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Abstract: Quasicrystals (QCs) possess rotational symmetries forbidden in the conventional
crystallography and lack translational symmetries. Their atoms are arranged in an ordered but
non-periodic way. Transmission electron microscopy (TEM) was the right tool to discover such
exotic materials and has always been a main technique in their studies since then. It provides the
morphological and crystallographic information and images of real atomic arrangements of QCs.
In this review, we summarized the achievements of the study of QCs using TEM, providing intriguing
structural details of QCs unveiled by TEM analyses. The main findings on the symmetry, local atomic
arrangement and chemical order of QCs are illustrated.
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1. Introduction

The revolutionary discovery of an Al–Mn compound with 5-fold symmetry by Shechtman et al. [1]
in 1982 unveiled a new family of materials—quasicrystals (QCs), which exhibit the forbidden rotational
symmetries in the conventional crystallography. The ordered but aperiodic atomic arrangement in
QCs enables them to possess a combination of very attractive properties, such as high hardness [2],
high wear resistance [3,4], low thermal conductivity [5,6], low electrical conductivity [5,7], low
surface energy [8], and high infra-red absorption [9,10]. Such properties give QCs a wide variety of
potential applications, including thermal barrier coatings [11–13], wear resistant coatings [12,14,15],
reinforcements in composites [11,16,17], and light absorbers [11,12]. In order to better understand and
tailor the unique physical properties of QCs to meet our increasing demands for new materials, it is
significant to get a comprehensive understanding of their structures.

Transmission electron microscopy (TEM) was developed to overcome the resolution limit of
optical microscopy shortly after the wave-like characteristics of electrons were proposed and verified
in the early 20th century [18]. Since the first instrument was built in the UK in 1936 [18], TEM has
revolutionized our understanding of materials: it provides the structural, phase, crystallographic
and compositional information [19–21], which has already reached atomic scale nowadays [22,23].
In addition, the capabilities of the TEM can be further extended by adding certain detectors, such as an
annular dark field detector and energy dispersive X-ray spectrometry (EDX) detector. Owing to its
versatility and high spatial resolution, TEM has become a major analysis tool in a range of scientific
fields, including materials science [24], chemistry [25,26] and biology [27].

TEM has been intensively involved in the study of QCs since Shechtman et al. [1] discovered
the icosahedral Al-Mn phase through its electron diffraction pattern analysis [28]. This is due to the
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significant advantages of TEM in the characterization of QCs: the bright and dark field images can
provide the morphological and microstructural information of QCs [29,30]; the forbidden symmetries
(5, 8, 10, 12-fold) of the electron diffraction (selected area electron diffraction (SAED) and convergent
beam electron diffraction (CBED)) patterns are the proof of the presence of QCs [31,32]; high-resolution
TEM (HRTEM) allows for phase-contrast imaging of the atoms in QCs [33,34]; scanning transmission
electron microscopy (STEM) combined with a high angle annular dark field (HAADF) detector provides
the intuitive atomic positions in QCs [35,36]. For the critical question in the study of quasicrystalline
structure—how atoms are arranged—electron diffraction patterns, HRTEM and STEM HAADF can
provide distinct answers.

As TEM is an excellent method for the study of QCs, it is imperative to have a review on the
progress of exploring the structure of QCs by this method. In this paper, we reviewed the research
work on the diffraction patterns as well as HRTEM and STEM-HAADF analysis of QCs to get a better
understanding of their quasicrystalline structure unveiled using TEM. QCs are classified into three
dimensional (3D), two dimensional (2D) and one dimensional (1D) ones based on their dimensionality
of quasiperiodicity: 3D QCs are quasiperiodic in all three dimensions; 2D QCs are quasiperiodic in
two dimensions and periodic in the third; 1D QCs are periodic in only one dimension and periodic
in the other two dimensions. Icosahedral phase is the only 3D QC found, and octagonal, decagonal
and dodecagonal phases are the three types of 2D QCs discovered to date. Icosahedral and decagonal
QCs constitute a vast majority of the QCs known thus far, and have been extensively studied; other
QCs only exist in a few alloys, and have been much less investigated. Therefore, our review is focused
on the study of icosahedral and decagonal QCs using TEM, with other QCs briefly discussed. Owing
to the absence of a unit cell and the inflation–deflation property of the tiling structure, it is difficult
to solve a 3D quasicrystalline structure with HRTEM or HAADF-STEM. However, it is much easier
to address 2D quasicrystalline structures using these two methods, because 2D QCs are the periodic
stack of quasiperiodic planes. Thus, our review mainly incorporates the HRTEM and HAADF-STEM
study of decagonal QCs.

2. Diffraction Pattern Analysis of QCs

When electrons pass through a thin sample, their interaction with the atoms in the sample causes
a phase shift in the electron wave. Electron diffraction occurs as a result of the interference of the
electron wave at the lattice planes of materials. Diffraction patterns thus reflect the atomic arrangement
in the sample. For SAED, the paralleled electron beams illuminate the sample with the diffraction
spots formed in the back focal plane of the objective lens, whereas convergent illumination is used
to obtain diffraction discs. Typically, an area of ~0.1 �m in the sample can be selected by using a
diaphragm in SAED, while the focused beam in CBED allows one to analyze an area <5 nm. Therefore,
SAED is generally employed for phase and texture analysis–through the observation of symmetry
and determination of reciprocal space structure by tilting in the goniometer–on a sub-micrometer to
micrometer length scale, while CBED is very powerful in the determination of space group and lattice
parameters on the nanometer scale.

The capability of TEM to analyze a tiny region played a very important role in the discovery of
QCs. Due to the small size (around several microns) of the first quasicrystalline phase discovered in
the Al–Mn alloy, diffraction patterns of TEM was the only feasible method to determine its icosahedral
symmetry. For the same reason, other QCs, including octagonal and dodecagonal ones, were all first
identified using TEM. Although QCs with much larger grains can now be obtained—even single crystal
QCs in centimeters have been successfully prepared, diffraction pattern analysis is still extremely
useful, because it can provide the information of point group, space group, thickness, strain, and
lattice parameters. Both SAED and CBED are employed in the study of QCs. The former is easier to
perform, while the latter can provide more information, including space group, point group, specimen
thickness, and more precise lattice parameters.
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2.1. SAED

2.1.1. 3D QCs

In Shechtman et al.’s [1] TEM study of Al–Mn alloy prepared by rapid cooling, three types
of SAED patterns with 5-fold, 3-fold and 2-fold symmetries were obtained by tilting the specimen
goniometer (Figure 1a–c). The three types of symmetries and the angles between these SAED patterns
match those of icosahedral symmetries (Figure 1d,e). These SAED patterns, therefore, correspond
to icosahedral symmetries; an aperiodic but ordered phase, QC, was discovered. The numbers of
the three types of symmetry axes (Figure 1d) are 6, 10 and 15, respectively. Aperiodic distribution
of diffraction spots in the 5-fold pattern reflects the ordered but aperiodic atomic arrangement in
the icosahedral QCs. For the conventional crystals where atoms are periodically arranged, the spots
in the SAED patterns are periodic, while for the amorphous materials where atoms are disordered,
no discrete spots but halo rings are present in the SAED patterns.
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reproduced from reference [1] with permission). 
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Figure 1. Icosahedral structure: SAED patterns taken along (a) 5-fold symmetry axis; (b) 3-fold
symmetry axis and (c) 2-fold symmetry axis; (d) three types of symmetry axes in the icosahedral
structure; (e) stereographic projection of the symmetry elements of the icosahedral group
((a–e) reproduced from reference [1] with permission).

The lattice of icosahedral QCs can be obtained by the projection of a 6D hypercubic into the 3D
space. Theoretically, there are three types of 6D hypercubic lattice—primitive, body-centered and
face-centered—corresponding to icosahedral lattice in the 3D space [37]. The lattices generated by
the projection of the three different 6D hypercubic lattices into the 3D space are called primitive,
body-centered and face-centered icosahedral QCs, respectively. All the icosahedral QCs discovered so
far are primitive or face-centered. They can be easily distinguished by their 2-fold patterns: along their
fivefold direction, the distance between the diffraction spots is inflated by �3 and � (� = (1 + 51/2)/2)
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for primitive and face-centered icosahedral QCs, respectively [38]. The first QC discovered is primitive
icosahedral phase [1]. Later, this type of icosahedral phase was found in Ag–In–Yb [39], Cd–Mg–Rare
Earth [40]. The face-centered icosahedral QCs were first discovered by Tsai et al. [41] in Al–Cu–Fe and
later in Al–Pd–Mn [42] and Al–Pd–Re [42], and Zn–Mg–Rare Earth [43] etc.

2.1.2. 2D QCs

Most of the 2D QCs found so far are decagonal phases, which have one 10-fold axis and two types
of characteristic 2-fold axes (each type having 10 rotational axes, schematically shown in Figure 2a).
The twofold axes are perpendicular to the 10-fold axis and the angle between the neighboring 2-fold
axes is 18�. Along the tenfold axis, quasiperiodic atomic layers are stacked periodically. The diffraction
spots are thus arranged periodically in this direction and quasiperiodically perpendicular to this
direction. The periodicity along the 10-fold axis can be determined from the 2-fold symmetry patterns.
Different periodicities along the 10-fold axis have been reported in different alloys: 0.4 nm [44–46],
0.8 nm [47,48], 1.2 nm [32,49] and 1.6 nm [50,51], which correspond to a stacking of 2, 4, 6 and 8 atomic
layers, respectively [52,53]. Figure 2b–d are the SAED patterns taken along the periodic axis c* and two
types of 2-fold symmetry axes (A and B) of decagonal Al70Ni20Rh10 [31], respectively. The periodicity
along c* is determined to be 0.4 nm from Figure 2c.
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Figure 2. Decagonal structure: (a) schematic of decagonal structure; SAED patterns taken along
(b) 10-fold symmetry axis, (c) 2-fold symmetry axis A and (d) 2-fold symmetry axis B of Al70Ni20Rh10

(reproduced from reference [31] with permission).

From systematic absences, one can determine the lattice type as well as screw axes and glide
planes, as lattice centering and symmetry elements with translation (glide planes and screw axes)
cause certain reflections to have zero intensity in the diffraction pattern. In the SAED patterns taken
along the 2-fold axes of decagonal phases, the absence of the reflection arrays indicates the existence of
a 105 screw axis and/or a glide plane (Figure 2d). Such screw axis and/or glide plane have been found
in Al–Ni–Rh [31], Al–Co–Ni [54], Al–Rh–Cu [55] and Al–Ni [56].

SAED patterns also reveal the structural variations of QCs with different composition or
processing routes. Beeli [57] reported six decagonal variants in the Al–Co–Ni alloys: Ni-rich basic
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structure, type-I superstructure, type-II superstructure, transition state between types I and II, S1
superstructure and type I superstructure of five-fold QC (Figure 3). They were obtained by altering the
composition and annealing parameters. Their differences are revealed in the SAED patterns along the
10-fold axis. The basic structure has the highest structural order with sharp spots in the diffraction
pattern (Figure 3a); in the diffraction pattern of the S1 structure, S1 reflections are present but S2
reflections disappear or become very weak (S1 and S2 are two types of satellite reflections denoted
after Edagawa et al. [58], Figure 3b); in the SAED pattern of the type-I superstructure, both S1 and S2
reflections are present (Figure 3c); in the diffraction pattern of type-II superstructure, there are diffuse
satellite reflections positioned in halfway between two strong peaks (Figure 3d), and a transition state
exists between type-I and type-II (Figure 3e). In addition, a variant with 5-fold symmetry is also
present: its SAED pattern (Figure 3f) shows that two spots at an angle of 36� indicated by the two
arrows have different intensity; S1 and S2 reflections occur. Moreover, SAED pattern analysis indicates
that in Al–Co–Ni alloys the S1 superstructure transforms into the Type-I superstructure and the Ni-rich
basic structure into the S1 superstructure when annealed at 650 �C [59].

Crystals 2016, 6, 105 5 of 16 

 

structure, type-I superstructure, type-II superstructure, transition state between types I and II, S1 
superstructure and type I superstructure of five-fold QC (Figure 3). They were obtained by altering 
the composition and annealing parameters. Their differences are revealed in the SAED patterns 
along the 10-fold axis. The basic structure has the highest structural order with sharp spots in the 
diffraction pattern (Figure 3a); in the diffraction pattern of the S1 structure, S1 reflections are 
present but S2 reflections disappear or become very weak (S1 and S2 are two types of satellite 
reflections denoted after Edagawa et al. [58], Figure 3b); in the SAED pattern of the type-I 
superstructure, both S1 and S2 reflections are present (Figure 3c); in the diffraction pattern of type-II 
superstructure, there are diffuse satellite reflections positioned in halfway between two strong 
peaks (Figure 3d), and a transition state exists between type-I and type-II (Figure 3e). In addition, a 
variant with 5-fold symmetry is also present: its SAED pattern (Figure 3f) shows that two spots at 
an angle of 36° indicated by the two arrows have different intensity; S1 and S2 reflections occur. 
Moreover, SAED pattern analysis indicates that in Al–Co–Ni alloys the S1 superstructure 
transforms into the Type-I superstructure and the Ni-rich basic structure into the S1 superstructure 
when annealed at 650 °C [59]. 

 
(a) (b)

 
(c) (d)

 
(e) (f)

Figure 3. A quarter of SAED pattern of different decagonal Al–Co–Ni structures: (a) Ni-rich basic 
structure; (b) S1-type; (c) Type-I; (d) Type-II; (e) transition state between types I and II; and (f) type I 
superstructure of five-fold QC (reproduced from reference [57] with permission). 

Figure 3. A quarter of SAED pattern of different decagonal Al–Co–Ni structures: (a) Ni-rich basic
structure; (b) S1-type; (c) Type-I; (d) Type-II; (e) transition state between types I and II; and (f) type I
superstructure of five-fold QC (reproduced from reference [57] with permission).
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The diffraction patterns also reflect the order of atomic arrangement in the QCs. Diffraction streaks
have been found in the SAED patterns of the decagonal structures in Al–Rh–Cu [55], Al–Co–Cu–Ni [60]
and Al–Ni–Fe [61]. Saito et al. [61] proposed that these diffusion streaks may be attributed to the
structural modulation. In addition, the SAED patterns also reflect the order of the decagonal structure.
In the SAED patterns, the little deviation of reflections from the regular positions and the regular
shapes of the reflection spots as well as the appearance of many sharp weak spots at the decagonal
positions indicate that the decagonal structure is highly-ordered [62].

The first octagonal QCs were discovered in rapidly solidified V–Ni–Si and Cr–Ni–Si alloys in 1987
through SAED patterns analysis [63]. Later, such QCs were also found in Mn–Si [64], Mn–Si–Al [65]
and Mo–Si–Ni [66]. These QCs have an 8-fold symmetry along the periodic axis. There are two types of
2-fold axes perpendicular to the 8-fold axis (each type having 8 rotational axes). The one-dimensional
periodicity along the 8-fold axis can be determined from the SAED pattern taken along the 2-fold axis
and the angle between the neighboring 2-fold axes is 22.5�. In the SAED pattern taken along the 8-fold
axis, there are two types of diffraction spot rows and the space between neighboring spots in them is
inflated by either

p
2 or 1 +

p
2 [63].

The first dodecagonal QC was discovered in 1985 in Ni–Cr alloy. Later, such 2D QCs were also
found in V–Ni(–Si) [67] and Ta-Te [68]. They have one 12-fold axis and two types of characteristic
2-fold axes (each type having 12 rotational axes). The angle between the neighboring 2-fold axes is
15�. In the SAED pattern taken along the 12-fold axis, diffraction spots are arranged on concentric
dodecagons. Like decagonal and octagonal QCs, their periodicity can be determined from the 2-fold
symmetry patterns.

2.2. CBED

In SAED patterns, each spot has a corresponding symmetrical spot with the same intensity,
i.e., every SAED pattern is centrosymmetric. Therefore, it is difficult to definitely determine the
symmetries of the materials merely based on SAED patterns. By contrast, in CBED patterns,
dynamical contrast within the disks provides adequate information for one to determine the point
group unambiguously.

2.2.1. Icosahedral QCs

Theoretically, there exist two icosahedral point groups: 235 and m35 [69]. The former is
noncentrosymmetric with no mirror symmetry while the latter is centrosymmetric. They can be
differentiated by CBED analysis, which requires high quality QC samples with few strains. The stable
icosahedral QCs have fewer strains than the metastable ones, so they can provide better diffraction
patterns [70]. The CBED analysis on stable icosahedral Al–Cu–Fe reveals that it has a point group
of m35 [70,71]. Such analysis on Al–Mn–Si [72], Al–Cu–Li [73] and Al–Si–Cu [74] icosahedral QCs,
also indicates that these icosahedral QCs have a point group of m35. Actually, all the icosahedral QCs
known to date are centrosymmetric and no icosahedral QCs with point group 235 have been found.

2.2.2. Decagonal QCs

Two space groups, non-centrosymmetric P10m2 and centrosymmetric P105/mmc, have been
proposed for decagonal QCs [28,46]. Like the two proposed space groups of icosahedral QCs, the two
space groups of decagonal QCs can be differentiated by CBED method owing to a dynamical diffraction
effect of electrons. Decagonal QCs of Al64Cu22Co14 [46], Al70Ni15Fe15 [61] and Al70Cu4Co26 [75] have
a space group of P10m2, while decagonal QCs of Al73Ni22Fe5 [76], Al70Ni20Rh10 [31], Al70Ni30-xCox

(x = 15 or 20) [77] and Al70NixIr30-x (x = 15, 17 and 20) [31] belong to P105/mmc. The CBED
patterns taken along the periodic axis of Al70Cu4Co26 [75] and Al70Ni20Rh10 [31] are shown in
Figure 4a,b, respectively. The former exhibits 5-fold rotational symmetry, while the latter shows
10-fold rotational symmetry.
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It is worth mentioning that for some decagonal QCs, the space group varies due to compositional
change or heat treatment. Tanaka et al. [78] prepared Al–Ni–Fe decagonal QCs with different
composition by the melt-quenching method and determined their space group using CBED. Their
experimental results indicate that the decagonal Al70Nil0+xFe20-x alloys with x in the range of 0 to 7
belong to the non-centrosymmetric P10m2 and those with x in the range of 7 to 10 are centrosymmetric.
In addition, the space group of decagonal Al65Cu15Co20 changes from P10m2 to P105/mmc at about
600 �C [79].

3. HRTEM Analysis of QCs

When interacting with the atoms within a thin sample, the electron wave experiences phase
shifts. These phase shifts contain the atomic arrangement information in the sample. With the suitable
microscope parameters, the interference of the transmitted electron wave in the image plane generates
the contrast of an HRTEM image. Therefore, the HRTEM image represents a projection of the lattice,
which is folded with the phase contrast transfer properties of the microscope. Thus, for a correct
image interpretation, various parameters such as defocus, specimen thickness and aberrations of the
magnetic lenses need to be considered. Electrons interact very strongly with the atoms in the sample.
Consequently, the phase changes of electron wave due to very small features like dislocations and
interfaces can be recorded via HRTEM.

The local isomorphic nature of QCs makes it difficult to determine their structures solely by
diffraction analysis, because different types of local arrangement can give rise to identical diffraction
intensity distributions [80]. Thus, atomic-resolution HRTEM plays an indispensable role in the
structural characterization, as they can represent the local atomic arrangement and cluster packing.

3.1. Icosahedral QCs

One year after the first QC was reported [1], the atomic arrangement in icosahedral Al–Mn was
studied by Hiraga et al. [34] using HRTEM. Later, high-quality HRTEM images along the 5-fold axis of
icosahedral Al–Mn–Si [81] and Al–Cu–Fe [33] etc. were also obtained. In the image taken along the
5-fold axis of Al–Cu–Fe (Figure 5, [33]), the bright dots are located homogeneously along the 5-fold
directions with an angle of 36� without translational symmetry, as indicated by arrows in Figure 5a.
Moreover, differently sized pentagons can be formed by connecting these spots (Figure 5b). This
indicates that the atomic arrangement is ordered but aperiodic [82].
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It should be noted that the quantitative interpretation of HR-TEM images of icosahedral phase
depends strongly on specimen thickness, because dynamical diffraction effects can generate extra
spots, leading to new diffraction patterns of reduced scale but similar symmetry [83].

3.2. Decagonal QCs

A decagonal columnar cluster is generally viewed as the building unit of decagonal QCs [84].
In the HRTEM images taken along their 10-fold axis, decagonal clusters appear as decagons, with
the columnar cluster, tiling and defect information easily interpreted [28,84]. HRTEM observation of
QCs helps one get a comprehensive understanding of their structures, providing an insight on their
stabilization mechanism as to whether their quasiperiodic order is stabilized by energy or entropy.

Models can help one better understand the structures of QCs and different models have been
proposed to describe quasiperiodic structures. Two-tile Penrose tiling was first proposed to cover
the quasiperiodic plane [85]. In this tiling, two types of tiles—fat and skinny—match each other
under a strict mathematical rule to form a perfect quasiperiodic pattern. After QCs were discovered,
this tiling was employed to model quasiperiodic structures [86,87]. However, such a mathematical
matching rule has no physical explanation on why the atoms should be arranged in this complicated
way. Later, random packing of decagon clusters with 10-fold symmetry was proposed by Burkov [88].
In the random packing model, the overlapping of clusters is allowed, generating many types of
configurations and a lot of chemical disorder. Some of the decagonal QCs discovered earlier support
this model [62,89,90]. The random packing of this model means that entropy should be an important
factor for the stability of these QCs.

Decagonal Al72Ni20Co8 with high structural perfection tells a different story. Figure 6 [91]
shows its HRTEM images taken along the periodic axis. From Figure 6a, it can be observed that the
quasiperiodic structure can be well represented by the Gummelt tiling model [92], in which decagons
are allowed to overlap with their neighbors according to the well-defined rule to form a quasiperiodic
pattern. In contrast to the matching rule of Penrose tiling, the overlapping rule of Gummelt tiling
has specific physical meaning [93]—Steinhardt and Jeong [94] have proven that the matching rule
ensures that QCs have the maximum density. The unique overlapping of the clusters indicates that
this decagonal phase is dominantly stabilized by energy. The atoms in the cluster center show mirror
symmetry but not 10-fold symmetry (Figure 6b,c). Besides this type of decagonal cluster, another two
types of decagonal clusters with mirror symmetry, 5-fold rotation symmetry and 10-fold symmetry
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were proposed [95,96], as shown in Figure 7. First-principle total energy calculation [95,97] with
Ni atoms used for all transition metal atoms shows that among the three types of symmetries the
mirror-symmetry is the most favored energetically, followed by the 5-fold and 10-fold symmetry.
That is, the highly-ordered atomic arrangement in this decagonal phase is energetically favored.
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4. HAADF-STEM Analysis of QCs

In STEM mode, a very fine electron beam is used to scan the sample line by line. Due to the
interaction between the electrons and the atoms within the sample, various kinds of signals are
generated, including secondary electrons, backscattered electrons, transmitted electrons, elastically
scattered electrons and inelastically scattered electrons. Subsequently, different detectors can be used to
collect these signals to form images, which present the structural and/or compositional information of
the sample. If a detector with a large inner radius is used to collect the incoherently scattered (not Bragg
scattered) electrons at a very high angle, dark field images are obtained. The contrast of these dark field
images is highly sensitive to variations in the atomic number of atoms in the sample. Therefore, this
method is referred to as high-angle annular dark-field STEM (HAADF-STEM) or Z-contrast imaging,
which can image local chemical composition on the nanometer scale.

The application of the STEM technique significantly facilitates the study of QCs, as the positions
of heavy atoms can be directly observed. Owing to their periodicity along the 10-fold axis, the
quasiperiodic atomic arrangement in decagonal QCs can be directly observed using high-resolution
HAADF-STEM along this axis. Based on the atomic scale observation, structural details, such as the
atomic arrangement within decagonal clusters, the tiling of these clusters and their chemical ordering,
have been well investigated. It is worth noting that some structural information like chemical ordering
can only be unveiled by high-resolution STEM.

Taniguchi et al. [46] succeeded in preparing highly perfect decagonal Al64Cu22Co14 and studied
it using electron diffraction and HAADF-STEM. The SAED and CBED patterns show that it is a
non-centrosymmetric phase. The ultrahigh-resolution Z-contrast image taken along its periodic axis
indicates that it is composed of decagonal atomic clusters with a diameter of 2 nm. The tiling of these
atomic clusters can be obtained from the HAADF STEM image. Figure 8 shows the ultrahigh-resolution
Z-contrast STEM image of decagonal Al64Cu22Co14. In the image, the Al and Cu/Co (Cu and Co are
neighbouring elements in the periodic table and not distinguishable in the Z-contrast STEM image)
atomic columns are visualized with the Z-contrast. Obviously, the average of symmetry of decagonal
clusters is 5-fold. However, it can be found that local chemical disorder occurs with Cu/Co substituting
Al sites around the cluster center.
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The study of highly-ordered Al58Cu26Ir16 decagonal phase by Seki et al. [98] through multivariate
analysis of STEM images reveals that it is composed of two fundamental clusters with mirror or 10-fold
symmetry and its atomic disorder is strongly restricted by these two symmetries.

Abe et al. [99] investigated the atomistic fluctuation in high-perfect decagonal Al72Ni20Co8 using
high-resolution HAADF STEM. The comparison of STEM images taken at 300 K with different angular
ranges of the detector and at 1100 K verifies the occurrence of phasonic fluctuations. In addition,
the HAADF STEM image further confirms that the atomic clusters of this decagonal phase possess
a mirror-symmetry.

5. Outlook

The discussion in the previous sections suggests that great progress has been made in the study
of quasicrystalline structures using TEM–basic structural details including symmetry, space group,
defects and chemical disorder have been unveiled. However, due to their complexity, quasicrystalline
structures are still not fully understood. For instance, the specific atomic arrangement within the
2D quasiperiodic layers of decagonal QCs and large clusters of icosahedral QCs has yet to be
unambiguously determined.

It is difficult to obtain complete structural information about QCs merely by experimental
techniques–diffraction and imaging. Diffraction analysis can only provide the globally averaged
structural information, which may differ considerably from the local details [28,53]. The imaging
by HRTEM and HAADF STEM can provide atomic-scale structural information. Such information,
however, is averaged over the whole sample thickness (around 10 nm) [53]. This means that the atomic
arrangement in each atomic layer cannot be directly determined by these imaging methods.

A combination of modelling and experiment would be essential to address the structures of
QCs. Two main methods have been employed to geometrically describe quasicrystalline structures:
high dimensional cut-and-project and space tiling [100]. The geometric models proposed can provide
prescriptions for possible atomic configurations at both local and global levels, including the atomic
arrangement of clusters and the puckering or tiling of these clusters [100–104]. If the models are verified
or refined by experiments, they can be taken as the starting point for the theoretical calculation of QCs’
physical properties [28,105]. Some work has been done by combining modelling and experiments to
solve the structures of QCs. For example, Takakura et al. [106] proposed a structure model of binary
icosahedral Yb–Cd QC and refined it with synchrotron X-ray diffraction data. However, more efforts
are still needed as the structures of most QCs are not addressed thoroughly. Structural information by
TEM will be vital for the verification and refinement of the models of QCs, given the fact that X-ray
analysis can be misleading for complicated QCs [28].

The functional extension of TEM will also promote the study of QCs. The development of
hot and cold stages will facilitate in-situ experiments. This is very important to correlate the
structure and properties of QCs, especially after single-grain samples have been successfully prepared.
The observation of structural changes caused by phase transformation, electron irradiation, chemical
reaction, catalysis, hydrogen storage and indentation etc. will be realized [107]. It will be even possible
to observe the real-time changes of atomic arrangement under various conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

QCs Quasicrystals
TEM Transmission electron microscopy
SAED Selected area electron diffraction
CBED Convergent beam electron diffraction
HRTEM High-resolution transmission electron microscopy
STEM Scanning transmission electron microscopy
HAADF High angle annular dark field
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