ : ρ ∈ Θk}, where

Pρ(A) = P({ω : X ∈ A}), A ∈ FT and X = (X1, X2)′ is the unique strong solution to SDEs (1)

given ρ.

We denote by lip(R2) the space of all bounded and Lipschitz functions on R2. Then following

[11], we define a Gk-normal distribution PGk
t (φ) : lip(R2)→ R as

PGk
t (φ(~x)) = vk(t, ~x),

where vk(t, ~x)is a bounded continuous function on [0, T ] × R2 which is the viscosity solution of

the nonlinear partial differential equation (PDE):

∂vk
∂t
−Gk(D

2vk) = 0, vk(0, ~x) = φ(~x), where Gk(A) =
1

2
sup
γ∈Γk

tr[γγTA]

for A ∈ S2, in which D2v is the Hessian matrix of v, i.e. D2v =
(

∂2v
∂xi∂xj

)
and

Γk :=


1 0

ρ
√

1− ρ2

 : ρ ∈ Θk

 ⊂ R2×2,

which is bounded and closed. A two-dimensionalGk-Brownian motion ~B(k)(t) = (B
(k)
k (t), B

(k)
m (t))′

under a Gk-expectation Êk is then defined as follows:

1. For each s, t ≥ 0 and φ ∈ lip(R2), ~B(k)(t) and ~B(k)(t + s) − ~B(k)(s) are identically dis-

tributed: Êk[φ( ~B(k)(t+ s)− ~B(k)(s))] = Êk[φ( ~B(k)(t))] := PGk
t (φ).

2. For 0 ≤ t1 < . . . < tm < ∞, m = 1, 2, . . ., the increment ~B(k)(tm) − ~B(k)(tm−1) is

“backwardly” independent from ~B(k)(t1), . . . , ~B(k)(tm−1): for each φ ∈ lip(R2×m),

Êk[φ( ~B(k)(t1), . . . , ~B(k)(tm−1), ~B(k)(tm))] = Êk[φ1( ~B(k)(t1), . . . , ~B(k)(tm−1))], where

φ1(x1, . . . , xm−1) := Êk[φ(x1, . . . , xm−1, ~B(k)(tm)− ~B(k)(tm−1)+xm−1)], x1, . . . , xm−1 ∈ R2.
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The Gk-expectation Êk[·] can be viewed as a proxy of supPρ∈PΘk EPρ [·] with our choice of Gk,

where EPρ [·] is the expectation operator under Pρ. Loosely speaking, denoting d
= to be equality

in distribution, we have ~W(k)(t)
d
= ~B(k)(t) marginally because Êk[φ(B

(k)
j (t))] = E[φ(Wj(t))] for

j = k,m and φ ∈ lip(R). However, it is important to note that ~W(k)(t) and ~B(k)(t) are not

equivalent.

Replacing the original Brownian motion ~W(k)(t) with G-Brownian motion ~B(k)(t) in (4), the

dynamics of X̄qk,qm
k (t) is given by

dX̄qk,qm
k (t) = [δ̄k + µkqk(t)− κkµmqm(t)]dt+ (σkqk(t),−κkσmqm(t))d ~B(k)(t) (5)

with X̄qk,qm
k (0) = x̄k. As in [5, 7], the worst-case utility function is defined as

Ū t,x̄k,qk
k := −Êk[−Uk(X̄qk,qm

k (T ))|F (k)
t ] = inf

Pρ∈PΘk

EPρ [Uk(X̄
qk,qm
k (T ))|F (k)

t ],

where F (k)
t = σ({ ~B(k)(s)}ts=0). The admissible set of the insurer k’s reinsurance strategies is

Qk = {qk(t) ∈ F (k)
t |qk(t) ∈ [0, 1]}. Now the optimization problem (3) is well-defined under

the G-framework. Hereafter, we replace the set “Pρ ∈ PΘk” by the notation “ρ ∈ [ρ
k
, ρk]” that

reminds us the bounds of the correlation coefficient.

The coupled optimization problem (3) for two insurers forms a non-zero-sum game. A Nash

equilibrium for two insurers is a 2-tuple (q∗1, q
∗
2) ∈ Q1 ×Q2 that satisfies the inequalities:

Problem 1 inf
ρ∈[ρ

1
,ρ1]

EPρ [U1(X̄
q1,q∗2
1 (T ))] ≤ inf

ρ∈[ρ
1
,ρ1]

EPρ [U1(X̄
q∗1 ,q

∗
2

1 (T ))],

inf
ρ∈[ρ

2
,ρ2]

EPρ [U2(X̄
q2,q∗1
2 (T ))] ≤ inf

ρ∈[ρ
2
,ρ2]

EPρ [U2(X̄
q∗2 ,q

∗
1

2 (T ))].

3. Nash Equilibrium

3.1. General case

In this section, we shall characterize the Nash equilibrium via the dynamic programming

principle under the G-framework, as shown in [8]. Define the value function of the insurer

k 6= m ∈ {1, 2} as

Vk(t, x̄k) := sup
qk∈Qk

Ū t,x̄k,qk
k = sup

qk∈Qk
inf

ρ∈[ρ
k
,ρk]

EPρ
[
Uk(X̄

qk,q
∗
m

k (T ))
∣∣∣ X̄qk,q

∗
m

k (t) = x̄k

]
. (6)
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Under the assumption that the utility function Uk satisfies the Inada condition, it can be checked

that Vk is also increasing and strictly concave in x̄k ∈ R, but we omit it here due to the page limit.

To simplify matter, we suppress the arguments of the functions. Denote Lqk,qm;ρk to be the

infinitesimal generator for the relative surplus process X̄qk,qm
k . Then,

Lqk,qm;ρk := (δ̄k + µkqk − κkµmqm)
∂

∂x̄k
+

(
σ2
k

2
q2
k − ρkκkσkσmqkqm +

κ2
kσ

2
m(qm)2

2

)
∂2

∂x̄2
k

. (7)

Analogous to [7, 8], we have the following verification theorem.

Theorem 3.1. The value function Vk in (6) is the unique deterministic continuous viscosity solu-

tion of the following Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation:

∂Vk
∂t

+ sup
qk∈Qk

inf
ρ∈[ρ

k
,ρk]
Lqk,q∗m;ρkVk = 0 (8)

with the terminal condition Vk(T, x̄k) = Uk(x̄k).

Proof. The proof can be found in [8].

If ∂2Vk
∂x̄2
k
< 0, the infimum, we denoted by ρ∗k, can be solved straightforwardly:

ρ∗k := arg min
ρk∈[ρ

k
,ρk]

Lqk,q∗m;ρkVk(t, x̄k) = ρ
k
1{κk>0} + ρk1{κk<0} =

1

κk
min(κkρk, κkρk). (9)

Then the HJBI equation (8) is reduced to a HJB equation:

∂Vk
∂t

+ sup
qk∈Qk

Lqk,q∗m;ρ∗kVk = 0 (10)

with the terminal condition Vk(T, x̄k) = Uk(x̄k). By maximizing the quadratic form of qk in (10),

the expression of q∗k is deduced:

q∗k := arg max
qk∈Qk

{
µkqk

∂Vk(t, x̄k)

∂x̄k
+

(
σ2
k

2
q2
k − ρ∗kκkσkσmqkq∗m

)
∂2Vk(t, x̄k)

∂x̄2
k

}
=

[
min

(
ρ∗kκk

σm
σk
q∗m −

µk
σ2
k

(
∂Vk(t, x̄k)

∂x̄k

/
∂2Vk(t, x̄k)

∂x̄2
k

)
, 1

)]+

∈ Qk, (11)

where x+ = max(x, 0) and −∂Vk
∂x̄k

/
∂2Vk
∂x̄2
k

represents the risk-tolerance level of the insurer k. Sub-

stituting q∗k into the HJB equation (10) yields a nonlinear partial differential equation (PDE) for

Vk: ∂Vk/∂t+ Lq∗k,q∗m;ρ∗kVk = 0.
8



Now, we discuss how to verify the solution pair (q∗k, X̄
q∗k,q

∗
m

k ), where X̄q∗k,q
∗
m

k is the strong so-

lution to (5) with q∗k and q∗m, is an optimal pair of our robust optimization problem. Suppose that

we have found the value function Vk ∈ C1,2 via solving the HJBI equation (8). Then, by G-Itô’s

lemma (on −Vk), we have

Vk(t, x̄k)− Vk(T, X̄
q∗k,q

∗
m

k (T ))

=

∫ T

t

[
−∂Vk
∂t
− inf

ρ∈[ρ
k
,ρk]
Lq∗k,q∗m;ρkVk

]
du−

∫ T

t

∂Vk
∂x̄k

σ̄(k)d ~B(k)(u)

−
∫ T

t

1

2

∂2Vk
∂x̄2

k

2∑
i,j=1

σ̄
(k)
i σ̄

(k)
j d〈B(k,i), B(k,j)〉u −

∫ T

t

2Gk

(
−1

2

∂2Vk
∂x̄2

k

Σ̄(k)

)
du, (12)

where σ̄(k) = (σ̄
(k)
1 , σ̄

(k)
2 ) := (σkq

∗
k(t),−κkσmq∗m(t)), B(k) := (B(k,1), B(k,2))′, 〈B(k,i), B(k,j)〉 is

mutual variation process of B(k,i) and B(k,j), and Σ̄(k) = σ̄(k)′σ̄(k). Notice that

arg min
ρ∈[ρ

k
,ρk]

Lq∗k,q∗m;ρkVk = ρ∗k.

Hence, ∂Vk/∂t+infρ∈[ρ
k
,ρk] Lq

∗
k,q
∗
m;ρkVk = ∂Vk/∂t+Lq

∗
k,q
∗
m;ρ∗kVk = 0. Moreover, as shown in [11],

ξT := −
∫ T

t

∂Vk
∂x̄k

σ̄(k)d ~B(k)(u)−
∫ T

t

1

2

∂2Vk
∂x̄2

k

2∑
i,j=1

σ̄
(k)
i σ̄

(k)
j d〈B(k,i), B(k,j)〉u

−
∫ T

t

2Gk

(
−1

2

∂2Vk
∂x̄2

k

Σ̄(k)

)
du, T ≥ t,

is a Gk-martingale. Hence, we have Êk[ξT |F (k)
t ] = ξt = 0. Taking Êk[·|F (k)

t ] on both sides of (12)

yields

Vk(t, x̄k) = −Êk[−U(X̄
q∗k,q

∗
m

k (T ))|F (k)
t ] = Ū

t,x̄k,q
∗
k

k .

The left-hand side of the above equation is the value function of our robust optimization problem,

while the right-hand side is the worst-case utility for the reinsurance strategy q∗k (given q∗m). This

yields that q∗k is an optimal strategy of our robust optimization problem.

Remark: For CARA insurers considered in Section 3.2, the value functions are sufficiently

smooth for the verification. However, the verification for a non-smooth value function Vk poses an

interesting question for future research but certainly beyond the scope of this paper.

Theorem 3.2 characterizes the Nash equilibrium of Problem 1 as the solution of the coupled

partial differential equations. More specifically, we have
9



Theorem 3.2. Assume that ∂2Vk(t,x̄k)

∂x2
k

< 0, for k = 1, 2, where Vk is the solution to the HJBI

equation in (8). The Nash equilibrium reinsurance strategy pair for Problem 1 is the solution of

the following coupled non-linear equations: q∗1(t) =
[
min

(
ρ∗1κ1

σ2

σ1
q∗2 −

µ1

σ2
1

(
∂V1(t,x̄1)
∂x̄1

/
∂2V1(t,x̄1)

∂x̄2
1

)
, 1
)]+

,

q∗2(t) =
[
min

(
ρ∗2κ2

σ1

σ2
q∗1 −

µ2

σ2
2

(
∂V2(t,x̄2)
∂x̄2

/
∂2V2(t,x̄2)

∂x̄2
2

)
, 1
)]+

,
(13)

where ρ∗k admits the form in (9), and the Nash equilibrium value functions are V1 and V2, which

then become the solutions of the following system of coupled PDEs:
∂V1(t,x̄1)

∂t
+ Lq∗1 ,q∗2 ;ρ∗1V1(t, x̄2) = 0,

∂V2(t,x̄2)
∂t

+ Lq∗2 ,q∗1 ;ρ∗2V2(t, x̄2) = 0,

(14)

with the terminal conditions V1(T, x̄1) = U1(x̄1) and V2(T, x̄2) = U2(x̄2).

The Nash equilibrium reinsurance strategies (q∗1, q
∗
2) in (13) reproduces to that in [2] for the

case of certain correlation. See also [13] for the associated Nash equilibrium for the non-zero-

sum reinsurance game with model uncertainty. The key difference (q∗1, q
∗
2) in (13) from those

in the existing literature is that ρ∗1κ1 and ρ∗2κ2 can have different signs when there is ambiguous

correlation. It complicates the analysis of this system.

More importantly, Theorem 3.2 shows that the existence of Nash equilibrium is equivalent

to the solvability of the coupled systems in (13), which in turn is equivalent to the solvability

of the coupled PDEs in (14). As remarked in [2], the general existence of the solution to the

coupled PDEs in (14) is very difficult to establish for any T > 0. For a sufficiently small time

T > 0, however, the local existence and uniqueness of the solution to the coupled PDEs in (14) can

be established via the Cauchy-Kowalevski Theorem. Interestingly enough, we show that for the

representative case of CARA insurers, the corresponding coupled equations in (13) and coupled

PDEs in (14) can be explicitly solved and that the Nash equilibrium is established for any T > 0.

3.2. CARA Insurers

In this section, we consider constant absolute risk aversion (CARA) insurer k ∈ {1, 2} who

has an exponential utility function

Uk(x) = − 1

γk
exp(−γkx), (15)
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where γk > 0 is the risk aversion coefficient of the insurer k. The following theorem shows that the

Nash equilibrium reinsurance strategies and value functions in Theorem 3.2 admit closed-forms

for the case of two CARA insurers.

Theorem 3.3. Assume that κ1κ2ρ
∗
1ρ
∗
2 6= 1. If the insurer k, for k = 1, 2, has the exponential utility

(15), the Nash equilibrium value function (6) of the insurer k admits a closed-form solution:

Vk(t, x̄k) = − 1

γk
exp(−γk[x̄k + fk(t)]),

where

fk(t) =

[
δ̄k + µkq

∗
k − κkµmq∗m − γk

(
σ2
k(q
∗
k)

2

2
− ρ∗kκkσkσmq∗kq∗m +

κ2
kσ

2
m(q∗m)2

2

)]
(T − t) (16)

with the optimal choice of ρ for the insurer k ∈ {1, 2}:

ρ∗k = ρ
k
1{κk>0} + ρk1{κk<0} =

1

κk
min(κkρk, κkρk), (17)

and the Nash equilibrium reinsurance strategies (q∗1, q
∗
2) are specified as follows. Define

q̃1 :=
1

1− ρ∗1ρ∗2κ1κ2

(
ρ∗1κ1µ2

γ2σ1σ2

+
µ1

γ1σ2
1

)
, q̃2 :=

1

1− ρ∗1ρ∗2κ1κ2

(
ρ∗2κ2µ1

γ1σ1σ2

+
µ2

γ2σ2
2

)
, (18)

h1h := ρ∗1κ1
σ2

σ1

+
µ1

γ1σ2
1

, h2v := ρ∗2κ2
σ1

σ2

+
µ2

γ2σ2
2

, h1x :=
µ1

γ1σ2
1

, h2y :=
µ2

γ2σ2
2

.

Following cases are possible.

1. If q̃1 > 0, q̃2 > 0,

(q∗1, q
∗
2) =



(min (q̃1, h1h, 1) ,min (q̃2, h2v, 1)) , if κ1ρ
∗
1 ≥ 0, κ2ρ

∗
2 ≥ 0,

(min (q̃1, h1h, 1) ,min (max(q̃2, h2v), 1)) , if κ1ρ
∗
1 ≥ 0, κ2ρ

∗
2 < 0,

(min (max(q̃1, h1h), 1) ,min (q̃2, h2v, 1)) , if κ1ρ
∗
1 < 0, κ2ρ

∗
2 ≥ 0,

(min (max(q̃1, h1h), 1) ,min (max(q̃2, h2v), 1)) , if κ1ρ
∗
1 < 0, κ2ρ

∗
2 < 0;

2. If q̃1 > 0, q̃2 ≤ 0, (q∗1, q
∗
2) =

(
min (h1x, 1) , [min (h2v, 1)]+

)
;

3. If q̃1 ≤ 0, q̃2 > 0, (q∗1, q
∗
2) =

(
[min (h1h, 1)]+ ,min (h2y, 1)

)
.

Proof. To solve (13) and (14), we begin with the following Ansatz Vk, for k = 1, 2,

Vk(t, x̄k) = − 1

γk
exp(−γk[x̄k + fk(t)]), (19)

11



where fk(t) is to be determined. Plugging the ansatz (19) into the system (13), we have q∗1 =
[
min

(
ρ∗1κ1

σ2

σ1
q∗2 + µ1

γ1σ2
1
, 1
)]+

,

q∗2 =
[
min

(
ρ∗2κ2

σ1

σ2
q∗1 + µ2

γ2σ2
2
, 1
)]+

.
(20)

For the cases of κ1ρ
∗
1 and κ2ρ

∗
2 having the same sign, the system (20) is solved similarly to that

of [2, 14]. Hence, we only discuss the case of κ1ρ
∗
1 ≥ 0, κ2ρ

∗
2 < 0, while the case of κ1ρ

∗
1 <

0, κ2ρ
∗
2 ≥ 0 is treated similarly as these two cases are symmetric.

The pair (q̃1, q̃2) defined in (18) is the intersection point of the following lines on the (q1, q2)-

plane:

ι1 : q1 = ρ∗1κ1
σ2

σ1

q2 +
µ1

γ1σ2
1

, ι2 : q2 = ρ∗2κ2
σ1

σ2

q1 +
µ2

γ2σ2
2

.

Denote the q1- and q2-intercepts of ι1 and ι2 by (h1x, 0), (0, h1y) and (h2x, 0), (0, h2y), respectively.

Then,

h1x =
µ1

γ1σ2
1

, h1y = − µ1

ρ∗1κ1γ1σ1σ2

, h2x = − µ2

ρ∗2κ2γ2σ1σ2

, h2y =
µ2

γ2σ2
2

.

Let `h be the horizontal line `h : q2 = 1, `v be the vertical line `v : q1 = 1, h1h (h2h) be the

q1-intersect of ι1 (ι2) and `h, and h1v (h2v) be the q2-intersect of ι1 (ι2) and `v. Then,

h1h = ρ∗1κ1
σ2

σ1

+
µ1

γ1σ2
1

, h2h =

(
1− µ2

γ2σ2
2

)
/

(
ρ∗2κ2

σ1

σ2

)
,

h1v =

(
1− µ1

γ1σ2
1

)
/

(
ρ∗1κ1

σ2

σ1

)
, h2v = ρ∗2κ2

σ1

σ2

+
µ2

γ2σ2
2

.

Since κ1ρ
∗
1 ≥ 0, κ2ρ

∗
2 < 0, we have

h1x > 0, h1y < 0, h2x > 0, h2y > 0, h1h > 0, q̃1 > 0

and the following relationships hold: h1x ≥ h2x ⇔ q̃2 ≤ 0;

h1h > 0⇔ h1y < 1; h1v > 0⇔ h1x < 1; h1v > 1⇔ h1h < 1;

h2v < 0⇔ h2x < 1; h2h < 0⇔ h2y < 1; h2v < 1⇔ h2h < 1.

(q∗1, q
∗
2) is the intersection point of the following lines:

`1 :


q1 = 0, q2 ≤ h1y,

ι1, h1y < q2 < h1v,

q1 = 1, q2 ≥ h1v,

`2 :


q2 = 1, q1 ≤ h2h,

ι2, h2h < q1 < h2x,

q2 = 0, q1 ≥ h2x.

It is clear that `1 is increasing and `2 is decreasing in q1 and q2.
12



• If q̃2 ≤ 0, then h1x ≥ h2x.

– If h2x ≤ 1, then h2v ≤ 0 and `2 for q1 < h2x (⇒ q2 > 0) does not intersect with `1 for

q1 < min(h1x, 1) (⇒ q2 < 0). Thus, (q∗1, q
∗
2) = (min(h1x, 1), 0).

– If h2x > 1, then h1x > 1 and `1 for q1 < 1 always below q1-axis. Hence, q∗1 = 1 and

we know from (20) that q∗2 = [min(h2v, 1)]+.

To sum up, in this case (q̃1 > 0, q̃2 ≤ 0), we have

(q∗1, q
∗
2) =

(
min (h1x, 1) , [min (h2v, 1)]+

)
.

• If q̃2 > 0, then h1x < h2x. Notice that q̃1 < h1h ⇔ q̃2 < 1 and q̃2 < h2v ⇔ q̃1 > 1.

– If q̃1 < 1, q̃2 < 1, then q̃1 < h1h, h2v < q̃2 and it is clear that (q∗1, q
∗
2) = (q̃1, q̃2).

– If q̃1 < 1, q̃2 ≥ 1, then h1h ≤ q̃1 ≤ h2h, h2v < q̃2 < h1v and `2 for q2 < 1

(⇒ q1 > h2h) does not intersect with `1 for q1 < h1h. Hence, q∗2 = 1 and q∗1 =

[min(h1h, 1)]+ = h1h.

– If q̃1 ≥ 1, q̃2 < 1, then similar to the previous case, we have h1h > q̃1 > h2h,

h2v ≥ q̃2 ≥ h1v and (q∗1, q
∗
2) = (1, [min(h2v, 1)]+). Notice that h2x > q̃1 ≥ 1. Hence

h2v > 0 and (q∗1, q
∗
2) = (1,min(h2v, 1)).

– If q̃1 ≥ 1, q̃2 ≥ 1, then h1h ≤ q̃1 ≤ h2h, h1v ≤ q̃2 ≤ h2v, and `2 for q2 < 1

(⇒ q1 > h2h) does not intersect with `1 for q1 < h1h. Hence, q∗2 = 1 and q∗1 =

[min(h1h, 1)]+ = min(h1h, 1).

To sum up, in this case (q̃1 > 0, q̃2 > 0), we have

(q∗1, q
∗
2) = (min (q̃1, h1h, 1) ,min (max(q̃2, h2v), 1)) .

Together with the results of [14], the equilibrium reinsurance strategies q∗1 and q∗2 are completely

solved.
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Using explicit solution of (q∗1, q
∗
2) and the ansatz (19), the PDE (14) for Vk becomes an ordinary

differential equation (ODE) for fk:

∂fk
∂t

+ δ̄k + µkq
∗
k − κkµmq∗m − γk

(
σ2
k(q
∗
k)

2

2
− ρ∗kκkσkσmq∗kq∗m +

κ2
kσ

2
m(q∗m)2

2

)
= 0

with terminal condition fk(T ) = 0. The solution of fk(t) is presented in (16).

Since κk ∈ [−1, 1], ρk ∈ [−1, 1], for k = 1, 2, and the fact that there is no clear economic

rationale behind a game between a competitive (κk > 0) insurer and a cooperative (κm < 0)

insurer, the assumption κ1κ2ρ
∗
1ρ
∗
2 6= 1 in Theorem 3.3 is relatively mild for it constitutes the

following extreme scenarios:

Case (1a) κk = 1, ρ
k

= ρk = 1, for k = 1, 2;

Case (1b) κk = 1, ρ
k

= −1, ρk ∈ (−1, 1], for k = 1, 2;

Case (2a) κk = −1, ρ
k

= ρk = −1, for k = 1, 2;

Case (2b) κk = −1, ρ
k
∈ [−1, 1), ρk = 1, for k = 1, 2;

Case (1a) is uninteresting as there is no ambiguity in correlation, which has already been studied

in [2]. In Case (1b), both competing insurers have their lowest correlation estimates to be equal to

−1, i.e. ρ
k

= −1, From (17), it follows readily that ρ∗1 = ρ∗2 = −1. In face of ρ∗k = −1, insurer

k would increase demand of the reinsurance protection as her claim risk is perfectly negative-

correlated with that her competitor. Yet, increase demand of the reinsurance protection implies

an increase in expenditure, which in turn erodes her relative performance surplus. Hence, there

does not exist a strategy for each insurer that can both hedge against claim risk via reinsurance

purchase while at the same time maximize her relative terminal surplus. Cases (2a) and (2b) can

be interpreted analogously. In this respect, Cases (1a)-(2b) consitute extreme scenarios that yield

little economic insights into the strategic demand of reinsurance protection of the insurers, and we

shall therefore focus on the case when κ1κ2ρ
∗
1ρ
∗
2 6= 1 in the numerical studies below.
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Insurer 1

x1 p1 θ1 λ1 E[η1] E[η2
1] γ1

5 5 7 0.8 2.5 80 0.4

Insurer 2

x2 p2 θ2 λ2 E[η2] E[η2
2] γ2

7 2 4 0.5 2 50 0.5

Table 1: Model parameters

4. Numerical Examples

In this section, we provide the numerical studies on the effect of the ambiguous correlation

to the equilibrium reinsurance demands and the value functions of the CARA insurers in Section

3.2. Unless otherwise stated, the following numerical studies are performed based on the model

parameters in Table 1. Due to the symmetric nature of the game, it suffices to consider exclusively

on the equilibrium demand and value function of insurer 1. We shall denote ρkmin := ρ
k

and

ρkmax := ρk, for k = 1, 2, in the following figures.

4.1. Effect of [ρ
k
, ρk] on the equilibrium reinsurance demand of insurer k, for k = 1, 2.
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Figure 1: Effect of κ1 on the equilibrium reinsurance demand of insurer 1,. The left figure (resp. right figure)

corresponds to the case when both insurers are competitive, i.e. κ1 = 0.8, κ2 = 0.5 (resp. cooperative, i.e. κ1 =

−0.8, κ2 = −0.5), with [ρ
2
, ρ2] = [0.1, 0.6] .

Figure 1 studies the impact of the ambiguous correlation, which is measured by the confidence

interval [ρ
1
, ρ1], to the equilibrium reinsurance demand of insurer 1. Since insurer 1 optimally

chooses his reinsurance strategy under the worst-case scenario of ρ, Theorem 3.3 states that the
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equilibrium reinsurance demand of insurer 1, q∗1 , is sensitive only to her own lowest correlation

estimate, ρ
1

(resp. her highest correlation estimate, ρ1), when both insurers are competitive, i.e.

κ1, κ2 > 0 (resp. cooperative, i.e. κ1, κ2 < 0). On the left-hand side of Figure 1, we see that q∗1

increases as ρ
1

increases across different values of the sensitivity parameter κ1 when both insurers

are competitive. As ρ
1

increases, insurer 1 becomes more confident on her correlation estima-

tion and that she is more positively correlated with her competitor. Hence increasing reinsurance

protection would not improve her relative terminal surplus with respect to that of her competitor.

Therefore, she would spend less money on the reinsurance protection 1 − q∗1 , which is consistent

with the result in [2] when there is no ambiguous correlation. On the other hand, when both in-

surers are cooperative, i.e. κ1, κ2 < 0, the right-hand side of Figure 1 shows that q∗1 decreases as

the ρ1 increases. When both insurers are cooperative, each would choose her reinsurance strat-

egy so as to maximize the sum of her and her cooperator’s terminal surpluses. Therefore, as ρ1

increases, insurer 1 becomes less confident on her correlation with her cooperator, and therefore

would increase her purchase of the reinsurance protection, i.e. 1− q∗1 .

4.2. Nature of externalities of [ρ
m
, ρm] on insurer k, for k 6= m = 1, 2.

Perhaps the most relevant question in the non-zero-sum game subject to the ambiguous cor-

relation is whether the quality of counterparty’s correlation estimates would induce positive or

negative externalities to the insurer. We study this question for the cases when both insurers are

competitive (see Figure 2) and when both insurers are cooperative (see Figure 3). Note that the

case when insurer 1 is certain on the her correlation estimate i.e. ρ
1

= ρ1, but insurer 2 remains

uncertain with the true correlation is non-existent. This is because insurer 2 would also have

no ambiguity in correlation as she can observe the correlation from insurer 1. To facilitate the

discussion, we shall consider the following two cases:

Case A “No Ambiguity in both insurers”, i.e. when both insurers are certain about the correlation

(ρ). In this case, we shall let ρ = 0.35 in Figure 2 and ρ = −0.35 in Figure 3;

Case B “Ambiguity in both insurers”, i.e. when both insurers are uncertain about ρ.

Few words are in place to facilitate the following discussions. Recall that the true correlation
16



is assumed to be ρ = 0.35 in Figure 2. In addition, since [0.2, 0.6] ⊂ [−0.2, 0.6], the case of

[ρ
2
, ρ2] = [0.2, 0.6] can be interpreted as the scenario in which insurer 2 has better information

on the correlation estimates than the case of [ρ
2
, ρ2] = [−0.2, 0.6]. On the other hand, we assume

the true correlation to be ρ = −0.35 in Figure 3. Since [−0.5,−0.2] ⊂ [−0.5, 0.2], the case of

[ρ
2
, ρ2] = [−0.5,−0.2] constitutes the case when insurer 2 has better information on the correlation

than the case of [ρ
2
, ρ2] = [−0.5, 0.2].
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Figure 2: Effect of γ1 on the equilibrium reinsurance demand and value function of insurer 1 (t = 6, T = 10,

[ρ
1
, ρ1] = [0.2, 0.5]). The figures in the first column (resp. second column) correspond to the case when both insurers

are competitive, i.e. (κ1 = 0.8, κ2 = 0.5), when [ρ
2
, ρ2] = [0.2, 0.6] (resp. [ρ

2
, ρ2] = [−0.2, 0.6]).

Figure 2 reveals the impact of the insurer 2’s confidence interval [ρ
2
, ρ2] on insurer 1 for Cases

A and B when both insurers are competitive, i.e. κ1, κ2 > 0. We first discuss the effect of the

quality of insurer 2’s correlation estimates on the equilibrium reinsurance demand of insurer 1.

The first row of Figure 2 shows that insurer 1 always spends more on the reinsurance protection

1− q∗1 at equilibrium when facing ambiguous correlation for both cases when [ρ
2
, ρ2] = [0.2, 0.6]
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and [ρ
2
, ρ2] = [−0.2, 0.6]. This can be interpreted from from (13) that the relative performance

concerns take effect on the insurer 1’s strategy through the term ρ∗1κ1
σ2

σ1
q∗2 and that ρ∗1 is chosen

such that ρκ1 is minimized.

More importantly, the second row of Figure 2 also indicates that the welfare, which is measured

by her value function (V1) of insurer 1 deteriorates as insurer 2 improves her correlation estimates

from [ρ
2
, ρ2] = [−0.2, 0.6] to [ρ

2
, ρ2] = [0.2, 0.6]. To see this, observe that the value function

of insurer 1 (V1) in Case B lies below that in Case A when [ρ
2
, ρ2] = [0.2, 0.6]. On the other

hand, the value function of insurer 1 (V1) in Case B lies above that in Case A when [ρ
2
, ρ2] =

[−0.2, 0.6]. In other words, the ambiguous correlation can induce negative externalities to insurer

1 in the case when insurer 2 improves her correlation estimates , i.e. [ρ
2
, ρ2] = [0.2, 0.6]. This

can be explained by the fact that two insurers are assumed to be competitive, i.e. κ1, κ2 > 0.

Poorer correlation estimates from insurer 2 proves to be advantageous to insurer 1 as he has better

information [ρ
1
, ρ1] = [0.2, 0.5] to achieve higher relative terminal surplus.

Figure 3 studies the impact of the insurer 2’s confidence interval [ρ
2
, ρ2] on insurer 1 for Cases A

and B when both insurers are cooperative, i.e. κ1, κ2 < 0. As in Figure 2, the first row of Figure

3 shows that ambiguous correlation leads to higher demand for reinsurance protection 1 − q∗1

at equilibrium even when both insurers are cooperative. The second row of Figure 3 shows the

welfare of insurer 1 improves when insurer 2 improves her correlation estimates from [ρ
2
, ρ2] =

[−0.5, 0.2] to [ρ
2
, ρ2] = [−0.5,−0.2], which can be seen by the gap between the welfare of insurer

1 in Case A and that in Case B is narrowed when ρ2 decreases from 0.2 to −0.2, ceteris paribus.

When insurer 2 has better information on the correlation ρ, she can therefore increase her relative

terminal surplus, which in turn also increases the relative terminal surplus of insurer 1, as they are

cooperative. In other words, the improvement of the correlation estimates of insurer 2 can induce

positive externalities to insurer 1 when two insurers are cooperative, which is in contrast with the

results for the case of competitive insurers in Figure 2.
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Figure 3: Effect of γ1 on the equilibrium reinsurance demand and value function of insurer 1 (T = 10, [ρ
1
, ρ1] =

[−0.5,−0.2]). The figures in the first column (resp. second column) correspond to the case when both insurers are

cooperative, i.e. (κ1 = −0.8, κ2 = −0.5), when [ρ
2
, ρ2] = [−0.5, 0.2] (resp. [ρ

2
, ρ2] = [−0.5,−0.2]).

5. Conclusion

We essentially set the risk-free interest rate to be zero for simplicity. In fact, the extension to

the case of non-zero risk-free interest rate is trivial. Although we focus on the reinsurance games

with uncertain correlation between two insurers, it is possible to allow the insurers invest their

surplus in financial market, especially when the financial market is statistically independent of the

claim processes. In this special case, the investment-reinsurance game is actually a combination

of a reinsurance game and an independent investment game, as pointed out in [14]. See [2, 10, 13]

for the extensions to including investment opportunities. However, when the financial market is

dependent of the insurance market, the correlation structure of the diffusions processes could be

complicated. It would be an interesting future research.This paper concerns the robustness on

the correlation. We refer readers to [13, 14] for the robustness on the drift terms of the diffusion

processes.
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