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Modern Field Programmable Gate Arrays (FPGAs) are power packed with features to facilitate designers.
Availability of features like large block memory (BRAM), Digital Signal Processing (DSP) cores, embed-
ded CPU makes the design strategy of FPGAs quite different from ASICs. FPGAs are also widely used in
security-critical application where protection against known attacks is of prime importance. We focus our-
selves on physical attacks which target physical implementations. To design countermeasures against such
attacks, the strategy for FPGA designers should also be different from that in ASIC. The available features
should be exploited to design compact and strong countermeasures. In this paper, we propose methods to ex-
ploit the BRAMs in FPGAs for designing compact countermeasures. Internal BRAM can be used to optimize
intrinsic countermeasures like masking and dual-rail logics, which otherwise have significant overhead (at
least 2×) compared to unprotected ones. The optimizations are applied on a real AES-128 co-processor and
tested for area overhead and resistance on Xilinx Virtex-5 chips. The presented masking countermeasure
has an overhead of only 16% when applied on AES. Moreover Dual-rail Precharge Logic (DPL) counter-
measure has been optimized to pack the whole sequential part in the BRAM, hence enhancing the security.
Proper robustness evaluations are conducted to analyze the optimization in terms of area and security.
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1. INTRODUCTION
Security is now one of the major driving factors of the high-end semiconductor indus-
try. Often there is a need to secure the whole system-on-chip (SoC), which generally
is achieved by embedded cryptographic cores (crypto-cores). Depending on the appli-
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cation, these crypto-cores are used to encrypt/decrypt sensitive data in all parts of the
system, ranging from memory content to system-bus. A major threat known as “Side-
Channel Attacks” (SCA [Brier et al. 2004]) has been pointed out about 17 years ago,
but curiously the design of solid and efficient protections is still an open research area.
SCA generally exploits the unintentional leakages from the physical implementation
of the crypto-cores. This brings into play countermeasures to protect the physical im-
plementation of cryptography, which can be classed into intrinsic and extrinsic coun-
termeasures. Extrinsic countermeasures are applied in parallel to crypto-cores in order
to confuse the attacker. Countermeasures involving generation of noise, misalignment
of activity generally fall into this category [Güneysu and Moradi 2011].

Although extrinsic countermeasures have a comparatively less overhead, their re-
sistance depends on the power of the attacker. Consider a noise generator which is
deployed to provide 2× SCA resistance w.r.t. the unprotected crypto-core. The power
of the countermeasure is related to the extra effort required by the attacker to ac-
quire twice the number of traces. If the attacker needs only a couple of seconds more
to acquire the extra traces, then the security enhancement is negligible. Therefore a
common practice is to combine several extrinsic countermeasures with protocol level
countermeasures (such as key refreshing [Medwed et al. 2010]). However provable se-
curity is not assured.

Intrinsic countermeasures are the other solution which, as the name suggests, are
built into the algorithm. These countermeasures modify the implementation of the ci-
pher in order to leak little or no sensitive information from side-channels. Also these
countermeasures often come with a non-negligible overhead. Intrinsic countermea-
sures further fall into two wide categories, i.e., masking and hiding.

Hiding countermeasures generally comprise of dual-rail precharge logic (DPL [Tiri
and Verbauwhede 2004]). DPL is a circuit-level countermeasure which aims at flat-
tening or removing the data-dependent leakage from the circuit. Removal of data-
dependant leakage is achieved by putting in place a generated False (F) rail that works
simultaneously together with the original True (T) rail for compensating each other’s
activity. DPL operates in two phases: Precharge, i.e., where all the non-memory logic
cells are reset to a constant value, and Evaluation, where valid algorithmic data are
computed and propagated. The two-phase operation with a dual-rail structure (the-
oretically) ensures constant activity and is therefore free from any exploitable data-
dependent leakage.

Masking on the other hand is generally applied at the algorithmic level. The basic
idea of masking is to protect all the sensitive intermediate values inside a crypto-
graphic algorithm by applying a random mask [Goubin and Patarin 1999]. The ran-
dom mask is removed at the end, which involves complex computation on the value
of mask, generally done by implementing the masked path in parallel to the actual
algorithm. The linear operations of a cryptographic algorithm can be easily tuned to
masking. Masking the non-linear operations is not an easy task, as the overhead asso-
ciated with it is exponential in the data bitwidth.

For a secure implementation, DPL needs balanced placement and routing of its com-
ponent. Masking does not have such strict requirements at the circuit level but the
non-linear operation is often hard to be realized in a secure manner. The availability
of high-density block memories (BRAMs) in FPGA can help to solve both problems.
BRAMs are capable of storing large tables, which are often present in the non-linear
part of protected ciphers (e.g., masked/dual-rail substitution boxes, aka Sboxes). Thus
intrinsic countermeasures become realizable in FPGA thanks to embedded BRAMs.
Several other features (discussed in Sect. 2.1) are present in BRAMs which can be
exploited to optimize the implementation of the cipher. BRAMs are also known to pro-
vide elevated security as compared to its logic counterpart [Velegalati and Kaps 2010],
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and are often recommended to implement intrinsic countermeasures. BRAM are also
largely deployed in implementing hash function and other cryptographic applications.

In this paper, we concentrate on BRAMs present in FPGAs in the context of intrin-
sic countermeasures. In particular, we propose methods to efficiently use BRAM to
implement countermeasures with reduced area overhead and higher SCA resistance.
Although generic countermeasure is favourable, it as well makes sense to exploit new
features to realize compact and robust countermeasure. Firstly, we propose a method
to exploit the features of BRAM in order to implement masking and DPL countermea-
sures with limited overhead. The proposed optimizations are applied on a real AES-128
co-processor. All the AES implementations tested implement the Sboxes in BRAMs, as
this configuration has been shown to offer enhanced resistance against SCA [Velegalati
and Kaps 2010]. Next we analyze the security of these countermeasures in the pres-
ence of BRAM. We show that it is possible to use modern FPGA features to effectively
implement intrinsic countermeasures.

The rest of the paper is organized as follows: Sect. 2 gives general background on
BRAM architecture in FPGA, its application in masking and DPL countermeasures.
Next in Sect. 3, we propose two methodologies to exploit BRAM features in an FPGA to
optimize masking and DPL countermeasures respectively. The proposed optimization
are applied on an AES-128 co-processor for experimental validation. The SCA evalua-
tion of proposed protection methodologies is discussed in Sect. 4. Finally, Sect. 5 draws
general conclusion.

2. BRAM IN CRYPTOGRAPHIC APPLICATIONS
In this section, we first discuss the features of an FPGA BRAM. A special focus is laid
on the application of these features to optimize SCA countermeasures. Thereafter a
general background of the used countermeasures, i.e., Masking and DPL, are provided.

2.1. Block RAM in Modern FPGA
Modern FPGAs possess large blocks of memories which are synchronous in nature.
For example, the latest Xilinx FPGAs have several blocks of 36 Kbits true dual-port
memories. The exact design of these BRAMs is not public but a few details about the
general architecture of these BRAMs are documented [Xilinx 2011]. Fig. 1 shows one
port of a dual-port BRAM in Spartan-6 FPGA. It can be deduced from the figure that
the BRAM contains register to synchronize input data and address before accessing
the memory array. The memory array is followed by a latch and an optional output
register. BRAM also contains several signals to control the use of output register or
set/reset the value of the latch and output register. The latch has been characterized
to leak in Hamming Distance at the clock falling edge [Bhasin et al. 2013]. Altera
AltSyncRams [Altera 2011] also possess a similar BRAM architecture. Therefore the
presented solution can also be extended to Altera FPGAs.

As previously stated, BRAMs are recommended for crypto-applications. Tab. I sum-
marizes the features of a BRAM and their use in relation to cryptographic applications.

Some of these options have already been used in cryptographic applications. Inter-
nal Register at input for state and Dual-Port Nature was first used by Drimer et
al. in [Drimer et al. 2008]. Reset in the BRAM was also used in Separated Dynamic
Differential Logic (SDDL [Velegalati and Kaps 2010]) to enable precharge propaga-
tion. In [Bhasin et al. 2013], authors have shown that the internal register at input
(address) of BRAM leaks very little and is difficult to attack. Moreover, we assume that
it is very unlikely to separate activities of the two ports of a BRAM being a hard-macro
in 6 65 nm CMOS.
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Fig. 1. Internal Architecture of Xilinx BRAM.

Table I. Features of a Xilinx BRAM. In the table, exponent 1 signifies an improvement in
area or performance, whereas exponent 2 signifies an improvement in SCA resistance

BRAM Feature Application to Cryptography
High Density RAM To implement large data (such as GLUT)1

Internal Register at input
To implement state register1

Not connected to FPGA routing2

No glitches2

Dual-Port Nature Single block for multiple Sboxes1

Output Register Available resource1

To achieve better timing2

Reset To enable precharge propagation in DPL1,2

Hard Macro in 6 65 nm CMOS Low leakage power2

To balance placement1,2

2.2. Masking and the use of BRAM
Masking relies on variable representation of sensitive data into randomized
shares [Chari et al. 1999]. A dth-order masking scheme splits a sensitive variable
Z ∈ Fn2 into d + 1 random shares, noted ~S = (Si)i∈J0,dK, in such a way that the re-
lation S0 ⊥ · · · ⊥ Sd = Z is satisfied for a group operation ⊥ (e.g., the XOR operation in
Boolean masking). For a simple Boolean masking scheme, order d = 1. When masking
is implemented in hardware, generally the mask as well as the masked data are com-
puted in parallel. Keeping this detail in mind, the leakage function for the first-order
masking countermeasure in hardware can be expressed as:

L = HW (Z ⊕M) +HW (M) +B , (1)

whereHW is the Hamming weight andB then noise. The shareM is the random mask
uniformly distributed over Fn2 and the share Z ⊕M is the masked variable. Variables
Z and M are assumed to be mutually independent. The linear parts of the cipher are
easier to be masked but the computation of non-linear Sbox S in presence of masking
is difficult. It involves computing S(Z)⊕M ′ from the variables M , Z⊕M and M ′ (new
mask) without compromising with SCA resistance.

To deal with this problem, one of the most common solutions is the Generalized Look-
Up Table (GLUT [Prouff and Rivain 2007]). The main idea of GLUT is to precompute a
look-up table, associated to the function S′ : (X,Y, Y ′) 7→ S(X⊕Y )⊕Y ′. To compute the
masked variable S(Z) ⊕M ′, GLUT performs a table look-up of GLUT [Z ⊕M,M,M ′].
Thus the value S(X ⊕ Y ) ⊕ Y ′ has been precomputed for every possible 3-tuple of
values. For first-order masking, the output mask and the input mask are equal (i.e.,
M = M ′). In this case, the dimension of the table is 2n instead of 3n and the look-
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up table becomes GLUT [Z ⊕M,M ], where Z,M and M ′ are variable of n-bits. Owing
to its structure the preferred target is a BRAM. Compared to an unprotected Sbox
S (n → p) of size 2n × p, a first-order masking GLUT requires 22n × 2p space. Very
often the hardware implementations computes the whole state in parallel, requiring
multiple instances of GLUT. Therefore the basic GLUT technique can be sometimes
difficult to be realized in FPGA when n is high (for example n = 8 in AES). The size of
GLUT further explodes when the desired resistance is of order d > 1.

An optimized version of GLUT in FPGA logic was proposed in [Regazzoni et al. 2011]
with a net overhead of roughly 3×. However the implementation of GLUT in logic is
sensible to higher-order attacks (albeit of small order) which exploit the leakage due
the glitches. In [Güneysu and Moradi 2011], authors propose a first-order SCA resis-
tant countermeasure using BRAM scrambling. BRAM scrambling implements a 2n×p
masked Sbox with a single mask. This Sbox uses the same mask for several encryp-
tion, which limits the order of SCA resistance. In the mean time, another Sbox which
is masked with a different mask is written to the other port of BRAM. Once the second
Sbox is ready, it is used for encryption while the first Sbox is refreshed with a new
mask. Another first-order countermeasure in the same line was proposed in [Nassar
et al. 2012], which proposes the reuse of Sboxes to reduce overhead. The main advan-
tage of this masking scheme is that it does not need a parallel mask-computation path
which also forms a basis for our masking scheme. Our masking scheme uses “precom-
puted” Sboxes with a random (secret) offset for every encryption. We show that it is
possible to design a masking scheme with reduced entropy < n bit, and achieve mono-
variate SCA resistance up to order d for a well chosen set of mask.

2.3. DPL and use of BRAM
The modus operandi of dual-rail circuits is to add redundant logic of opposite nature to
achieve constant activity irrespective of the data processed. A DPL protocol converts
every bit x to a pair (xT, xF). Complementary values of xT and xF are desired for a
proper balance and thus considered as valid values. Similar values for the pair (xT, xF)
can be used as separators between valid values. Thus DPL operates in two phases
where valid values are propagated in evaluation phase and a spacer in precharge
phase. Following the conditions stated above, DPL ensures a constant activity of each
compound gate pair. However, when DPL expands from a single gate to a complex
circuit, different placement and routing delays introduces other imbalances.

Fig. 2 shows the Wave Dynamic Differential Logic (WDDL [Tiri and Verbauwhede
2004]): one of the first introduced DPL also suitable for FPGA. It can be deduced that
all logic gates (except inverters) lead to an overhead of 2 while flip-flops result in an
overhead of 4. WDDL also has a restriction of using only positive gates which further
adds up to the overhead. In Fig. 2, the gates G and G are well balanced but if their in-
puts arrive at different time, an imbalance cannot be avoided. Thus proper placement
and routing are required for a secure DPL design, in absence of which, DPL could fail
due to early propagation effect (EPE [Nassar et al. 2010]) or routing imbalance [He
et al. 2012]. EPE arises from different evaluation time of a logic gate depending on
difference in arrival of inputs, which can be due to the different logic depth of the
several inputs. Routing imbalance is observed due to asymmetrical routing of T and
F rails. Since then, several improvements to WDDL have been proposed to improve
its resistance. One interesting proposal to counter the routing imbalance was called
MDPL (Masked Dual-rail Precharge Logic). MDPL randomly swaps the true and false
routing network to eliminate routing imbalance and also EPE in iMDPL (improved
MDPL [Popp et al. 2007]). This security improvement of iMDPL came at an area over-
head even greater than WDDL.
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Due to the discussed issues, DPL was not considered as a good countermeasure spe-
cially for FPGA application where a designer has very limited freedom over choice of
gates, placement and routing. Thereafter a couple of DPL countermeasures were pro-
posed which were able to use BRAM at a reasonable cost. One of the BRAM based
DPL, is SDDL [Velegalati and Kaps 2010]. SDDL used BRAMs at an area overhead of
2× compared to the unprotected design. This limited overhead comes from the reset
feature present in the Xilinx BRAM which can reset the output as desired. The reset
was used for precharge propagation at the output of the Sbox. Another DPL called
BCDL (Balanced Cell-based Dual-rail Logic [Nassar et al. 2010]) can also use BRAM
at an overhead of 4× owing to a synchronization. The synchronization signal of BCDL
also solves the problem of EPE. However both SDDL and BCDL do suffer from routing
imbalance and therefore need back-end techniques for balancing the dual-rail. AES
with T-tables reduces the fanout which in a way reduces routing imbalance and makes
back-end balancing easier [Bhasin et al. 2011].

3. EXPLOITATION OF BRAM TO OPTIMIZE COUNTERMEASURES
In this section, we propose two methods benefited from BRAM features for implement-
ing secure circuits at a reasonable cost. The first method is applied to masking coun-
termeasures by exploiting large memory array and dual-port nature of the BRAM.
The next method presents a new way (using BRAM) to organize the sequential part of
crypto-algorithm in a compact and balanced manner.

3.1. Optimized Masking Implementation using BRAM
Several solutions are proposed to mask the non-linear operation (now called Substitu-
tion box or Sbox) of a cipher but all solutions have a significant overheads. Since we
are using BRAM in our implementation, we focus on GLUT as the solution to mask
the Sbox. GLUT is a precomputed table which accepts the masked Sbox input (n-bits)
and the mask (n-bits) as inputs. It returns a masked Sbox output (p-bits) and the cor-
rection value (p-bits). For example, in DES a 64 × 4 Sbox is replaced by GLUT of size
4096 × 8. Similarly for AES, the size of the GLUT is 65536 × 16 for a 256 × 8 Sbox.
Please note that in hardware where implementations are parallel in general, several
instances of a Sbox are used and all of them must be masked. In a low-cost FPGA
like Xilinx Virtex-5 LX30, a parallel DES implementation is still possible but not for
AES. A single AES GLUT would occupy about 90% of the available BRAM, making a
parallel AES implementation unfeasible.

It is possible to design a masking implementation which reduces the overhead of
GLUT still keeping it resistant to the certain higher order of side-channel attacks.
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Masking schemes can reduce the GLUT overhead by reusing the mask and thus re-
ducing the overhead from 22n × 2p to 2n+k × p where k < n is the entropy of the mask.
In other words, instead of using 2n different values to mask the data, only 2k values are
used. For a proper hardware optimization, the number of Sboxes in a cipher N should
be a multiple of k. Such an implementation generally protects against first-order at-
tack, however by application of coding theory, the right set of mask can be chosen
to resist zero-offset higher-orders (univariate attacks targeting a single Sbox [Nassar
et al. 2011]). In the following, we consider univariate attacks which combine different
leakages.

For simplicity, we restrict ourselves to ciphers (e.g., AES, PRESENT) where all the
N Sboxes are the same and of bijective construction, i.e., of the format 2n × n. Ciphers
not abiding by these conditions are still possible to protect by this scheme with an
extra overhead. The details of this masking scheme are as follows. Firstly, a set of 2k
n-bit mask M is chosen. Now both the input and output of each Sbox S are masked as:
S(x⊕mi)⊕mi+1 where mi and mi+1 are consecutive elements of the set M . Actually i
and i+1 are to be understood as (i mod 2k) and ((i+1) mod 2k) (omitted for simplicity
of representation). The masked Sbox is now denoted as Sm and is of the same size
as unmasked S. If 2k is equal to N then all the Sboxes are unique. At each round
of the algorithm, the Sboxes Sm are reused by circular rotation of one position. Let us
consider a masked state x′ = x⊕mi is computed by Smi

which is masked with mi in the
current round r. In the next round, x′ is processed by Smi+1

. Precisely the computation
done by Smi+1 will be S(x′⊕mi)⊕mi+1 which is simplified to S(x)⊕mi+1. Similarly in
the next round, mask mi+1 is removed at the input of Sbox Smi+2 and mi+2 is applied
at the output. If the Sboxes are not bijective, an expansion function should be put in
place to make the output of Sbox coincide with size of the mask.

The set of mask M can be public however the M should be shifted by a random offset
before each encryption. M is chosen such that the jth order moment of the conditional
leakage E(Lj |Z = z) given a guess on the sensitive variable Z are all the same for
j = 1, 2, · · · , d. Thus only an attack of order (d+ 1) can succeed. Under this constraint,
the masks set M must be an orthogonal array of strength d [Hedayat et al. 1999]. The
linear operations are masked by a simple XOR operation with precomputed constants
applied at the end of each round. The N × n bit constants are chosen as a function
of initial offset and can be stored in BRAM as well. It is not always possible to find a
solution for M which resists at order d. Another feature of FPGA which comes handy
in such cases is dynamic reconfiguration. If it is not possible to find a solution for M
at order d, designers can opt for several sets of M with order < d and update them
regularly. Since the mask dependent part is inside the memory, modern FPGA kits
have specific tools which can reconfigure the FPGA to just change the BRAM content.
Alternately, concurrent read and write technique used in [Güneysu and Moradi 2011]
can be used by doubling the memory overhead.

The required rotation in the presented masking scheme can be done using barrel
shifters. Since the barrel shifters are composed of series of multiplexers which are a
major source of glitches in FPGA, they can cause unintentional leakage. Barrel shifters
are also resource consuming and affecting the performance of the whole system. For ex-
ample, a 128-bit barrel shifter would alone acquire around 100 slices in Xilinx Virtex-5
LX-30 FPGA. BRAMs can be very efficiently used in this application to get rid of barrel
shifters and thus glitches. The scheme to organize the Sboxes and implement them in
BRAM is shown in Fig. 3. These Sboxes can be further compressed by using dual-port
memory. All the masked Sboxes Sm are placed in each BRAM. From one BRAM to an-
other, Sm are laid with an offset of 1. Thus the BRAM has an input address of n + k
bits where n is the input of the Sm and k selects the correct masked Sbox from Sm0

to
SmN−1

. k forms the most significant bits of n + k. Thus the memory cost is multiplied
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Fig. 3. Optimized implementation of proposed masking scheme without barrel shifters

by 2k but can be small in terms of number of blocks. Since all the BRAM contain same
Sboxes in different order, the dual-port feature can be used to access the same data
with the corrected offset.

3.1.1. Application to AES-128. Now we apply the presented scheme to secure a parallel
AES-128 co-processor which computes one round per clock cycle. For AES, n = 8 and
N = 16. We found that it is possible to select a mask M for AES which resists up to
order d = 3. M is the (set of the) cosets of the linear code [8, 4, 4] and thus k = 4 for
16 masks. It can be proven that if the leakage is affine (a general case of “Hamming
weight” shown in Eqn. (1)) [Carlet and Guilley 2013], the set

M = [0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff] (2)

should be order 3 resistant. To optimize the scheme we use the input register of BRAM
as state register. An unmasked AES Sbox is 2 Kb which makes the composite Sbox
(Sm0

to SmN−1
) of size 16 × 2 = 32 Kb. This composite Sbox which easily fits in a Xil-

inx BRAM of 36 Kb, now has 12 bits of address, i.e., 8 bits corresponding to masked
byte concatenated with 4 bits of offset. Moreover the dual-port feature of the BRAM
can reuse the same memory space with two different ports. Thus N = 16 Sboxes need
only N/2 = 8 BRAMs. The overhead of presented masking scheme as compared to
unprotected reference AES is shown in Tab. II. The precomputed round unmasking
constants are implemented in BRAM which consumes 8 extra blocks. Round unmask-
ing constants can also be implemented in FPGA logic. Doing so, would require 128
slices instead of occupying 8 BRAMs at the risk of some unwanted glitches. The net
overhead in terms of slices is only 16% with minor loss of frequency. Since higher-order
attacks of order 4 and greater are difficult to realize in practice [Moradi 2012], an order
3 masking with mere overhead of 16% is a very practical solution.

3.2. Optimized DPL Implementation using BRAM
DPL involves duplication of each component of the circuit to ensure a balanced activity.
Duplication of standard logic is simple which leads to an overhead of little over twice
in terms of resources used. However a simple duplication of memory leads into expo-
nential increase in overhead. A memory of size 2n × p, will have an overhead of 2n+1
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Table II. Area and frequency overhead of masked AES after optimization on
Virtex-5

Architecture Unprotected Masked Overhead
Slices 733 856 1.16×

Registers 0 0 0×
BRAM 8 16 2×

Max. Frequency [MHz] 144.3 141.1 1.02×

up on duplication. This overhead can be reduced to just 2× by using BRAM properties.
The BRAM overhead is not the only problem. For a DPL circuit to have a constant
activity in every cycle, a precharge spacer should flow through the whole circuit.

We propose a method to further optimize FPGA implementations of DPL both in
terms of area and security. This optimization exploits the following features of BRAM:
input register, output register with reset, dual-port nature and hard macro. A DPL flip-
flop is made of 4 flip-flops (Fig. 2), where each flip-flops pair (master-slave) is located in
the true and false rails. The input register can be used for the master flip-flop and the
output register serves as the slave. The use of output register also introduces a latency
of one clock cycle. The extra cycle latency is not a problem in DPL because it aids the
two-phase DPL protocol. Moreover, the dual-port feature allows to implement the true
and the false rails of the flip-flop. The optimization scheme is depicted in Fig. 4; it is a
special instantiation of the Xilinx BRAM (refer to Fig. 1).

PORT A

PORT B

CLK

Precharge

M

M

S

S

OUTTINT

INF
OUTF

SBOXF

SBOXT

Fig. 4. Proposed scheme to implement a DPL Sbox and Flip-Flops in a BRAM.

A very common issue in DPL design is the propagation of precharge or the spacer.
Since the BRAM will be preceded by some combinational circuit, the spacer is easily
propagated to the input register of the BRAM. To precharge the output register, the
reset (also known as SSR [Velegalati and Kaps 2010]) feature provides just the right
solution. Only the combinational gates are implemented in FPGA slices. The proposed
architecture brings a three-fold advantage for implementing DPL design into FPGA.
Firstly, the logic is not used to implement two-stages (otherwise leading to 4×) of the
state registers thus significantly reducing the overhead. Secondly, the regular struc-
ture of BRAM ensures proper and balanced placement of the main leakage source of
the design, i.e., state register. Finally, it is known that leakage from a BRAM itself
is less than flip-flops in FPGA slices, thus enhanced SCA resistance [Velegalati and
Kaps 2010]. The balanced placement of XOR gates can be ensured by using LUT6 2
from Xilinx to place the whole dual-rail cells (G and G in Fig. 2). Balancing routing in
FPGAs is challenging, because FPGA architecture and CAD tools are not designed for
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these weird DPL structures. But some amount of balancing can be achieved by proper
placement. Balancing routing is another area of research, and repair techniques like
proposed in [He et al. 2012] can repair routing with extra effort, but it falls out of the
scope of this paper.

3.2.1. Application to AES-128. To test our proposed optimization on a real DPL circuit,
we had two choices: SDDL and BCDL. To our knowledge, SDDL and BCDL, are the
only DPL subsets proposed which are capable of using BRAM at reasonable cost. Since
SDDL suffers from security issue like EPE, we choose to apply our optimization on
BCDL. The target algorithm is AES-128 using T-tables because T-tables merge Sub-
Bytes and MixColumns functions in a precomputed table, thus reducing the routing
fanout. Precisely, we use the implementation of AES-128 protected by BCDL as de-
scribed in [Bhasin et al. 2011] (detailed in Appendix A.1). Applying our technique to
further optimize BCDL, BRAMs and flip-flops are merged into a single entity.

Table III. Area and Frequency Overhead of BCDL for AES module excluding
key expansion after optimization on Virtex-5

Architecture Unprotected BCDL Overhead
Slices 176 1128 6.4×

Registers 0 0 0×
BRAM 8 16 2×

Max. Frequency [MHz] 258 283 0.911×

The overhead of protecting AES with BCDL after applying our optimization is given
in Tab. III. Both the unprotected AES and its BCDL version implement state registers
in BRAM. The number of slices is increased by roughly 6.4× as XOR in BCDL is costly,
as also pointed in the original paper [Bhasin et al. 2011]. It is limited to 1-LUT per bit
of XOR. The BRAMs are simply doubled, while the performance is improved due to the
usage of output register of the BRAM. As BRAMs are a hard-macro, balanced place-
ment of the sequential part of AES (128×4 bits registers) is ensured without placement
constraints. DPL balancing has been checked by the post P&R i.e., absolutely close to
on-device conditions. Besides, BCDL is free of glitch by design. We do a proof of concept
study to quantify the gain of balanced placement and keep routing untouched for the
two designs to have a fair evaluation.

4. SECURITY ANALYSIS
The previous sections dealt with the aspect of the proposed optimizations to masking
and DPL. Now we analyze the implemented countermeasures from a security aspect
with respect to SCA.

4.1. Attack Metrics and Experimental Platform
Let us denote a random variable L representing the side-channel leakage (e.g., power
consumed) while computing Z = f(X⊕k). In this equation, k is the n-bit secret key and
X is a variable quantity known to the attacker. Time is another parameter not shown.
A standard SCA tries to find correct key k? for which Z and L have maximum depen-
dency. Since L is noisy, thus several measurements of Z are required to estimate L.
For hardware implementation, the leakage L depends on the Hamming Distance (HD)
model. It expresses at first-order the power consumption of CMOS gates in electronic
devices as it corresponds to signal transitions. The leakage can be expressed as:

L = HD(Z,R) +B = HW (Z ⊕R) +B ,

where B is the noise, and R is the reference state.
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(a) (b)

Fig. 5. Variance of the predicted leakage for first three Sboxes at (a) order 1, 2 and 3; (b) order 4 leakage L

For SCA analysis, we use Correlation Power Analysis (CPA [Brier et al. 2004]) as a
distinguisher. CPA is a computation of the Pearson Correlation Coefficient ρ between
the side-channel leakage T and the expectation of the leakage model L knowing Z,
noted E(L|Z), which is equal to:

ρ(T,E(L|Z)) =
E((T − E(T )) · (E(L|Z)− E(L)))

Var(T )1/2 · Var(E(L|Z))1/2
,

where E and Var denote the expectation and the variance respectively. To analyze the
efficiency of SCA, two metrics are used [Standaert et al. 2009]. The first metric is
Minimum Traces to Disclosure (MTD), i.e., the minimum number of measurements
needed to perform a successful attack. The other metric used is called guessing entropy
which generally is useful when an attack is not successful. Guessing entropy gives the
average number of key hypotheses to test to reveal the correct key.

We test our designs on Xilinx Virtex-5 FPGA soldered on a SASEBO-GII platform.
For SCA, traces are acquired on a 54855 Infiniium Agilent oscilloscope with a band-
width of 6 GHz and a maximal sampling rate of 20 GSample/s, using an antenna of
the HZ–15 kit from Rohde & Schwarz. Since the analysis results can widely vary from
one measurement setup to another, we always use a reference implementation to give
readers an idea of the security gain achieved.

4.2. Security Analysis of Masked AES
To develop the leakage-function of masking we refer back to Eq. (1). For a first-order
mask, the prediction function z 7→ E(HW (Z ⊕M) +HW (M)|Z = z) reduces to a con-
stant and makes simple SCA attacks impossible. To exploit the leakage from masked
implementation zero-offset SCA [Waddle and Wagner 2004] are often used. These at-
tacks are based on the principle that higher-order moments are related to the key.

For a masking of order d, the d+1 order moment can be key-dependant. Theoretically,
ρ((T − E(T ))d+1,E(L|Z)) should result in a successful attack, where T − E(T ) are the
centered side-channel traces. However, as the order d increases, CPA becomes less
practical because the noise in the traces is amplified. Moradi in [Moradi 2012] suggests
that attacks of order > 4 can be considered far from practice. We acquired 150, 000
traces (averaged 16 times) for the masked implementation explained in Sect. 3.1.1.

The presented masking is a special case where the number of mask is 16 and the
mask set is public. The secret is the 4-bit offset which is not known to the attacker. In
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this case, the leakage function can be written as HW (Z ⊕M)d, d being the power at
which the attacker raises the centered traces. The prediction function is z 7→ E(HW (z⊕
M)d), i.e., the leakage to the power d averaged over the whole set M for all offsets.
We tested the values of possible predicted leakage (i.e. E((z ⊕M)d)) for 256 possible
subkeys of two chosen Sbox for order 1 − 4. As expected, the predictions came out to
be constant for order 1, 2 and 3 which renders the attack impractical. Since the actual
prediction is constant, its Hamming weight will also be constant. Only at order 4, the
predictions vary from each other as shown in Fig. 5 (b) which points towards possibility
of an attack. In Fig. 5 (b), it is normal to have a higher variance of prediction in Sbox
0 as it covers only 163 of the 256 values due to absence of ShiftRows. Sboxes 1 and 2
cover all 256 values and thus show lower variance. We tried a 4-th order attack on the
set of acquired traces which failed probably due to limited number of traces or high
noise at order 4. Thus the masking scheme is shown to be compact and secure at least
up to order 3.

4.2.1. Security Validation on Masked AES with Reduced Constraints. In order to ascertain
that your high-order order attack software is implemented correctly, we reduce some
constraints on the masking implementation. In this evaluation, the masks set is:

M = [0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff].

This (artificial) mask set contains two complementary values and resists only at-
tacks of order 1. Another major change was done in the implementation of the state
register. Instead of implementing the state register as the input register of the BRAM,
we implemented the state register in logic. By doing so, we increase the signal to
noise ratio (SNR) of the leakage. It is shown that the leakage SNR can be multiplied
by a factor as high as 100×, just by moving the state register from BRAM to FPGA
logic [Bhasin et al. 2013]. Implementation of state register in logic might also intro-
duce some extra glitches, which are otherwise hidden inside the BRAM. These glitches
are capable of leaking sensitive information [Mangard et al. 2005]. In other words, the
described changes strengthen the profile of the attacker.

We again acquired 150,000 side-channel traces (averaged 16 times) for this masked
implementation with reduced constraints. First of all, we check the quality of side-
channel leakage, by performing a CPA on the traces with the knowledge of mask set
and random offset. The attack reveals the secret key in 4,700 traces. This is equiv-
alent to attacking an unprotected implementation. Next we repeat a CPA, without
any knowledge of the random offset to detect any first-order leakage. Since the chosen
mask set resists first-order attacks, a CPA on these 150,000 traces fails to reveal the
secret key (as shown in Fig. 6(a)). Next we perform a second-order zero-offset attack us-
ing z 7→ E(HW (z⊕M)2) as the leakage prediction function. The traces are centered be-
fore applying the attack which eventually computes ρ((T −E(T ))2,E(HW (z⊕M)2|Z)).
This attack of order 2 is able to break a masking implementation resistant to order
1 attacks with 40,000 traces. This is an 8× increase w.r.t. to a 1-order protection; it
explains why the implementation with the mask given in Eqn. (2) does not break with
150, 000 traces. Fig. 6(b) plots the result of the attack for Sbox 0, where we can clearly
distinguish the correct key from all the false keys. Thus we can conclude that the pro-
posed masking implementation of order d can be broken at order d+1. However as the
order increases, certain practical factors (e.g., noise) make the attack more difficult.

4.3. Security Analysis of DPL AES
Theoretically, a DPL design should be leakage-free. DPL is a special case where any
two evaluations are separated by a precharge phase. In a well-balanced DPL circuit,
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(a) (b)

Fig. 6. Results of a CPA attack (a) order 1; (b) order 2, on a first-order resistant masking scheme

(a) (b)

Fig. 7. Dual-rail timing bias in (a) BCDL OLD, (b) BCDL NEW

along with every Z, a Z is also computed, which can be modelled as:

L = HW (Z) +HW (Z) +B .

Ideally, HW (Z) +HW (Z) is a constant equal to n which reduces the leakage L to just
noise. Now if we also consider placement and routing imbalance, Z and Z do not occur
simultaneously. Thus for short periods of time, albeit capturable by an oscilloscope, L
depends either on HW (Z) or HW (Z), which reduces the model to HW (Z).

Now we try to quantify the security improvement brought due to balanced place-
ment of BCDL by the proposed optimization. As previously stated, net delay bias has
significant impacts on the balance between the dual rails of DPL logic. We achieved
better routing balance between the nets for the security sensitive nets in the optimized
BCDL (now referred as BCDL NEW) as compared to original BCDL (now referred as
BCDL OLD) version. We would like to remind the readers that the BCDL OLD imple-
ments the state register in FPGA slices. Fig. 7 depicts net delays and the differences
between each of the 128 pairs of input nets to the flip-flop (same as BRAM input in
BCDL NEW). We choose these nets because they accumulate the maximum delay and
therefore are most sensible to bias. Values for T and F rails are outlined by different
colours. BCDL NEW has a smaller delay difference as compare to BCDL OLD. Aver-
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(a) (b)

Fig. 8. (a) MTD and (b) Guessing entropy for the two BCDL circuits after CPA on 100k traces

aged delay bias from the old BCDL to the new one is reduced roughly from 0.25 ns to
0.12 ns, roughly a reduction factor of 1.48.

Further we analyzed the two architectures using CPA over 100,000 traces which
were averaged 16 times. The result is shown in Fig. 8. The Sboxes with MTD more
than 100,000 traces indicate insufficient traces for a successful attack. So we plot the
guessing entropy of the correct key in Fig. 8(b). It can be simply deduced from the
plot that with the optimization, the resistance has been improved. We cannot directly
connect the timing result with the CPA result because of lack of precise information on
the physical properties of the device. However, both the timing and CPA results favour
the improved BCDL (BCDL NEW).

5. CONCLUSIONS AND PERSPECTIVES
In this paper, we investigated the power of BRAMs available in FPGAs to implement
intrinsic countermeasures. BRAMs possess many features which can aid the design of
cryptographic circuits. These features like presence of registers at input and output,
ability to reset the output register, dual-port nature can be very well exploited. Also
the regular structure of BRAM (hard-macro) saves the designers from applying specific
placement constraints. We exploit these features to propose compact and secure imple-
mentation of existing countermeasures (masking and DPL). The optimizations have
been applied on AES co-processor and tested on Xilinx Virtex-5 FPGA. Their security
analyses reveal positive results. The masking countermeasure had an overhead of only
16% and was shown to be secure for the chosen model, thanks to the removal of barrel
shifters. In the DPL countermeasure, the whole sequential part of AES that is also
the main source of leakage was packed inside the BRAM with balanced placement by
design. To our knowledge, the implementations proposed are the most compact of the
state-of-the-art. Thus security is a another parameters which motivates integration of
ample BRAM resources into FPGA chips.

Finally we would like to conclude that the security of a countermeasure depends on
the specific leakage model of the device. Therefore it should be interesting to research
formal methods to characterize leakage models for the given device.

As a perspective, we note that further tradeoffs are possible to explore in low-entropy
masking schemes such as RSM. Typically, to avoid some bi-variate, multi-variate or
collision attacks, more masks could be used (e.g., one per byte of the algorithm to

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Exploiting FPGA Block Memories for Protected Cryptographic Implementations A:15

protect). Another topic in this direction could be study the effect of using fewer values
for the masks in the leakage squeezing masking scheme [Maghrebi et al. 2011].
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Keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. In AFRICACRYPT
(LNCS), Vol. 6055. Springer, 279–296. Stellenbosch, South Africa. DOI: 10.1007/978-3-642-12678-9 17.

Amir Moradi. 2012. Statistical Tools Flavor Side-Channel Collision Attacks. In EUROCRYPT (Lecture Notes
in Computer Science), David Pointcheval and Thomas Johansson (Eds.), Vol. 7237. Springer, 428–445.

Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley. 2010. BCDL: A
high performance balanced DPL with global precharge and without early-evaluation. In DATE’10. IEEE
Computer Society, 849–854. Dresden, Germany.

Maxime Nassar, Sylvain Guilley, and Jean-Luc Danger. 2011. Formal Analysis of the Entropy / Security
Trade-off in First-Order Masking Countermeasures against Side-Channel Attacks. In INDOCRYPT
(LNCS), Vol. 7107. Springer, 22–39. Chennai, Tamil Nadu, India. DOI: 10.1007/978-3-642-25578-6 4.

Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. 2012. RSM: a Small and Fast
Countermeasure for AES, Secure against First- and Second-order Zero-Offset SCAs. In DATE. IEEE
Computer Society, 1173–1178. Dresden, Germany. (TRACK A: “Application Design”, TOPIC A5: “Secure
Systems”).

Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan Mangard. 2007. Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In CHES (LNCS), Vol. 4727. Springer, 81–94. Vienna, Austria.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://dx.doi.org/10.1145/2487726.2487735


A:16 S. Bhasin et al.

Emmanuel Prouff and Matthieu Rivain. 2007. A Generic Method for Secure SBox Implementation. In WISA
(Lecture Notes in Computer Science), Sehun Kim, Moti Yung, and Hyung-Woo Lee (Eds.), Vol. 4867.
Springer, 227–244.

Francesco Regazzoni, Yi Wang, and François-Xavier Standaert. 2011. FPGA Implementations of the AES
Masked Against Power Analysis Attacks. In COSADE. 56–66. Darmstadt, Germany.

François-Xavier Standaert, Tal Malkin, and Moti Yung. 2009. A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In EUROCRYPT (LNCS), Vol. 5479. Springer, 443–461. Cologne,
Germany.

Kris Tiri and Ingrid Verbauwhede. 2004. A Logic Level Design Methodology for a Secure DPA Resistant
ASIC or FPGA Implementation. In DATE’04. IEEE Computer Society, 246–251. Paris, France. DOI:
10.1109/DATE.2004.1268856.

Rajesh Velegalati and Jens-Peter Kaps. 2010. Techniques to enable the use of Block RAMs on FPGAs
with Dynamic and Differential Logic. In International Conference on Electronics, Circuits, and Systems,
ICECS 2010. IEEE, 1251–1254.

Jason Waddle and David Wagner. 2004. Towards Efficient Second-Order Power Analysis. In CHES (LNCS),
Vol. 3156. Springer, 1–15. Cambridge, MA, USA.

Xilinx. 2011. Spartan-6 FPGA Block RAM Resources User Guide — UG383 (v1.5). (2011).
http://www.xilinx.com/support/documentation/user guides/ug383.pdf.

APPENDIX
A.1. Balanced Cell-based Dual-rail Logic (BCDL)
BCDL [Nassar et al. 2010] is a DPL countermeasure specially designed for securing
FPGA-based implementation. The main advantage of BCDL comes from a global syn-
chronization signal which we call P . It has been formally proven without glitches and
free from EPE in [Briais et al. 2013]. A BCDL cell is divided into two stages, namely
precharge and evaluation stages. Modern FPGAs like Virtex-5 possess LUT6 2 which
can implement a whole two input BCDL cell. BCDL is implemented using bottom-
up approach where the main primitives of the algorithm are identified and secured.
Thereafter the primitives in the reference design are replaced with secure primitives.
Generally four BCDL primitives are deployed which are enough to implement modern
crypto-algorithms like AES. A BCDL register and Sbox are earlier shown to be packed
in a single BRAM (Sect 3.2). A BCDL multiplexer is made by doubling an unprotected
multiplexer and ensuring that the selection signal should not be a data (dual-rail) sig-
nal. For constant activity, the dual multiplexer should process data of inverse polarity
as the original. A BCDL XOR gate needs to be designed with care because it suffers
the risk of glitches. To ensure glitch-free activity of BCDL XOR, the dual-outputs are
described as:

OT = (P ∧ I1T ∧ I1F ∧ I2T ∧ I2F ) ∨ (P ∧ I1T ∧ I1F ∧ I2T ∧ I2F )
OF = (P ∧ I1T ∧ I1F ∧ I2T ∧ I2F ) ∨ (P ∧ I1T ∧ I1F ∧ I2T ∧ I2F ) ,

where I1 and I2 are two dual rail inputs, O a dual-rail output and P the global
precharge.
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