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The Dirac-Frenkel time-dependent variational approach with Davydov Ansdtze is a sophisticated, yet
efficient technique to obtain an accurate solution to many-body Schrédinger equations for energy and
charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this
variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte
Carlo importance sampling method. In order to demonstrate the applicability of this approach, we
compare calculated real-time quantum dynamics of the spin-boson model with that from numerically
exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows
that our variational approach with the single Davydov Ansdtze is in excellent agreement with the
QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics
calculations employing a multitude of Davydov trial states is found to improve substantially over
the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our
variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson
dynamics over a wide range of temperatures and bath spectral densities. Published by AIP Publishing.

® CrossMark
¢

[http://dx.doi.org/10.1063/1.4979017]

l. INTRODUCTION

Responsible for electronic dephasing and energy relax-
ation, the interplay between electronic and nuclear degrees
of freedom (DOFs) is a fundamental aspect of dynamical
processes in condensed phases such as molecular aggregates
and light-harvesting complexes.!> An accurate description
of quantum dissipative dynamics in the condensed phases
remains a challenging problem. One of the main schemes
for treating quantum dissipation is the reduced density matrix
approach, with a focus on truncated system dynamics in the
presence of a macroscopic thermal bath. The second-order
cumulant time-nonlocal quantum master equation approach’~’
and path integral methods such as iterative quasiadiabatic
propagator path integral (QUAPI) technique®'* are exam-
ples of numerically exact methods for propagating the
reduced density matrix. These nonperturbative and non-
Markovian approaches allow for exploration of a full range
of system-bath coupling and electronic coupling strengths>!°
although it becomes extremely difficult to predict quantum
dissipative dynamics at very low temperatures.''"'> Recent
progress in ultrafast time resolved spectroscopy has stimu-
lated methodological developments, and a large number of
efficient, approximate reduced density matrix approaches are
available.!3~18

In the aforementioned reduced density matrix approaches,
coupled quantum dynamics of electronic and bosonic degrees
of freedom (DOFs) is obtained explicitly only for elec-
tronic systems, whereas the bath DOFs are traced out in the
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reduced density matrix.? Because of this treatment, all explicit
information of the bath dynamics is lost, and the interplay
between the system and the bath is only reflected in sys-
tem observables such as optical spectra and electronic pop-
ulations. Recent ultrafast nonlinear spectroscopic techniques,
such as femtosecond stimulated Raman spectroscopy'® and
two-dimensional electronic-vibrational spectroscopy,’ allow
direct monitoring of the temporal evolution of nuclei in the
ground or excited electronic states. Hence it becomes increas-
ingly important to address explicit boson dynamics of a
many-body boson-electronic system in order to fully inter-
pret nonlinear spectroscopic signals. Alternatively, the wave-
function approaches such as the multiconfigurational time-
dependent Hartree (MCTDH) approach?!->? and its multilayer
variant (ML-MCTDH)?>* can describe time propagation of
the wave function of all DOFs explicitly, with equations of
motion determined by the Dirac-Frenkel time-dependent vari-
ational principle. These approaches are shown to be powerful
tools for obtaining numerically exact quantum dynamics at
very low temperatures,”* and for including finite temperature
effects with the help of statistical sampling of the bath initial
conditions.?

One of the established methods for describing time evo-
lution of many-body wave functions is to employ the Dirac-
Frenkel time-dependent variational approach with the Davy-
dov Ansdtze,>’>® which consist of sums of direct prod-
uct states of localized electronic state and coherent states
of the bath modes as proposed by Davydov in 1970s to
describe soliton motion in molecular chains.>® The time-
dependent variational approach with these Ansdtze has
been widely used for describing excitation dynamics and
nonlinear optical spectra of Holstein polaron and molecular
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aggregates.’'3 Recently it has been shown that superposi-
tions of the Davydov Ansdtze, also known as the multiple
Davydov Ansdtze, provide significant improvements in the
accuracy of the time-dependent variation.>**! Increasing the
multiplicity index in these Ansdtze leads to numerically exact
dynamics in the Holstein model and the sub-Ohmic spin
boson model.>*-3%40 However, the usual variational approach
with the Davydov Ansdtze has been restricted to the zero-
temperature restriction because of the wave function for-
malism.

In this study, we remove the zero-temperature restriction
of the variational approach with the Davydov Ansdtze. For
this purpose, we adopt a Monte Carlo like method, inspired by
the ML-MCTDH approach.> The reliability of the extended
variational approach with the Davydov Ansatz at finite temper-
ature is identified through a comparison with the benchmark
results obtained from the QUAPI approach. The rest of the
paper is organized as follows. In Sec. II, we introduce the spin-
boson Hamiltonian, the Davydov Anscitze, and the Monte Carlo
importance sampling method. In Sec. III, we present a compar-
ison of population dynamics between ours and the numerically
accurate QUAPI results at finite temperatures. Finally, Sec. IV
is devoted to concluding remarks.

II. MODEL
A. Hamiltonian

In this study, we consider a two-level system coupled to
a single dissipative bath composed of harmonic oscillators as
described by the spin-boson model.*> The spin-boson model
is a paradigm for studying a variety of physical and chemi-
cal phenomena such as electron transfer and exciton dynamics
in condensed phase systems.**> Thus, it is a suitable bench-
marking system for investigating the validity of the newly
developed quantum dynamical approach. The Hamiltonian of
the spin-boson model is written as (we set7i=1)

[AfZIA{S +ﬁISB +ﬁIB, 2.1
where
N € A

$= 507 50 (2.2)

N o
Hss = 55 > b +by), 2.3)

I

I:IB = Zwlbjbl‘ (2~4)

I

Here, o; (i = x, z) are the Pauli operators defined as o, = |1)(2|
+2)(1] and o, =|1)(1]| — |2){2| with |1) and |2) represent-
ing two localized electronic states. € and A are the energy
bias and the coupling constant between two electronic states,
respectively. b; (by) is the creation (annihilation) operator
for the bosonic bath mode of frequency w;, and A; is the
strength of the coupling between the system and the Ith
mode.

Owing to Wick’s theorem, the bath-induced process
canbe specifled fully by a two-body correlation function based
on ii(t) = €M’ Y, 7\1(19; + by)e™ B! a5 follows:*0

44,45
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C@) = (@(ni0))p

= / dwJ(w)[coth(Bw/2) cos wt — i sin wt], 2.5)
0

where (. . .)p denotes averaging over ﬁ%q = ¢ By /TrB{e_ﬁHB}

with 8 =kpgT being the inverse temperature. The bath spectral

density is defined in terms of the coupling strength A; as”

J@) =) 1w - w). (2.6)
l

Several forms of J(w) are employed in the literature based
on model assumptions. In this study, we adopt the following
spectral density form:

—w/w,
9

2.7

where a represents the strength of the coupling and w,. provides
aphenomenological frequency cutoff. Those spectral densities
withs < 1,s=1,ands > 1 arereferred to as sub-Ohmic, Ohmic,
and super-Ohmic, respectively.*?

To obtain numerical solutions to the equations of motion
for the variational parameters, the continuum spectral den-
sity needs to be discretized. The conventional logarithmic
discretization method has been employed to investigate the
sub-Ohmic spin-boson model at zero temperature,’*3%47 but
may not be appropriate for finite temperatures. The loga-
rithmic discretization method samples more in the low fre-
quency domain and can better characterize the low fre-
quency bath modes at zero temperature than other discretiza-
tion schemes. On the other hand, the high frequency bath
modes should also be of importance at finite temperatures
due to their initial excitations according to the Bose statis-
tics. For this reason, we adopt the spectral density discretiza-
tion procedure in the ML-MCTDH approach.?*** Follow-
ing Ref. 24, we introduce a density of frequencies =Z(w)
defined on [0, wmax], Where wpax is the upper bound of
the frequency, and discretize the continuum of frequencies
as

J(w) = 2aw! " w'e

W)
/ dwEw)=1,1=1,2,..., Np, 2.8)
0

where N, is the number of discrete bath modes and
WN, =Wmax. The parameter A; for each w; is then given by
M =VJ(w;)/E(w;). The precise functional form of Z(w) does
not affect the final outcome if sufficient bath modes are
included. For efficient numerical calculations, however, the
form of Z(w) can be chosen as

= 1 J(w)
Bw)=g——> 2.9)
Wmax w
where . ;
—/ dw ﬂ (2.10)
Nb 0 w
Here, I, . is the factor guaranteeing fo“’“"‘“ dw E(w)=Np.

For the Ohmic bath (s=1), w; is expressed as w; =—w,In
(1 -1IT,,,, /wc). For the sub-Ohmic bath (s < 1), w; can only
be given implicitly through Eq. (2.8).

It is noted that an arbitrary spectral density can be
employed in our variational approach. However, handling the
spectral density with a complex structure may require a large
number of discretized bath modes or a sophisticated discretiza-
tion procedure. Thus, for simplicity we restrict our numerical
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calculations to the functional form of Eq. (2.7), since the
goal of our study is to demonstrate the validity of our finite
temperature approach.

B. Time dependent variational approach
with multiple Davydov trial states

In general, the time evolution of the wave function [())
for the total Hamiltonian, A, is described with the Schrodinger
equation

0 .
i @) = Hiy®). 2.11)

In this work, we employ two trial wave functions, namely, the
multiple Dy and D, Ansatz, to solve the above Schrodinger
equation. Both are known as the multiple Davydov Ansditze
in the hierarchy of the Davydov states. An extension to the
single D Ansatz, the multiple D Ansatz has been employed
to investigate both static and dynamical properties of many-
body quantum systems such as the spin-boson model and the
Holstein molecular crystal model.*>=*7 The time-dependent
version of the multi-D Ansatz can be written as

M
DY) = 11) )" Au()exp (anza)b} - H.c.) 10}
n=1 1

M
+12) Y Buyexp (Z gn(®)b} - H.c.) s,
n=1 I

(2.12)

where |0)g is the vacuum state of the boson bath. The varia-
tional parameters A,(¢) and B, (¢) are the amplitudes in states
[1) and |2), respectively. f,;(f) and g, (¢) represent bath-
mode displacements with n and / denoting the nth coherent
state and the /th bath mode, respectively. M is the multi-
plicity which denotes the number of single D; states in Eq.
(2.12). For M =1, the multi-D Ansatz reduces to the standard

Davydov D; Ansatz. Similarly, the multi-D, Ansatz is given
by3940

M
DY @) = 11) > Ay exp (me(z)b,* - H.c.) 10}
n=1 I

M
+12) Y Bu(t)exp (anzmb}' - H.c.) 10)s
l

n=1

(2.13)

where f,;(¢) are the displacements of the /th bath mode on
any electronic states. Thus, the multi-D, Ansatz is a simplified
version of the multi-D Ansatz, since the bath displacements
of the multiple D; (D,) trial state is site-dependent (site-
independent). For M =1, the multi-D, Ansatz reduces to the
single D, Ansatz.

The time-dependent variational parameters, A, (), B, (1),
fni(t), and g (¢), are determined by adopting the Lagrangian
formalism of the Dirac-Frenkel time-dependent variational
principle. The Lagrangian associated with the trial state
IDY (1)) is given by

Ed

. P A
L= %(D?’I(t)IEIDﬂW(ID - (DY OIHDY (1),  (2.14)

J. Chem. Phys. 146, 124127 (2017)

where the operator d/dt denotes 9 /9t — d/0t. The Dirac-
Frenkel time-dependent variational principle yields the equa-
tions of motion for the variational parameters,

d (0L oL
dt (au;) ous 0. 2.15)
where u, are the variational parameters, i.e., A,(f), B,(?),
fn(t), and gu(t), and u;, is the complex conjugate of u,. Sim-
ilarly, time evolution for the multi-D, Ansatz can be derived
using the Dirac-Frenkel time-dependent variational principle.
Detailed derivations of the equations of motion for the vari-
ational parameters of the multiple Davydov Ansdtze can be
found in Ref. 36.

The expectation value of an observable can be expressed
as (O(1)) = Tr{O prou(1)}, Where pror(t) = e proy(0)eF is the
total density operator and O is a time independent opera-
tor. Using the multi-D; or multi-D, Ansatz, the expectation
value of the observable of interest at zero temperature can be
calculated as

0@y = (DY, IO, (1)). (2.16)

In Subsection II C, this expression is extended to the finite
temperatures.

C. Observables at finite temperature

The conventional time-dependent variation described
above is only applicable at zero temperature. In this subsec-
tion, we extend this variational approach to finite temperatures
by adopting a Monte Carlo like method, similar to what is used
in the ML-MCTDH approach.>*?> The initial density matrix
for the entire system is assumed to have a factorized form, i.e.,
Piot(0) = p(0)p5', where p(0) = [1)(1]. The extension to more
general initial conditions with superposition of |2) and |1) is
straightforward, which is important for modeling nonlinear
spectroscopy.

The expectation value of an observable O(r) at finite
temperatures can be expressed as

(O()y = Tr{Oe™ ™ pRl|1)(1]e™"}. (2.17)
In principle, the observables at 7 can be calculated in any rep-
resentations. We employ the coherent state representation to
calculate the observable as

O@t)) = nNe / d*a(al(11pSe ™ Oe 1 1)), (2.18)

where |@) denotes a direct product of coherent states (a1, a2,
as, - -+, ay,) for the N;, discrete bath modes and is expressed
as |a) = exp(}, aqb; —H.c.)|0)g. Each «; runs over all feasi-
ble coherent states. The element of area d*a; on the complex
plane of ; denotes dRe(a;)-dIm(a;), where Re(e;) and Im(a;)
are the real and imaginary parts of «;, respectively. The equi-
librium density matrix of the bath at a finite temperature is a
diagonal matrix and can be expressed as*34°

Py = / dap(a; BlaXal, (2.19)
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where p(a; () represents the diagonal elements of the den-
sity matrix in the coherent state representation and can be
expressed as”’

N [eﬁwl _

1
pa: p=] | exp (~lar* (e - 1))] . (220
1
As shown in Eq. (2.20), p(a; B) is a positive-definite function
of @ and can be seen as a probability density. Substituting
Eq. (2.19) into Eq. (2.18), the observables (O(¢)) at a finite
temperature can be obtained by the average according to the

probability density p(a; B) as
(O = / d*ap(a; BYal1le™ e | 1) a)

= / d*ap(a; BXDYL(t; ®)|OIDY,(t: @)).  (2.21)
For the second equality, we have used the multi-D; or D,
Ansatz, |D11V712(t; )) = e~iflt [1) |@), and |D¥2(0; «@)) denotes
a trial state with initial bath displacements of @ at t=0.
For the case of the multi-D; Ansatz, initial condition param-
eters are A;(0)=1, B;(0)=0, A,(0)=B,(0)=0 for n#1
and f,;(0)=g,y(0)=q; for all n and [. Likewise, initial
parameters of the multi-D, Ansatz are A;(0)=1, B;(0)=0,
A,(0)=B,(0)=0for n# 1 and f,;(0) = a; for all n and [.

The expectation value of the observable at a finite temper-
ature can be obtained numerically by the technique of Monte
Carlo importance sampling as

. 1 & .
OW) = 3 YD @)oY ), 222)

where N is the sampling number. The configuration «; for the
bath is numerically generated according to p(e; ) by impor-
tance sampling, where p(a; ) is the Boltzmann distribution
used as the weighting function in the importance sampling pro-
cedure. Letting 20'12 =1/(#® —1) and ; = x; +ip;, p(@; B)in
Eq. (2.20) can be partitioned into two independent Gaussian
distributions as

2 2
Np i

1 5,2 1 T 552
pla; B) = e i e 1, (2.23)
]7[ V2no V2no

where o7 can be taken as the variance of the Gaussian distribu-
tion. To avoid singularity, the initial displacements in the trial
states is determined by setting f,,;(0) = g,;(0) = a; + €9, where
noise €q satisfying the uniform distribution [-1072, 1072] is
added to the variational parameters of the initial states. From
the definition of o, a lower temperature or a higher frequency
wy gives a smaller 0. The zero temperature case corresponds
to every bath mode being in the ground state initially, and it
is equivalent to a coherent state with displacement parameter,
a; =0 for all I. In this case, the observable expression of Eq.
(2.21) or (2.22) reduces to Eq. (2.16).

lll. RESULTS AND DISCUSSION

In this section, we compare results from our variational
approach with those from the QUAPI method®!° in order to
demonstrate the applicability of our approach to unraveling
many-body dynamics. In the spin-boson model, a principal

J. Chem. Phys. 146, 124127 (2017)

observable of interest is the population difference between the
electronic states, P.(t), calculated as

1 N
P() = (o) = & DO anlo DY@ @) (B.1)

All units in the numerical calculations are scaled by the cut-
off frequency w,. In this section, for simplicity, we choose
zero bias as a large energy bias requires a large multiplicity.>!
The electronic coupling constant and the coupling strength of
the spectral density are set as A =0.1lw. and @ = 0.05, respec-
tively. The number of the discrete bath modes is fixed at
Np=250. In all numerical calculations of this study, statis-
tical averages are taken over a maximum of 400 realizations,
which is the number sufficient for convergence at kg7 = 0.2w..
For lower temperatures, the observables converge with less
realizations.

Here, we briefly mention the numerical convergence of the
QUAPI procedure. The basic idea here is to consider a Trotter
splitting of the short-time propagator for the total Hamil-
tonian into one part depending on the system Hamiltonian
and another involving the bath and the system-bath coupling
term.®~1 The short-time density matrix propagator describes
time evolution over a time slice Az. This splitting is exact by
construction in the limit of Ar — 0. With the finite time slice
At in practical calculations, numerical error can be eliminated
by choosing sufficiently small At to achieve convergence. On
the other hand, the bath DOFs generate bath correlations in the
Feynman-Vernon influence functional. For any finite temper-
ature, these correlations decay with a dephasing time constant
of a)c_l, thus a memory time window, Tmem = kmaxA?, should
be defined to handle the bath correlation truncation beyond a
certain time span. Neglected beyond 7pem, all correlations are
included exactly within a finite memory time of Tynem. To reach
convergence, the memory time window should be enlarged by
increasing kmax such that all memory effects are taken into
account up to a desired accuracy. The QUAPI procedure fails
to converge when the memory time is too long. The accuracy of
the truncation of k.« in Figs. 1 and 2 was checked to make sure
that numerical results are converged. In this work, the time slice
and the size of the memory window are set to be Ar=0.125
and kmax =7, respectively. The convergence failure of the
QUAPI method in the deep sub-Ohmic regime is discussed in
Section III B.

A. The Ohmic regime

Figures 1(a) and 1(b) display time evolution of P,(¢) cal-
culated by the multi-D; Ansdtze, the multi-D, Ansdtze, and
the QUAPI approach in the Ohmic case (s = 1) at two temper-
atures (kpT /w. =0.01 and kg T /w. =0.2), respectively. There
is perfect agreement between the DZZVI =3 Ansatz and the QUAPI
approach at the low temperature of kg7 /w, =0.01, as shown
in the right panel of Fig. 1(a). On the other hand, the agree-
ment between the D’z"l =!I Ansatz and the QUAPI approach is
unsatisfactory. As discussed in Ref. 36, this is because time
evolution of the phonon wave functions shows the plane wave-
like behavior in the weak coupling regime and is difficult to
be described by superposition of coherent states. Thus, more
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phonon coherent states are needed to capture the accurate
dynamics. The multi-D Ansarz provides accurate population
dynamics by M =2, and the agreement between the multi-
D; Ansatz and the QUAPI approach is good even at M =1.
This clearly demonstrates that the multi-D; Ansdtze are more
flexible than the multi-D, Ansditze.

In the left panel of Fig. 1(b), dynamics obtained by both
the D’lw =2 Ansatz and the QUAPI approach agree with each
other at the high temperature (kg7 /w. =0.2) despite a small
difference between the D’1” =2 Ansatz and QUAPI populations.
The result by the Dll” = Ansatz also appears to be similar to that
by the M =2 case. The small difference between the multi-D;
Ansdtze and the QUAPI approach may be due to insufficient
number of bath modes. From Eq. (2.23) and the definition of
the variance of the Gaussian distribution o, the value of o
becomes large at high temperatures. The increase of o leads
to large values of f,;(0) and g,;(0) even for high frequency
modes which can be ignored at low temperatures. Therefore,
the number N, of bath modes required as well as the sam-
pling number becomes large due to a large value of o at high
temperatures. The accuracy of the D, Ansatz with M =1 at
high temperature is improved significantly unlike in the low
temperature regime and is similar to that of the DII"I =2 Ansatz.
These results indicate that the superposition of the Davydov
trial states is more fragile against thermal fluctuations at higher
temperatures, and thus the trial states with a small multiplicity
are sufficient for description of dynamics in this regime. The
increased computational cost due to additional bath modes and
extended sampling is offset by the reduced Ansarz multiplicity,

and thus our variational approach with importance sampling
remains efficient even at high temperatures.

B. The sub-Ohmic regime

In this subsection, we focus on the sub-Ohmic regime. Fig-
ures 2(a) and 2(b) present the results of s =0.8 atkg T /w, = 0.01
and kg T /w. = 0.2, respectively. These results demonstrate that
the variational approach with the multi-D; Ansdtze provides
excellent dynamics simulation over a range of temperatures
and bath spectral exponents s. Calculated dynamics in Fig.
2 shows the fast coherence decay compared to the Ohmic
bath case, although the sub-Ohmic regime corresponds to slow
bath relaxation. This fast coherence decay can be explained as
follows. A direct measure of the coupling strength between
the system and the bath is the bath reorganization energy,
E, = [;° dwJ(w)/w, which represents the dissipated environ-
ment energy after electronic excitation in accordance with the
vertical Franck-Condon transition in the electron transfer the-
ory.'* From the definition of the spectral density of Eq. (2.7),
the value of E, in the case of s = 0.8 is large compared with the
Ohmic bath case when other parameters except the value of s
are fixed. A large E, corresponds to large fluctuations accord-
ing to the fluctuation-dissipation relation,'**6 which eradicate
electronic coherence similar to what occurs in the Ohmic case.
This physical explanation is consistent with the numerical fact
that the required multiplicity in both multi-D; and multi-D,
Ansdtze in the case of s=0.8 is not dissimilar to the Ohmic
case.



124127-6 Wang et al.

(@) s=08,kT/w,=001

J. Chem. Phys. 146, 124127 (2017)

FIG. 2. Time evolution of the popu-
lation difference P,(f) with spectral
density exponent s=0.8. The factor-
ized bath initial condition is employed.

The results calculated by the multi-D;
Ansdtze (left panels, solid lines in red
and orange) and the multi-D, Ansdtze
(right panels, solid lines in blue, green,
and purple) are plotted for two cases (a)
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The black circles indicate the QUAPI
results with Ar=0.125 and kpax =7.
The other parameters are fixed to be
€=0,A=0.1w., and a@ =0.05.

0 20 40 60 80 100 0 20 40
Time ¢ (w.")

Finally, we discuss potential applicability of the multi-
ple Davydov Ansdtze in the deep sub-Ohmic regime (s < 0.5),
which corresponds to situations with the ultra slow bath
relaxation. In the slow bath regime, it is known that some
notable discrepancies exist between exact results and those
from the QUAPI procedure at long times, as discussed in
Ref. 12. To obtain correct long time dynamics, one would need
to increase the memory window size kpax, making QUAPI con-
vergence more difficult to achieve. It has been demonstrated
that the multi-D; Ansatz is consistent with the results from the
second-order cumulant time-nonlocal quantum master equa-
tion and the real-time path integral Monte Carlo approaches for
s =0.25 at zero temperature and is a reliable, efficient method
for describing quantitatively accurate dynamics of the deep

§=0.6,k,T /w, =001

6 80 100
Time ¢ (w.")

sub-Ohmic regime.*® From Figs. 1 and 2, the validity of the
multiple Davydov Anscitze at finite temperatures also seems to
be independent of the exponent s, but the required multiplicity
may depend on it. In order to clarify the relation between the
spectral exponent and the required multiplicity, we explore a
case with an exponent s smaller than that in Fig. 2. As a help-
ful reference, we also compare our results with those from
the thermal field dynamics (TFD),>? similar to the approach
of Borrelli and Gelin.>® Figure 3 presents results of s=0.6
at kT /w, =0.01. The dynamics from the DZIW:2 Ansatz is in
perfect agreement with those of QUAPI and TFD, as shown
in left panel of Fig. 3. As demonstrated in the right panel of
Fig. 3, it is found that the multi-D, Ansatz slightly overesti-
mates the amplitude of population oscillation at M =3, and one
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in red and orange) and the multi-
D, Ansdtze (right panels, solid lines
in blue and green) are plotted for
low temperature case (kg7 /w, =0.01).
The gray circles indicate the QUAPI
results with Ar=0.125 and kpax = 8.
The TFD approach with D}IW =4 Ansatz
(dashed line in black) is plotted. The
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needs to increase the multiplicity further to M =4 for numerical
convergence. Fortunately, no large increase in the multiplicity
of the multi-D, Ansatz is needed for adequate convergence
with decreasing s. To explore how the required multiplicity is
affected by thermal fluctuations, we have considered a case of
relatively small system-bath coupling strength « in all numer-
ical calculations of this study. From some previous studies of
the multiple Davydov Ansditze,’®" it has been found that the
required multiplicity is reduced by increasing the system-bath
coupling strength because the large bath-induced fluctuations
eradicate the need for deep superposition of single Davydov
states. Especially in the moderate to strong coupling regimes,
our results suggest that both the multi-D; and the multi-D,
Ansdtze hold an advantage over the QUAPI method in the
sub-Ohmic regime, where our approach is not burdened with
significantly increased computational cost as the spectral den-
sity exponent s is reduced. Therefore, the multiple Davdov
Ansdtze including temperature effects is expected to be a reli-
able, efficient tool for exploring quantum dynamics in the
sub-Ohmic regime at both low and high temperatures.

IV. CONCLUDING REMARKS

In this study, we have extended the Dirac-Frenkel time-
dependent variational approach with the Davydov Ansdtze to
finite temperatures by adopting the Monte Carlo importance
sampling method. To demonstrate the applicability of this
approach, we have compared real-time quantum dynamics of
the spin-boson model calculated by our approach with that
from the numerically exact QUAPI approach. It is shown that
our variational approach with the multiple Davydov Ansditze
is accurate over a range of temperatures and bath spectral den-
sities. Variational dynamics with the single Davydov Ansatz
shows excellent agreement with the QUAPI results at high
temperatures, while the difference between both approaches
becomes significant at low temperatures. Accuracy in dynam-
ical calculations employing multiple Davydov trial states is
improved significantly over the single Davydov Ansatz, espe-
cially in the low temperature regime. The reduction in the
Ansatz multiplicity due to thermal fluctuations cancels out the
computational cost increase due to an increased number of bath
modes and extended sampling at high temperatures, and thus
our variational technique with importance sampling remains
efficient even at an elevated temperature. Our results in the
sub-Ohmic regime demonstrate a great advantage of the vari-
ational approach with the multiple Davydov Ansdtze because
conventional perturbative approaches fail to describe strongly
non-Markovian dynamics due to the long-time tail of the time
correlation function of the sub-Ohmic bath. Our variational
approach including temperate effects is expected to open up
new avenues of probing quantum dynamics in the sub-Ohmic
regime.

The novel advantage of the wave function propagation
methods is to give access to the dynamics of all bath DOFs
explicitly.??3%41:5%55 Kiihn and co-workers have investigated
impacts of quantum mechanically mixed electronic and vibra-
tional states on electronic energy transfer dynamics in the
Fenna-Matthews-Olson pigment-protein complex by track-
ing time evolution of bath DOFs based on the ML-MCTDH

J. Chem. Phys. 146, 124127 (2017)

approach.>*3 Their calculations clearly showed the impor-
tance of vibrational motion on local electronic ground states
in the quantum mixing of electronic and vibronic excitations,
which is consistent with the argument in Ref. 6. However, the
zero temperature assumption may lead to unreliable predic-
tions for their role at physiological temperatures because the
mixed electronic and vibrational states are fragile against ther-
mal fluctuations.® Our finite-temperature time-dependent vari-
ational approach with the multiple Davydov states is demon-
strated to remain efficient even at an elevated temperature,
and thus can explore effects of thermal fluctuations on the
mixed electronic-vibrational states by tracking dynamics of
vibrational DOFs.

The time-dependent variational approach with importance
sampling requires averaging over a large number of realiza-
tions at high temperatures, which may increase the computa-
tional cost in comparison with zero-temperature cases despite
that the multiplicity M required for convergence decreases with
the increasing temperature. Developing efficient techniques of
importance sampling holds the key to improved statistics. By
employing the thermo field dynamics approach,> the varia-
tional approach with the Davydov Ansdtze can be applied to
finite temperature scenarios while avoiding the sampling pro-
cedure. A comprehensive study along this direction is currently
in progress.>”
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