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SUMMARY 

 

Today, crude oil is refined all over the world. However, there is a mismatch of refined 

products between supply and demand, among and within various regions due to the 

different numbers of refineries, refinery specifications and outputs, and demand in 

the region. Therefore, refined products need to be transported by sea to balance 

supply and demand, which constitutes an important part of the energy supply chain. 

This thesis aims to provide econometric analyses of product tanker and Liquefied 

Petroleum Gas (LPG) shipping markets - the dominant markets for refined product 

seaborne transportation.  

This research starts with a review of past work on tramp shipping freight market 

modeling, identifying the major trends and methods in each topic. The existing 

research can be classified into four categories, namely supply-demand modeling, 

freight rate process modeling, freight rate forecasting and freight rate relationships. 

The study also reviews the specific literature on LPG and product tanker shipping 

market. Based on the review, major literature gaps are identified, namely the lack of 

coverage for LPG and product tanker shipping market, the inadequacy of current 

methodologies in tackling shipping freight market relationships, and limited research 

in spatial pattern analysis. Based on the literature review, specific models are 

proposed to tackle the research problems, including structural equation modeling, 

copula model, and discrete choice modeling. Accordingly, econometric analyses of 

the LPG shipping market are provided. Specifically, the relationship among very 

large gas carrier (VLGC) market variables, VLGC freight rate dependency with 

product price arbitrage and oil prices, and VLGC vessel destination choices have 

been studied. Last but not least, a disaggregate approach has been used to study the 

freight relationships across major routes for the product tanker market. 

This research provides useful guidance for both academics and industrial 

practitioners on better understanding the freight market dynamics for chartering, asset 

allocation and diversification purposes. It also fills the gap in the existent shipping 

literature by analyzing the LPG and product tanker shipping markets, which is of 
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great importance in the seaborne transportation family, however, received limited 

research attention.  
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1 

CHAPTER 1 INTRODUCTION 

 

Today, crude oil is refined all over the world. However, there is a mismatch of refined 

products between supply and demand, among and within various regions due to the 

different numbers of refineries, refinery specifications and outputs, and demand in 

the region. Therefore, refined products need to be transported by sea to balance 

supply and demand, which constitutes an important part of the energy supply chain. 

This thesis aims to provide econometric analyses of product tanker and liquefied 

petroleum gas (LPG) shipping markets. This chapter provides the background, 

research objectives, scope and the significance of the study. It also briefly reviews 

the product tanker and LPG shipping markets, and outlines the research structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
2 

1.1 Research background 

Whereas natural gas and coal could be directly used, crude oil is considered as a 

complex mixture of different hydrocarbons and generally not consumed in its raw 

form. Refined petroleum products are derived from crude oil through refining 

processes such as catalytic cracking and fractional distillation. Refined oil products 

are incredibly important to today’s modern society. Globally, people are dependent 

on all aspects of petroleum from heating, cooking, transportation, and also industrial 

uses. 

Refined products include: 1) Liquefied petroleum gases (LPG) 2) Gasoline 3) Jet fuel 

4) Kerosene 5) Diesel fuel 6) Petrochemical feedstock 7) Lubricating oils and waxes 

8) Home heating oil 9) Fuel oil (for power generation, marine fuel, industrial and 

district heating) 10) Asphalt (for paving and roofing uses). The petroleum products 

have a variety of usages and different trading patterns. Naphtha is a petrochemical 

feedstock used by the petrochemical industry. Gasoline can be used as transportation 

fuel for motor vehicles. Middle East and Europe are the key export regions for 

naphtha/gasoline, while Asia is the main import region. The US also imports large 

volume of gasoline every year on the back of strong demand. Kerosene can be used 

for home and commercial heating and lighting. Asia and Middle East are the main 

export regions. Africa, Europe and Asia are the main import regions. Jet fuel is light 

kerosene and can be used for jet aircraft. Asia and Europe are the key export and 

import regions respectively. Diesel can be used for transport and home heating, 

industrial furnaces and off-road equipment industry. The US, Russia and Asia are the 

key export regions, while Europe is the main import region. LPG, the generic name 

for commercial propane and butane, is a by-product extracted from crude oil refining 

and natural gas processing. LPG has become an increasingly important energy source 

for commercial residential fuel, as well as a vital petrochemical feedstock. Middle 

East and US are the two major export hubs for LPG, with Asia and India being the 

main importer. 

Today, crude oil is refined all over the world. However, there is a mismatch of refined 

products between supply and demand, among and within various regions due to the 

different numbers of refineries, refinery specifications and outputs, and demand in 
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the region. Therefore, refined products need to be transported by sea to balance 

supply and demand, which constitutes an important part of the energy supply chain 

and a bridge between regions of supply and demand. Global LPG trade increased by 

around 10% in 2016 to reach 87 million tons (UNCTAD, 2017). LPG can be 

transported on all types of gas carriers. For long-haul LPG shipping, very large gas 

carriers (VLGCs) are normally used. Gasoline, jet fuel, kerosene, diesel, and 

petrochemical feedstock (naphtha) are considered as clean petroleum products and 

they are carried by coated product tankers. The product tanker shipping market has 

become an increasingly important part of the seaborne transportation family, yet has 

received very little research attention, partially due to the complexity of the products 

carried and diverse trade routes. Research studies on the LPG shipping market are 

also limited as it is a rather niche market (Adland et al., 2008; Engelen et al., 2011; 

Engelen and Dullaert, 2010).  

Shipping is often held up as the lynchpin of global trade with 80% of the volume of 

global trade transported by sea. In 2016, total volumes transported by sea stood at 

10.3 billion tons (UNCTAD, 2017). Shipping is a derived demand, thus demand for 

maritime transport services is formed by world economic growth and the requirement 

to carry merchandised trade. The shipping market exhibits some unique 

characteristics. Firstly, it is influenced by major random events, such as financial 

crisis, oil crisis, etc. Secondly, it is a cyclical business with a shipping cycle of eight-

year length on average (Stopford, 2009). Thirdly, the capital investment in shipping 

is high and very often suffer from a time lag of around two years from the ordering 

to the delivering of a new vessel. Therefore, shipping is a highly volatile and risky 

industry, where risks and uncertainties are faced by all industry participants. 

The freight rate dynamic has been a popular research area due to the uncertainty in 

international shipping and volatile nature of freight rates. The knowledge of freight 

rate relationships with various factors and interrelationships would aid shipping 

practitioners’ decision-making process.  

This research aims to provide econometric analyses of LPG and product tanker 

shipping markets. Specifically, it firstly investigates the relationships between freight 

rates and various market variables, and how the market variables influence vessels’ 
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destination choices, with a focus on the VLGC market; and secondly investigate the 

interrelationship between different freight rates, primarily focusing on product tanker 

market. The freight market could be influenced by a series of factors, such as 

aggregated global demand and fleet size (Tinbergen, 1931; Koopmans, 1939; 

Hawdon, 1978; Beenstock and Vergottis, 1993a). Fleet size is then closely linked to 

newbuilding and secondhand market. The various relationships have been separately 

investigated extensively in the bulk shipping market (Hawdon, 1978; Wergeland, 

1981; Adland et al., 2006; Kou et al., 2014; Adland and Jia, 2015), however, no study 

has yet put them into an integrated framework. Failing to do so could result in 

neglecting important mediating effects among the variables.  

Other factors that have an impact on freight rates include location price arbitrage, 

which has been valued by the industry practitioners (Pirrong, 2014), however, seldom 

been studied in the academic field. A location price arbitrage is a trading strategy to 

profit from market inefficiencies in price differences of a given commodity at 

different geographical locations (Fanelli, 2015). The LPG location arbitrage could 

affect LPG shipping freight market via two channels: willingness to pay for shipping 

and ton-mile demand. When the location arbitrage is high, traders will profit more 

from the price spread and thus have more money to pay for shipowners, which leads 

to an increase in freight rate. Meanwhile, the open arbitrage would incentivize traders 

to move more cargoes, which creates more ton-mile demand, and these cargoes need 

to compete for limited vessel spaces, thus drives up shipping freight rate. On the other 

hand, when the arbitrage narrows and makes no economic profit to move the cargo, 

the demand for sea transportation will drop and so will the freight rate. In this study, 

we examine the dependency between freight rates and commodity price spreads, as 

price spreads will have a major influence on the arbitrage economics. Freight rates 

and price spreads together will determine the arbitrage. The oil price effects on freight 

rates are also of interests but have always been ambiguous and never been 

investigated thoroughly (Poulakidas and Joutz, 2009). 

Calls have been long made in the research community to improve the understanding 

of spatial patterns in seaborne energy transportation. Technological advances have 

opened the door to significant innovations in energy shipping behavior modeling, for 
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example, the availability of Automatic Identification System (AIS) data and detailed 

records of lifting data (including charterer, origin and destination, quantity, ships). 

Combining the two data sets would enable us to model the spatially disaggregated 

ship routing behavior at an appropriate scale. AIS data is gaining increasing 

popularity in the maritime industry as it provides accessible and up-to-date 

information about vessel activities. AIS, being a shipboard transponder, can transmit 

vessel information automatically containing vessel identity (IMO, MMSI, name and 

vessel type), voyage-related information (destination, estimated time of arrival, etc.) 

and dynamic data (current position including longitude and latitude, speed, and 

course), among other information (Adland, Jia and Strandenes, 2017). AIS data has 

been utilized in various fields to tackle different problems, including tracking and 

security (Ou and Zhu, 2008; McGillivary et al., 2009); maritime risk analysis and 

prevention, such as collision and oil spill (Eide, 2007; Silveira et al., 2013); 

environmental issues, such as vessel emissions (Diesch et al., 2013); spatial planning 

and traffic behaviors (Xiao, et al. 2015; Shelmerdine, 2015); global trade analysis 

(Adland, Jia and Strandenes, 2017); and vessel speed analysis (Adland et al. 2017; 

Adland and Jia, 2018). Tu et al. (2018) reviewed the recent research themes using 

AIS. Shelmerdine (2015) explored the potential use of AIS as a tool to better 

understand shipping activities by analyzing the information contained in AIS data, 

which could be used by marine planners and other relevant parties. He highlighted 

the possible analysis with AIS data including vessel tracking, density maps by use of 

both vessel tracking and point data, as well as quality control of the data. However, 

analytical tools, specifically discrete choice models, have not been used in energy 

shipping studies to examine vessel behaviors and have not been employed to analyze 

AIS data. Furthermore, most research in the transportation field has focused on 

transport mode choice or port choice analysis (for example, Malchow and Kanafani 

2001; Veldman, et al. 2011). The analysis of ships’ destination choice behaviors 

appears to be an untapped area. This thesis further aims to contribute to this topic by 

examining how a set of explanatory variables relating to market conditions influence 

a charterer’s behavior regarding destination selection. Understanding the charterer’s 

destination choice is vital in estimating traffic volume to a specific destination and in 

forecasting supply patterns. It can serve as an indicator of the potential traffic level 
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in the destination ports. It is also critical information for shipowners’ planning and 

vessel deployment decisions. Shipowners can better match their space and cargoes 

with the knowledge of the charterer’s potential destinations. In such circumstances, 

the question of how a charterer chooses a destination is considered to be an important 

issue not only for charterers but also for energy transport as well as matching energy 

demand and supply. 

On the other hand, the shipping sector is known to be disaggregated into different 

segments to carry different cargoes on specific routes. Thus, the freight rates of the 

different segments typically follow different movements largely driven by the supply 

and demand balances for different commodities transported (Kavussanos and 

Visvikis, 2006). However, substitution effects occur between vessels of adjacent size 

categories (Tsouknidis, 2016), as there are overlaps between cargo transportations in 

the same or adjacent routes. Substitutions between shipping segments occur when 

there is a significant difference in freight rates between the segments. Charterer may 

then choose to divide or combine cargoes, making it possible to take cargoes into 

another market segment. Owners may also switch trading routes of their vessels for 

profit maximization purposes. A series of switches between sectors may take place 

until both markets return to equilibrium. Such substitutions make freight rates of the 

two vessel sizes or two trading routes interrelated with each other. The trading routes 

of product shipping market are quite diverse across the global. It is thus of interest to 

investigate what are the exact dependence structures and extreme co-movements 

between freight rates of different trading routes and vessel sizes. Such a study is also 

of benefits for diversification purposes. In today’s volatile shipping environment, 

diversification is vital for shipowners. Diversification could be achieved when a 

shipowner operates different types of vessels in various sectors, instead of investing 

only in one sector. Allocating vessels under different trade lanes across the globe 

could also diversify potential risks. The benefit of diversification is to reduce the risk 

of loss in expected earnings.  

In this thesis, the relationship among VLGC market variables, VLGC freight rate 

dependency with product price arbitrage and oil prices, VLGC spatial patterns and 

destination choices, as well as the dependency structure across the product tanker 

freight market will be studied. This research intends to fill the gaps in the literature 
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by providing an extensive econometric analysis of LPG and product tanker shipping 

markets. 

1.2 Overview of LPG and product tanker shipping market 

In this section, a general overview of LPG and product tanker shipping markets is 

provided, including the supply/demand dynamics, main trading routes and freight 

indexes of the two markets. Specifically, AIS data analysis is performed to identify 

the trading patterns. 

1.2.1 LPG shipping market 

In the LPG world, there are two major export hubs, the Middle East and the US. 

Middle East has traditionally been the largest LPG export region and exported around 

37 million tons in 2017. LPG exports from the US have increased significantly in the 

last few years on the back of the shale gas revolution, from 10 million tons in 2013 

to 30 million tons in 2017 (IHS, 2018). The US has shifted from an importer to a net 

exporter. This trend is likely to continue and the US is set to play a more significant 

role in the global LPG market. The increase in trade due to US Gulf export is easy to 

spot on a visual inspection of VLGC activities as shown in Figure 1.1, which 

illustrates the two VLGC trading pattern density maps in 2012 and 2015 respectively 

based on AIS data. Imports of LPG into China and India remain firm and lead to 

raising long-haul trades, which helps to absorb additional LPG carrier capacities as 

well (UNCTAD, 2017). Another main outlet is Europe. More favorable priced LPG 

versus naphtha has led to increased consumption of the former and reduction of the 

latter in the European petrochemical industry. 
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Figure 1.1 VLGC trading density map 

2012 

 

2015 

Source: drawn by author based on AIS data. 

On the supply side, the VLGC fleet has expanded rapidly in recent years. In Jan 2014, 

the VLGC fleet consisted of 159 vessels, while in Jan 2018, the number increased to 

261 vessels, a massive increase of 64% in just four years. 

The benchmark index for LPG freight rate is Baltic LPG index, which tracks the 

dollar per ton rate for VLGCs loading 44,000mt of LPG from Ras Tanura and 

discharging in Chiba. LPG freight market is very unique compared to other energy 

transport markets, such as crude oil and coal. Therefore, it is of importance to 

investigate separately.  
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1.2.2 Product tanker shipping market 

The main products carried by clean product tankers are naphtha, gasoline, gasoil 

(diesel) and kerosene. The need for refined product transport arises due to 

supply/demand imbalances between different regions and product price location 

arbitrages. Location arbitrages arise when the price at one place is higher than the 

price at another place plus transportation costs. An open arbitrage window will enable 

trade flows. Whereas, the most fundamental reasons for trade flows are supply and 

demand imbalances.    

1.2.2.1 Global refined product trade  

According to the International Energy Agency (IEA) (2017), as of 2016, Middle East 

remains the biggest exporter of all refined products in the world. Exports from the 

Middle East rose sharply in the past few years on the back of new refineries in the 

region. Middle East exports totaled 43.7 million tons of naphtha in 2017, up from 

41.1 million tons in 2016. The main importer is Asia. Asia imported around 56 

million tons of naphtha on Long Range One (LR1) and Long Range Two (LR2) in 

2017. Less attractive pricing of rival feedstock LPG, higher cracker operating rates, 

and strong gasoline demand were some of the reasons. 

Europe is long in gasoline/naphtha and short in distillates, including gasoil and 

kerosene. Supply of naphtha in Europe increased as a result of new refineries in 

Russia. Europe exported around 12 million tons of naphtha in 2017, up 16% 

compared to 2016 levels. Some of the naphtha was exported to Asia. On the other 

hand, Europe needs to import gasoil and kerosene from the East. Total gasoil/ultra-

low Sulphur diesel exports from the East to the West were 21.2 million tons, 

representing an annual decrease of 22% in 2017. This is due to the fact that bloated 

inventories and increased throughput in Europe incentivized buyers to source barrels 

locally or draw down stocks. High levels of refinery maintenance turnarounds in Asia 

also negatively affected the flow. Outflows from the Middle East totaled 18.3 million 

tons, down from the record level in 2016 at 21 million tons. The largest outlet for 

Middle Eastern cargoes, Europe, which accounted for 90% of the volumes, imported 

16.5 million tons in 2017. Jet fuel exports to West were around 16.6 million tons, 
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down 4% compared to previous year. It was a fall in Middle East exports that dragged 

down the performance as Far East exports rose during the same period. 

The US imports a large volume of gasoline every year on the back of strong demand. 

This figure was around 26.5 million tons in 2017. Meanwhile, US distillates export 

is on an increasing trend. In 2017, the US exported 27% of total domestic distillate 

production. Around 68 million tons of distillates were exported, half of which went 

to South America and around 30% went to Europe. Figure 1.2 shows the global 

refined product imbalances. 

Figure 1.2 Global refined product imbalances flow 

Source: drawn by author based on IEA (2017). 

It should be noted that developments in refinery capacities have significant impacts 

on shaping crude and product trade patterns. For example, the decline of refining 

capacity in Europe, Japan and Australia, and an increase in the Middle East and Asia 

have changed clean tanker geography to a large extent, and this may also lead to 

increased volatility in freight rates. For one instance, the Middle East has begun to 

shift from crude oil exports to developments in the downstream such as refineries, 

leading to more refined product exports (UNCTAD, 2015). 

1.2.2.2 Product tanker fleet  

Three main size categories for product tankers are Medium Range (MR) tankers 

(35,000 – 59,999 dwt), Long Range One (LR1) tankers (60,000 – 79,999 dwt) and 

Long Range Two (LR2) tankers (80,000 – 119,000 dwt). There are also handysize 

tankers (25,000 – 34, 999) engaging in regional refined product trades. However, 
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these vessels are primarily designed and employed for chemical trades. Nowadays, 

there are Long Range Three (LR3) vessels in the water, but the number is quite 

limited. The size of LR3 is equivalent to Suezmax tankers in the dirty tanker market. 

LR2 is equivalent to Aframax and LR1 equivalent to Panamax. The main difference 

between clean carriers and dirty carriers is that clean carriers are normally coated 

(such as epoxy) in order to carry refined products. However, sometimes, clean 

carriers could switch to carry crude oil when the dirty market is booming, which 

could justify the switch-over and cleaning-up costs.  

Table 1.1 Product tanker fleet summary (as of Jan 2018) 

 LR2 LR1 MR 

Existing fleet 348 356 1498 

Ships trading clean 206 232  

Orderbook 46 28 163 

Average age (years) 8.1 9.6 9.8 

Source: compiled by author based on Lloyd’s List (2018). 

As shown in Table 1.1, the existing fleet of LR2, LR1 and MR as of January 2018 

are 348, 356 and 1498 respectively. The orderbook for LR2 is quite heavy, which is 

13% of the existing fleet. The net LR1 fleet expansion has been minimal since 2012. 

The average growth from 2012 to 2017 is 4%. Following brisk ordering activities a 

couple of years ago, 106 MRs entered the water in 2015, implying a net fleet 

expansion of 9%, the highest one since 2010. 

1.2.2.3 Main product tanker trading routes 

The East of Suez has traditionally been the main trading area for the LR2s. Exports 

from the Middle East to Asia has long been an established route. However, the surge 

of naphtha exports from Europe to Asia in recent years has attracted some units to 

the western hemisphere, as can be seen in Figure 1.3. 

The Middle East to Asia is also the main trading route for LR1s. However, West 

Africa’s imports of refined products from Europe have become an increasingly 

important market for the LR1s.  
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MRs are more flexible and versatile than LR1s and LR2s. From the density map for 

MRs (as shown in Figure 1.5), it can be seen that trading routes are more complex 

and spread all over the world. 

Figure 1.3 Density map of LR2 trading clean in 2015 

 

Source: drawn by author based on AIS data. 

Figure 1.4 Density map of LR1 trading clean in 2015 

 

Source: drawn by author based on AIS data. 
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Figure 1.5 Density map of MR trading clean in 2015 

 

Source: drawn by author based on AIS data. 

1.3 Research objectives 

Based on the above-mentioned research background, the primary objective of this 

research is to provide econometric analyses of the LPG and product tanker shipping 

markets. As such, the following detailed objectives are outlined and shall be achieved 

in the thesis, including: 

1) To examine the relationships between the key market variables (supply/demand, 

freight rates, and secondhand and newbuilding prices) in the VLGC market in an 

integrated approach; 

2) To investigate the dependency between VLGC freight rates and product price 

arbitrage and oil prices; 

3) To study the spatial patterns of the VLGC market and examining how a set of 

explanatory variables relating to market conditions influence a charterer’s behavior 

regarding destination choices.  

4) To examine the dependency structure and extreme co-movements across various 

product tanker routes; 

1.4 Research scope 

This research concentrates on the LPG and product tanker shipping freight markets. 

The main focus of the research is on freight rates, including their interrelationships 

and relationships with other variables. LPG can be lifted on all types of LPG carriers, 
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from VLGCs to pressurized ships. VLGCs predominately lift long-haul volumes. For 

LPG export from the Middle East and the US, we normally use VLGCs. In this 

research, VLGC shipping market is analyzed as a representative of LPG shipping due 

to the large volume of LPG that VLGCs carry and their dominant market share in 

LPG shipping. An aggregated approach is taken for the VLGC shipping market as 

there is well-established benchmark route (from Ras Tanura to Japan) and freight 

index, which is known as Baltic LPG index (BLPG) and tracks the dollar per ton rate 

from Ras Tanura to Japan. This study first investigates the relationships between the 

key market variables to have a holistic view of the VLGC market. The variables 

include market pressure (a ratio of ton-mile demand over ton-mile supply), freight 

rate, new building and secondhand vessel prices. The study then takes a further step 

by investigating the relationship between freight rate and product price arbitrage and 

oil prices, apart from the supply and demand factors analyzed in the first step. 

Furthermore, the research aims to discover the spatial patterns of the VLGC market 

and investigate VLGC vessels’ destination choices based on a set of explanatory 

variables. For the product tanker market, as there are many different routes and vessel 

sizes, it is impossible to analyze in an aggregated manner as the VLGC market. 

Therefore, it may not be feasible to study the relationships among key market 

variables for product tankers as a whole, instead, to study the freight rate relationships 

across different product shipping routes would have more practical significances, 

such as for diversification purposes. 

1.5 Research significance 

1.5.1 Academic significance 

This research provides academic significances in the following ways. Firstly, it fills 

the gap in the existent shipping literature by analyzing the LPG and product tanker 

shipping markets, which is of great importance in the seaborne transportation family, 

however, received limited research attention. The econometric analysis of the two 

shipping markets provides insights into the LPG freight formation process and 

dynamics, and the dependency structure between different product tanker freight 

rates. Secondly, this study takes a novel perspective in investigating the freight rate 

formation, which relates the freight rate development to the spatial arbitrage, which 
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has been appreciated by industry practitioners, but little investigated by the academy. 

This study also makes methodological advancements by introducing time-varying 

copula approaches in the shipping domain. The copula methods provide more 

flexibility and accuracy in freight relationship and dependency modeling. 

Furthermore, this research is one of the first to model vessels’ destination choice 

behaviors and identify their associations with various market factors. Last but not 

least, the application of AIS data in analyzing shipping trade and spatial patterns is 

another novel contribution made by this study.  

1.5.2 Practical significance 

The findings of this thesis are beneficial for shipping practitioners by providing 

decision tools as well as practical implications. Studying the various relationships 

may have direct implications for shipowners and related agents in the shipping sector, 

such as charterers and asset players. This study could help shipowners combine 

anticipated changes in freight rate and vessel prices with information concerning 

demand and supply changes, thus make more informed decisions regarding lending, 

ordering, and purchasing of vessels. In addition, by knowing the development of 

crude oil price and the arbitrage economics, the industrial practitioners would also 

have a clearer view of the market movements. Furthermore, understanding the 

dependency between freight rates on different trading routes will aid shipowners’ 

decision-making process about vessel allocations in different trading routes for 

diversification and risk mitigation purposes. Last but not least, this work draws 

significant implications for transportation planning. Understanding a charterer’s 

choice of destinations is vital in determining traffic volume to a specific destination 

and also in forecasting future vessel supply patterns. 

1.6 Thesis structure 

This report will consist of 6 chapters as follows. 

Chapter 1 provides the background, objectives, scope, significance, and structure of 

this research. 

Chapter 2 conducts the literature review focusing on the different aspects of tramp 

shipping freight market, identifying the major trends and methods in each topic. The 
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existing research is classified into four categories, namely supply-demand modeling, 

freight rate process modeling, freight rate forecasting and freight rate relationships. 

The study also reviews the specific literature on LPG and product tanker shipping 

markets. Based on the review, major literature gaps are identified.  

Chapter 3 presents the research process flow and methodologies to be used in the next 

chapters. It introduces Structural Equation Modeling (SEM), copula-GARCH model 

and discrete choice modeling in the shipping domain. 

Chapter 4 investigates the LPG shipping market in three ways. Firstly, SEM model 

is applied to analyze interrelationships between supply/demand, freight rates, and 

newbuilding and secondhand prices in an integrated framework. Secondly, copula-

GARCH model is employed to study the time-varying dependency between LPG 

freight rate, product location arbitrage and crude oil prices. Thirdly, a discrete choice 

model is proposed for VLGC destination choice analysis for cargoes originated from 

the US Gulf and its relationship with several explanatory attributes is identified, 

including the freight rate, commodity price arbitrage, bunker price and the number of 

ships in a specific area. 

Chapter 5 examines dependencies and extreme co-movements across six major clean 

product tanker shipping freight rates by the copula-GARCH model. 

Chapter 6 summarises this research’s major findings and contributions. Limitations 

of this study and recommendations for future research are also provided. 
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CHAPTER 2 LITERATURE REVIEW 

 

This chapter reviews past literature on freight rate modeling in the bulk shipping market, 

identifying the major themes and methodologies. The objective of this chapter is to review 

academic research on physical freight market in bulk shipping using quantitative methods. This 

chapter adopts a systematic review approach to identify major trends and themes in the bulk 

shipping freight market and pinpoints gaps in the literature.  
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2.1 Background 

Due to its importance to world trade, maritime transportation research has attracted much 

research attention. Recent review studies have attempted to identify the broad research areas, 

specific topics and methodologies employed (Davarzani et al., 2016; Lee et al., 2016; 

Notteboom et al., 2013; Shi and Li, 2017; Talley, 2013; Woo et al., 2011, 2012, 2013; 

Alexandridis et al., 2018). Talley (2013) classified the literature into ‘shipping’ and ‘port’ 

research, and further divided them into 19 sub-categories. For shipping-related literature, he 

included seafarers, short sea shipping, shipping finance, freight rates, shipping 

performance/management and shipping safety. Shi and Li (2017) identified three research areas 

including ‘shipping’, ‘port’ and ‘maritime fleet’. Woo et al. (2011, 2012, 2013) and Notteboom 

et al. (2013)’s review work focused specifically on seaport research. Davarzani et al. (2016) 

and Lee et al. (2016) mainly discussed environmental themes associated with ports, maritime 

logistics, and transportation. Alexandridis et al. (2018)’s work examined shipping finance and 

investment related research. These review papers have studied the general themes and tools 

used in the broad maritime transport research. Freight rates, although mentioned as a research 

sub-category (Talley, 2013), have not been investigated extensively. Davarzani et al. (2016) 

and Lee et al. (2016) mainly discussed environmental themes associated with ports, maritime 

logistics, and transportation. However, as it is known, due to the uncertainty in international 

shipping and volatile nature of freight rates, the freight rate dynamic has become an important 

and popular research area. Glen (2006) provided a survey on the modeling of dry bulk and 

tanker markets. However, such review was done in the last decade and consequently, 

methodological advancements in recent years have not been captured. Alexandridis et al. (2018) 

reviewed research work on volatility and spillover effects in the freight market as part of risk 

measurement and management in shipping topics. However, it is only a sub-section of the 

review article and does not elaborate on the methodologies and trends in this area. Thus, a 

systemic review of freight market research is necessary to identify freight characteristics, 

behaviors, as well as general topics and methods used in freight study.  

2.2 Literature review approach 

The systematic review aims to provide joint insights into certain fields and to enhance 

methodological rigor. The systematic review could also help establish a sound knowledge base 
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for practitioners by collecting information from a wide range of previous research (Tranfield 

et al. 2003). Potential research gaps shall be identified to highlight knowledge boundaries, 

which could serve as a reference point for future research. This section describes the literature 

review approach and summarizes major bibliometric statistics. 

2.2.1 Description 

In this thesis, freight rate studies in bulk shipping published in academic journals are included. 

In this paper, freight rate studies in bulk shipping published in academic journals are included. 

Important seminar papers and book chapters in the early years are also included, as they provide 

the major source of knowledge at that time. Journal papers have a more solid theoretical basis, 

concepts and models, thus, should be considered as the primary source of literature review 

(Rowley and Slack, 2004). Furthermore, journal papers have gone through peer review 

procedures and are considered more rigorous and appropriate for both theoretical and 

methodological investigation. The time span under investigation is from the 1930s when the 

pioneer econometric analysis for bulk shipping market was published (Tinbergen, 1931) to 

2017.  

To identify all relevant literature, the following steps are performed. Firstly, the combination 

of keyword searches which include “shipping freight rate”/ “shipping freight market” are 

performed in Scopus, Web of Science, ScienceDirect and Google Scholars for all peer-

reviewed journals. Any articles that contain the keywords in title, abstract or keywords are 

selected. The initial result returns 337 papers. Secondly, each article’s title and abstract were 

reviewed first to identify the major topics covered. After review, we reserved the articles that 

cover shipping freight rates using quantitative analysis. 262 articles were selected for further 

examination and the rest were removed as they were not relevant to our study.  

In the final step, the selected 262 articles were investigated thoroughly and the scope was 

further refined with the following criteria. Firstly, the scope of analysis is limited to current 

spot and time charter rates, which represent the physical freight market. Papers on freight 

derivatives markets alone are not covered in this paper. Secondly, we also exclude papers 

specifically focusing on vessel prices, as the main focus of this study is the freight market. 

Thirdly, the container market is also excluded as the main focus is on bulk shipping market. 

Container shipping and bulk shipping markets follow rather different mechanisms and 
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dynamics, thus reference drawn from the container market analysis may not be suitable for 

bulk shipping markets. Last but not least, additional important articles frequently cited and 

appeared in the reference, but not in our database using keyword search are also included. 

Using such criteria, 113 papers remain as our final articles under review. A database was used 

to record all necessary information about each paper, including authors, publication year, 

journal, the objective of the study, methodology, key findings and limitations. The database 

was updated constantly for comparison and future analysis. Figure 2.1 below illustrates the 

entire article filtering process. 

Figure 2.1 Paper selection process 

 

 

2.2.2 Bibliometric statistics 

The literature database indicates that the 113 articles are published in 41 journals. Maritime 

Policy & Management and Maritime Economics and Logistics are the top two publishing 

journals, followed by Journal of Transport Economics and Policy and Transportation 

Research Part E, which are the major journals for transportation and maritime-related issues. 

Economics journals such as Applied Economics and Energy Economics also appear in the top 
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of the list, as freight rate analysis often contains modern econometric techniques. Table 2.1 

records the top host journals and number of papers contributed to each journal. The top 10 

journals include around 70% of total 113 articles reviewed. Figure 2.2 shows the number of 

publications per year to generate publication trend. The number of publications in different 

research categories is indicated in different colored bars, while the dotted line shows the total 

number of publications in a given year. The different research themes are further illustrated in 

details in Section 2.3. As can be seen, shipping freight rate studies have emerged in as early as 

the 1930s, however, received limited attention before 1989. Earlier studies have mostly focused 

on building full-scale supply-demand models. Modeling the freight rate process has come into 

the spotlight in the 1990s and since then becomes a popular research area. Forecasting for bulk 

shipping freight rates appears to be a relatively new research area and the total numbers on this 

subject are limited (18 articles out of 113). Potentially due to the complex nature and high 

volatility of the shipping market, it seems difficult to obtain a certain level of accuracy for 

freight rate forecasting. For the same reason, volatility has become a popular research topic 

and is grouped under freight rate process modeling. 
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Table 2.1 Top host journals and number of papers published 

Journal No. of 

articles 

Maritime Policy & Management 22 

Maritime Economics and Logistics 19 

Transportation Research Part E: Logistics and Transportation Review  10 

Journal of Transport Economics and Policy  8 

Applied Economics 5 

Asian Journal of Shipping and Logistics 4 

Energy Economics 3 

Transportation Research Part A: Policy and Practice 3 

International Journal of Transport Economics 3 

Others 36 

Total 113 

 

Figure 2.2 Publications per year on bulk shipping freight rates 

 

The publications are further broken down according to the shipping sectors covered as shown 

in Figure 2.3, it is notable that dry bulk accounts for 60% (68 articles) of final shipping freight 

literature identified (113 articles) in this study and tanker sector constitutes another 25% (28 

articles). LPG shipping market has only been studied in three papers due to its niche market 

nature. Furthermore, most literature identified in tanker shipping focus on crude oil tankers. 

For product tanker market, Baltic Clean Tanker Index (BCTI) or individual routes have been 

separately studied to a limited extent (Alizadeh et al., 2015; Kavusanos and Dimitrakopoulos, 
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2011). Some scholars also jointly investigate tanker and dry bulk shipping markets to identify 

similarities and differences in terms of freight behaviors (Veenstra, 1999), or to identify the 

relationship of the two markets and combined carrier effects (Beenstock and Vergottis, 1993). 

It is also noted that most research attention has been given to the larger vessel size segments, 

for example, Capesize and Panamax in the dry bulk market and VLCC in the tanker market. 

Figure 2.3 Market sectors covered in bulk shipping freight literature 

 

Source: Author. 

2.3 Research themes in freight rate modeling 

Econometric techniques are gaining more and more popularity in recent years among 

researchers to analyze freight rate behaviors. The quantitative literature on freight rates can be 

classified into four categories as listed in Table 2.2. The first category is to model freight rates 

through a supply-demand framework, namely, a structural approach is adopted to model freight 

rates and other determinant variables in linear regression systems. The second theme is to 

model the freight rate dynamics itself, including freight characteristics and volatility. 

Stationarity test has been extensively used. The structure of freight autoregressive nature has 

been studied. Furthermore, freight rate forecasting has been another research scheme. Different 

techniques such as time series analysis and artificial intelligence have been explored by 

researchers. Last but not least, scholars are also interested in freight rate relationships, which 

include: 

Dry Bulk

60%

Tanker

25%

Dry Bulk & 

Tanker

12%

LPG

3%



 

 
24 

i) The term structure between spot and period rates (Glen et al., 1981; Hale and Vanags, 1989; 

Wright, 2000; Kavussanos and Alizadeh, 2002);  

ii) The relationship between spot and forward rates (Kavussanos and Visvikis, 2004; Li et al., 

2014); 

iii) Freight interrelationships and spillover effects between different size categories and 

different markets (Veenstra and Franses, 1997; Wright, 1999; Tsouknidis, 2016);  

iv) Freight rate dynamics with newbuilding, secondhand and scrapping market (Dai el al., 2015; 

Kou and Luo, 2015);  

v) Freight rate relationship with commodity prices. Apart from the relationships mentioned 

above, some studies also investigate freight rate dynamics with oil prices, or the price of the 

commodity which the vessel carries (Alizadeh and Nomikos, 2004; Poulakidas and Joutz, 2009; 

Shi et al., 2013).  

Table 2.2 Main research themes, topics and the number of articles identified in the literature 

Main research theme Sub-topics 
No. of 

articles 

Model freight rates 

through a supply-

demand framework 

Macro approach; 

Micro approach 
17 

Model freight rate 

dynamics itself 

Freight characteristics;  

Stationarity; 

Volatility; 

Seasonality 

46 

Freight rate 

forecasting 

Supply-demand modeling; 

Stochastic modeling; 

Artificial intelligence techniques 
18 

Freight rate 

relationships 

Term structure between spot and period rates; 

Relationship between spot and forward rates; 

Interrelationships and spillover effects between 

different size categories and different markets; 

Relationship with newbuilding, secondhand and 

scrapping market; 

Relationship with commodity prices 

35 

 

The 113 identified articles contain 17 papers on supply-demand modeling, 46 on freight 

process modeling, 18 on forecasting and 35 on freight relationship. There may be publications 

covering more than one research theme. 
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2.3.1 Supply/Demand model 

Some early quantitative analysis of shipping freight rates appeared in the 1930s. Most studies 

at this time mainly adopt a structural approach, namely to model freight rates and other 

determinant variables in linear regression systems (Beenstock and Vergottis, 1989a, 1989b, 

1993; Hawdon, 1978). Tinbergen (1931) and Koopmans (1939) conducted the pioneering 

studies. Tinbergen (1931) establishes the first quantitative analysis of shipbuilding and freight 

markets. In the earliest time, more efforts have been spent on modeling the supply side of the 

freight market and less attention given to the demand side. This is mainly due to the more 

complicated nature of the demand side. Later on, more emphasis has been given to investigate 

the supply and demand dynamics.  

The major quantitative models used in freight markets are summarized below. Tinbergen (1934) 

conducted pioneer research using econometric models in shipping and identified the changes 

in demand and supply variables on freight rates. The factors include bunker prices and fleet 

size, to name a few. His study included data from 1870 to 1913. In his work, demand function 

is perfectly inelastic while the supply function is fairly inelastic. Koopman (1939) studied the 

tanker freight rate determinants by a supply and demand model, which is one of the earliest 

econometric applications and one of the first few to point out the peculiar shape of the supply 

curve in the tanker market. The author concluded that the supply curve is steep or inelastic in 

the case of full fleet employment, while under a partial employment condition, the supply curve 

tends to be flat or elastic. This implies that when fleet utilization is low, a demand change 

would not change freight rates to a large degree, but when existing fleet utilization is high, 

increase in transportation demand will have a large effect on rates. Hawdon (1978) regressed 

freight rates against a set of independent variables, such as demand per unit of capacity, 

newbuilding prices, average ship size, bunker prices from 1950 to 1973. The results show that 

tanker freight rates could be significantly influenced by demand per unit and fuel prices, while 

the statistical relationships for the rest variables were found to be insignificant. 

Earlier quantitative models focused mostly on modeling the supply side, while the demand side 

was often neglected by researchers. Norman (1979) for the first time investigated the 

relationship between demand for shipping and OECD countries’ Gross National Product (GNP) 

indicators. He concluded that such indicators could to a large extent explain the shipping 
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demand changes. Following Tinbergen (1934)’s work in modeling supply side, Wergeland 

(1981) further studied freight rates in a supply-demand framework. The demand is modeled as 

a ton-mile function with independent variables: global trade (positive relationship) and freight 

rates (negative relationship). His findings were in line with Tinbergen (1934)’s that freight 

rates are inelastic to supply and demand changes, with supply being less inelastic. Beenstock 

and Vergottis (1989a, 1989b) conducted a series of work and established integrated 

econometric models for both dry bulk and tanker markets. In their models, freight rates are 

expressed as a function of demand (in ton-miles and being exogenous), supply (active fleet) 

and bunker prices.  

Traditional freight rate formations as mentioned above are often investigated at the macro level 

using aggregate demand or supply factors. On the other hand, a separate strand of literature has 

investigated the freight rate formation at the micro level using spot fixture data (Adland et al., 

2016; Adland et al., 2017; Alizadeh and Talley, 2011a; Alizadeh and Talley, 2011b; Agnolucci 

et al., 2014; Köhn and Thanopoulou, 2011; Tamvakis and Thanopoulou, 2000). Such an 

approach could account for heterogeneity with respect to vessel technical and contract 

specifications (Adland et al., 2016). For example, Alizadeh and Talley (2011a, 2011b) 

investigated tanker and dry bulk spot freight rates using vessel- and contract-specific 

determinants, as well as macro market variables. Adland et al. (2016) employed fixed effect 

regression techniques to study the characteristics of charterers and owners and use them as 

microeconomic determinants of freight level.   

2.3.2 Freight rate process modeling 

Beenstock and Vergottis (1993)’s work serves as a high watermark in the application of 

traditional econometric models, as mentioned by Glen (2006). Since Beenstock and Vergottis 

(1993), shipping research has shifted into a new direction. More studies have abandoned 

structural models and focused on modern econometric techniques, such as univariate time 

series analysis to investigate the statistical properties of freight rates and the structure of their 

autoregressive nature (Kavussanos, 1996; Kavussanos and Alizadeh, 2002; Jing et al., 2008). 

Structural models have their own drawbacks as they typically require a large number of 

variables and some of them could be difficult to assess (such as vessel utilization). On the other 

hand, the efficient market hypothesis in the shipping market has justified the modeling of 
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freight rate itself in a time series model. If the market is efficient, freight rates are supposed to 

encompass all information that is publicly available and there would be no extra variables 

needed except for freight rates for the model building process (Evans, 1994; Veenstra and 

Franses, 1997).  

2.3.2.1 Stationarity, freight rate properties, and seasonality 

Under the trend of using modern econometric techniques instead of building large-scale 

structural models, more and more researchers have begun to put emphasis on econometric 

measures to model freight rate dynamics and explore statistical properties of freight rates. Unit 

root analysis is performed by many researchers (Adland and Cullinane, 2006; Tvedt, 2003; 

Veenstra and Franses, 1997; Koekebakker et al., 2006) to test the stationarity of freight rates. 

The stationarity of data is often a prerequisite for most of the techniques applied to the 

modelling of freight rates. The general consensus is that freight rates are non-stationary in level 

form, but stationary in first-order difference. Tvedt (2003) is an exception. He claimed that the 

reason for non-rejection of non-stationarity in the literature is that freight rates are dominated 

in USD. If freight rates are transformed to Japanese Yen (as argued by the author that Japan 

and the rest of Asia play a more significant role than North America in the dry bulk market), 

freight rates seem to be stationary. Unlike most work that based on linear ADF test, 

Koekebakker et al. (2006) applied a unit root test against a non-linear stationary alternative and 

found that all bulk freight rates are stationary. However, this method has not been followed by 

many researchers. Table 2.3 summaries major stationarity tests and their respective results from 

the literature. The results indicate that most researchers have reached the conclusion of non-

stationarity for freight rates. Apart from that, freight rates also exhibit time-varying, non-linear 

and non-normal characteristics as a general consensus (Adland and Cullinane, 2006; Adland et 

al., 2008; Goulielmos, 2009; Kavussanos, 1996; Kavussanos and Alizadeh, 2002; Tvedt, 2003; 

Xu et al., 2011). The auto-correlated nature of freight rates has also been studied. For example, 

Cullinane (1992) conducted a time series analysis and forecasting by the Box-Jenkins method. 

He got an ARIMA (3, 1, 0) model due to data limitations.  

Seasonal behavior is another area of interest. Stopford (2009) argued that dry bulk freight rates 

exhibit seasonal behavior owing to the commodities periodically transported. Kavussanos and 

Alizadeh (2001) found evidence of seasonal behaviors of freight rates in both dry bulk and 
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tanker rates. Poblacion (2015) studied the seasonal behavior of tanker freight dynamics 

employing a four-factor model and found that stochastic seasonality models perform better 

than deterministic seasonality models.
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Table 2.3 Overview of results from stationarity tests in previous literature 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: ADF is the augmented Dickey and Fuller test for stationarity. The null hypothesis is the series has a unit root. PP test is Phillips and Perron test 

for stationarity. The null hypothesis is the series has a unit root. KPSS test is proposed by Kwiatkowski et al. (1992) against the null hypothesis of 

stationarity. The seasonal unit root test is established by Beaulieu and Miron (1993). Koekebakker et al (2006) adopted a non-linear unit root test 

proposed by Kapetanios et al. (2003). 1) Two panamax route stationary at 5% level. 2) One spot series stationary at 5% level. 3) Non-stationary when 

freight rates denoted in USD, stationary when converted to JPY. 4) One route stationary at 5%. 

Source: adapted from Koekebakker et al. (2006).

Author(s) Purpose Data Data period Frequency Test(s) Conclusion 

Veenstra and 

Franses (1997) 

Freight rate forecasting using 

cointegration 
Capesize/Panamax routes 1983-1993 monthly ADF Non-stationary1 

Glen and Martin 

(1998) 

Tanker market risks difference for 

different size vessel and term 

structure 

Tanker spot and time 

charter index 
1973-1996 monthly ADF, PP Non-stationary 

Veenstra (1999) The term structure of freight rates Drybulk TCE and spot rates 1980-1993 monthly ADF Non-stationary2 

Wright (2000) 
Spot and time charter rates’ long 

run parity 
Tanker freight indices 1982-1996 monthly DF, ADF Non-stationary 

Kavussanos and 

Alizadeh (2001) 

Seasonality in spot and time charter 

rates 
Drybulk TCE and spot rates 1980-1996 monthly 

Seasonal unit 

root 
Non-stationary 

Kavussanos and 

Alizadeh (2002) 

The expectation hypothesis of the 

term structure 

Drybulk spot and time 

charter rates 
1980-1997 monthly ADF, PP Non-stationary 

Tvedt (2003) Stationarity of freight rates Drybulk TCE and spot rates 1988-1999 weekly ADF Stationary3 

Haigh et al. 

(2004) 

Freight rates integration and 

causality 
Individual BPI routes 1996-2001 daily ADF Non-stationary4 

Kavussanos and 

Visvikis (2004) 

Lead-lag relationship in returns and 

volatilities 
Drybulk spot and FFA rates 1997-2000 daily 

ADF, PP, 

KPSS 
Non-stationary 

Alizadeh and 

Nomikos (2004)  

Relationship between oil price and 

tanker freight 
Tanker spot rate 1993-2001 weekly 

ADF, PP, 

KPSS 
Non-stationary 

Koekebakker et 

al. (2006) 
Stationarity of freight rates Drybulk and tanker TCE 1990-2005 weekly 

Non-linear 

unit root 

Non-linear 

stationary 

Adland et al. 

(2008)  

Spot freight dynamics in Liquid 

Petroleum Gas transport 
LPG TCE 1992-2005 weekly 

ADF, PP, 

KPSS 
Stationary 
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2.3.2.2 Freight rate volatility modeling 

Freight rate volatility has been another main research strand, due to the highly volatile 

nature of shipping freight market. In the past years, a substantive number of approaches 

utilizing ARCH (Autoregressive Conditional Heteroscedasticity and GARCH 

(Generalized Autoregressive Conditional Heteroscedasticity) models have emerged 

(Kavussanos, 1996; Glen and Martin, 1998; Chen and Wang, 2004; Jing et al., 2008; 

Alizadeh and Nomikos, 2011). Such models discard the standard econometric 

assumption of constant variance of error terms. These models have been adopted by 

many researchers to examine the time-varying volatility of freight rates. Freight 

volatility refers to the variability or the dispersion of freight rates. Engle (1982) first 

developed the model and later Bollerslev (1986) further extended it. These models allow 

both the conditional mean and variance of the data series to be modeled simultaneously. 

This allows the variance to change over time. Kavussanos (1996) for the first time 

applied ARCH and GARCH models in the shipping industry to analyze the time-varying 

behavior in dry bulk freight rates of different sizes, as well as aggregated spot and time 

charter rates. His model included the conditional mean, variance, and density of the error 

term in the regression equation. The results pointed out that ARCH and GARCH 

parameters are significant and the model provides a better fit compared with the classical 

linear model. Following Kavussanos’s efforts, Glen and Martin (1998) applied similar 

techniques in the tanker market and examined the conditional volatility of vessels of 

different sizes and between different types of period charter. Kavussanos (2003) 

investigated risks in the tanker freight market utilizing GARCH model and unveiled that 

time charter rates are generally less volatile than spot rates, while freight rates of larger 

ships have higher volatility than smaller ones.  

Later researchers have extended GARCH model to various forms, including 

Exponential-GARCH (EGARCH) and GARCH-X (Kavussanos and Alizadeh, 2002; 

Chen and Wang, 2004; Jing et al., 2008; Alizadeh and Nomikos, 2011; Drobetz et al., 

2012). Table 2.4 shows the major application of GARCH models in bulk shipping 

freight literature. The table indicates that from the original GARCH model, researchers 

have begun to compare different GARCH forms and attempted to find the best-fitted 

ones. More recently, some studies have also extended it to multivariate forms (Xu et al., 

2011). Exponential GARCH could model the conditional variance as an asymmetric 

function of past innovation, thus being capable of capturing inverse relationships 
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between current returns and future volatilities (Chen and Wang, 2004; Jing et al., 2008). 

Chen and Wang (2004) studied the leverage effect in bulk shipping markets by 

EGARCH.  Jing et al. (2008) concluded that volatility in different period charters and 

different vessel sizes responses to market shocks of different magnitude in the dry bulk 

market. The authors divided the samples into two periods to investigate different 

asymmetric impacts during two sub-periods. Alizadeh and Nomikos (2011) pointed out 

that the shape of the term structure could affect the volatility and this relationship is 

asymmetric. They compared different GARCH models and conducted out of sample 

forecast for both dry bulk and tanker markets, using both time charter and spot rates in 

different sub-sectors. The conclusion is that EGARCH-X outperforms in most cases and 

stands out in terms of forecasting performance. Drobetz et al. (2012) studied the effects 

of shocks from macroeconomic variables and asymmetric effects on volatility in dry 

bulk and tanker markets using GARCH-X, EGARCH, and EGARCH-X models. They 

used Daily Baltic Exchange indices in the period of 1999 to 2011. In their study, they 

specifically allowed for a t-distribution rather than only a normal distribution to better 

depict the fat tails of error terms and concluded that a t-distribution is more suitable than 

a normal distribution. They further pointed out the existence of strong asymmetric 

effects in the tanker market and non-existence of such effect in the dry bulk market.  

As a short summary, research studies have evolved from the original GARCH models 

to different GARCH specifications and extensions to capture flexibly different volatility 

behaviors. The distribution of error terms has also been considered by recent studies. 

The standard normal distribution has been re-examined by some scholars and efforts 

have been made to use t-distribution to account the fat-tailed behavior of freight rates. 

Univariate GARCH models have one major limitation: they only model the conditional 

variance of independent series, thus, being univariate in nature. As a result, any 

‘volatility spillovers’ between different markets cannot be modeled. Furthermore, in the 

financial market, the covariance between the series is as important as the variances of 

individual series. Some studies have also extended univariate GARCH models to 

multivariate forms (Kavussanos and Visvikis, 2004; Xu et al., 2011). Kavussanos and 

Visvikis (2004) applied VECM-GARCH-X model to examine the volatility spillover 

effect between spot and FFA prices. Xu et al. (2011) studied the relationship between 

freight rate volatility and the growth in fleet sizes, bunker prices among other variables 

in the dry bulk shipping markets using the GARCH model and GMM regression. 
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However, such model is still based on the linear framework and not able to capture the 

non-linear relationships between the series.
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Table 2.4 Applications of GARCH models in bulk shipping freight literature 

Author Sector Time 

period 

Methodology Purpose Main finding 

Kavussanos (1996a) Dry Bulk 1973-1992 GARCH 

To analyze the freight rate time-varying 

behavior for different size categories and 

spot and time charter rates in the dry bulk 

market 

ARCH and GARCH parameters are significant and the GARCH model 

fits better compared to the classical linear model 

Kavussanos (1996b) Tanker 1973-1992 
ARIMA-X 

and GARCH 

To analyze the monthly tanker price 

volatility for different size vessels 

Oil price increase impacts negatively on aggregated tanker prices and 

positively on volatility 

Glen and Martin 

(1998) 
Tanker 1973-1996 GARCH 

To estimate the conditional volatility 

between different sizes and types of period 

charter for tankers 

The larger tankers are riskier than smaller vessels, and time charter 

rates are less volatile than spot rates 

Kavussanos and 

Alizadeh (2002) 
Dry Bulk 1980-1997 EGARCH-M 

To investigate the expectations hypothesis in 

time charter rate formation of the term 

structure 

Result does not support the expectation hypothesis of the term structure 

of the period 1980-1997 

Chen and Wang 

(2004) 
Dry Bulk 1999-2003 E-GARCH 

To examine the leverage effect on volatility 

in the bulk market 

1) Market downturns have more significant leverage effects compared 

to market upturns; 2) Leverage effects are more significant for larger 

vessels than smaller ones. 

Jing et al. (2008) Dry Bulk 1999-2005 
GARCH/E-

GARCH 

To investigate freight rate volatility 

characteristics for three different bulkers 

Volatility in different vessel sizes and different period charters 

responds to market shocks in different magnitudes 

Alizadeh and 

Nomikos (2011) 

Dry Bulk 

and Tanker 
1992-2007 

Augmented 

E-GARCH 

To identify the relationship between term 

structure and freight rate volatility, compare 

the predicting performance of various 

GARCH models 

Freight rate volatility is related to the term structure shape of the freight 

market. 

Koseo and Barut 

(2011) 

Dry Bulk 

and Tanker 
2002-2008 

Co-

integration, 

Granger 

causality, 

GARCH 

To measure market earnings volatility and its 

spillover effects between the tanker and the 

dry bulk shipping 

Tanker earnings more volatile than the dry bulk market; a long-term 

relationship between the two markets and unidirectional mean spillover 

effect from dry to tanker market 

Xu et al. (2011) Dry Bulk 1973-2010 

AR-GARCH 

and GMM 

regression 

To investigate the determinants of freight 

rate volatility (including fleet size, bunker, 

demand) 

Changes in fleet size have positive impacts on freight rate volatility 

Drobetz et al. 

(2012) 

Dry Bulk 

and Tanker 
1999-2011 

compare 

GARCH-X, 

EGARCH, 

and 

EGARCH-X 

To study whether macroeconomic shocks or 

asymmetric effects could contribute to the 

explanation of time-varying volatility in the 

dry bulk and tanker market 

1) a t-distribution is more suitable than normal distribution for error 

term; 2) Macroeconomic factors should be modeled into the conditional 

variance equation instead of the conditional mean equation; 3) Strong 

asymmetric effect in the tanker market, but no such effect in dry bulk 
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2.3.2.3 Other freight rate process modeling techniques 

Many researchers have proposed some stochastic modeling methods apart from 

a time series analysis to characterize freight rate dynamics, both by parametric 

and non-parametric models adopted from financial economics. For parametric 

models, the Geometric Brownian Motion (Tvedt, 1997) and the Ornstein–

Uhlenbeck process (Jørgensen & De Giovanni, 2010; Kou and Luo, 2015) have 

been frequently used. Non-parametric models are fully functional procedures. 

Instead of imposing a specific parametric structure, they identify the functions 

describing the solution to the stochastic differential equation (Tvedt, 2003; 

Adland and Cullinane, 2006; Adland and Strandenes, 2007). Adland and 

Cullinane (2006) modeled the spot freight rate process as a non-parametric 

Markov diffusion model and found that freight rates follow a traditional mean-

reverting process in the long run, but has a unit root in the short run. However, 

because of high volatilities in spot freight rates, the model has a limitation in 

terms of detecting slow-speed mean reversion in high-frequency data. Adland et 

al. (2008) investigated the freight dynamics in the LPG carriers for the first time 

using similar techniques and concluded that a simple linear stochastic model can 

approximately describe LPG freight rates and the rates do not show the non-

linearity which is found in other bulk shipping segments. 

One drawback of the stochastic freight rate models is that they neglect all the 

information not contained in the current spot rates and past innovations. 

Therefore, some important information may not be taken into account. 

Fractal analysis techniques using non-parametric specifications also receive 

some researchers’ attention. Engelen et al. (2011) adopted multifractal detrended 

fluctuation analysis (MF-DFA) and rescaled range analysis to examine freight 

characteristics of VLGCs and found that VLGC freight rates demonstrate limited 

time-dependent persistence with controlled volatility and trend-reinforcement. 

However, the study was done in 2011, when the VLGC market has limited 

trading patterns and much smaller fleet size compared to 2016, which results in 

controlled volatility as the authors argued. Goulielmos and Psifia (2011) used a 
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rescaled range analysis and concluded that dry bulk index in the period of 1971 

to 2005 is not normally distributed and have fat-tails.  

2.3.3 Freight rate forecasting 

Shipping is often perceived as a market of being highly volatile and unpredictable, 

which is largely due to its derived nature of global trade. Coupled with shipping 

market unique characteristics, such as speculative behaviors, time lags between 

the time of ordering and delivering of vessels, shipping freight rates exhibit high 

volatility. Freight rates thus, at first sight, may seem to follow a random walk and 

hard to predict due to such effects (Engelen et al., 2011). To facilitate more 

accurate forecasting, more research in the literature has shifted from building 

large-scale econometric or simulation models to more direct specifications of 

freight rate process itself or reduced forms (Glen, 2006). As such, the statistical 

properties could be obtained. Appropriate forecasting techniques could enable 

players in the shipping business to make better and informed decisions. Broadly 

speaking, there are three commonly used techniques for freight rate forecasting, 

namely supply-demand modeling, stochastic modeling and artificial intelligenice 

techniques.  

2.3.3.1 Supply-demand modeling 

Traditional full-scale supply-demand model as discussed in Section 2.3.1 could 

be used for forecasting. To this end, new-building prices, second-hand prices and 

demolition prices and fleet development are often included as independent 

variables to predict freight rates (Chang et al., 2012). Randers and Goluke (2007) 

described the shipping market as a “4-year” cycle superimposed on a “20-year” 

wave, in addition to lots of noise. The first cycle is the capacity utilization 

adjustment loop, which is the consequence of ship owners’ short-term behavior 

given the current market conditions, such as slow steaming or lay-up, the latter 

one being the capacity adjustment loop, which refers to the ship owners’ 

tendency to order too many ships in a booming market. However, full-scale 

supply-demand models are often more robust for longer time forecasting, say 

around 1-4 years. For a shorter-time horizon, the forecast may not be feasible due 

to significant noise (Randers and Goluke, 2007).   
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2.3.3.2 Stochastic modeling 

Stochastic modeling refers to the probability theory in the phenomenon modeling 

in technologies and natural sciences. Famous models include time series models 

such as Autoregressive Integrated Moving Average (ARIMA) model, Vector 

Autoregressive (VAR) model and Vector Error Correction (VECM) model. 

There is plenty of research done in both bulk and tanker market utilizing 

stochastic modeling techniques. For example, Cullinane (1992) for the first time 

employed a Box-Jenkins approach to forecasting the Baltic International Freight 

Futures Exchange Speculation in the short term. Such an approach has revolved 

around and is known as the ARIMA model. Veenstra & Franses (1997) identified 

the freight rate process to be non-stationary and used a VAR model to forecast 

dry bulk freight rates. The model does not perform well in the longer term. The 

authors concluded that freight rates are stochastic in nature and thus cannot be 

forecasted. The limitation of the VAR model is that the the long-term forecasts 

of the VAR model tend to converge to the mean of the series. Batchelor et al. 

(2007) investigated the forecasting accuracy in the spot and forward rates of some 

popular time series models on major trading routes and concluded that the vector 

error correction model (VECM) could fit the sample best, but the prediction 

power, in reality, is poor. They further concluded that ARIMA and VAR models 

perform better for forecasting forward rates. The potential benefit of the bivariate 

VAR model compared to the univariate ARIMA model is that the information 

contained in the movement of spot freight rates can be used to determine forward 

rates and vice versa. As a short conclusion, shipping freight rates exhibit complex 

characteristics, including non-linearity and non-stationary, which makes it 

difficult for traditional stochastic modeling techniques to strike a balance 

between accuracy in forecasting and the model’s theoretical feasibility. The 

forecasting accuracy for most time series models examined in previous studies 

are often unsatisfactory. 

2.3.3.3 Artificial intelligence techniques 

A newly emerged area is artificial intelligence techniques based on statistical 

learning theory (Li and Parsons, 1997; Lyridis et al., 2004; Fan et al., 2013; Han 
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et al., 2014). Such methods have a good fitting ability for complex nonlinear 

function (Han et al., 2014). Compared to supply-demand models and stochastic 

models, more explanatory variables can be fed into Artificial Intelligence AI) 

models to achieve a higher forecasting accuracy. AI models can flexibly account 

for non-linear autocorrelations and cross-correlations with independent variables. 

Li and Parsons (1997) were first to use Artificial Neural Network (ANN) to 

forecast Mediterranean freight rates of the crude oil tankers using data from 1980 

to 1995 and three variables including spot freight rates, the total capacity of active 

tankers and the Drewry’s tanker demand index are considered. They developed 

two ANN models for freight rate forecasting, the first one utilizing only freight 

rate self-correlation information, while the second one making use of all 

information from the three variables. To make result comparisons, they also 

established two parallel autoregressive moving average (ARMA) models and the 

results show that ANN models outperform ARMA models in all cases. Later on, 

scholars attempted to incorporate more explanatory variables. Lyridis et al. (2004) 

implemented an ANN in the VLCC market to forecast Ras Tanura-Rotterdam 

spot freight. Eleven variables are identified as input, including demand for oil 

transportation, active fleet, newbuilding and secondhand prices, etc. Apart from 

ANN models, other AI models have also been explored. For example, Han et al. 

(2014) adopted wavelet transformation to denoise BDI data series and support 

vector machine (SVM) to forecast the index. They further compared the results 

from the SVM model against VAR, ARIMA and neural network methods and 

concluded that SVM better performs in forecasting.  

Limitations of Artificial Intelligence models exist. They are often regarded as a 

black-box method as the causal relations cannot be detected and no formal test 

could be done. For a pure forecasting purpose, AI models are often preferred for 

higher out-of-sample predicting accuracy. However, they may not be suitable 

when statistical relationships need to be identified. 

2.3.4 Freight market relationships 

As mentioned earlier, freight rate relationships include the following five 

categories: 1) Term structure; 2) Spot and forward freight relationship; 3) Freight 
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interrelationships (which includes relationship between different sub-sectors and 

across different sectors); 4) Freight rate relationships with newbuilding, 

secondhand vessel prices; 5) Freight relationships with commodity prices, 

include oil prices, prices of commodities the vessel carries, etc. The following 

subsections will cover the major literature in each category, highlighting trends 

and gaps.  

2.3.4.1 Term structure between spot and period rates 

There is a wide range of contractual arrangements in shipping markets, including 

spot and time charter contracts. Time charter contracts are the contracts under 

which a charterer takes control of the operational aspects of the ship and pays to 

a shipowner a fixed monthly amount. On the other hand, in spot markets, a 

shipowner takes the operational control of the ship and a charterer will look for 

a ship when a cargo transportation is needed. The payment is normally made on 

a voyage basis. The existence of different contractual types attracts researchers 

to look at the relationship between spot and period rates. The well-perceived 

assumption that shipping market is purely competitive with rational and efficient 

agents was pushed further by the term structure relationship between spot and 

period freight rates and the theoretical framework pointed out by Zannetos (1964). 

Zannetos (1964) pointed out that static expectations in tanker demand and supply 

essentially infer a future freight level that is the same as current rates. Thus, 

before any changes in present prices occur, future rates under static conditions 

could be developed from objective data. Glen et al. (1981) developed a 

continuous time model to study the relationship between time charter and spot 

rates and operating costs. They used quarterly data from 1970 to 1977 of 

individual tanker fixtures. They applied the model to test the Zannetos (1964)’ 

elastic price expectation hypothesis and concluded that shipowners are risk-

averse, which is in the resonance of Strandenes (1984)’s findings. Hale and 

Vanags (1989) assumed rational expectation and market efficiency to test the 

term structure hypothesis. They established a formal relationship between the 

time charter rates and the expected spot rates. They used data for the period 1980-

1986 in the dry bulk sector and found the coefficient on the spread between the 

lagged value of spot equivalent period rates and the spot rates that prevailed is 



 

 
39 

negative and insignificant for two ship sizes out of three. However, Veenstra 

(1999) pointed out that these results suffer from “omitted variable” biases and 

the results are significantly different after correcting this error. Kavussanos and 

Alizadeh (2002) explained the failure of expectations hypothesis of the term 

structure due to the existence of time-varying risk premiums. On a separate note, 

Alizadeh and Nomikos (2011) found that freight rate volatility has a relationship 

with the term structure shape of freight markets. Such a relationship is found to 

be asymmetric. Volatility tends to be higher in a market of backwardation than a 

market of contagion. 

2.3.4.2 Spot and forward freight relationship 

Shipping spot and derivatives market are found to be highly related (Kavussanos 

and Nomikos, 2003; Kavussanos and Visvikis, 2004; Li et al. 2014). In fact, the 

emergence of shipping derivatives can be attributed to high volatility found in 

the spot market which urges shipowners and charterers to find an instrument to 

hedge freight rate risk. Kavussanos and Nomikos (2003) examined the casual 

relationship between spot and future prices and found that new information tends 

to be discovered by futures prices first. Kavussanos and Visvikis (2004) 

investigated the lead-lag relationship between spot and FFA price in daily returns 

and volatilities in the dry bulk market. They used cointegration test and VECM-

GARCH-X model to examine the spillover effects both in returns and volatilities. 

They identified the non-storable nature of the underlying commodity (shipping 

service) and concluded that a bi-directional lead-lag relationship exists in the 

means, which is in line with most financial futures markets. Li et al. (2014) 

further explored such relationship in the tanker market using multivariate 

GARCH models. They found a unilateral spillover effect in returns from one-

month FFA to spot markets and a bilateral effect in volatilities between the two 

markets. 

2.3.4.3 Freight Interrelationship 

The interdependency and spillover effects between freight rates of different 

vessel sizes and different market segments have also been investigated by several 

scholars. One of the common techniques used for interdependency study is 
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Johansen (1988)’s cointegration test (Wright, 1999) and vector autoregressive 

models (Veenstra and Franses, 1997). Veenstra and Franses (1997) tested the 

long-run relationship between six major dry bulk shipping routes using a vector 

error correction model (VECM) and found that freight rates of the six routes are 

closely linked and tend to co-move in the long run. Wright (1999) examined the 

tanker market integration by investigating the relationship between freight rates 

(both spot rates and time charter rates) of different vessel sizes. His finding 

suggested that there exists a high level of integration in the tanker market. 

Recently, multivariate GARCH models have been employed to study the 

volatility spillover effects. Chen et al. (2010) studied the lead-lag relationship 

between Capesize and Panamax freight rates by a bivariate ECM-GARCH model 

for four shipping routes from 1999 to 2008. Chung and Weon (2013) further 

investigated the asymmetric spillover effects between Panamax and Capesize 

markets by bivariate asymmetric mixed normal GARCH models. Skewdness and 

Kurtosis of the return distributions are accounted for in the model. They 

identified significant spillover effects, especially for the direction from larger-

size to smaller-size vessels. Volatility spillover effects between and within tanker 

and dry bulk freight market have been studied by Tsouknidis (2016) by a 

multivariate DCC-GARCH model. The results suggested that there exist time-

varying volatility spillovers among different shipping markets, particularly since 

2008 where a financial crisis occurred. More recently, Adland et al. (2018) 

developed a continuous stochastic model for the joint dynamics of regional bulk 

spot rates and found that regional spot freight rates can be decomposed into two 

parts: a stationary regional differential and a non-stationary market component. 

The market component can be interpreted by a global market average. This 

allows for easier interpretation of regional differences for freight rates. 

Markets for combined carriers have also been analyzed (Beenstock and Vergottis, 

1993). Beenstock and Vergottis (1993) studied the spillover effects between dry 

bulk and tanker markets through the combined carrier market, shipbuilding and 

scrapping markets. They concluded that increasing dry bulk freight rates would 

attract combined carriers from the tanker market. Furthermore, more dry bulk 
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carriers are expected to be built at shipyards, which eventually leads to tanker 

price increase.  

2.3.4.4 Relationship between freight rates and vessel prices 

Freight rate dynamics with vessel prices also received some researchers’ 

attention. The methodologies employed are diverse in this subfield. Strandenes 

(1984) introduced the present value model of ships in the shipping economics 

and studied the relationship between second-hand vessel prices and time charter 

rates. Based on the efficient market hypothesis, the value of a second-hand ship 

should be entirely explained by the present value of short run and long run profits. 

Kavussanos and Alizadeh (2002) rejected the efficient market hypothesis of the 

newbuilding and secondhand vessel prices in the dry bulk market and attribute 

the failure to the existence of time-varying risk premium. Such relationship was 

modeled by a GARCH in the mean (GARCH-M) model. Lunde (2002) extended 

the net present value criteria in a continuous time model to study the freight rates 

– vessel price relationship. Error correction models have also been employed to 

study the relationship between freight rates, newbuilding and secondhand vessel 

prices (Tsolakis et al., 2003; Adland et al., 2006). Tsolakis et al. (2003) found 

that secondhand vessel prices are driven by time charter rates and newbuilding 

prices, while Adland et al. (2006) identified the cointegration relationship 

between secondhand prices and both newbuilding and freight markets. By 

cointegration test, Alizadeh and Nomikos (2007) further concluded that 

secondhand vessel prices and freight rates in the dry bulk shipping are co-

integrated and information transmits from the latter to the former. The 

relationship between newbuilding vessel price and freight rates in the dry bulk 

market has been studied by Xu et al. (2011). Kou and Luo (2015) took the effects 

of structural changes into consideration and examined the relationship between 

freight rates and vessel prices. The freight rate process is modeled as an Ornstein–

Uhlenbeck process. They also concluded that prices of newer and larger vessels 

are more sensitive to changes in freight rates, which are in line with Kavussanos 

(1996a, 1996b)’s results. 
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2.3.4.5 Relationship between freight rates and commodity prices 

More recently, researchers have attempted to model the relationship between 

shipping freight rates and the prices of the underlying commodities which the 

vessels carry. The rationale behind is the derived nature of maritime 

transportation. Thus, it is reasonable to assume that there exist volatility spillover 

effects between commodity prices and freight rates. For tankers, such commodity 

could be crude oil, and for dry bulkers, iron ore, grain, to name just a few, could 

be relevant.  

There has been a body of research devoted to the analysis of the freight rate–

crude oil relationship. Alizadeh and Nomikos (2004) investigated the causal 

relationship between crude oil tanker freight rates and crude oil prices (WTI, UK 

Brent, and Nigerian Bonny). They identified a long-run relationship between the 

freight rate and oil price in the US, using a vector error correction model. They 

found no evidence supporting that the physical-future crude oil price differentials 

relate to the freight rate formation. Hummels (2007) concluded that the 

sensitivity of freight rates to changes in oil prices is very high. Poulakidas and 

Joutz (2009) investigated the lead-lag relationship between tanker freight rates 

and the oil price by conducting cointegration and Granger causality analysis. 

They further pointed out that the relationship between spot tanker freight rates 

and crude oil prices could be ambiguous, which is caused by different forces of 

supply and demand. As addressed by Glen and Martin (2005), if the oil price 

increase is due to a rise in oil demand, the relationship between spot tanker freight 

rates and crude oil prices shall be positive due to an increase in demand for oil 

transportation; on the other hand, such a relationship would become negative if 

the increase in oil prices is attributed to the cut in oil supply, which reduces the 

demand for oil transportation. UNCTAD (2010) published an empirical study on 

the effects of oil prices on shipping freight rates for containers, iron ore and crude 

oil; and the findings revealed that the elasticity of freight rates to oil prices differs 

a lot across different market segments and conditions. The elasticity for iron ore 

is found to be larger than that for crude oil and container, while the effect of oil 

prices on container freight is higher during sharp rising or increased volatility in 

oil prices. Shi et al. (2013) investigated the contemporaneous relationship 
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between tanker freight rates and crude oil prices using a structural vector 

autoregressive model. They further classified crude oil price shocks into supply 

shock and non-supply shock and concluded that supply shocks have a significant 

impact on the tanker market, while non-supply shocks do not. Sun et al. (2014) 

explored the dynamic relationship between oil prices and tanker freight rates by 

multiscale relevance techniques and identified different relevance structures in 

low and high oil price environments. Gavriilidis et al. (2018) found that 

incorporating oil price shocks improve volatility forecasts for tanker freight rates 

using GARCH-X models.  

With respect to the dependency between freight rates and commodity prices, 

Kavussanos et al. (2014) for the first time investigated the return and volatility 

spillover between the freight rate and derivatives of commodity prices the vessel 

carries in the dry bulk market using BEKK-VECM GARCH model. They 

concluded that new information normally first appears in the returns and 

volatilities of the commodities’ futures markets before spilled over into the 

freight futures market. 

As a short conclusion, researchers have studied extensively the freight 

relationships in terms of term structure and spot-forward rates. The relationship 

with vessel prices and the freight spillover effects have also been identified. The 

freight rate and commodity price relationship appears to be an emerging and 

ongoing research theme. 

2.3.4.6 General methodologies for dependence modeling in shipping 

literature 

As a summary of the methodologies employed in the literature, cointegration test 

and VAR model (VECM as one restricted form) are the most common techniques 

for freight relationship analysis (as shown in Table 2.5). The table further lists 

out the key trends, pros and cons for each method. Early researches extensively 

use cointegration test for long-run relationship analysis. Cointegration tests 

normally adopt the Engle-Granger two-step test (Engle and Granger, 1987) or the 

Johansen cointegration method (Johansen, 1988, 1991). To better understand the 
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causal relationship, the Granger causality test has been employed (Poulakidas 

and Joutz, 2009; Koseo and Barut, 2011). Starting from Veenstra (1999) and 

Kavussanos and Nomikos (1999, 2000), Vector autoregression (VAR) and 

Vector Error Correction Model (VECM) have become a popular tool for joint 

behavior analysis. More recently, scholars have extended GARCH modeling to 

multi-dimensional cases and adopted Multivariate GARCH in shipping literature 

to examine volatility spillover effects. Kavussanos et al. (2014) identified the 

relationship between dry freight rates and commodity prices in a BEKK VECM-

GARCH model. However, the common methodologies used can only pinpoint 

whether a long-run relationship exists and the possible directions of information 

flow. The exact dependency structure has seldom been investigated. Although 

the VAR and multivariate GARCH model sheds lights on possible dependency 

structure, however, it is based on linear framework and incapable of capturing 

the complex non-linear relationships that many freight series may exhibit. The 

following section lists out the common methodologies and their brief definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5 Methodologies for freight dependency modeling in shipping literature 
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Methodology Literature Key trends; Pros & Cons 

Cointegration 

Test 

Berg-Andreassen 

(1997); Wright 

(1999); Wright 

(2000); 

Koseo and Barut 

(2011) 

Trends: Extensively used in earlier studies. 

Pros:  

• Able to test the existence of a long run 

equilibrium relationship;  

• Ease of use. 

Cons:  

• Sensitivity to lag selection; 

• Engle-Granger method: Unable to identify 

more than one cointegrating relationship and 

impossible to validly test hypotheses about the 

cointegrating vector. 

• Johansen method: Tend to signal cointegration 

where non exists. 

Granger 

Causality 

Poulakidas and Joutz 

(2009); Koseo and 

Barut (2011) 

Trends: Not used as a single method in literature, often 

coupled with other techniques. 

Pros:  

• Identify possible direction of influence. 

Cons:  

• Strict assumption needed; 

• Designed to handle two variables, may provide 

misleading results for three or more variables. 

Vector 

Autoregression 

(VAR) and 

Error 

Correction 

Veenstra (1999); 

Veenstra and 

Franses (1997); 

Alizadeh and 

Nomikos (2004); 

Chen et al. (2010); 

Shi et al. (2013) 

Trends: More constraints imposed on the parameters of 

traditional Error Correction models for parsimony 

concerns. 

Pros:  

• Able to capture the linear dependency among a 

number of series; 

• Simple equation and estimation, usual OLS 

method can be used; 

• No need to determine endogenous vs 

exogenous variables, all variables in the 

equation are exogenous. 

Cons:  

• Difficult to transform data if some of the 

variables are stationary and some are not; 

• The multidimensional VAR model uses many 

degrees of freedom. 

Multivariate 

GARCH 

(MGARCH) 

Chung and Weon 

(2013); Kavussanos 

et al. (2014); Li et al. 

(2014); Dai el al. 

(2015) 

Trends: Examination of different MGARCH 

specifications to allow for different covariance 

structures. 

Pros:  

• Able to estimate co-volatility dynamics of asset 

returns in a portfolio. 

Cons:  

• Relatively more complex estimation process; 

• Difficult to strike a balance between model 

flexibility and parsimony; 

• The covariance matrix, by definition, needs to 

be positive definite. 
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Cointegration test, developed by Engle and Granger (1987) and Johansen 

(1988) is used to test the long-run relationship between variables. If two series 

are co-integrated, shocks to the system will eventually return the system to 

equilibrium. Let two series be integrated of order 1. In general, a linear 

combination of the two series, say(𝑦𝑡 − 𝑏𝑥𝑡) = 휀𝑡, will be integrated of order 1. 

In the special case when 휀𝑡 is integrated of order zero, the two series is said to be 

co-integrated. 

Granger Causality, introduced by Granger (1969), could be used to identify the 

direction of possible causality between the two variables. Formally speaking, 

Granger causality tests whether past values of 𝑥 could assist in the prediction 

of 𝑦𝑡, under the condition of having already considered the effects on 𝑦𝑡 of past 

values of 𝑦 (and probably of past values of other variables). If so, then 𝑥 is said 

to “Granger cause” 𝑦. The null hypothesis implies that past values of 𝑥 have no 

predictive content for 𝑦𝑡. 

Vector Autoregression (VAR) model was proposed by Sims (1980) and has 

become popular in econometrics as a natural generalization of univariate 

autoregressive models and a technique to describe the joint dynamic behavior of 

a set of variables. A VAR structure has a set of 𝑛 variables and each variable can 

be stated as a linear function of past 𝑝 lags of the variable itself and 𝑝 lags of all 

of the rest 𝑛 –  1 variables, as well as an error term. VAR models are flexible and 

easy to generalize. They are often considered as an alternative way to large-scale 

simultaneous equations structural models. A vector error-correction (VEC) 

model is used, when the variables of a VAR are co-integrated.  

Multivariate GARCH models specify the covariance structure between series, 

apart from many similarities as univariate GARCH models. Several different 

multivariate Different multivariate GARCH formulations have been used in past 

literature, and the one appeared in shipping research is BEKK model proposed 

by Engle and Kroner (1995), for example, Li et al. (2014). Such a model could 

describe volatility spillovers between different price series and is often used 

together with a VAR model which could capture the mean spillover effects. 

2.3.4.7 Copula method for dependence modeling 
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As pointed out by Jondeau and Rockinger (2006), it is not possible to identify a 

multivariate extension to capture the dependence structure for most kinds of 

univariate distributions. In this study, we will propose a novel methodology in 

maritime economics to study the dependency structure in a GARCH context, 

which is based on copula functions. Our copula-GARCH model nests a 

traditional GARCH model as a special case. The advantages of copula-based 

GARCH models over traditional multivariate GARCH models are that they can 

be applied to link together any type of marginal distributions that are proposed 

for the individual series. On the other hand, different dependence structures could 

link the same marginal distributions into different joint distributions (Lee and 

Long, 2009). 

The word Copula appeared for the first time in 1959 (Sklar, 1959). Schweizer 

and Wolff (1981) published the earliest paper which relates copulas to 

dependence study among random variables. However, the application of copula 

concept is rather a modern phenomenon. Nelsen (1999) provided an introduction 

to copula theory, while Cherubini et al. (2004) discussed the copula methods for 

financial applications.  A lot of literature exists on the use of copulas for the 

computation of Value-at-Risk (VAR) in risk management (Cherubini and 

Luciano, 2001), the dependence of stock market returns (Sun et al., 2008) and 

portfolio management (Patton, 2004; Riccetti, 2013). Copula method has also 

found its application in actuarial science, such as to model dependent mortality 

and losses (Frees et al, 1996; Frees and Wang 2005). In biomedical studies, 

copulas are used to model correlated event times and competing risks (Wang and 

Wells, 2000).  

Copula method compared to traditional multivariate time series analysis has 

several advantages. Copula-based models provide more flexibility in modeling 

multivariate distributions, allowing researchers to specify the models for the 

marginal distributions separately from the dependence structure that combines 

them to form a joint distribution. The copula approach to formulating 

multivariate distributions is particularly beneficial when the marginals are 

complex and cannot simply extend to a multivariate situation (Liu and Luger, 

2009). 
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Recent literature has used copulas which provide a more complete description of 

the dependency structure. Copula functions go beyond common elliptical models 

such as the multivariate normal or multivariate t distributions (Embrechts et al., 

2002). In this context, many researchers have employed copula-GARCH models, 

where a univariate GARCH process is used to model the marginals and a copula 

function is then specified to model the dependence structure. Copula-GARCH 

models have been found in several financial time series analyses (Dias and 

Embrechts, 2004; Patton, 2006; Hu, 2006; Jondeau and Rockinger, 2006; 

Rodriguez, 2007; Liu and Luger, 2009). Hu (2006) focused on mixed copula 

modeling of dependence among financial variables, with the parameters 

estimated using semi-parametric procedures applied to the residuals in GARCH 

models fitted to data. Aloui et al. (2013) studied the co-movement between oil 

prices and exchange rate utilizing copula-GARCH model. The dependency 

between daily returns of major stock markets has also been extensively studied 

using similar approaches (Jondeau and Rockinger, 2006; Liu and Luger, 2009). 

Lee and Long (2009) further considered the extensions and empirical 

applications of multivariate GARCH models with copula-based specifications of 

dependence among the vectors. Recently, a number of researches have extended 

the copula model with time-varying dependency structure.  Patton (2006) 

introduced copulas with time-varying parameters to model exchange rate 

dependence, including Japanese yen and Euro against US dollars. He proposed 

that the current dependence structure between two series could be described by 

their previous dependence and the cumulative probabilities’ historical average 

difference. Jondeau and Rockinger (2006) modeled the daily return market in the 

copula-based GARCH framework with the skewed Student-t error distribution, 

by a Markov-switching time-varying dependency model. Wu et al. (2012) also 

adopted the copula-GARCH model to study the co-movement between oil prices 

and exchange rates, with time-varying dependence parameters. Empirical 

evidence has shown that the dependency among many financial returns is time-

varying (Jondeau and Rockinger, 2006). 

However, such method is almost untapped in the shipping academic research. 

Only very recently, Shi et al (2016) adopted time-varying copula models in the 
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freight derivatives market. Modeling the dependency between different shipping 

rates is a difficult task when the rates follow very complicated dynamics. As 

mentioned earlier, Goulielmos and Psifia (2007) concluded that trip and time 

charter indices exhibit nonlinear dependence structure. As a consequence, linear 

and other traditional models are not suitable for modeling freight distributions. 

They further concluded that the indices are not normal, but instead show 

skewness, kurtosis, fat tails and long-term memory. 

In the next chapter, we will briefly review the main definitions concerning 

copulas and describe the different copula functions used in the empirical 

application.  

2.4 Review on LPG and product tanker shipping market 

According to UNCTAD (2017), of the total seaborne trade, crude oil accounts 

for around 17%, while petroleum products and gas for roughly 12% as shown in 

Figure 2.4. Despite the growing importance of gas as a cleaner energy source and 

increasing volume of global LPG trade, research on LPG transport has been 

limited, as discussed in Section 2.2.2. This might be due to the limited size of the 

market in the past. However, it is of vital importance to understand the freight 

behavior in these two markets for decision making. 
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Figure 2.4 Structure of international seaborne trade, 2016 

  

Source: drawn by author based on UNCTAD (2017). 

Most literature employs non-parametric methodologies for spot freight analysis. 

Adland et al. (2008) investigated for the first time, the price dynamics of the LPG 

transport market. They adopted fully functional methods and concluded that 

unlike other bulk shipping markets where non-linearity is found, LPG spot freight 

rate could be described approximately by a simple linear stochastic model. As 

discussed by them, the LPG market is uniquely supply driven rather than demand 

driven, as the LPG volume is dependent upon the extraction rate of LNG and 

crude oil, and therefore is not independently set. Another unique feature of LPG 

shipping is that the market may not be perfectly competitive due to high levels 

of concentration both on the supply and demand side. On the supply side, VLGCs 

are owned by a handful number of owners, while the oil majors and gas producing 

companies constitute the demand side. Furthermore, Main trading routes for LPG 

transport are limited, which creates more price volatility as the sensitivity to 

market conditions tends to increase, compared to other shipping markets with 

diversified trading patterns and cargo bases (Adland et al., 2008). Last but not 

least, Majorities of LPG transport volume between main exporters in the Arabian 

Gulf and Far East importers, are performed under term contracts, leaving small 

volume traded on spot basis. This leads to more demand volatility. The demand 

for spot cargo would be influenced by product price arbitrage, freight rates, 

supply disruptions or surplus. On the other hand, due to the by-product nature of 
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LPG, there often exists energy substitutes such as naphtha, which could also be 

used as a petrochemical feedstock same as LPG. Thus, demand for LPG shipping 

becomes more elastic and this, in turn, lowers freight rate volatilities.  

Engelen et al. (2011) further investigated VLGC spot rates by multifractal 

detrended fluctuation analysis (MF-DFA) and rescaled range (R/S) analysis. 

Both methods are non-parametric. Additionally, Engelen and Dullaert (2010) 

investigated the market structure and efficiency in gas shipping in more details. 

They identified the demand/supply features in LPG, ammonia, and petrochemical 

shipping markets. For product tanker market, Baltic Clean Tanker Index (BCTI) 

or individual routes have been separately studied to a limited extent (Kavusanos 

and Dimitrakopoulos, 2011; Alizadeh et al., 2015). 

2.5 Summary of major literature gaps 

The transportation of refined petroleum products is of great importance to energy 

supply chains across the globe. However, as mentioned in Section 2.2.2, most 

literature in tramp shipping freight focus on dry bulk and crude oil tankers. LPG 

and product tanker markets have been an almost untapped area in the academic 

field. To the best of authors’ knowledge, only three studies have been done so far 

in the LPG freight market, and almost no study yet in the product shipping market. 

For the LPG shipping market, existing literature mainly focuses on analyzing the 

freight rate itself. However, it is also important to understand the fundamentals 

and relationships among LPG shipping market variables.  

Secondly, as mentioned previously, freight relationships are of vital importance 

and have been a popular research area. Cointegration test, VAR model, and 

multivariate GARCH models are the main and only tools adopted in the maritime 

literature to investigate freight relationships. Such methods are all based on linear 

and most often binary framework. Moreover, cointegration tests only provide 

insight into whether there exists a long run relationship between different 

variables and Granger-causality tests only provide the possible direction of 

information transmissions. However, we are also interested in exploring the 

indirect relationships between multiple variables, which means the effect of one 

variable of another through a mediator. Furthermore, the exact dependence 
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structure among the variables is also of interest. Although multivariate GARCH 

models explored by recent researchers shed light on this issue, these models often 

assume linear relationships, which may not be the case in reality. As illustrated 

by Goulielmos & Psifia (2007), trip and time charter indices exhibit nonlinear 

dependence structure. Therefore, they concluded that linear and other traditional 

models may not be appropriate to model the indices’ distributions. A model 

which could account for fat-tail and excess kurtosis behaviors in the multivariate 

dimension is needed. Furthermore, although several studies have tried to measure 

the dependency structure between the freight markets, yet no research has 

modeled the relationships in a dynamic manner. The relationship may not be 

constant and exhibit time-varying structure. In addition, no research has yet 

related freight rate formation to the product location arbitrage, which could be a 

potential important determining factor. There is also no study relating freight rate 

to spatial patterns of shipping market, i.e. freight rate could be an important 

determinant of spatial patterns apart from trade imbalances.  

Last but not least, with recent technological advancements as well as big data 

applications in many fields, maritime participants could now make more 

informed decisions with more data available. One of the examples is AIS data. 

AIS data is gaining increasing popularity in the maritime industry as it provides 

accessible and up-to-date information about vessel activities. Shelmerdine (2015) 

explored the potential use of AIS as a tool to better understand shipping activities 

by analyzing the information contained in AIS data, which could be used by 

marine planners and relevant parties. He highlighted the possible analysis with 

AIS data including vessel tracking, density maps by use of both vessel tracking 

and point data, as well as quality control of the data. However, AIS data have not 

often been used in the econometrics field. With the knowledge of a ship’s 

position and destination, coupled with econometric techniques, it should 

hopefully improve the understanding of shipping market behaviors.  

2.6 Conclusion  

This chapter conducts the literature review on the tramp shipping freight market, 

summarizing the major trends and topics. In addition, it reviews the current 
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studies on the methods of freight modeling. As a short summary, for the past few 

decades, there has been a shift of research attention from building large-scale 

supply-demand model in a linear regression framework to reduced rate behaviors 

using time series models, for example, ARIMA or GARCH model to describe 

freight rate return and volatility behaviors. A further trend from univariate time 

series analysis to multivariate dimensions has also emerged. Univariate time 

series models have major limitations in that they model the conditional mean and 

variance of each series entirely independent of all other series. However, in many 

cases, the spillover effects, as well as the covariance between series, are of 

interests. Under such circumstances, VAR and multivariate GARCH models 

have been used to examine the return and volatility spillover effects between 

different markets. Regarding the sectors covered, the dry bulk market has 

received most research attention, followed by crude oil tanker market. In contrast, 

there has been limited research in the product tanker and LPG freight market. 

Furthermore, although freight relationships have been a central topic in the 

literature, methodologies employed are quite uniform, which include 

cointegration test, VAR models, and multivariate-GARCH models. However, the 

freight rates may exhibit asymmetric, tail-dependence and time-varying 

dependence behaviors, which make traditional linear framework not workable.  

It is pointed out that in spite of LPG and product tanker shipping’s vital 

importance to the global energy supply chain across the globe, few studies have 

addressed these sectors, partially due to the diversities of products carried and 

complexities of trading patterns for the product tanker market, and the niche 

market nature for LPG shipping market. Moreover, for LPG shipping, existing 

literature focuses on analyzing the freight rate itself. However, it is also important 

to understand the fundamentals and relationships among LPG shipping market 

variables before proceeding to freight analysis alone. Past researchers have 

studied extensively the spillover effects both in returns and volatilities between 

freight rates of different markets. However, they could only capture the direction 

of information transmission and the exact dependence structure has seldom been 

investigated. As often examined in the financial literature, the price series may 

exhibit asymmetric, tail-dependence and time-varying dependence behaviors, 
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which make traditional linear framework not workable. However, such 

dependence information may be particularly useful for portfolio and risk 

management. Thus, it is also suggested that methodologies, for example, for 

dependence modeling, well-established in the financial market but not yet used 

in the shipping market could be explored by researchers with applications in the 

maritime domain.  

On the other hand, no study has analyzed relationships among different variables 

in an integrated framework. This study proposes an integrated framework using 

structural equation modeling, which allows all the relationships to be analyzed 

simultaneously. In this way, both direct and indirect effects can be identified and 

non-significant effects can be excluded by hypothesis testing. Importantly, 

mediation effects among variables could be identified, which has seldom been 

addressed in the shipping literature.  

This research complements the existing literature with insights into the LPG and 

product tanker shipping markets. In particular, this research provides alternative 

methods for freight relationships modeling, which could have practical 

significances for both the academy and industry practitioners. No research has 

yet related freight rate formation to the product location arbitrage, which could 

be a potential important determining factor. There is also no study relating freight 

rate to spatial patterns of shipping market, i.e. freight rate could be an important 

determinant of spatial patterns apart from trade imbalances. For shipowners, 

knowing the dependency structures between different freight routes would aid 

their decision in where to deploy the fleet, while understanding the dependency 

between market variables will aid both chartering and investment decisions. Last 

but not least, knowing the destination choices of VLGCs based on a set of 

explanatory variables will help predict future vessel supply patterns in a certain 

destination region. The next chapter will discuss the research methodologies in 

details. 
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CHAPTER 3 RESEARCH METHODOLOGY  

 

As discussed in Chapter 1, the objective of this research is to provide  

econometric analyses in the LPG and product tanker market, including 

relationships among key market variables, freight interdependencies, and 

destination choice analysis. Based on the literature gaps identified in Chapter 2, 

this chapter brings forward the proposed methodologies. The purpose of this 

chapter is to present the framework of how the research has been conducted and 

the methodology used for each study. The research process flow and detailed 

methodology are elaborated in this chapter.  
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3.1 Research process flow 

This study starts with the literature review on tramp shipping freight and 

pinpoints the major trends and topics in freight market research. LPG and product 

tanker shipping are identified as the market segments for this research due to their 

importance in energy supply chains and lack of research attention. The VLGC 

market is selected as the representative of the LPG shipping market because of 

their significant market share and importance in the gas shipping market. For 

VLGC market, the study first explores the relationships between the key market 

variables to have a holistic view of the VLGC market. The variables include 

market pressure (a ratio of demand over supply), freight rate, new building and 

secondhand vessel prices. The methodology employed is structural equation 

modeling. The study then takes a further step by investigating the relationship 

between freight rate and product price arbitrage and oil prices, apart from the 

supply and demand factors analyzed in the first step. Both price arbitrage and oil 

price are considered as crucial for the direction of freight movements. Copula-

GARCH is used to identify the dynamic dependency structure. In the last step, 

the research aims to model vessels’ destination choice behaviors and identify 

their associations with various market factors, from both shippers’ and carriers’ 

perspectives. The study uses VLGCs loading from US Gulf as an illustration. 

Attributes include freight rate, propane price spread, bunker costs and the number 

of ships in the destination areas. For the product tanker market, as there are many 

different routes and vessel sizes, it is impossible to analyze in an aggregated 

manner as in the VLGC market. Thus, a disaggregated approach is taken to 

explore the dependency structure between various routes using Copula-GARCH 

model. Based on these analyses, the study provides insights for industry 

practitioners, such as shipowners for investment and trading decision making.  

The overall research process is shown in Figure 3.1. 
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Figure 3.1 Chart for overall research process flow 
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3.2 Proposed methods 

Based on the methodology used in financial literature and other related fields, 

some quantitative models and methods could be introduced into the study of LPG 

and product tanker shipping market. The methods include structural equation 

modeling, the copula method and logistic regression models for destination 

choices. The following section briefly reviews each of the method and details 

will be explained in the next chapters. 

3.2.1 Structural Equation Modeling (SEM) 

Structural equation modeling is a confirmatory method for data analysis, which 

assesses the theoretical model of relationships between a set of variables which 

may include observed variables or unobserved variables. These relationships may 

be many, directional or non-directional, and can be simple or complex in their 

arrangements. It can be thought of as a combination of factor analysis models 

(measurement models) and regression models (structural models). It provides a 

statistical test for a hypothesized model to evaluate the degree of consistency the 

proposed model is with the sample data. SEM can assess predictive validity; 

identify both direct and indirect relationships among variables; as well as specify 

the level of both explained and unexplained variances in the model. The structural 

equation model is powerful in the sense that it can easily analyze complex 

multivariate models, such as mediated models and models with multiple 

dependent variables, which are difficult to model by traditional multiple 

regression techniques (Byrne 1998, Schumacker and Lomax 1996). SEM 

consists of two components, a measurement model assessing unobserved latent 

variables as linear functions of observed variables, and a structural model 

showing the direction and strengths of the relationships of latent variables. In this 

thesis, a structural model is used. It is also referred to as path analysis if only a 

structural model is used. 

The basic equation of the structural model is defined as (Bollen, 1989): 

휂 = 𝐵휂 + 𝛤𝜉 +  휁 

(3.1) 
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where 휂 is an 𝑚 ×  1 vector of endogenous variables, 𝜉 is a 𝑛 ×  1  vector of the 

exogenous variables,  𝐵 is a 𝑚 ×  𝑚 matrix of parameters associated with right-

hand-side endogenous variables, 𝛤 is a 𝑚 ×  𝑛 matrix of parameters  associated 

with exogenous variables and 휁 is a 𝑚 ×  1 vector of error terms associated with 

the endogenous variables.  

Structural equation systems are estimated by covariances based structural 

analysis, in which the difference between the sample covariance and the model 

implied covariance matrices is minimized (Bollen, 1989). The parameter 

estimation process starts with some starting values for the parameters. The 

model-implied covariance matrix (Σ̂) is calculated and then compared with the 

sample covariance matrix (S), resulting in the residual matrix (𝑆 − Σ̂). If the fit 

is not good, the values are adjusted and the calculation and comparison are 

repeated until some criterion is achieved (convergence). This thesis uses the 

Maximum likelihood (ML) method as the criterion, as it is one of the most 

common and popular estimation method. There are several frequently used 

goodness-of-fit measures that can access the result of a SEM model, according 

to Golob (2003): Chi-square test, which assess the overall fit and discrepancy 

between the sample and fitted covariance matrices. An insignificant p-value 

indicates a good model fit; the root mean square error of approximation 

(RMSEA), which is based on chi-square values and measures the difference 

between observed and predicted values per degree of freedom. Values closer to 

0 represents a good fit; the comparative fit index (CFI), which compares the 

proposed model with a baseline model with no restrictions. CFI greater than 0.90 

indicates a good model. The three goodness-of-fit tests have been together used 

in the thesis to access model performance. 

3.2.2 Copula method for dependence modeling 

As mentioned in Section 2.3.4.7, we propose the copula method for freight 

dependency modeling, which provides a convenient tool for multivariate 

distribution modeling with only known marginal distributions. This method is 

particularly of benefits under conditions when multivariate normality does not 

stand. Covariance and correlations provide simple measures of association 



 

 
60 

between series. However, they are very limited measures in the sense that they 

are linear and not flexible enough to provide full descriptions of the relationship 

between time series in reality. Copulas provide an alternative way to link together 

the individual (marginal) distributions of the series to model their joint 

distribution. On attractive feature is that they can be applied to link together any 

type of marginal distributions that are proposed for the individual series. They 

are particularly useful for modeling the relationships between the tails of the 

series. Copulas have another useful feature, which is that the dependency 

parameters could be rendered time-varying, even the marginal follow 

complicated dynamics. In this thesis, we will use the copula-GARCH model as a 

particular method. 

3.2.3 Logistic regression model 

Logistic regression method (Hosmer and Lemeshow, 1989; Allison, 1999) is 

often applied when the predictor variables are categorical. Compared to multiple 

regressions, the main difference for logistic regression is that the dependent 

variables are binary (i.e. 1 or 0). Otherwise, the two methods are very similar in 

nature. Thus, the logistic regression models the probability of 1 and 0 based on 

observed values of independent variables. The output of the model could be used 

for prediction or estimation purpose. 

3.2.4 Application of AIS data 

One of the main contributions of this thesis is the application of AIS data in the 

shipping field for freight and spatial analysis. AIS data is gaining increasing 

popularity in the maritime industry as it provides accessible and up-to-date 

information about vessel activities. The origination of AIS data comes from the 

publication of SOLAS convention in 2002, which requires that by 2004, an 

automatic identification system shall fit all marine vessels greater than 300 gross 

tonnages (GT) for international voyages, all cargo vessels over 500 GT, and all 

passenger ships. AIS, being a shipboard transponder, can transmit vessel 

information automatically containing vessel identity, the current position 
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including longitude and latitude, speed, course, vessel type, among other 

information.  

AIS data has been utilized in various fields to tackle different problems, including 

tracking and security (Ou and Zhu, 2008; McGillivary et al., 2009); maritime risk 

analysis and prevention of maritime risks such as collision and oil spill (Eide, 

2007; Silveira et al., 2013); marine environment issues such as vessel emissions 

(Diesch et al., 2013); and spatial planning (Shelmerdine, 2015). Shelmerdine 

(2015) explored the potential use of AIS as a tool to better understand shipping 

activities by analyzing the information contained in AIS data, which could be 

used by marine planners and relevant parties. He highlighted the possible analysis 

with AIS data including vessel tracking, density maps by use of both vessel 

tracking and point data, as well as quality control of the data. However, none of 

them has used AIS as a tool for econometric analysis. 

3.3 Copula-GARCH model 

Both the freight market and the commodity market vary all the time. The market 

changes and dependencies could not be fully described by static and linear 

models. The copula is a useful tool to model the heavy tail, volatility clustering, 

asymmetric and time-varying correlations of the financial time series (Silvar 

Filho et al., 2014). A copula function could be decomposed into two parts: 

uniform marginals and the joint distribution. This study uses the AR-GARCH (1, 

1) process with skewed Student-t error term to model the marginal distribution 

first. Then different families of both constant and time-varying copulas are fitted 

to study the conditional static and time-varying dependency between the 

variables. 

3.3.1 Copula function 

A copula is a function that links together marginal distribution functions to their 

joint multivariate distribution function (Nelsen, 2006). The application of 

copulas is through Sklar’s theorem (1959), which states that a 2-dimensional joint 

distribution function 𝐹 with continuous marginal 𝐹1 and 𝐹2 has a unique copula 

representation, so that 
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𝐹(𝑥1, 𝑥2) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2)) 

(3.2) 

Where 𝐶  is the copula function and 𝐹1(𝑥1)  and 𝐹2(𝑥2)  are the marginal 

distributions which are uniformly distributed. A copula contains all the 

dependence information among random variables. 

The conditional copula model can be defined by extending Sklar’s theorem as: 

𝐹𝑋1𝑋2|𝑊(𝑥1, 𝑥2|𝑤) = 𝐶(𝐹𝑋1|𝑊(𝑥1|𝑤), 𝐹𝑋2|𝑊(𝑥2|𝑤)|w)                                                                 

(3.3) 

Where 𝑊 being the conditional variable,  𝐹𝑋1|𝑊(𝑥1|𝑤) and 𝐹𝑋2|𝑊(𝑥2|𝑤) are the 

conditional distributions of 𝑋1|𝑊 = 𝑤  and 𝑋2|𝑊 = 𝑤  respectively. The 

conditional joint distribution of (𝑋1𝑋2)|𝑊 = 𝑤 is 𝐹𝑋1𝑋2|𝑊(𝑥1, 𝑥2|𝑤). 

3.3.2 Dependence measures 

There are basically three forms of dependence measures, namely linear 

correlation, rank correlation and tail dependence. During the past, it is a common 

practice to use Pearson’s correlation to describe the relationship between various 

price series. However, it could not illustrate the relationship completely as the 

correlation could only be served as a simple measure of the dependence structure. 

One important feature of copula is that a copula is invariant under monotonically 

increasing transformations of its margins. Therefore, a copula of two random 

variables could completely determine any scale-invariant dependence measures, 

which under strictly increasing transformations of the variables, remain 

unchanged (Nelson, 2006). Such dependence measures include Kendall’s Τ (tau), 

Spearman’s 𝜌, and tail dependence coefficients. Importantly, Pearson’s linear 

correlation coefficient could not be stated in terms of the copula alone; it also 

depends on marginal distributions. It is known that linear correlation will change 

when a nonlinear transformation, for example, the logarithm or exponential, of 

one or both of the variables is applied. 
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3.3.2.1 Rank correlation 

Kendall’s Τ (tau) is a measure of dependence, which is not dependent upon the 

marginal distributions. It is based on the rank of the variables known as 

concordance measures. Two random vectors (𝑋1, 𝑋2), (𝑌1, 𝑌2) are concordant if 

probability 𝑃 [(𝑥1 − 𝑦1) (𝑥2 − 𝑦2) >  0]  is higher than  𝑃 [(𝑥1 − 𝑦1) (𝑥2 −

𝑦2) <  0] ; namely speaking, 𝑋1  and 𝑋2  tend to increase together. They are 

discordant if the opposite happens. Kendall’s Τ (tau) measures the difference in 

concordance and discordance probability. 

𝜏 =  𝑃 [(𝑋1 − 𝑌1)(𝑋2 − 𝑌2) >  0] −  𝑃 [(𝑋1 − 𝑌1)(𝑋2 − 𝑌2) <  0]                           

(3.4) 

Kendall’s Τ (tau) is within the interval [−1,1]. If the variables are independent, 

the value equals 0. 

Another measurement is Spearman’s 𝑟ℎ𝑜, which is the correlation between the 

transformed variables.  

𝜌𝑆(𝑋1, 𝑋2) ≡ 𝜌𝑆(𝐹1(𝑋1), 𝐹2(𝑋2))                                                                               

(3.5) 

These variables are transformed by their distribution functions to ensure that the 

transformed variables are uniformly distributed on [0,1]. 

3.3.2.2 Tail dependence 

The third measure focuses on the tail dependence, which is formally defined as 

the conditional probabilities of quantile exceedances. It measures the dependence 

when both variables are at extreme values. The upper tail dependence, denoted 

as 𝜆𝑢, is  

𝜆𝑢(𝑋1, 𝑋2) ≡ lim
𝑞→𝐼−

𝑃(𝑋2 > 𝐹2
−1(𝑞)|𝑋1 > 𝐹1

−1(𝑞)),                                                                     

(3.6) 

where the limit exists 𝜆𝑢 ∈ [0,1]. Here 𝐹𝑖
−1 is the quantile function, namely the 

inverse of the cdf. The lower tail dependence is defined symmetrically. 
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3.3.3 Copula classes 

There exist various copula families and the copula function could be rendered 

either static or time-varying. Static or constant copulas presume that the 

dependence between variables is time invariant. However, the assumption may 

not be true in reality as a number of empirical research has revealed that the 

relationships between economic series are time-varying, see Roberedo (2011) for 

example. Under such circumstances, Patton (2006) extended the standard 

constant copulas to the conditional/time-varying case. The parameters in the 

time-varying copulas are allowed to change over time, which allows for more 

flexible way to describe the relationship between variables. In this study, we 

consider both constant (time-invariant) and time-varying copulas.  

3.3.3.1 Constant copulas 

A variety of constant copulas are adopted in this study, including Gaussian, 

Student-t, Clayton (survival), Gumbel (survival), Frank, Joe, Clayton-Gumbel 

and Joe-Clayton. 

The first copula to introduce is the Gaussian copula and the equation is specified 

as: 

𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢, 𝑣) = ∫ ∫ (1 2𝜋|𝑅|1/2)⁄ exp {−(𝑢, 𝑣)′𝑅−1(𝑢, 𝑣)/
Φ

−1(𝑣)

−∞

Φ
−1(𝑢)

−∞

2}𝑑𝑢𝑑𝑣                   (3.7) 

Where Φ
−1

is the inverse of the cumulative distribution function (cdf) of the 

univariate standard normal distribution 𝑢  and 𝑣 . 𝑹  is the correlation matrix 

implied by the covariance matrix.   

The Student-t copula introduces the symmetric tail dependence which Gaussian 

copula does not capture and is in the following form: 

𝐶𝑡(𝑢, 𝑣; 𝑅, 𝑛) =

∫ ∫ (Γ((𝑛 + 2) 2⁄ )|𝑅|−1/2) (Γ(𝑛 2⁄ )(𝑛𝜋))⁄
t𝑛

−1(𝑣)

−∞

t𝑛
−1(𝑢)

−∞
 .  (1 +

1 𝑛⁄ (𝑢, 𝑣)′𝑅−1 (𝑢, 𝑣))−(𝑛+2)/2𝑑𝑢𝑑𝑣                                                                                                 

(3.8) 
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Where 𝑅  is the correlation matrix and 𝑛 is the degree of freedom parameter, 

while t𝑛 is the univariate Student-𝑡 cdf with degree-of-freedom parameter 𝑛 and 

the univariate inverse cdf of the 𝑡-distribution is denoted by t𝑛
−1. 

The three Archimedean copulas employed in this study are Clayton, Gumbel and 

Frank copulas. 

The Clayton copula function introduced by Clayton (1978) is an asymmetric 

copula with higher probability concentrated in the lower tail and can be written 

as 

𝐶𝐶𝑙𝑎𝑦𝑡𝑜𝑛(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−1 𝜃⁄

, 휃 ≥ 0                                                                                         

(3.9) 

Where 휃 being the copula parameter. 

Gumbel Copula (Gumbel, 1960) on the other hand, has upper tail dependence 

and could be specified as 

𝐶𝐺𝑢𝑚𝑏𝑒𝑙(𝑢, 𝑣) = exp{−[(− ln 𝑢)𝜃 + (− ln 𝑣)𝜃]1 𝜃⁄ } , 휃 ≥ 1.                                                                   

(3.10) 

Frank copula (Genest, 1987) is a symmetric copula given by 

𝐶𝐹𝑟𝑎𝑛𝑘(𝑢, 𝑣) = −1/휃ln [1 + (exp(−휃𝑢) (exp(−휃𝑣) − 1))/(exp(−휃) −

1)], 휃 ∈ ℝ \{0}.      

(3.11) 

The Joe copula (Joe, 1993) is defined as 

𝐶𝐽𝑜𝑒(𝑢, 𝑣) = 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]1/𝜃 , 휃 ≥ 1.                                     

(3.12) 

The Clayton-Gumbel and Joe-Clayton copulas (Joe and Hu, 1996), also known 

as BB1 and BB7, can model flexibly different lower and upper tail dependence 

structures. For BB1, the model is given by 

𝐶𝐵𝐵1(𝑢, 𝑣) = (1 + [(𝑢−𝜃 − 1)𝛿 + (𝑣−𝜃 − 1)𝛿]1/𝛿)−1/𝜃                                                                 

(3.13) 



 

 
66 

Where 휃 > 0 and 𝛿 ≥ 1; 𝜏𝐿 = 2−1/(𝛿𝜃), 𝜏𝑈 = 2 − 21/𝛿. 

A BB7 copula can be defined as 

𝐶𝐵𝐵7(𝑢, 𝑣) = 1 − (1 − [1 − (1 − 𝑢𝜃)−𝛿 + (1 − [1 − (1 − 𝑣𝜃)−𝛿 − 1]−1/𝛿)1/𝜃                            

(3.14) 

Where 휃 ≥ 1 and 𝛿 > 0; 𝜏𝐿 = 2−1/𝛿, 𝜏𝑈 = 2 − 21/𝜃. 

Rotated copulas are also considered in this study. Many copulas, for example, 

Gumbel and Clayton copulas cannot model negative tail dependencies, which 

many series may exhibit. These copulas can be rotated based on the original un-

rotated copula to derive a new copula. This study considers 180° rotated Clayton, 

Gumbel, and BB1 copulas, which are also known as survival copulas. Cech (2006) 

defined the survival copulas as 

𝐶180(𝑢, 𝑣) = 𝑢 + 𝑣 − 1 + 𝐶(1 − 𝑢, 1 − 𝑣).                                                                                 

(3.15) 

3.3.3.2 Time-varying Copulas 

Patton (2006) applied Sklar Theorem (1959) to introduce the time-varying 

conditional copulas. In a time-varying copula, the parameters are allowed to 

evolve over time. This study considers four types of time-varying copulas, 

including time-varying Gaussian, Student-t, Rotated Gumbel and Symmetrised 

Joe-Clayton (SJC) copulas proposed by Patton (2006) and Patton (2013). Time-

varying parameters for Gaussian and SJC copulas are defined following Patton 

(2006)’s method, while parameters for time-varying Student-t and Rotated 

Gumbel copulas evolve based on Generalized Autoregressive Score (GAS) 

models proposed by Creal et al. (2013) and Patton (2013).  

The parameter 𝜌 of time-varying Gaussian copulas are defined as (Patton, 2006) 

𝜌𝑡 = Λ̃(𝜔𝜌 + 𝛽𝜌𝜌𝑡−1 + 𝛼𝜌 ∙ 1/10 ∑ Φ
−1(𝑢𝑡−𝑖)Φ

−1(𝑣𝑡−𝑖)
10
𝑖=1 )                                                         

(3.16) 
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where Φ
−1

 is the inverse of the standard normal cumulative density functions 

and Λ̃(𝑥) ≡ (1 − 𝑒−𝑥) (1 + 𝑒−𝑥)⁄  is the modified logistic transformation in 

order to keep the parameter 𝜌𝑡 in (-1, 1) at all times. 

For time-varying SJC copula, the constant version is symmetrised Joe-Clayton 

copula, which was proposed by Patton (2006), is a slight modification from BB7 

copula. 

𝐶𝑆𝐽𝐶(𝑢, 𝑣) = 0.5 ⋅ (𝐶𝐵𝐵7(𝑢, 𝑣) + 𝐶𝐵𝐵7(1 − 𝑢, 1 − 𝑣) + 𝑢 + 𝑣 − 1)                                          

(3.17) 

The parameters evolve based on the following equations: 

𝜏𝑡
𝑈 = Λ(𝜔𝑈 + 𝛽𝑈𝜏𝑡−1

𝑈 + 𝛼𝑈 ∙ 1/10 ∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖
10
𝑖=1 |)                                                                  

(3.18) 

𝜏𝑡
𝐿 = Λ(𝜔𝐿 + 𝛽𝐿𝜏𝑡−1

𝐿 + 𝛼𝐿 ∙ 1/10 ∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖
10
𝑖=1 |)                                                                     

(3.19) 

where Λ(x) ≡ (1 + 𝑒−𝑥)−1  is the logistic transformation to ensure the 

parameters 𝜏𝑈 and 𝜏𝐿 stay in (0,1) all the time. 

For time-varying Student-t and Rotated Gumbel copula, the GAS model 

proposed by Creal et al. (2013) is used to depict the evolution process of the time-

varying copula parameter (𝛿𝑡). One advantage of GAS model is that it can fully 

use the likelihood information. The driver of time variation is a score function. 

The original parameter 𝛿𝑡  is transformed to 𝑓𝑡  to ensure that the correlation 

parameter can always stay in (-1,1). Following Patton (2013), 𝑓𝑡 is defined as 

𝑓𝑡 = ℎ(𝛿𝑡) ⟺ 𝛿𝑡 = ℎ−1(𝑓𝑡)                                                                                                          

(3.20) 

where 𝑓𝑡+1 = 𝜔 + 𝛽𝑓𝑡 + 𝛼𝐼𝑡
−1/2

𝑠𝑡                                                                                                

(3.21) 

𝑠𝑡 ≡ 𝜕/𝜕𝛿𝑡 log 𝐶(𝑢𝑡 , 𝑣𝑡; 𝛿𝑡)                                                                                                               

(3.22) 
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𝐼𝑡 ≡ 𝐸𝑡−1[𝑠𝑡𝑠𝑡
′] = 𝐼(𝛿𝑡)                                                                                                                

(3.23) 

where 𝛿𝑡 = 1 + exp(𝑓𝑡) for Gumbel copula to ensure the parameter 𝛿𝑡 > 1 at all 

time. For Student-t copula, 𝛿𝑡 = (1 − exp {−𝑓𝑡}) (1 + exp {−𝑓𝑡})⁄  to keep the 

parameter in the interval (-1,1). Only the correlation parameter is time-varying 

for Student-t copula, while the degree of freedom parameter is assumed to be 

constant over time. 

3.3.4 Statistical inferences 

A two-step estimation method is employed to compute the copula parameters, 

namely Inference Functions for Margins (IFM), which is firstly proposed by Shih 

and Louis (1995). IFM method could be considered as the Maximum Likelihood 

Estimation (MLE) of the dependence structure given the estimated margins.  

Let 𝑧1 , 𝑧2 be two random variables, where 𝑧𝑖  has parametric cumulative 

distribution function (cdf) 𝐹𝑖 (𝑧𝑖; 𝛼𝑖) and corresponding density functions by 

𝑓𝑖 (𝑧𝑖; 𝛼𝑖). 𝛼1, 𝛼2 and  휃𝑐 are the parameters to be estimated for the marginals 

and the copula respectively. In IFM estimation, firstly, the parameters 𝛼𝑖 of the 

marginal are estimated by 

�̂�𝑖 = arg max ∑ ln 𝑓𝑖(𝑧𝑡𝑖; 𝛼𝑖)      𝑖 = 1,2.𝑇
𝑡=1                                                                   

(3.24) 

And then the associated parameters 휃̂𝑐 given �̂�𝑖 are estimated by 

휃̂𝑐 = arg max ∑ ln 𝑐(𝐹1
𝑇
𝑡=1 (𝑧𝑡1; �̂�1), 𝐹2((𝑧𝑡2; �̂�2); 휃𝑐)                                                   

(3.25) 

In this situation, the number of parameters estimated during each maximization 

task is small, thus the computational difficulty could be reduced to a large extent. 

Patton (2006) shows that this IFM method generates asymptotically normal and 

efficient parameter estimates. IFM method has another notable benefit, that is, 

the marginal specifications are able to be tested by standard diagnostic techniques 

to make sure of a good fit for the data. In the context of Copula-GARCH model, 

during the post-estimation examination, Ljung-Box test for autocorrelation and 
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ARCH test for the existence of any remaining ARCH effects of the standardized 

residuals are performed. 

3.3.5 Marginal specification 

Based on the IFM method, the marginals are firstly specified parametrically by 

the GARCH framework, which could capture most of the stylized features 

observed in freight series, such as volatility clustering and fat tails. In this study, 

we adopt Bollerslev (1986) standard GARCH model. The conditional variance is 

allowed to depend on previous own lags in the GARCH model. In most cases, 

GARCH (1,1) should be sufficient and complex specification search hardly 

increases the model’s forecast ability ((Hansen and Lunde, 2001). Let 𝑦𝑡 be a 

time series of freight returns whose mean equation is given by  

𝑦𝑡 = 𝐸(𝑦𝑡|Ω𝑡−1) + 휀𝑡, 

휀𝑡 = 𝜎𝑡𝑧𝑡 ,                                                                                                                                    

(3.26) 

where Ω𝑡−1  is the available information at time 𝑡 − 1  and 휀𝑡  are the random 

innovations with 𝐸(휀𝑡) = 0 . 𝑧𝑡  is i.i.d. random variable with mean 0 and 

variance 1. 

For a given time series yt, the GARCH (1,1) model could be written as 

𝜎𝑡
2 = 𝜔 + 𝛼휀𝑡−1

2 + 𝛽𝜎𝑡−1
2 ,                                                                                                          

(3.27) 

Where 𝜎𝑡
2 is the conditional variance, which is dependent on both a long-term 

average value (dependent on 𝜔), information about past volatility (𝛼휀𝑡−1
2 ) and 

past conditional variance (𝛽𝜎𝑡−1
2 ). When 𝜔 > 0, 𝛼 > 0, 𝛽 > 0 and 𝛼 +  𝛽 < 1, 

the conditional variance process is stationary and positive. The sum (𝛼 +  𝛽) 

measures the persistence of variance. The persistence of shocks to volatility 

becomes greater when this sum approaches unity. If 𝛼 +  𝛽 > 1, the GARCH 

process is not stationary and the shocks tend to increase instead of declining.  
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For the conditional mean, we model it as an ARMA (𝑝, 𝑞) process, which consists 

of an AR part of order 𝑝 and an MA part of order 𝑞: 

𝑦𝑡 = 𝜇 + 휃1𝑦𝑡−𝑖 + ⋯ + 휃𝑝𝑦𝑡−𝑝 + ∅1휀𝑡−1 + ⋯ + ∅𝑞휀𝑡−𝑞                                        

(3.28) 

휃  being the autoregressive coefficients and ∅  being the moving average 

coefficient. 휀𝑡  is the innovations. 휀𝑡  is assumed to be skewed-t distributed to 

account for the fat tail and skewness behavior of freight rate returns. In many 

cases, AR (𝑝) process is used due to its simplicity.  
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CHAPTER 4 ECONOMETRIC ANALYSES OF LPG 

SHIPPING MARKET 

 

This chapter provides econometric analyses of the LPG shipping market based 

on the models described in Chapter 3.  Specifically, this chapter is divided into 

two parts. In Section 4.1, first, a structural equation model is developed to analyze 

the different relationships between supply/demand, freight rate, newbuilding and 

secondhand vessel prices within the VLGC market. Six hypotheses are initially 

proposed and all are supported. In Section 4.2, the dependence dynamics among 

LPG freight rates, crude oil price, and propane location arbitrage have been 

studied. Copula-GARCH model is applied to estimate dependencies. Different 

types of copulas with both time-invariant and time-varying dependence 

structures are fitted and their suitability has been compared. Section 4.3 

investigates vessels’ destination choice behaviors and identify their associations 

with various market factors, from both shippers’ and carriers’ perspectives. The 

study uses VLGCs loading from US Gulf as an illustration. Attributes include 

freight rate, propane price spread, bunker costs, and the number of ships in the 

destination areas. It also identifies the effects of the Panama Canal expansion on 

destination choices, by dividing sample data into two sub-periods: before and 

post expansion. Furthermore, both aggregate and disaggregate analysis for 

different ports are provided. 

The first part is to address the interrelationship within the LPG shipping market, 

while the second part is to investigate additional influencing factors apart from 

supply and demand balance. Shipping freight rates are highly volatile and can be 

influenced by various factors. One of them is product location arbitrage, which 

has been valued by industry practitioners, however, seldom studied in the 

academic field. The oil price effects on the arbitrage and freight rates are also of 

interests. The last part identifies vessels’ spatial patterns and its association with 

market variables.  
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4.1 An integrated analysis of interrelationships within the very large gas 

carrier (VLGC) shipping market: a structural equation modeling 

approach 

 

The global shipping market has long been defined as having four closely related 

sub-markets (Stopford, 2009): freight market, secondhand market, new building 

market, and demolition market. In the freight market, freight rates are negotiated 

between shipowners and charterers. The newbuilding and demolition markets 

both directly affect the supply side of international shipping. New vessel prices 

reflect market expectations due to the time lag from the ordering to the delivery 

of the vessel (Beenstock, 1985). In the secondhand market, ships change hands 

between different owners. Demand for shipping services stems from global 

seaborne trade. A higher demand will push up freight rates, which in turn 

motivates owners to buy more ships so as to take advantage of improved earnings. 

Shipowners may first consider buying a secondhand ship, as these vessels are 

immediately available. Higher buying activity, however, will raise secondhand 

vessel prices and owners will turn to shipyards to order new ships. This, in turn, 

will drive up newbuilding prices. When the new ships are delivered, the supply 

of tonnage increases and, ceteris paribus, freight rates decrease. During a low 

freight rate environment, sale and purchase activity is discouraged. Less trading 

and ordering activity could then put downward pressure on secondhand and 

newbuilding prices. The various relationships have been separately investigated 

extensively in the bulk shipping market (Tinbergen, 1934; Koopmans, 1939; 

Hawdon, 1978; Norman’s ,1979; Wergeland, 1981; Strandenes, 1984; Beenstock, 

1985; Beenstock and Vergottis, 1989a, 1989b, 1993; Tsolakis et al., 2003; 

Adland et al., 2006; Alizadeh and Nomikos, 2007; Xu et al., 2011; Kou et al., 

2014; Adland and Jia, 2015; Kou and Luo, 2015). However, no study has yet 

used an integrated framework to examine both the direct and indirect effects 

among the variables. Failing to do so could result in neglecting important 

mediating effects among the variables. 

The objective of this study is to analyze the various relationships between 

demand/supply and freight rates, and secondhand and newbuilding prices in the 
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VLGC market. Six hypotheses are brought forward and tested using Structural 

Equation Modeling (SEM). Important implications are drawn for LPG 

shipowners and related agents, such as charterers and asset players (i.e. private 

equities). This study could help shipowners combine anticipated changes in 

freights rate and vessel prices with information concerning demand and supply 

changes, thus enabling them to make more informed decisions regarding vessel 

financing, ordering, and purchasing of vessels.  

4.1.1 Hypotheses 

Based on the literature review in Chapter 2 and the understanding of the shipping 

market, Six hypothesized relationships are initially proposed. These hypotheses 

will subsequently be supported or rejected based on the significance test of the 

paths. Table 4.1 lists the variables to be included and their abbreviations.  

Table 4.1 Variable names and Abbreviations 

Variable Name Abbreviation 

Market pressure MP 

Secondhand vessel price SH 

Newbuilding price NB 

Freight rate FR 
 

Freight rates and vessel prices (both new and old) are outcomes of the supply-

demand dynamics in their respective markets, namely the freight, newbuilding 

and secondhand ones. However, one common factor should link the three 

markets together, this being the international seaborne trade (Kou and Luo, 2015). 

An increase in the demand for shipping could lead to rising freight rates, which 

may prompt more demand for ships, thereby increasing both ship prices and the 

number of ships ordered. An eventual delivery of ships will put downward 

pressure on freight rates and this can also reduce ship prices as there is lackluster 

demand for more ships.  On the other hand, freight rates and vessel prices are set 

by demand relative to supply, so high supply in itself, or even increasing supply 

in isolation, need not affect rates negatively. It all depends on what happens to 

demand during the same time period. To measure the market dynamics/pressure, 

a ratio between demand and supply is used, defined as ton-mile demand/ton-mile 
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supply. Both demand and supply are measured in the same unit. Therefore, we 

have the following hypotheses 1 to 4, with supply/demand linking the markets. 

Freight rate is a function of supply and demand dynamics, namely how demand 

changes relative to supply. When the demand for seaborne transportation 

increases, freight rates tend to rise accordingly. For instance, a surge in demand 

for raw materials from emerging economies with scarce resources pushed up the 

dry bulk freight rate to a high level in the early 2000s (Nomikos et al. 2013). On 

the other hand, a significant delivery of new ships to an existing fleet would exert 

a negative effect on freight rates if demand remains unchanged. A low level of 

shipping investments could reduce supply and have a positive impact on freight 

rates. An example is the surge in dry bulk freight rates during the 2000s, due to 

the prolonged period of underinvestment in new capacity during the 1980s and 

1990s (Nomikos et al. 2013). Hence, the first hypothesis tests the relationship 

between market pressure (demand/supply) and freight rates. A higher market 

pressure indicates a relatively tight market with higher demand relative to supply. 

Hence, hypothesis 1 is set as: 

H1: Freight rates are positively related to market pressure (demand/supply 

ratio) for freight services 

Higher demand for shipping services would attract plenty of buyers in the sale 

and purchase market, interested to, profitably, cover the increasing cargo 

transportation requirements. This could lead to higher prices. On the other hand, 

for example, as pointed out in the Platou Report (2015), the weak dry bulk 

tonnage demand in 2014 led to a decrease in secondhand values between 15 and 

25 percent (depending on ship age), for the Handy, Supramax and Panamax 

categories. Sale and purchase activities are reduced in an overcapacity 

environment, as downward market expectations may prevail when there is excess 

capacity and freight rates might fall as a result. As an example, Lloyd’s List (2010) 

reports that a flood of newbuilding handymax vessels could push secondhand 

vessel prices down 20% in the next two years, compared with 2010 level. Thus, 

hypothesis 2 is shown below: 
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H2: Secondhand vessel price is positively related to market pressure 

(demand/supply ratio) 

In anticipation of growing seaborne demand, shipowners may decide to place 

more orders at shipyards. Competition for shipbuilding berths will drive up 

newbuilding prices. The Platou Report (2015) records higher newbuilding prices 

in 2013, compared with the previous year, on the back of increased demand and 

long delivery times, as orderbooks become thicker. Same as for the sale and 

purchase market, when there are too many ships sailing, owners tend to reduce 

ordering activities at shipyards, given negative market expectations. When 

shipyards have too few orders, they may have to drop their prices to tempt in 

buyers (Stopford, 2009). Hawdon (1978) has found a statistically significant 

negative coefficient for the fleet size on newbuilding prices, which indicates the 

depressing influence of overcapacity on ship prices. Thus, hypothesis 3 is 

proposed as: 

H3: Newbuilding price is positively related to market pressure (demand/supply 

ratio) 

Prices, particularly those of secondhand ships, correlate strongly with freight 

rates (Haralambides et al., 2005). Freight rates are regarded as the primary 

influencer of ship prices (Stopford, 2009). Lows and highs in the freight market 

are transmitted into the secondhand market. When freight rates are high, owners 

will initially search for a ship in the sale and purchase market, as these ships are 

immediately ready for trading. The thick volume of trading will put upward 

pressure on secondhand vessel prices. As such, we have Hypothesis 4: 

H4: Secondhand vessel price is positively related to freight rate 

Shipowners choose investment strategies in order to maximize the discounted 

cash flow of profits, given their expectations on how freight rates will develop 

(Gkochari, 2015). With positive expectations for the shipping market, 

shipowners are inclined to order more ships. During booms, when a shipyard has 

received many orders and owners compete for the few building berths available, 
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prices increase dramatically. The opposite happens in a recession. Therefore, 

Hypothesis 5 is derived. 

H5: Newbuilding price is positively related to freight rate 

When secondhand prices are too high, owners would place more new orders at 

shipyards. Active ordering will increase newbuilding prices. Furthermore, during 

booms and troughs, secondhand prices are more volatile and respond to market 

information more quickly than newbuilding prices (due mostly to delivery times). 

Therefore, newbuilding prices have little impact on secondhand prices (Chen et 

al. 2014). Hypothesis 6 is proposed as such: 

H6: Newbuilding price is positively related to secondhand vessel price 

Table 4.2 summaries the hypotheses and their supporting literature. All 

hypotheses are developed either by previous literature or market reports. For H2, 

the effects of market pressure on secondhand prices, has not been investigated in 

the academic field, although it has been reported in various market reports. 

Changes in secondhand prices appear to be more determined by changes in 

freight rates (Strandenes, 1984; Tsolakis et al., 2003; Alizadeh and Nomikos, 

2007; Lun et al., 2013). Furthermore, newbuilding prices may not be suitably 

explained by a supply-demand framework (Beenstock and Vergottis, 1989a; 

1989b) as mentioned above. However, these two hypotheses are included due to 

their possible relationships, i.e. that vessel prices might be influenced by 

supply/demand dynamics apart from freight rates, as it appears in market reports. 

Other hypotheses, although supported in bulk shipping literature, have not been 

tested in the VLGC market. The shipping market is quite fragmented and 

different markets may have different characteristics. Unlike other shipping 

markets such as dry bulk market with diversified trading routes, LPG transport 

has limited main trading patterns, which leads to more price volatility with higher 

sensitivity to market condition changes (Adland et al., 2008). Furthermore, 

VLGCs are owned by a handful number of owners due to a higher capital 

intensity which creates higher barriers to entry and the niche feature of the LPG 

shipping market, compared to more diversified shipowner portfolio found in 
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other shipping markets. These characteristics contribute to the uniqueness of the 

LPG freight market. Therefore, the significance of these different relationships 

as mentioned in the above 6 hypotheses in the VLGC market needs to be tested. 

Table 4.2 Hypotheses and their supporting literature 

Hypotheses Supporting Literature 

H1: Freight rates are positively related to 

market pressure (demand/supply ratio) for 

freight services  

Tinbergen (1934); Hawdon (1978); 

Wergeland (1981); Beenstock and 

Vergottis (1989a, 1989b, 1993a) 

H2: Secondhand vessel price is positively 

related to market pressure (demand/supply 

ratio)  

The Platou Report (2015); Lloyd’s 

List (2010) 

H3: Newbuilding price is positively related 

to market pressure (demand/supply ratio)  

Hawdon (1978); The Platou Report 

(2015); 

H4: Secondhand vessel price is positively 

related to freight rate 

Strandenes (1984); Tsolakis et al. 

(2003); Alizadeh and Nomikos 

(2007); Lun et al. (2013) 

H5: Newbuilding price is positively related 

to freight rate 
Xu et al. (2011); Lun et al. (2013) 

H6: Newbuilding price is positively related 

to secondhand vessel price 

Tsolakis et al. (2003); Kou et al. 

(2014) 
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4.1.2 Data 

In this analysis, the data sets consist of monthly VLGC freight rates, monthly 

ton-mile demand, monthly ton-mile supply, monthly secondhand and 

newbuilding vessel prices from Jan 2010 to Mar 2016. Freight rate is the monthly 

average of BLPG index published by Baltic Exchange, which is the benchmark 

index for LPG freight rates and tracks the dollar per ton rate for VLGCs loading 

44,000mt of LPG from Ras Tanura and discharging in Chiba. Ton-mile demand 

is calculated by taking the sum of each vessel’s loading volume, multiplied by 

the distance she travels from the loading port to the discharging port in one month, 

based on Waterborne LPG report (IHS, 2016), which tracks all VLGC liftings 

(including the ship’s name, quantity, types of cargo, voyage origin and 

destination). Ton-mile supply is defined as:  

𝐹𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 ∗ 𝑢𝑛𝑖𝑡 𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (44,000𝑚𝑡) ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑖𝑙𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑

∗ 24 (24 ℎ𝑜𝑢𝑟𝑠 𝑎 𝑑𝑎𝑦) ∗ 25 (𝑎𝑠𝑠𝑢𝑚𝑒 25 𝑠𝑎𝑖𝑙𝑖𝑛𝑔 𝑑𝑎𝑦𝑠) 

The average sailing speed is derived based on AIS data, which constantly tracks 

all VLGCs’ speed. Then, market pressure can be calculated by taking the ratio of 

demand over supply. Vessel prices are extracted from Steensland research (2016) 

and all prices are quoted in million dollars. Fleet data is obtained from Sea-web 

(2016). 

Figure 4.1 indicates the historical BLPG and ton-mile demand. At a first glance, 

the VLGC freight rate is very volatile, especially after 2013. As noted in Adland 

et al. (2008), main trading routes for LPG transport are limited (from Arabian 

Gulf to Asia and recently from the US to Asia and Europe), something that 

creates more price volatility, as the sensitivity to market conditions tends to 

increase, compared to other shipping markets with diversified trading patterns 

and cargo bases. The second observation is that ton-mile demand is also quite 

volatile, and it changes rapidly from month to month. The reason is that much 

LPG trade occurs due to location price arbitrage. A location arbitrage is a trading 

strategy to profit from product price differences in different locations considering 

the cost of transportation. An example would be in Apr 2015, Asian LPG buyers 
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taking US cargoes could make a profit of $35/t, taking into account the cost of 

transportation. The arbitrage window was opened due to softening freight rate 

caused by vessel availability and weaker spot cargo prices at LPG export 

terminals near Houston (Argus, 2015). Consequently, transportation volumes 

could change a lot when price arbitrage becomes wider or narrower. Therefore, 

the constant short-term demand assumption of many bulk shipping markets does 

not apply in the VLGC market. Furthermore, the US shale gas revolution in the 

US has shifted this country from a net LPG importer to a net exporter. This drove 

up the ton-mile demand substantially during 2013 and 2014. Last but not least, 

there is a clear positive relationship between ton-mile demand and freight rates. 

Freight rates shot up in the first half of 2014 and 2015 on the back of improved 

ton-mile demand. On the other hand, the rapid drop in freight rates since the 

second half of 2015 is mainly due to a massive expansion of fleet size. In Jan 

2014, the VLGC fleet consisted of 159 vessels, while in Jan 2016, this number 

increased to 208; a massive increase of 30% in just two years (Sea-web, 2016). 

Figure 4.2 shows the new and 8-year-old VLGC price developments. The two 

prices generally move in parallel, with the newbuilding price being stickier than 

secondhand price. When the freight market is attractive, secondhand vessels 

might cost more than newbuildings due to high market expectations, and buyers 

are willing to pay a premium so their vessels could be traded immediately, as 

happened during the freight boom in the second half 2014. 
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Figure 4.1 Historical BLPG index and Ton-mile demand 

 

Source: drawn by author, based on Baltic Exchange and IHS. 

 

Figure 4.2 VLGC newbuilding and 8-year-old vessel price 

 

Source: drawn by author based on Steensland Research. 

4.1.3 Results and Discussions 

4.1.3.1 Results 

The theoretical framework depicted in Figure 4.3 has 6 hypothesized 

relationships among the 4 Variables, market pressure (MP) as the exogenous 

variable; freight rate (FR); newbuilding price (NB); and secondhand price (SH) 
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as endogenous variables. Figure 4.3 illustrates the path diagram from the 

structural modeling analysis utilizing LISREL software.  

Figure 4.3 Path diagram of the hypothesized model 

 
Source: Author. 

The figures shown on the arrows are standardized coefficients. Unstandardized 

coefficients are the effects measured in absolute magnitude, i.e. the resulting 

change in dependent variable from a unit change in the independent variable. 

Standardized coefficients are standardized solutions, where all variables are 

standardized first. Only standardized parameter estimates can be meaningfully 

compared with each other. Therefore, the standardized coefficients are shown. 

There is no statistical difference between unstandardized and standardized 

coefficients. Using the goodness-of-fit tests mentioned in Section 3.2.1, the 

results show a chi-square statistic of 0.000, which means a perfect fit of the model. 

RMSEA (0.000) and CFI (1) all indicate a good fit of the proposed model. 

However, not all paths are significant according to t-statistics. As shown in Table 

4.3, the t-test of the paths from MP to NB, and FR to NB are not significant, 

which implies that Hypothesis 3 and 5 may not be justified. 
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Table 4.3 Results of the hypothesized structural equation model 

Hypothesis Relationship Standardized 

coefficient 

H1 MP →FR 0.79** 

H2 MP →SH 0.24** 

H3 MP →NB -0.1 

H4 FR →SH 0.66** 

H5 FR →NB -0.17 

H6 SH →NB 1.02** 

**significant at 1% and *significant at 5%. 

Source: Author. 

To validate these two hypotheses and assess whether the proposed model in 

Figure 4.3 has the best fit and parsimony, alternate nested models are compared 

by deleting first the path MP to NB, as Model 2, and then dropping both the path 

MP to NB and FR to NB, as Model 3. Table 4.4 reports various model fit index 

for the two nested models. All models have good RMSEA and CFI index. It is 

often recommended to compare the fit of current model to alternative models. An 

often-asked research question is a model better with an additional path compared 

to an otherwise identical model without this path? The chi-square difference tests 

(SCDTs) are performed to test whether a given model fits significantly better or 

worse than a competing model. In this study, the question is if the proposed 

model (M1) in Figure 4.3 shall be accepted compared to the other two alternative 

models. SCDTs are referred to as “likelihood ratio tests’. The test computes the 

difference between Chi-sq values for the proposed model (M1) and the alternate 

model M2, with degrees of freedom (df) equal to the difference of df between 

these two models. Tests between M2 and M3 are then performed. Table 4.4 

summarizes the results. A significant chi-square difference test value should 

imply that the free parameters in the baseline model (which were constrained in 

the nested model) contribute to significant improvement in model fit, thus the 

hypothesized model will be accepted. On the other hand, the alternate model shall 

be accepted as a more parsimonious model, without sacrificing significant loss 

in model fit, when there is no difference in explanation of construct covariances. 
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An insignificant chi-square difference test value indicates that the two models fit 

equally well statistically, so the parameters in question can be eliminated from 

the model. As shown in Table 4.4, the proposed model (M1) is rejected to the 

alternative models (M2 and M3) at a significant level of 5%. Therefore, M3 is 

selected as the final model with good fit and parsimony. Figure 4.4 indicates the 

final path diagram. 

Table 4.4 Comparison between alternate nested models 

Model df Chi-

sq 

Chi-square 

difference 

df 

difference 

SCDT ( 𝛼 =

0.05) 

RMSEA CFI 

M1: Hypothesized 

Model 

1 0.000    0.000 1 

M2: Remove the link 

MP →NB 

2 0.69 0.69 1 Not 

significant 

0.000 1 

M3: Remove the link 

𝐌𝐏 →NB, FR→NB 

3 3.4 2.71 1 Not 

significant 

0.043 1 

*significant at 5% level, **significant at 1% level. Chi-sq difference tests are 

performed between M1 and M2, M2 and M3. 

Source: Author. 

Figure 4.4 Results for final structural equation model (M3) 

 

Source: Author. 

The total and indirect effects of the different relationships among variables are 

reported in Table 4.5. Direct effects refer to the relationship directly connecting 

two constructs, while indirect effects indicate the relationship portraying a series 

RMSEA=0.043 CFI=1.00 
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of relationships with the involvement of a mediator variable. Results suggest all 

six hypotheses are supported. Although, H3 (MP→NB) and H5 (FR →NB) are 

not justified due to insignificant t-statistics of the coefficients, their total effects 

are significant considering indirect effects (total effects of H3: 8.27, H5: 0.04). 

Table 4.5 Total and indirect effects 

Hypothesis Relationship Standardized 

coefficient 

Total effects Indirect 

effects 

Standardized 

total effects 

Standardized 

indirect 

effects 

Hypothesis 

H1 MP →FR 0.79** 161.90** 

(14.38) 

 0.79  Supported 

H2 MP →SH 0.34** 33.02** 

(3.24) 

22.76** 

(5.86) 

0.76 0.53 Supported 

H3 MP →NB  8.27** 

(1.09) 

8.27** 

(1.09) 

0.61 0.61 Supported 

H4 FR →SH 0.66** 0.14**  

(0.02) 

 0.66  Supported 

H5 FR →NB  0.04** 

(0.01) 

0.04** 

(0.01) 

0.53 0.53 Supported 

H6 SH →NB 0.80** 0.25**  

(0.02) 

 0.80  Supported 

** Significant at 1% level, * significant at 5% level. t values are in parentheses. 

Source: Author. 

The following section will provide a detailed discussion on the different 

relationships. 

4.1.3.2 Discussions 

Freight rate 

Freight rate is positively affected by the market pressure, which is measured by 

ton-mile demand relative to supply. The results indicate that both ton-mile 

demand and supply play an important role in freight rate formation process. This 

has significant implications for market players when the orderbook of VLGC is 

very high. If ton-mile demand continues to grow at a healthy rate, this will drive 

up freight rates, in spite of the new vessels that are coming into the market. 

However, if ton-mile demand stagnates, the new vessels to be delivered will 

further push down the freight rate.  

Secondhand and newbuilding vessel price 
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The results show that the prices of both newbuilding and secondhand vessels are 

influenced by freight rates. The findings also suggest that the secondhand price 

is directly affected by freight rate, while the relationship between freight rate and 

newbuilding price is rather indirect, through the secondhand price acting as a 

mediator. As shown in Table 4.3, the coefficient of H5: FR→NB is negative, 

which is in contrary to our common understanding. However, considering the 

total effects, which include the indirect effect via secondhand price, the effect is 

positive. The result is in line with the market mechanism: When freight rates are 

high, shipowners tend to acquire a secondhand vessel, which is immediately 

ready for trading in the sale and purchase market, to take advantage of the rising 

freight market. This will push up secondhand prices. When secondhand vessels 

are not available or prices are too high, owners will obtain additional shipping 

capacity by ordering new ships, which then drives up newbuilding prices. 

Secondhand price will serve as the guideline for newbuilding price movement. 

The finding also resonates Kou and Luo (2015)’s conclusion that secondhand 

prices are more sensitive to freight rate changes than newbuilding prices, as 

evidenced in the standardized total effects from FR→SH being higher than that 

from FR→NB. Adland and Jia (2015) also concluded that newbuilding prices are 

‘stickier’ compared to secondhand prices. It is also pointed out by them that 

newbuilding and secondhand prices may not be directly comparable due to time-

varying delivery lag. However, the delivery lag cannot be computed without 

actual detailed newbuilding contract and delivery data. Furthermore, since the 

delivery lag is time-varying and differs across shipowners (Adland and Jia, 2006), 

an estimated constant delivery lag may not be an accurate measure of the time 

difference. Considering these factors, it would be more feasible and meaningful 

to study the contemporaneous relationship. 

The effects of supply and demand dynamics on secondhand prices are mostly 

indirect, through freight rate as a mediator. Table 4.5 shows that the standardized 

total effect from MP → SH is 0.76, among which the indirect effect through FR 

is 0.53. Furthermore, market pressure affects newbuilding vessel prices mainly 

through the secondhand market as shown in Table 4.5. The direct effect from MP 

→ NB is not siginificant, however, the indirect effect through SH is significant. 
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This finding is in line with previous literature, according to which the 

newbuilding price cannot be appropriately explained by supply and demand 

mechanisms (Beenstock and Vergottis, 1989a; 1989b) and that freight rates play 

a dominant role in secondhand prices (Strandenes, 1984; Tsolakis et al., 2003; 

Alizadeh and Nomikos, 2007; Lun et al., 2013). This can be further explained 

since secondhand vessels are more market-driven and more influenced by the 

freight market, whereas the shipbuilding industry is supply and cost driven. 

Countries would not adjust their shipbuilding capacity, something that involves 

a lot of investment, to speculative movement of prices. 

4.1.3.3 Implications 

The results have significant implications for both academics and business 

practitioners. Academically, the study contributes to the understanding of VLGC 

market interactions which have not be investigated in the literature. SEM is a 

comprehensive approach to test shipping market relationships. By identifying the 

direct and indirect relationships between variables, the study provides a holistic 

picture of the VLGC market mechanism. For industrial players, including 

shipowners, knowing the market interactions will aid their decision-making 

process, including freight rate movement and ship investment. For example, the 

key factor influencing freight rates is market pressure. Shipowners should pay 

attention to LPG export volume from key exporting areas as well as fleet size 

growth to identify the direction of freight movement. The increase of global ton-

mile demand relies heavily on US LPG production and export capacity, while 

Middle East exports have remained relatively stable during the past few years. 

Moreover, shipowners and investors planning to acquire new VLGC tonnage, 

they should take note that the price of the vessel, no matter new or old, is the 

reflection of the current freight level and that it is wiser to place a new order if 

they anticipate strong seaborne trade volume growth in the future.   
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4.2 Dynamic relationships between LPG freight rate, crude oil price and 

LPG product price spread: a copula-GARCH approach 

 

The freight market could be influenced by a series of factors, such as aggregated 

global LPG demand and LPG fleet size, notably, also location price spread, 

which has been valued by industry practitioners, however, seldom been studied 

in the academic field. The oil price effects on LPG freight rate are also of interest 

but have always been ambiguous and have not been investigated thoroughly. 

A location price arbitrage is a trading strategy to profit from market inefficiencies 

in price differences of a given commodity at different geographical locations. In 

the commodity markets, some empirical evidence from past studies has shown 

the existence of temporary market inefficiency and thus offers profitable trading 

opportunities for arbitrageurs and traders (Fanelli, 2015). Such arbitrage 

opportunities usually arise due to regional supply and demand imbalances, 

regulatory changes and some market distortions (Alizadeh and Nomikos, 2004). 

Spatial arbitrage enables buying from underpriced places and selling to 

overpriced markets to take advantage of price differentials. It is stated that global 

arbitrage plays create a dynamic trading environment for products. A location 

price spread is the commodity price difference between two locations. An 

arbitrage is considered open when the price spread between the same commodity 

in two different locations (A and B) is greater than the full cost of transportation 

(including freight cost and terminalling fee) required to transport it between A 

and B. See for example, Argus reported in Apr 2015 that Asian LPG buyers 

taking US cargoes could make a profit of $35/t, taking into account cost of 

transportation. The arbitrage window was opened due to softening freight rate 

caused by vessel availability and weaker spot cargo prices at LPG export 

terminals near Houston (Argus, 2015). In fact, IHS publishes Waterborne LPG 

report every month showing the world LPG trade economics. From the US to 

Asia, based on IHS, the US-Asia arbitrage is calculated as (Propane CIF Japan 

market price – propane FOB US Gulf Coast price – source terminalling – VLGC 

freight cost). The LPG location price spread could affect the LPG shipping 
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freight market via two channels: willingness to pay for shipping and ton-mile 

demand. When the location price spread is high, traders will profit more from the 

price spread and thus have more money to pay to shipowners, which leads to an 

increase in the freight rate. Meanwhile, the wide price spread would incentivize 

traders to move more cargoes, which creates more ton-mile demand, and these 

cargoes would compete for limited vessel spaces, thus drive up shipping freight 

rate. On the other hand, when the price spread narrows and makes no economic 

profit to move the cargo, companies would rather pay a cancellation fee to cancel 

the contract instead of moving it at a larger loss. This happens more often in the 

US where cargo cancellation is allowed, whereas, it is prohibited in the Middle 

East. Therefore, demand for LPG transportation, especially in the US, would be 

much influenced by the arbitrage economics. Such demand will then have an 

impact on the VLGC freight rate. For instance, as reported by Tradewinds (2016), 

the weakness in VLGC spot rates experienced in the first half 2016 was mainly 

attributed to the tighter propane differentials. 

One distinguishing feature of the LPG shipping market is that there are often 

energy substitutes for LPG products, such as naphtha (Engelen and Dullaert, 

2012). They could both be used as petrochemical feedstock. Thus, this makes 

shipping demand for LPG elastic, especially in the petrochemical sector, and very 

much dependent on the LPG-naphtha spread as well as LPG arbitrages between 

different locations. This brings up the question of how crude oil prices affect the 

arbitrage economics and overall VLGC freight rates. LPG such as propane and 

butane are related to the oil market both on the supply side (product of crude 

refining process) and demand side (through its use for fuel and heating). Oil 

prices have historically been the main driver for LPG prices (Oglend et al., 2015). 

Refined products are a derivative of the crude product and therefore, the refined 

and crude oil prices should be interrelated and have a long-run relationship. 

Based on the literature review in Chapter 2, to the best of our knowledge, no 

study has been done to investigate the relationship between freight rate and the 

spatial price spread of the commodities carried by the ships. The existing 

literature focuses on information spillover effects between freight rates and the 

corresponding commodity prices (Haigh and Bryant, 2001; Yu et al., 2007). 
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Alizadeh and Nomikos (2004) relate the tanker freight rate formation to the 

differential of crude futures and physical prices, which reflects the cost of carry 

relationship. However, such an assumption was not supported by the statistical 

investigation. The reason they provide is the existence of arbitrage opportunities. 

To date, no study has considered the relationship between the freight rate and 

spatial price difference.  

There has also been a handful of research analyzing the correlations between 

refined product prices and oil prices. Asche et al. (2003) have investigated the 

relationships between refined products and crude oil prices, using Johansen 

(1988) cointegration tests. Their findings suggested that a long-run relationship 

exists between crude oil prices and end products, with the exception of crude oil 

and heavy oil prices. Moreover, they found that crude oil prices could determine 

the refined product prices, however, it is not true in the other way around. This 

study has also suggested some market inefficiencies in relative pricings, which 

enable arbitrage profits to be taken. Specifically, regarding the relationship 

between LPG prices and oil prices, Oglend et al. (2015) have investigated the 

shale gas boom effect on the relationship between LPG and oil prices and 

concluded that LPG and oil price correlation has weakened in recent years due to 

shale gas revolution. Although spatial arbitrage has been an age-old concept for 

trading firms, little research has put emphasis on its importance. Pirrong (2014) 

concluded that commodity trading firms’ primary function is to carry out 

physical arbitrages, which may add value through different transformation 

processes. Skadberg et al. (2015) studied the spatial arbitrage for US soybeans 

using stochastic optimization techniques and copula joint distributions. 

Baltic LPG (BLPG), oil price and product price returns are identified to be 

skewed and leptokurtic (Goulielmos & Psifia, 2007; Reboredo, 2011). As a 

consequence, linear and other traditional models are not suitable for modeling 

freight, oil and product price distributions. Furthermore, they may demonstrate 

asymmetric or tail dependence behaviors, which make conventional multivariate 

GARCH models unsuitable. Therefore, this study proposes a dynamic 

conditional copula-GARCH approach to model the dependency between BLPG, 

Brent, and Propane price spread returns. Specifically, a univariate GARCH 
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process is employed to model the marginal time series and a copula function is 

specified to model the dependence structure. Copula method compared to 

traditional multivariate time series analysis has several advantages. Firstly, 

copula-based models provide more flexibility in modeling multivariate 

distributions, allowing researchers to separately specify the models for the 

marginal distributions and the dependence structure that combines them to form 

a joint distribution. The copula approach to formulate multivariate distributions 

is particularly beneficial when the marginals are complex and cannot simply 

extend to a multivariate situation (Liu and Luger, 2009). Secondly, copula 

functions could capture a wide array of dependence structures, including 

nonlinear, asymmetric and tail dependence. Some time series analyses showed 

the benefits of copula-GARCH models (Patton, 2006; Hu, 2006; Jondeau and 

Rockinger, 2006; Rodriguez, 2007; Liu and Luger, 2009). 

The objective of this section is to examine the dependency structure between 

VLGC freight rates and LPG location price spread, VLGC freight rates and Brent 

crude oil price, as well as the dependency structure between Brent crude oil and 

different propane prices and how that affects the commodity price spread level. 

A conditional copula-GARCH model is employed with the dependency both 

rendered constant and time-varying.  

4.2.1 Data and Descriptive Statistics 

4.2.1.1 Data 

Our dataset consists of weekly average BLPG freight rate for the transportation 

of 44,000 metric tons of LPG from Ras Tanura, the Middle East to Chiba, Japan, 

which is obtained from Baltic Exchange. In addition, we obtain weekly average 

prices of Brent physical and three propane prices, including Mt Belvieu, Saudi 

Aramco CP swap and Argus Far East Index (AFEI) for the period 2 January 2005 

to 22 August 2016 (600 observations), which are obtained from Datastream and 

Argus. The location price spread between the Middle East and the Far East 

(AFEI- CP swap) is calculated by taking the difference between AFEI and Saudi 

Aramco CP swap price, while the price spread between the US and the Far East 

(AFEI-US) is estimated by the difference between AFEI and Mt Belvieu price.  
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The original data are transformed into the logarithm ratio which could reflect the 

level of price changes, by taking the logarithm difference of the two successive 

weekly prices. One issue is that the location spread may not be always positive. 

To handle the negative values appeared in some product spread series, one 

common practice is to add a constant value to AFEI-CP swap and AFEI-US series 

prior to applying the log transform (Osborne, 2011). Therefore, the 

transformation becomes log (𝑋 + 𝑎), where 𝑋 is the original value in the data 

series and 𝑎 is a constant. 𝑎 is chosen to ensure that 𝑚𝑖𝑛(𝑋 + 𝑎) is a very small 

positive number. It is noted that adding a small constant will result in a slightly 

different return set. An alternative would be to truncate all negative data.  

However, it will result in important information loss.  

4.2.1.2 Summary of descriptive statistics 

The graphs in Figure 4.5 show the price developments of the BLPG freight rate, 

Brent crude, Propane Argus Far East Index (AFEI), Propane CP swap month 1 

and Propane Mt Belvieu prices, as well as the AFEI-CP swap and AFEI-US price 

spreads. The AFEI-CP swap spread has been almost all times positive, due to the 

lower price the Middle East offers as a low-cost region. However, the AFEI-US 

spread fluctuated around zero in the past and has become always positive since 

2012 on the back of shale gas revolution which makes the US a cost competitive 

region and thus lowers the Mt Belvieu propane prices significantly. The spread 

between AFEI and Mt Belvieu has reached even 600 dollars per ton in 2012. The 

widely-open arbitrage has made exports from the US possible and economical. 

US exports surged with the new export terminals coming online since 2013. The 

return series are also plotted as shown in Figure 4.6.  At a first glance, we could 

see that the weekly returns for BLPG are highly volatile. The volatilities are 

higher during the 2007-2008 global financial crisis and after 2014, when crude 

oil prices fall sharply. Similar patterns are observed in Brent oil price and also 

propane price volatilities. There are also volatility clustering effects (high 

volatility followed by high volatility, low volatility followed by low volatility) 

for all return series, justifying the use of GARCH models.  
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Figure 4.5 Price developments of major indices 

 

 

   

Source: drawn by author based on Baltic Exchange, Datastream and Argus. 
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Figure 4.6 Weekly returns of major index 
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Source: Author. 

 

Table 4.6 summarizes the descriptive statistics for all return series during sample 

period 2005-2016. Jarque-Bera test suggests the rejection of the normality 

assumption. All seven series exhibit negative skewness (except AFEI-Mt Belvieu 

swap price spread) and kurtosis that is higher than normal. The negative 

skewness indicates that negative returns occur more often than large positive 

returns. The excess kurtosis suggests that all return pairs have high peaks and fat 

tails. Hence, it is more suitable to use skewed Student-t distributed error terms in 

the AR-GARCH models. Ljung-Box (LB) Q-statistic is conducted for the 
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autocorrelation test and the test results as shown in Table 4.6 suggest that the null 

hypothesis of non-correlation are all rejected at 1% level and all series 

demonstrate significant autocorrelation. As such, an autoregressive process 

would be appropriate. Finally, statistics from ARCH-LM test for 

heteroskedasticity indicate that all return series exhibit ARCH effects. 

Table 4.6 Descriptive statistics for return series 

 R_BLPG R_BRENT R_PAFEI R_PCPS R_PMB R_AFEICPS R_AFEIUS 

 Mean -0.001192 0.000223 -0.000456 -0.000368 -0.000758 -0.001144 -0.019708 

 Maximum 0.281285 0.178138 0.192454 0.201042 0.167710 4.148952 5.515182 

 Minimum -0.286632 -0.161312 -0.207100 -0.212258 -0.247897 -4.096685 -5.082301 

 Std. Dev. 0.066795 0.041924 0.041776 0.040992 0.048656 0.787722 1.124940 

 Skewness -0.077910 -0.102333 -0.480001 -0.521343 -0.897356 -0.098994 0.014222 

 Kurtosis 1.654182 1.778274 3.111913 3.832484 3.712986 14.918946 10.039401 

 Jarque-Bera  70.31**  81.54**  268.44**  398.90**  429.76**  5610.1** 2541.7** 

Q (5) 205.04** 34.25** 94.28** 107.63** 50.74** 68.53** 18.16** 

Q (10) 209.99** 46.21** 108.37** 118.71** 70.84** 84.84** 28.29** 

ARCH-LM (12) 79.3** 83.8** 99.3** 130.8** 121.9** 146.8** 175.7** 

AR (p) 2 1 1 1 1 1 1 

** indicate significance at 1% level, * indicate significance at 5% level. Ljung-Box 

(LB) Q-statistic is the test for autocorrelation, conducted using 5 and 10 lags. ARCH–

LM is the heteroscedasticity test, conducted using 12 lags. AR (p) indicates the best 

AR lag selected by BIC criterion. 

Source: Author. 

4.2.2 Results and Discussions 

4.2.2.1 Marginal estimation results 

The marginals need to be correctively specified before using copula methods for 

dependence measure. The AR-GARCH (1, 1) model is one of the most common 

and popular models to describe financial time series (Diebold et al., 1998). As 

shown in Section 4.2.1.2, all series exhibit autocorrelation and GARCH effects, 

which justify the use of the AR-GARCH model. The optimal AR (p) lags are 

determined by the BIC criterion as shown in the last column of Table 4.6.  
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One important condition for conditional copulas to work based on Sklar’s 

theorem is that they must be conditioned with the same information set. Thus, 

cross variable relationships are tested to identify the potential serial dependency 

between one series and the lagged value of another series. Based on Patton (2013), 

Newey-West adjusted regressions are performed between pair-wise variables by 

regressing the residuals from one series based on optimal AR lags in Table 4.6 

and the lagged values of other series. Chi-squared tests are then performed. The 

null hypothesis is that all parameter estimates are zero. Insignificant p-values 

indicate no significant cross-equation lags exist between the series. As can be 

seen from Table 4.7, only three out of twelve pairs have significant cross-variable 

relationships at 5% significance level with a lag order of 5. The rests are 

insignificant. For model parsimony and comparability concern, a more 

complicated marginal specification for the three pairs is not adopted in this study. 

Therefore, the marginals estimated from AR-GARCH model are used directly 

for second step conditional copula building. 
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Table 4.7 Cross-equation relationship analysis for the residuals from AR 

models 

Pairs 
BLPG-AFEI-

CP Swap 

BLPG-

AFEI-US 

Brent-

AFEI 

Brent-

CP 

Swap 

Brent-

MB 

BLPG-

Brent 

Chi-sq p-

value  
0.8499 0.0162* 0.3719 0.5102 0.0368* 0.0707 

Pairs 
  AFEI-CP 

Swap-BLPG 

AFEI-US-

BLPG 

AFEI-

Brent 

CP 

Swap-

Brent 

MB-

Brent 

Brent-

BLPG 

Chi-sq p-

value  
0.0580 0.6646 0.0443* 0.2035 0.6258 0.3885 

Newey-West adjusted heteroscedastic-serial consistent Least-squares Regression is 

used for serial correlation test, conducted with an order of 5. P-values for chi-squared 

test are provided. * indicate significance at 5% level, ** indicate significance at 1% 

level. 

Source: Author. 

The corresponding skewed-t AR (p) - GARCH (1, 1) parameters for each return 

series are calculated in Table 4.8 below.  
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Table 4.8 Parameter estimates for the marginal models 

 

R_BLPG R_BRENT R_PAFEI R_PCPS R_PMB R_AFEICPS R_AFEIUS 

Mean equation 

𝜇 0.004286 

(0.004227) 

0.000452 

(0.00186) 

0.002103 

(0.002381) 

0.002172 

(0.002271) 

0.001869 

(0.002035) 

-0.013597 

(0.007220) 

-0.018196** 

(0.006430) 

휃1 0.684445** 

(0.043175) 

0.216638** 

(0.041127) 

0.27386** 

(0.046067) 

0.224627** 

(0.043361) 

0.183319** 

(0.035361) 

-0.248232** 

(0.032891) 

0.055736 

(0.044397) 

휃2 -

0.186916** 

(0.034916) 

      

Variance equation 

𝜔 0.00043** 

(0.000135) 

0.000012 

(0.000009) 

0.000123** 

(0.000038) 

0.000085** 

(0.000028) 

0.000097 

(0.000058) 

0.022065 

(0.016464) 

0.004747** 

(0.001443) 

𝛼 0.32312** 

(0.068351) 

0.080989** 

(0.026134) 

0.142208** 

(0.044815) 

0.141833** 

(0.041868) 

0.147064* 

(0.059314) 

0.524826** 

(0.082330) 

0.495515** 

(0.067739) 

𝛽 0.596385** 

(0.069903) 

0.916375** 

(0.016263) 

0.783378** 

(0.049704) 

0.811238** 

(0.040261) 

0.818494** 

(0.069311) 

0.474174 

(0.125789) 

0.503485** 

(0.041366) 

𝜐 5.35548** 

(1.291324) 

8.545405** 

(2.844844) 

7.436142** 

(2.058835) 

5.677401** 

(1.423702) 

5.464183** 

(1.255305) 

2.706052** 

(0.422063) 

3.264051** 

(0.249816) 

𝜆 1.110077** 

(0.064565) 

1.021729** 

(0.056621) 

0.95348** 

(0.053712) 

0.966654** 

(0.048978) 

0.903584** 

(0.058987) 

0.858922** 

(0.040273) 

0.877256** 

(0.037715) 

𝑄 (5) p
-value 

0.8746 0.8921 0.9999 0.4971 0.1878 0.8465 0.5715 

𝑄2 (5) 

p- value 

0.4597 0.4173 0.9795 0.8353 0.3513 0.9947 0.9193 

ARCH-

LM(5) 

p-value  

0.5890 0.1182 0.9923 0.8761 0.0756 0.9715 0.7391 

Based on equations (3.26) and (3.27). The parameters are estimated using maximum 

likelihood method. The numbers in parentheses are standard deviations. Ljung-Box 

(LB) Q-statistic and 𝑄2-statistics are the test for autocorrelation, conducted using 5. 

ARCH–LM is heteroscedasticity test, conducted using 5 lags. * indicate significance at 

5% level, ** indicate significance at 1% level. 

Source: Author. 

As indicated in Table 4.8, skewness and shape parameters are all significant, 

justifying the skewed-t distribution of error term. In the GARCH model, the 

parameters 𝛼 and 𝛽 are significant for all series and as such explain that both 

BLPG, Brent crude oil, different propane prices and two propane location spread 

returns have volatility clustering effects. As 𝛼 + 𝛽 is close to 1, this indicates that 

shocks are quite persistent to all return series. As mentioned, the marginal 
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distributions need to be correctly specified for next step dependence measures. 

The Ljung-Box (LB) Q and 𝑄2 tests, as well as ARCH-LM test are performed 

for the standardized residuals to check if the marginals are modeled properly. As 

shown in Table 4.8, all Q, 𝑄2  and ARCH-LM statistics are not significant, 

indicating that there are no remaining autocorrelation and GARCH effects 

unexplained by the model. Thus, the marginals are properly specified.  

4.2.2.2 Copula results 

Before fitting into different copula types, the contour plots of the distribution 

generated by empirical copulas are presented first (Figure 4.7) to visualize how 

the dependency structures would look like between different filtered series. At a 

first glance, the asymmetric tail dependence is not very obvious for BLPG and 

propane AFEI - Mt Belvieu spread and BLPG-Brent pairs, while being more 

noticeable between BLPG and propane AFEI - CP swap spread. Next, both 

constant and time-varying copulas are fitted to the residuals from marginals. 
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Figure 4.7 Empirical copula contour plots 

      

 

  

Source: Author. 

The estimated parameters of constant and time-varying dependence between 

different return series are presented in Table 4.9 and 4.10. The standard errors 

are obtained from copula parameters, which do not take into account the 

estimation error from marginal distributions. Alternatively, bootstrap or 

simulation method for standard errors of the two-staged parameter estimator as 

discussed by Patton (2013) can be used. The copulas for each pair are ranked 

based on both Log-likelihood and AIC criterion. The AIC results are all 

consistent with the Log-likelihood results. Cramer-von Mises tests are used to 

get an additional confirmation of goodness-of-fit as shown in Table 4.11. The 
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test statistic measures the distance between the fitted copula 𝐶𝑘(𝑢𝑡 , 𝑣𝑡; �̂�) and the 

empirical copula 𝐶𝑛, and is given by: 

𝑆𝑛 = ∑ {𝐶𝑘(𝑢𝑡 , 𝑣𝑡; �̂�) − 𝐶𝑛(𝑢𝑡 , 𝑣𝑡)}2𝑛
𝑡−1 . A parametric bootstrap procedure is used 

to compute the p-value of the test (Genest et al., 2009). The large p-value 

indicates that the copula provides a better fit to the model (Aloui et al., 2013). 

The CvM tests provide mostly consistent results as AIC and Log-likelihood 

values. 

Among constant copulas, the best-fitted copulas for each pair all have 

insignificant p-value from CvM test, indicating the good fit of the model. By AIC 

criterion, time-varying copulas perform better for all the return series except for 

BLPG and AFEI-US pair, indicating significant conditional time-varying 

characteristics of the dependency structure between most of the pairs. The 

different dependence structures are elaborated in the following sections.  



 

 
102 

Table 4.9 Estimates for constant copula models 
 

BLPG-AFEI-CP Swap BLPG-AFEI-US Brent-AFEI Brent-CP Swap Brent-MB BLPG-Brent 

Gaussian       

𝜌 0.105** (0.0268) 0.0292 (0.0294) 0.555** (0.0122) 0.625** (0.00996) 0.589** (0.0111) 0.104** (0.0269) 

LL 3.23 0.25 107.89 145.76 125.18 3.12 

AIC -6.46 -0.50 -215.78 -291.52 -250.36 -6.24 

Student-t       

𝜌 0.115** (0.0433) 0.0316 (0.0423) 0.552** (0.0279) 0.628** (0.0246) 0.593** (0.0247) 0.107** (0.0424) 

𝑣−1 0.010 (0.0420) 0.010 (0.0479) 0.088 (0.0526) 0.145** (0.0515) 0.069 (0.0425) 0.046 (0.0429) 

LL 3.67 0.05 109.5 150.91 126.74 3.69 

AIC -7.33 -0.09 -218.99 -301.81 -253.47 -7.37 

Clayton       

휃 0.116** (0.0307) 0.015 (0.0277) 0.827** (0.0952) 1.050** (0.161) 0.927** (0.119) 0.127** (0.0311) 

LL 2.6 0.05 85.02 114.84 98.62 3.55 

AIC -5.20 -0.10 -170.04 -229.68 -197.24 -7.10 

Gumbel       

휃 1.060** (0.0308) 1.000** (0.0278) 1.530** (0.0585) 1.70** (0.0683) 1.60** (0.0625) 1.050** (0.0305) 

LL 1.89 -5.83 100.87 140.48 113.6 1.74 

AIC -3.78 11.66 -201.74 -280.96 -227.20 -3.48 

Frank       

휃 0.799** (0.244) 0.239 (0.229) 3.670** (0.481) 4.650** (0.67) 4.280** (0.589) 0.676** (0.240) 

LL 5.14 0.48 93.35 136.36 120.77 3.72 

AIC -10.28 -0.96 -186.70 -272.72 -241.54 -7.44 

Joe       

휃 1.050** (0.0356) 1.000** (0.0331) 1.690** (0.0751) 1.900** (0.091) 1.760** (0.0805) 1.040** (0.0353) 

LL 0.63 0.00 79.11 111.52 86.41 0.62 

AIC -1.26 0.00 -158.22 -223.04 -172.82 -1.24 

Survival Clayton      

휃 0.095** (0.0301) 0.00945 (0.0276) 0.828** (0.0954) 1.050** (0.163) 0.892** (0.11) 0.008** (0.0296) 

LL 1.81 0.02 85.04 117.53 93.85 1.36 

AIC -3.62 -0.04 -170.08 -235.06 -187.70 -2.72 

Survival Gumbel      

휃 1.070** (0.0318) 1.000** (0.0278) 1.530** (0.0583) 1.70** (0.0682) 1.610** (0.0629) 1.060** (0.0313) 

LL 3.67 -6.88 101.05 140.15 117.94 2.85 

AIC -7.34 13.76 -202.10 -280.30 -235.88 -5.70 

BB1      

𝛿 0.091 (0.0744) 0.0139 (0.0618) 0.338** (0.086) 0.366** (0.091) 0.363** (0.0903) 0.119 (0.0662) 

휃 1.02** (0.0398) 1.000** (0.0365) 1.350** (0.0603) 1.470** (0.0697) 1.390** (0.065) 1.010** (0.0332) 

LL 2.72 0.05 110.29 150.25 123.51 3.57 

AIC -5.43 -0.09 -220.57 -300.49 -247.01 -7.13 

Survival BB1      

𝛿 0.0081 (0.0648) 0.00826 (0.0676) 0.346** (0.0863) 0.398** (0.0921) 0.313** (0.0879) 0.00808 (0.0606) 

휃 1.07** (0.0401) 1.001** (0.0404) 1.340** (0.0597) 1.450** (0.0693) 1.420** (0.0666) 1.060** (0.0376) 

LL 3.68 0.00 110.68 151.42 125.24 2.85 

AIC -7.35 0.01 -221.35 -302.83 -250.47 -5.69 

BB7       
𝛿 1.01** (0.0484) 1.000** (0.0473) 1.460** (0.0779) 1.610** (0.0887) 1.480** (0.0838) 1.000** (0.0402) 

휃 0.115 (0.0622) 0.0145 (0.0516) 0.597** (0.0855) 0.740** (0.0967) 0.670** (0.0916) 0.127* (0.0564) 

LL 2.60 -1.21 109.48 147.09 119.02 3.55 

AIC -5.19 2.43 -218.95 -294.17 -238.03 -7.09 

Based on equations (3.7) to (3.15). Standard errors are in parenthesis. log-

likelihood and AIC value for different specifications for each pair are reported. 

The minimum AIC value is in bold. The AIC criterion is used to evaluate the 

goodness of fit of the selected models. ** indicates significance at 1% level and 

* indicates significance at 5% level. LL stands for Log-Likelihood. 

Source: Author.  
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Table 4.10 Estimates for time-varying copula models 

 BLPG-AFEI-CP Swap BLPG-AFEI-US Brent-AFEI Brent-CP Swap Brent-MB BLPG-Brent 

Time-varying Gaussian  

𝜔 0.031* (0.0144) 0.0485* (0.0181) 2.277** (0.5787) 1.468** (0.0632) -0.138** (0.051) 0.01 (0.0119) 

𝛼 0.086 (0.0509) 0.0751 (0.1784) 0.269 (0.1493) -0.002 (0.1998) 0.123** (0.0406) -0.037 (0.0292) 

β 1.659 (0.1434) 0.330 (0.6337) -2.114 (1.117) 0.004 (0.0998) 2.433** (0.1234) 1.957** (0.0858) 

LL 4.63 0.32 108.48 145.77 131.76 4.18 

AIC -9.25 -0.63 -216.95 -291.52 -263.51 -8.35 

Time-varying SJC 

𝜔𝑈  -17.189** (0.1035) -13.731** (0.0044) -0.613* (14.683) -2.003** (0.2459) -0.531 (0.6294) -15.737** (0.0357) 

𝛼𝑈 -2.741** (0.0023) -0.6597 (0.0000) 1.87 (19.2648) 1.414* (0.6929) -2.915 (1.8394) -3.207** (0.0069) 

𝛽𝑈 -0.009** (0.0000) -0.0019 (0.0000) -0.984* (52.3539) 3.339** (0.5741) 1.530 (0.963) -0.008** (0.000) 

𝜔𝐿  3.688** (0.0000) -23.2374** (0.0135) 3.548** (0.3322) 0.749** (0.137) 0.670** (0.1286) -13.216** (0.0001) 

𝛼𝐿 -24.999** (0.002) -4.2855 (0.0019) -13.631** (1.1359) -5.195** (0.4719) -7.471** (0.4911) 24.993** (0.0002) 

𝛽𝐿 -7.559** (0.0000) -0.0117 (0.0000) -4.456** (0.0577) -0.230* (0.0800) 0.831** (0.114) 4.538** (0.000) 

LL 4.19 -1.19 113.59 151.08 130.72 4.35 

AIC -8.36 2.40 -227.17 -302.15 -261.42 -8.69 

Time-varying Student-t GAS 
𝜔 0.0185** (0.0008) 0.015** (0.0008) 0.316 (0.1781) 0.557 (0.3907) 0.018 (0.0794) 0.010** (0.0011) 

𝛼 0.0769** (0.0128) 0.0224** (0.0027) 0.067 (0.0664) 0.171* (0.0841) 0.066 (0.0386) -0.045** (0.0076) 

β 0.9225** (0.0326) 0.800** (0.0396) 0.745** (0.146) 0.621* (0.2605) 0.987** (0.0757) 0.957** (0.000) 

𝑣−1 0.050** (0.0056) 0.01** (0.0000) 0.084 (0.0562) 0.126* (0.0621) 0.051* (0.0258) 0.05** (0.0065) 

LL 5.84 0.07 110.77 153.13 140.72 5.24 

AIC -11.66 -0.13 -221.52 -306.25 -281.43 -10.47 

Time-varying Rotated Gumbel GAS 

𝜔 -0.038 (0.0326) -0.072 (0.1047) -0.057 (0.0739) -0.116 (0.1259) -0.006 (0.0706) -0.149 (0.0888) 

𝛼 0.159* (0.0663) 0.051 (0.1568) 0.07 (0.1371) 0.141 (0.1429) 0.085 (0.2861) -0.243 (0.1925) 

β 0.989** (0.0108) 0.981** (0.0408) 0.984** (0.0289) 0.697* (0.3475) 0.989** (0.1067) 0.951** (0.041) 

LL 7.57 -0.44 101.62 141.87 129.91 4.38 

AIC -15.13 0.88 -203.22 -283.73 -259.82 -8.75 

Based on equations (3.16) to (3.23). Standard errors are in parenthesis. log-

likelihood and AIC value for different specifications for each pair are reported. 

The minimum AIC value is in bold. The AIC criterion is used to evaluate the 

goodness of fit of the selected models. ** indicates significance at 1% level and 

* indicates significance at 5% level. LL stands for Log-Likelihood. 

Source: Author. 

 

 

Table 4.11 P-value for CvM goodness-of-fit test 

 
BLPG-AFEI-CP 

Swap 
BLPG-AFEI-US Brent-AFEI Brent-CP Swap Brent-MB BLPG-Brent 

Gaussian 0.210 0.740 0.030 0.330 0.140 0.420 

Student-t 0.213 0.589 0.025 0.391 0.064 0.817 

Clayton 0.090 0.189 0.000 0.000 0.000 0.758 

Gumbel 0.081 0.449 0.000 0.020 0.000 0.094 

Frank 0.760 0.780 0.000 0.000 0.010 0.650 

Joe 0.010 0.263 0.010 0.010 0.010 0.000 

Survival Clayton 0.071 0.204 0.000 0.000 0.000 0.053 

Survival Gumbel 0.273 0.283 0.000 0.000 0.000 0.392 

BB1 0.100 0.490 0.080 0.600 0.040 0.810 

Survival BB1 0.220 0.250 0.090 0.990 0.000 0.230 

BB7 0.110 0.340 0.210 0.160 0.010 0.770 

Insignificant p-values are highlighted in bold. 

Source: Author. 
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Dependency between BLPG freight and location price spread 

The dependency between BLPG and propane AFEI-CP swap spread could be 

best explained by time-varying Rotated Gumbel GAS copula. This result 

indicates that BLPG freight and the AFEI-CP swap spread seem to be more 

correlated in market downturns with time variations. The result is understandable 

as when the price spread shrinks sharply or even closes, the traders would have 

no extra money to pay for the shipowners and they would squeeze the cost for 

sea transportation, thus pushing down the freight rate. However, when the spread 

is widening, the benefits of arbitrage economics would not be shared equally with 

shipowners as the losses transferred in a market downturn. The average Kendall’s 

τ rank correlation is around 0.1, which is a considered as a moderately weak 

relationship. Such a relationship becomes stronger in a market downturn as 

explained. The linear correlation implied by the time-varying Rotated Gumbel 

GAS copula as shown in Figure 4.8(a) is in line with the rolling window rank 

correlation computed based on residuals from the marginal models as Figure 

4.8(b) shows. 
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Figure 4.8 Dependence estimates for BLPG-AFEI CPS based on time-varying 

copula and rolling window rank correlation 

a. Conditional time-varying linear correlation from time-varying copulas 

 

b. 52-week rolling window rank correlation 

Source: Author. 

For the dependence between BLPG and propane AFEI-US spread, the constant 

frank copula is selected as the best-fitted one based on the AIC criterion, which 

is also confirmed by the CvM test. This indicates that the correlation between 

BLPG and AFEI-US is symmetric and has the same correlation across the entire 

distribution. Furthermore, the linear correlation implied by the constant normal 

copula is rather low, which is around 0.02. This implies that compared with the 

Middle East, the price difference effects between Asia and the US have limited 

impacts on the freight rate. This could be attributed to the traditionally dominant 

role the Middle East plays in the global LPG shipping market, compared to the 

US. The conditional linear correlation obtained from time-varying copulas is also 

plotted in Figure 4.9(a) together with rolling rank correlation (Figure 4.9(b)) to 

get a clear understanding of the dependence structure. The linear correlation from 

time-varying normal copula (the best fitted) indicates a stronger relationship 

between BLPG and AFEI-US spread since 2013. The correlation fluctuates 

around zero before 2013, then gradually increases to around 0.05 and stays above 

zero ever since. This is further evidenced by the rolling window rank correlation. 
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Figure 4.9 Dependence estimates for BLPG-AFEI US based on time-varying 

copula and rolling window rank correlation 

a. Conditional time-varying linear correlation from time-varying copulas 

 

b. 52-week rolling window rank correlation 

 

Source: Author. 

Dependency between crude oil price and propane product prices 

The dependence structures between propane prices in different locations and the 

crude oil prices are examined to better understand how crude oil prices could 

affect the price spread. Time-varying copulas are selected for all three pairs: 

Brent-propane AFEI returns, Brent-propane Saudi Aramco CP swap returns and 

Brent-propane Mt Belvieu returns. However, the difference in LL value between 

the best fitted constant and time-varying copulas for Brent-AFEI, Brent-CP swap 

is very small (the difference being 6 and 3 respectively), while that for Brent-MB 

pair is much higher (difference=28), indicating possible higher time-varying 

dependence between Brent-MB. This, in fact, is confirmed in Figure 4.10 (a1, a2, 

a3). Figure 4.10 plots the time-varying linear correlation implied by time-varying 

copulas and rolling window rank correlation. Time-varying SJC copula provides 

the best fit for Brent-AFEI pair, while for Brent-CPS and Brent-Mt Belvieu pair, 

time-varying Student-t GAS copula is selected.  For Brent-AFEI pair, the average 

tail dependence ((𝜏𝑈 + 𝜏𝐿)/2) and the difference in upper and lower tail (𝜏𝑈 − 𝜏𝐿) 
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from time-varying SJC copula are shown in Figure 4.10(c1). The difference in 

upper and lower tail measures the degree of asymmetry. If the two series have 

symmetric tail dependence, the difference should be zero. As can be seen, the 

average tail dependence ranges from 0.2 to 0.5, while the difference in upper and 

lower tail fluctuates around zero in the range of (-0.4, 0.3). 67% of days the 

conditional upper tail dependence is larger than that of the lower tail. This implies 

that there is no persistent asymmetry dependency in one tail for Brent-AFEI pair. 

This is also evidenced by the difference in AIC and CvM test results. Although 

survival BB1 copula is selected for constant cases using AIC, BB7 is chosen by 

the CvM test. 

Figure 4.10(a3) indicates clearly time-varying dependence features for Brent-Mt 

Belvieu pair from time-varying Student-t GAS copula (best-fitted copula). Same 

trend can be observed from the rolling window rank correlation (Figure 4.10(b3)). 

The correlation between Brent-propane prices maintained at a high level before 

2010. However, such a relationship has become weaker since 2010 due to the 

shale gas boom and consequently more propane produced from natural gas 

production. This makes US propane price gradually decouple from crude oil 

prices and more related to natural gas prices (Oglend et al., 2015). However, the 

correlation increases significantly since the end of 2014, when crude oil prices 

collapse. The low crude oil prices have made natural gas not as profitable as 

before and put a break on the propane production from natural gas processing. 

Consequently, US propane price joins closely again with crude oil prices and the 

linear correlation ranges around 0.6 in this low oil price environment during 

2015-2016. Nevertheless, the linear correlation implied by the constant Student-

t copula could be regarded as the average of the time-varying correlations over 

the sample period. As it can be seen, the constant copula significantly 

overestimates the relationship during the shale gas boom period (2010-2014), 

while underestimates it after crude oil prices collapsed at the end of 2014.  

For constant copulas, survival BB1 copula provides the best fit for both Brent-

AFEI and Brent-CP swap pairs. However, the LL differences between survival 

BB1 and Student-t copula for two pairs are very small. Brent-MB pair has 
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symmetric tail dependence with Student-t copula selected for the constant case. 

Looking at the average linear correlation, the dependencies between different 

propane prices and the crude oil prices are all very strong. Furthermore, propane 

Saudi Aramco CP swap has the highest correlation with the crude oil prices (𝜌 =

0.625), followed by propane Mt Belvieu price (𝜌 = 0.589) and propane AFEI 

return (𝜌 = 0.555).  

Figure 4.10 Dependence estimates for Brent and Propane prices based on time-

varying copula and rolling window rank correlation 

a1. Conditional time-varying linear correlation between Brent and Propane AFEI 

from time-varying copulas 

 

b1. 52-week rolling window rank correlation between Brent and Propane AFEI 

 

c1. Average conditional tail dependence and difference between upper and lower 

tail dependence between Brent and Propane AFEI from time-varying copulas 
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a2. Conditional time-varying linear correlation between Brent and Propane CP 

Swap from time-varying copulas 

 

b2. 52-week rolling window rank correlation between Brent and Propane CP 

Swap 

 

a3. Conditional time-varying linear correlation between Brent and Propane Mt 

Belvieu from time-varying copulas 

 

b3.52-week rolling window rank correlation between Brent and Propane Mt 

Belvieu 

Source: Author. 
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Dependency between BLPG and crude oil prices 

We further investigate the relationship between BLPG and crude oil prices. 

Results show that the time-varying Student-t GAS copula performs better than 

the rest, indicating a possible time-varying relationship. For constant cases, frank 

copula is selected by AIC, while Student-t copula has the largest p-value from 

CvM tests. This implies symmetric dependence between the two series. 

Furthermore, oil price effects on BLPG freight rate are modest at best, as 

indicated by Kendall’s tau implied by Frank copula (𝜏 = 0.1). Figure 4.11(a) 

indicates the time-varying correlations implied by the time-varying copulas. As 

can be seen from best fitted Student-t GAS copula, the linear correlations 

increased to around 0.2 at the end of 2014, however, then dropped significantly 

since the end of 2015 and even turned negative for a short period amid a mild 

crude oil price recovery. Overall speaking, the dependency between BLPG and 

Brent is positive and tends to vary across time. 

Figure 4.11 Dependence estimates for BLPG and Brent based on time-varying 

copula and rolling window rank correlation 

a. Conditional time-varying linear correlation from time-varying copulas 

 

b.52-week rolling window rank correlation 

Source: Author. 
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4.2.2.3 Implications 

The results as discussed above have several implications. Firstly, there exists a 

positive relationship between BLPG and AFEI-CP swap spread, and such 

dependency increases when a sharp drop in the price spread occurs. On the other 

hand, there observed to be a stronger relationship between BLPG and AFEI-US 

spread since 2013 on the back of the US shale gas revolution and increased LPG 

export. Furthermore, the dependency between BLPG and AFEI-CP swap spread 

has been higher than that between BLPG and AFEI-US spread, which is 

attributed to the much higher volume exported from the Middle East compared 

to the US. Secondly, in terms of the dependency between crude oil prices and 

different propane prices, there exist significant time-varying correlations 

between the US propane price and the crude oil prices, while the time variations 

in the dependency between propane Middle East and Far East price and the crude 

oil prices are less obvious. In addition, the linear correlations suggest that 

propane Middle East prices have the highest correlation with the crude oil prices 

compared to Far East propane prices. This suggests that an increase or decrease 

in the crude oil prices would cause a larger rise or drop in the propane Saudi 

Aramco CP prices than the AFEI price. The result is understandable as the 

Middle East is a key propane producing area, the propane price is linked more 

closely with its upstream oil price. On the contrary, Asia being an importing and 

consuming area, its propane price is affected by many other factors apart from 

oil price. Therefore, a drop in the crude oil prices would widen propane AFEI-

CP price spread, thus leading to an increase in BLPG freight rate. As for the 

correlation between crude oil and AFEI-US spread, it differs in different time 

frames. For example, during the period around 2013, when the correlation 

between Brent crude and Mt Belvieu price drops below 0.4, which is lower than 

the correlation between Brent crude and AFEI price, any decrease in oil price 

would induce a larger drop in the AFEI propane price than Mt Belvieu price, thus 

narrowing the price spread. However, in a low oil price environment where the 

correlation between Brent crude and Mt Belvieu strengthens and becomes higher 

than that between Brent crude and AFEI price, a fall in oil price will actually 

widen the price spread. Therefore, there appears to be no definite answer 
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regarding how crude oil affects the arbitrage economics between AFEI and US 

propane prices. However, it is more certain that in a low oil price environment 

like 2016, the crude oil price effects on the arbitrage economics, both AFEI-CP 

swap and AFEI-US spreads are negative. Indeed, we have observed a recovery 

in crude oil prices in the first half of 2016, in the meanwhile, a sharp drop in the 

location price spread. 

Last but not least, when it turns to the overall dependency between crude oil 

prices and BLPG freight rate, it is positive for most of the times and they tend to 

co-move more in market downturns. As discussed previously, the crude oil price 

effects through arbitrage economics on BLPG freight are negative in a low crude 

oil price environment. However, considering the direct effects on the freight rate, 

the overall impact is positive, although relatively weak. This means that apart 

from influencing the arbitrage windows, crude oil prices play a different and 

much significant role in affecting the BLPG freight rate. For example, changes 

in crude oil prices would lead to changes in the seaborne transportation volume. 

On the one hand, a sharp drop in crude oil prices makes propane from NGL in 

the US unprofitable, thus leading to reduced volume exports. More specifically, 

the growth of export volume slows down, which lags behind the growth rate of 

VLGC fleets. Relatively less demand compared to the supply then causes a drop 

in the BLPG freight rate. In contrast, as it is known, Asia is a key demand center 

for crude oil. When the crude oil prices fall sharply, traders tend to bottom pick 

and buy more crude oil into Asia. As a result, oil refineries in Asia, especially 

China have to operate at high rates in order to utilize existing crude oil inventories 

in order to receive the next batch of crude oil. LPG comes out as a by-product 

and that results in higher LPG inventory level, which then contributes to less 

import demand. This again leads to reduced demand for sea transportation. Lastly, 

since LPG is often used as a petrochemical feedstock in the petrochemical 

industry and naphtha exists as its substitute, a sharp drop in crude oil prices would 

make naphtha more cost competitive compared to LPG, thus further dampens the 

LPG demand in the petrochemical use. Overall speaking, crude oil prices affect 

BLPG freight rate in different ways, both in terms of shipping demand and 

arbitrage economics. Overall speaking, the dependency between crude oil prices 
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and BLPG freight rate is positive. However, we do observe some negative signs 

in the first half of 2016 as shown in Figure 4.11(a), indicating a possible higher 

weight of arbitrage economics playing on freight rate during this period. 

The results provide significant implications for practitioners in the energy 

transportation field, including traders, charterers, and shipowners. By knowing 

the dependency structure between product price spread, crude oil prices, and 

freight rate, industrial players can anticipate fluctuations in the freight market 

when crude oil prices or product spreads change. It aids charterers for freight 

transportation budget planning and shipowners for revenue forecasting. For 

example, when the product price spread becomes less profitable, shipowners 

shall prepare for a drop in freight rate, consequently, a revenue squeeze. 
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4.3 A destination choice model for very large gas carriers (VLGC) loading 

from the US Gulf 

 

Calls have been long made in the research community to improve the 

understanding of spatial patterns in seaborne energy transportation.  

Technological advances have opened the door to significant innovations in 

shipping behavior modeling, for example, the availability of AIS data and 

detailed records of lifting data (including shipper, origin and destination, quantity, 

ships). Both databases combined enable us to model the spatially disaggregated 

ship routing behavior at an appropriate scale. Previous research has been trying 

to provide descriptive analysis for ship traffic behaviors based on AIS data, such 

as traffic density and the average speed of a particular vessel type (Xiao, et al. 

2015; Shelmerdine 2015). Analytical tools, specifically discrete choice models, 

traditionally used in transportation studies have not been used in the shipping 

sector to examine vessel behaviors. Furthermore, most research in the 

transportation field has focused on transport mode choice or port choice analysis 

(for example, Malchow and Kanafani 2001; Veldman, et al. 2011). The analysis 

of ships’ destination choice behaviors appears to be an untapped area.  

Our paper contributes to this topic by examining how a set of explanatory 

variables relating to market conditions influence a charterer’s behavior regarding 

destination selection. Understanding the charterer’s destination choice is vital in 

estimating traffic volume to a specific destination and in forecasting supply 

patterns. It can serve as an indicator of the potential traffic level in the destination 

ports. It is also critical information for shipowners’ planning and vessel 

deployment decisions. Shipowners can better match their space and cargoes with 

the knowledge of the charterer’s potential destinations. In such circumstances, 

the question of how a charterer chooses a destination is considered to be an 

important issue not only for charterers but also for energy transport as well as 

matching energy demand and supply. 

The context of this study focuses on the liquefied petroleum gas (LPG) shipping 

market, particularly LPG cargoes lifted on very large gas carriers (VLGCs) from 
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the US Gulf. Long-haul LPG volumes are predominantly lifted on VLGCs. 

Traditionally, the Middle East has been the main LPG export area, however, 

recent developments in oil markets in North America has illustrated how 

dynamic transformation opportunities could be in the US (Bai and Lam 2017). 

After the shale gas discovery, the US has become an increasingly important 

export regionfor LPG (Tan and Barton, 2017). LPG exports from the US 

increased significantly from around 9 million tonnes a year in 2013 to almost 24 

million tonnes in 2016 (Waterborne LPG 2017). A substantial amount of USG 

originated LPG cargoes go to Asia and Europe. 

This particular shipping segment is characterized by frequent trading activities 

due to arbitrage economics. On the demand side, there are three types of 

charterers: 1) downstream end-users, who normally sign long-term contracts with 

LPG producers to secure a fixed amount of volume for its own consumption. 2) 

oil majors, such as Shell and BP, who have upstream facilities to produce LPG. 

Oil majors can sell LPG on long-term contracts to fixed buyers, or trade them on 

spot markets based on current market conditions. 3) traders, who have no assets 

and purely profit from moving the cargo between different geographical locations. 

The major traders include Vitol, Trafigura, and Gunvor. Apart from the first type, 

the other two types of charterers can choose the destination based on market 

conditions. Although traders and oil majors may sign long-term contracts with 

the LPG producers in the Middle East and the US, however, the contract only 

specifies the volume and often does not specify the destination. For spot volume, 

destinations are normally not pre-determined for these cargoes at the time of 

fixing (normally two weeks before loading) and traders will decide whether to 

move the cargo to different locations based on market conditions at the time of 

loading. 

On the supply side, based on Steem1960 market reports (Steem1960, 2018), the 

existing VLGC fleet as of April 2018 is 267 vessels, of which 204 are in the spot 

market. Thus, this paper deals with a shipping segment where nearly 80% of the 

fleet is in the spot market. Furthermore, for VLGC time charter contracts, 

although they are signed for a relatively long term, the contract still can be 

canceled or re-negotiated depending on trading economics (Payne and Aizhu 
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2016). Furthermore, the charterer or the disponent shipowner has the commercial 

control of the vessel under a time charter contract. Unless a ship on time charter 

is used exclusively for own cargo programme in a fixed trade, then, the 

destinations can still be altered on a time charter. As such, the contract type may 

not be that important. There are distinct differences between LPG and LNG 

shipping markets. The LNG shipping market is characterized by very long-term 

cargo contracts at fixed rates, with vessels built to satisfy specific contractual 

needs (Adland et al. 2008). 

It is also acknowledged that in the natural resource shipping markets, such as 

crude oil, iron ore and coal markets, although many vessels operate in the spot 

market, a large proportion of trade volume is fixed under offtake agreements, 

thus the destination is normally not a ‘free choice’ (Babri et al., 2017). This is 

because sources and sinks are effectively fixed for natural resources. Countries 

with abundant resources will exploit and naturally become an export region. For 

import regions, they normally do not have sufficient resources. Furthermore, for 

products like crude oil, substitutes do not exist. Thus, demand regions have no 

choice but to import. This leads to sticky trade flows in this type of markets. 

However, for downstream products, like refined oil products, the supply and 

demand are not that fixed compared to natural resource markets. This is because 

on the one hand, substitutes can exist. For instance, LPG and naphtha can both 

be used as petrochemical feedstocks depending on the economics. On the other 

hand, for the same downstream product, take LPG as an example, the demand 

region can either choose to import directly or produce domestically using 

imported raw material crude oil. Hence, the trade flows in the downstream market 

are less sticky and destinations are changing dynamically based on market 

conditions and local refining capacity. 

This section aims to propose a discrete choice model to predict charterers’ 

destination choice. A case study is presented in the VLGC destination choice 

analysis for cargoes originated from the US Gulf and identify its relationship with 

several explanatory attributes, including the freight rate, commodity price spread, 

bunker price and the number of ships in a specific area. The model could then be 

used to forecast the probability of VLGC vessels going to a specific direction, 
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thus predicting future supply patterns in certain regions. The sample data is 

further divided into two sub-periods: Jan 2013 to May 2016 before the expansion 

of the Panama Canal and June 2016 to May 2017 after the canal expansion, which 

aims to identify the effects of the Panama Canal on decision making regarding 

destination choices. Furthermore, both aggregate and disaggregate analysis for 

different ports are provided. This model can be applied to other downstream 

commodity transport sectors where trade flows are not that sticky, arbitrage 

opportunities exist, and traders actively participate in the market, for example, 

the product tanker market for naphtha transport. Naphtha export from Europe to 

Asia arises mainly due to arbitrage economics.    

4.3.1 Discrete choice analysis in transportation field 

Discrete choice models have been widely used in freight transport studies, 

particularly in the field of mode choices, carrier selection, and port choice 

modeling. As noted, the selection of a transport mode, port and shipping carrier 

is a major logistics consideration for firms, as the costs incurred could 

significantly erode the value created (Magala and Sammons 2008). Baumol and 

Vinod (1970) for the first time developed a choice model to determine the optimal 

transport mode choice considering factors like freight rate, speed, en-route losses, 

and dependability. Nam (1997) discussed the market segmentation issues in 

freight transport choice modeling, specifically, he compared the aggregation and 

disaggregation approach over commodity groups by predicting powers. 

In the maritime field, carrier selection and port choice have often been studied. 

Transport mode is most often compared between rail or truck, and less studied in 

the shipping domain. This is because in most cases, shipping transport is a must 

for global transportation and alternative modes are not available. Malchow and 

Kanafani (2004) modeled the selection of export ports as a function of geographic 

location, port specific characteristics and vessel schedules in the case of US ports. 

They identified the location of a port to be the most significant factor. Steven and 

Corsi (2012) further analyzed the attractiveness of ports for containerized 

shipments based on a series of factors including port characteristics, individual 

shipments, and actual freight charges by applying a discrete choice model. 
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Kashiha et al. (2016) studied the port choice decision made by shippers based on 

geography (whether coastal or landlocked countries) and transportation costs. On 

a different note, Rich et al. (2009) developed a freight demand model for the 

mode choice and crossing in the Oresund region. Piendl et al. (2016) studied the 

shipment size choice using a logit model to analyze interregional road freight 

transport. The model includes the transport mode of trucks, rails and ships, while 

the crossing choices cover either ferry routes or a bridge. Alizadeh et al. (2016) 

used a vessel based logit model to investigate the capacity retirement in the dry 

bulk market. Specifically, the authors studied the effect of vessel specifications 

such as age and size, as well as market variables, such as bunker price and the 

probability to scrap a dry bulk ship.  

Destination choice modeling has not often been examined in freight 

transportation, but has been investigated in the pedestrian traveling domain. For 

instance, Timmermans (1996) employed the Multinomial Logit Model (MNL) to 

study the sequential mode and destination choice for shopping trips using travel 

survey data in Eindhoven, Netherlands. Pozsgay and Bhat (2001) studied the 

destination choice for home-based recreational trips using nonlinear-parameter 

MNL. Wang and Lo (2007) applied MNL to examine the supermarket destination 

choice utilizing stated shopping preference data of Chinese immigrants. Newman 

and Bernardin (2010) investigated the mode choice and destination choice for 

work tours by employing a hierarchical ordering nested logit model and 

concluded that hierarchical ordering of nested decision trees could be of 

advantage for location and mode choice modeling. Gonzalez et al. (2016) used a 

combined trip demand logit model to study the variables in the supply side that 

influence the bicycle sharing users’ destination and route choices in Santiago, 

Chile. 

In a short summary, most attention has been given to port choice or carrier 

selection analysis in the freight transportation field. Studies on the choice 

behavior of individual vessels are non-existent, let alone for destination choice 

analysis. This study aims to fill in the gap by studying the spatially disaggregated 

ship destination choice behaviors.  
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4.3.2 Methodology 

This study uses a logit model, one of the most widely used methods in transport 

choice fields, to analyze the movements of commodities between the 

shipper’s/carrier’s origin and various destinations. The decision of which 

destination to go is modeled as a function of the characteristics describing market 

conditions such as freight rate, product price spread, bunker price, and the 

number of ships in one specific area.  

This study takes both aggregate and disaggregate approaches for destination 

choice analysis. Specifically, the difference between different ports is accounted 

for in the model by comparing the utility functions between different ports. This 

is because different ports are operated by different terminal operators and some 

ports are controlled by specific entities, such as Freeport being the main export 

terminal for LPG producer Philips 66. Thus, these factors can also influence the 

destination choices. Furthermore, the expansion of the Panama Canal in June 

2016 also brings significant changes. Before that, VLGCs from the US Gulf 

(USG) to Asia need to travel all the way via the Cape in Africa, while since then 

they could transit via the Panama Canal. The round-trip distance from Houston 

to Chiba, Japan has almost halved from 32,197 miles to 18,812 miles. Although 

the Panama Canal cost is estimated at $ 470,000 for a round voyage and 

nomination fee, the total freight cost per ton has been significantly reduced 

compared to transit via the Cape.  

Normally the cargoes loaded in the US would have three main destinations, 

including Latin America/Caribbean, Europe/Mediterranean region (or West in 

general) and the Far East. However, LPG in Latin America is mainly used for 

household consumption and its price is often subsidized by the government to 

assist low-income families. Thus, it behaves less like a traded commodity. Social 

relevance and high weights in the consumer index make stable LPG price a policy 

priority. Domestic LPG price in Latin America countries has deviated from 

international LPG price fluctuations. There has been small but increases in 

domestic prices for the past decades to close a growing gap with the international 

price. It only stops whenever the international price drops. For example, the 

government of Brazil, which is a top LPG import country in Latin America, 
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introduced an LPG subsidy program in 2002 to assist LPG purchases for low-

income families through a gas voucher (IMF 2013). LPG import volume from 

Brazil has been steady over the past few years (1.91 million tons in 2014, 2.00 

million tons in 2015 and 2.03 million tons in 2016) according to IHS Waterborne 

Report (2017). LPG consumers in Mexico have also enjoyed significant subsidies 

for almost a decade. The LPG price is fixed and adjusted monthly. As the sole 

producer and importer, Pemex remains absolute control over pricing policy 

before 2016. Total subsidies provided in Mexico amounted to 9.1 billion USD 

over 2003 to 2014. In El Salvador, the cost of LPG subsidies could account for 

around 0.6% of GDP in 2013 (IMF 2015). Considering above, imports into Latin 

America is more residential demand driven and less influenced by market 

fluctuations including international LPG price changes and freight cost volatility. 

Thus, this study only concentrates on the destination choice behavior of ships 

going West and East. 

4.3.2.1 Model specification 

Assume that a homogenous charterer, at time t, faces a choice among j possible 

destinations. The charterer would obtain a certain level of utility, in other words, 

profit from each alternative. Under the random utility framework, the charterer’s 

utility from alternative j  is utj = vtj + εtj . vtj  is deterministic and is often 

referred to as representative utility, as it is known to the researcher using 

observable variable xtj . The charterer at time t  is supposed to choose the 

destination with the highest level of utility. However, as εtj is not observable and 

thus the charterer’s choice is not deterministic and cannot be predicted with 

certainty. Therefore, a choice probability is derived. Different choice models are 

derived under different specifications of the density of unobserved factors (εtj), 

f(εt). The logit model is by far the most widely used discrete choice model, which 

assumes that εtj is distributed iid extreme value for all j. The probability that a 

charterer at time t chooses destination j is 
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Ptj =
eutj

∑ eutjJ
j=1

 

(4.1) 

Where j ∈ J. J includes all possible destinations. Representative utility is usually 

specified to be a linear function of observable variables: utj = β
′xtj. Under this 

specification, the logit probabilities become: 

Ptj =
eβ

′xtj

∑ eβ
′
xtjJ

j=1

 

(4.2) 

4.3.2.2 The utility function 

The main objective of this research is to test the effect of changes in market 

conditions on destination choices. Thus, at a given time t, for charterers, the main 

attributes to consider include product price spread, freight costs, bunker costs and 

the number of ships in a particular area. The monthly seasonality factor is not 

considered here, because there are no obvious seasonal differences for ships 

going to either the East or the West based on the sample data.  

Based on the industrial knowledge, the following hypothesized relationships are 

proposed as follows: 

Price spread: The essential profit for a trader/charterer to obtain is the arbitrage, 

which is the product price difference between the origin and destination minus 

total cost of transportation. The product price spread exists, as product prices are 

normally lower in producing countries and higher in consuming countries. A 

wider arbitrage window implies higher profit and could incentivize charterers to 

move more cargoes to the destination that yields higher returns. Thanks to the 

shale gas revolution, US LPG production cost has been reduced significantly and 

so does the domestic LPG price. US Propane Mt Belvieu Enterprise wet price is 

the benchmark price index for US domestic propane price, while propane prices 

in Europe and Asia are mostly reflected by European Propane CIF Amsterdam-
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Rotterdam-Antwerp (ARA) (Argus) Large Cargoes and Propane Argus Far East 

Index (AFEI) respectively. Since 2013, the spreads between Propane ARA and 

Mt Belvieu price, and between AFEI and Mt Belvieu have been positive most of 

the time. The price spread is not constant but changes over time due to changing 

regional supply and demand dynamics. The price spread at the time of loading is 

used since traders look at the arbitrage window around the time of loading to 

decide the destination. Hence, Hypotheses 1 and 2 are set as: 

H1 Higher spread.WEST will decrease the probability of ships going to the 

East. 

H2 Higher spread.EAST will increase the probability of ships going to the 

East. 

Freight rate (represented by Baltic LPG (BLPG) freight index). The main cost 

for charterers to move the cargo is the freight cost. The assessment of whether an 

arbitrage window is open is determined by the net spread (CIF price at destination 

– FOB price at source – freight rate). The BLPG freight index is often 

characterized by high volatility. For instance, BLPG dropped from 140 dollars 

per tonne in mid-2015 to around 20 dollars per tonne in mid-2016, which was an 

85% decrease in one year.  High volatility implies that freight costs vary 

dramatically at different times and could constitute an important attribute when 

charterers choose a specific destination since dollar per tonne costs typically are 

higher for long distance routes. When freight rates are high, the cost saving on 

freight could be larger for shorter voyages compared to low freight rate 

environment. In this study, the BLPG rate is used as a single indicator for freight 

movement to represent market dynamics. For the freight rate from USG, the rate 

is decided based on a base rate (BLPG equivalent) plus some premium. The 

calculation is based on the Baltic LPG index which tracks the freight from Ras 

Tanura in the Middle East to Chiba, Japan. The appropriate conversion to freight 

rate from USG is then made based on time charter equivalent (TCE) concept. 

Assume vessels should obtain a similar level of TCE wherever it sails from, the 

dollar per tonne rate from USG could be calculated backward based on TCE per 

day. There usually is a premium from the US over the Middle East on Baltic. For 
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ships loading from the US to Europe, it is normally BLPG+5dollars and to Asia, 

it is BLPG+2 dollars. Thus, using BLPG rate can reflect the freight rate 

movement for both destinations at a specific time. It is also acknowledged that 

the implied regional rates based on such calculation may not be 100% accurate, 

since in the short run, freight markets are not fully integrated due to different 

regional supply and demand dynamics. However, since the Baltic index only has 

one LPG route available, the single BLPG rate is used as a proxy for freight rate 

movements. In the VLGC market, on average the cargo is loaded 2 weeks after 

the fixture occurs. So, in this study, we use the freight rate 2 weeks before the 

loading time to reflect the time lag. For the effect of the Panama Canal expansion, 

since the time difference between traveling to the East and the West has 

weakened, the hypothesis is the freight rate effect on destination choice post the 

Panama Canal expansion shall become weaker. We then set hypothesis 3 as: 

H3 Higher freight rate will decrease the probability of ships going to the East 

before the expansion of the Panama Canal and such effect shall become weaker 

post the Canal expansion. 

Bunker price: In reality, charterers need to pay for greater fuel cost to compensate 

shipowners, when they require the vessel to sail on longer routes. From the 

charterer’s point of view, when the bunker price is high, the charterers will need 

to pay higher bunker costs if they choose to go to the East compared to the West 

due to longer distance. Regarding the Canal expansion effect, the shorter distance 

to Asia may make charterers indifferent to fuel costs when considering the 

destination. In the VLGC market, to hedge for bunker variability, the bunker cost 

is not decided when fixing the contract, while only the base freight rate is 

decided. The bunker cost is determined on the Bill of Lading date using Houston 

Platts bunker price for USG cargo. This study takes Houston IFO 380 bunker 

price as the attribute which reflects fuel cost development. As such, we have 

Hypothesis 4: 

H4 Higher bunker price will decrease the probability of ships going to the 

East before the Panama Canal expansion, while after the expansion, such effect 

may be insignificant for charterers to consider. 
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The number of ships in a specific area may also be an important attribute to 

consider. Cargo movements to a particular destination could be ultimately 

attributed to the demand in that region. However, as demand could not be directly 

measured on a day-to-day basis, it could partially be reflected by the number of 

ships in that region. As more ships may imply current higher demand in the 

region. However, on the other hand, too many ships may imply oversupply and 

buyers may build up high inventory levels based on current supply, which the 

charterer needs to take into consideration. The number of ships in a particular 

region at time t is calculated based on AIS data. Polygons are drawn for each 

region. The East area includes coastal areas in the Far East and South-East Asia, 

while the West area includes Europe. AIS data provides information regarding a 

vessel’s name, current position (both longitude and latitude) and speed, etc. By 

testing whether a particular VLGC is in the drawn polygon at time t and summing 

up all vessels staying in the polygon, we could obtain the total number of ships 

in a particular region at time t. In this paper, we count the total number of ships 

within each polygon irrespective of the ship’s direction and loading condition, 

because Asia is pure import region for VLGCs and the number of VLGCs loading 

from North West Europe is rather limited (1 or 2 VLGCs per month). So, almost 

all VLGCs going to these regions can be considered as laden ships. Therefore, 

the next hypotheses are proposed as such: 

H5 Higher number of ships in the East will increase the probability of ships 

going to the East. 

H6 Higher number of ships in the West will decrease the probability of ships 

going to the East. 

Thus, the utility function for charterers could be derived as: 

 

utj = β1jSpread. WESTt + β2jSpread. EASTt + β3jBLPGt

+ β4jBunker Pricet

+ β5jShips. WESTt+β6jShips. EASTt 

(1) 

where Spread. WESTt is the price spread between Propane Mt Belvieu and ARA 

price at time t; Spread. EASTt is the price spread between Propane Mt Belvieu 
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and AFEI price at time t; BLPGt  the Baltic LPG index, which measures the 

freight market condition at time t; Bunker Pricet represents the Houston IFO380 

bunker price. Ships. WESTt and Ships. EASTt represent the number of ships in 

the destination area West and East, respectively. 

All variables included are individual specific variables which mean that they only 

vary across different time, but not across alternatives. It is noted that only the 

differences between these coefficients are relevant and may be identified. With 

two alternatives East (labeled 1) and West (labeled 0), the coefficients associated 

with West (0) is set to 0. The unit of measurement of utj is hypothetical, aslo 

refered to as utils. It can be thought of empirically as a measurement of “profit” 

(product price spread – cost of carry) obtained by moving the cargo. 

4.3.3 Data and descriptive statistics 

4.3.3.1 Data 

For this study, data was gathered from various sources. Lifting data was obtained 

from Waterborne LPG lifting report (IHS, 2017). BLPG freight rate was 

collected from Baltic exchange. BLPG is the freight index for the VLGC market 

and measures the dollar per ton rate from Ras Tanura, Middle East to Chiba, 

Japan for a VLGC loading standard 44,000mt LPG. Price spread was retrieved 

from Argus. The description of the price spread data is described in Section 3. 

The number of ships in one specific area was calculated based on AIS data. The 

time period was from Jan 2013 to May 2017. A total of 692 samples (including 

East: 470 and West: 222) were included. The samples were further divided into 

two sub-periods: 1) Jan 2013 – May 2016, which was before the expansion of the 

Panama Canal. 405 samples were included, which consisted of 256 liftings going 

East and 149 liftings going West. 2) The second sub-period was from June 2016 

to May 2017, which consisted of 287 samples (East: 214 and West 73). Liftings 

from different port origins were also grouped to compare the significance of 

various attributes across ports. 
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4.3.3.2 US LPG export statistics 

US LPG export has increased substantially over the past few years. LPG could 

be loaded from the US Gulf Coast (USG), west coast (USWC) and east coast 

(USEC). Figure 4.12 indicates the geographical locations of major export ports. 

As can be seen, most export terminals are located in USG. Figure 4.13 and Table 

4.12 show the monthly LPG export volume by exporting regions and annual 

export volume by loading ports respectively. USG remains the major export 

regions, while ports located in the east and west coasts export lesser volumes 

compared to USG. Exports from ports in USEC and USWC are mainly destined 

to Europe and the Far East respectively due to geographical proximity. However, 

destination choices for exports from USG seem more uncertain.  This study thus 

mainly focuses on USG originated cargoes. Furthermore, as shown in Table 4.12, 

among all USG ports, Houston, Galena Park and Nederland are the major export 

ports. Corpus Christi and Freeport in 2016 exported around 440,000mt cargoes 

each, which was considered a small quantity compared to the other three ports 

(IHS 2017). Thus, this study mainly investigates USG originated cargoes from 

Houston, Galena Park, and Nederland ports. Table 4.13 illustrates total US export 

to different destinations lifted on VLGCs. One trend to observe is the increasing 

proportion of volumes going to East over the past years, indicating greater 

demand from Asia.  
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Figure 4.12 US LPG port geographical location 

 

Source: drawn by author. 

 

Figure 4.13 US LPG export from major regions (Unit: million tons) 

 

Source: drawn by author based on IHS (2017). 
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Table 4.12 Major US LPG port export statistics (Unit: tons) 

Region Port Terminal operator 2016 export volume (tons) 

USG 

Houston, TX Enterprise 12,283,379 

Galena Park, TX Targa Resource 5,553,703 

Nederland, TX Lone Star/Shell 4,875,371 

Corpus Christi, TX Trafigura 489,848 

Freeport, TX Phillips 66 433,000 

USEC 
Marcus Hook, PA Sunoco 598,784 

Chesapeake, VA DCP 85,220 

USWC Ferndale, WA PetroGas (BP) 772,430 

Source: compiled by author based on IHS (2017). 

 

Table 4.13 Total US exports to different destinations since 2013 on VLGC (Unit: 

tons) 

Year East Europe/MED/WAF Latin America/Caribs Total 

2013 1,112,284 (15%) 1,524,821 (20%) 4,949,036(65%) 7,586,140 

2014 2,690,034 (25%) 1,994,817(19%) 6,063,258 (56%) 10,748,109 

2015 4,943,979 (33%) 2,364,496 (16%) 7,753,121(51%) 15,061,595 

2016 10,127,620 (53%) 4,013,758(21%) 5,123,353 (27%) 19,264,731 

Source: compiled by author based on IHS (2017). 

4.3.3.3 Descriptive statistics 

The statistics for USG and port specific data including BLPG, the number of 

ships in a specific area, spread.East and spread.West, as well as fuel oil price, are 

shown in Table 4.14  and Table 4.15. As can be seen, the proportion moving to 

East has increased from 63% before the expansion of the Panama Canal to 72% 

post-expansion, justifying splitting data into two sample periods. One important 

factor to note is the number of ships in a specific area. From the table, there seems 

to be an apparent difference between the average number of ships in the East for 

ships going East and West for the first sample period, while the number of ships 

in the West does not vary much for ships going East and West. This may imply 
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that the more ships in the East, the larger chance to go to East in the first sample 

period. Last but not least, fuel oil appears to be an important factor to consider, 

as ships going West have higher average fuel oil prices than ships going East for 

the first sub-period. When the descriptive statistics for specific ports are 

compared, the proportion of ships moving to the East has all increased for three 

ports post the Panama Canal expansion, especially for the Galena Park, where 

the percentage has increased from 55% to 73%.  At a first glance, when 

comparing the mean of descriptive statistics for different influencing factors, it 

varies across different ports and different sample periods, justifying the 

disaggregation approach for different ports. 

Table 4.16 Descriptive statistics for USG data 

USG Loading  

Full sample period  

(Jan 2013 – May 2017) 

Before Panama Canal expansion 

(Jan 2013 – May 2016) 

Post Panama Canal expansion 

(Jun 2016 – May 2017) 

 
 East West East West East West 

BLPG Mean (SD) 50.33 (31.60) 57.33 (33.02) 70.2 (31.32) 77.39 (27.42) 27.48 (4.35) 25.91 (4.32) 

ships.WEST Mean (SD) 10 (3.47) 9 (3.58) 7 (3) 7 (2) 12 (2.64) 12 (2.67) 

ships.EAST Mean (SD) 44 (8.93) 40 (9.34) 40 (8) 36 (7) 47 (7.43) 48 (7.33) 

spread.WEST Mean (SD) 99.98 (63.98) 117.94 (77.65) 116.39 (75.66) 150.77 (81.3) 74.93 (32.88) 68.4 (29.79) 

spread.EAST Mean (SD) 170.81 (91.88) 194.24 (104.24) 214.14 (97.37) 254 (87.53) 114.91 (45.17) 102.68 (41.38) 

Fuel Oil Mean (SD) 293.24 (127.31) 347.75 (161.09) 302.49 (167.22) 402.31 (185.2) 273.49 (31.9) 264.2 (32.2) 

Sample size # (%) 470 (68%) 222 (32%) 256 (63%) 149 (37%) 214 (75%) 73 (25%) 

Standard deviations in parenthesis. # indicates the number of observations. 

Source: Author. 
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Table 4.17 Descriptive statistics for port specific data 

Loading Port  Houston  Galena Park Nederland 

Before Panama Canal expansion (Jan 2013 – May 2016) 

  East West East West East West 

BLPG Mean (SD) 68.45 (31.18) 72.49 (26.81) 74.66 (30.52) 89.93 (26.72) 71.72 (32.6) 75.53 (25.82) 

ships.WEST Mean (SD) 7 (3) 7 (3) 8 (2) 6 (2) 7 (3) 7 (3) 

ships.EAST Mean (SD) 40 (9) 36 (8) 38 (8) 32 (5) 43 (7) 41 (6) 

spread.WEST Mean (SD) 121.24 (83.87) 164.65 (95.18) 118.29 (69.77) 155.43 (55.18) 99.5 (46.6) 102.95 (36.34) 

spread.EAST Mean (SD) 217.32 (102.69) 260.73 (97.64) 223.31 (99.42) 277.84 (57.21) 196.09 (75.36) 202.31 (68.07) 

Fuel Oil Mean (SD) 323.43 (182.08) 420.47 (188.85) 310.2 (167.62) 489.3 (153.84) 230.01 (75.14) 232.88 (75.14) 

Sample size # (%) 160 (66%) 84 (34%) 45 (55%) 37 (45%) 51 (65%) 28 (35%) 

   
     

Post Panama Canal expansion (Jun 2016 – May 2017) 

  East West East West East West 

BLPG Mean (SD) 27.70 (4.32) 25.79 (4.39) 27.59 (4.46) 26.84 (4.11) 27.01 (4.38) 25.31 (4.48) 

ships.WEST Mean (SD) 12 (2.77) 12 (2.67) 12 (2.54) 13 (2.5) 12 (2.48) 11 (2.72) 

ships.EAST Mean (SD) 47 (7.53) 50 (6.52) 46 (7.48) 45 (8.65) 49 (7.16) 44 (6.44) 

spread.WEST Mean (SD) 78.04 (33.69) 69.63 (32.42) 70.75 (32.19) 71.86 (32.91) 72.27 (31.83) 62.26 (18.98) 

spread.EAST Mean (SD) 119.02 (45.08) 103.23 (47.64) 45.65 (99.03) 106.52 (36.04) 109.58 (45.04) 97.78 (30.24) 

Fuel Oil Mean (SD) 276.52 (31.73) 257.46 (33.20) 272.13 (29.31) 278.94 (27.96) 268.99 (33.82) 266.18 (30.19) 

Sample size # (%) 110 (73%) 40 (27%) 43 (73%) 16 (27%) 61 (78%) 17 (22%) 

Standard deviations in parenthesis. # indicates the number of observations. 

Source: Author. 

4.3.4 Results, discussion and implication 

Model estimation results for USG and port specific destination choice models 

from charterers’ perspective are presented in Table 4.16. Based on the results, 

Hypotheses 4 and 5 are supported before the expansion of the Panama Canal, 

while Hypotheses 2 and 4 are supported post the expansion for USG as a whole. 

The significant attributes vary across different ports. In general, the Nederland 

port is worst depicted by the proposed attributes, where none of the variables is 

significant under two sample periods. The reason might be that the major 

charterers loading from the Nederland port are energy and chemical companies 

including Dow and Aygaz, who use LPG mainly as a downstream petrochemical 

feedstock. Thus, their demand is relatively stable, and the trading flows are 

stickier. 
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Before the expansion of the Panama Canal, for USG as a whole, bunker price and 

the number of ships in the East were significant determinants when choosing a 

destination. On the one hand, the more ships in the East, the larger the probability 

a ship goes to the East. Such hypothesis is also true for Houston and Galena Park 

ports. However, the average sensitivity to changes in the number of ships in the 

East varied across different ports. An increase of one ship in the East yields about 

a 3% increase (eβships.EAST − 1) in odds to the East for the Houston and 5% 

increase in odds for the Galena Park. On the other hand, before the expansion of 

the Panama Canal, bunker price was a significant negative indicator for East 

destined ships for USG as a whole, as well as the Galena Park. The average 

sensitivity to changes in one dollar per tonne of bunker price leads to a 0.2% and 

0.7% decrease in odds for choosing East destination for USG and the Galena Park 

respectively. Hypotheses 1&2 are supported for the Houston port, but not for the 

rest ports. The results are understandable. Based on our lifting database (data 

where charterers are identified), for the Houston port, before the expansion, the 

largest two charterers are Vitol and Trafigura, who account for 25% of the 

Houston port export volume. However, such proportion decreases to 16% post 

the expansion. Due to the shale gas revolution, LPG comes as a by-product and 

its price has dropped significantly since 2013. Traders are the first to take 

advantage of such price difference at that time. Their main consideration is the 

price arbitrage, whether they can profit more from moving to the East or to the 

West. Thus, the spread.West and spread.East are the main attributes to consider.  

After the expansion of the Panama Canal, bunker price has become an 

insignificant attribute. This may be due to the fact that the distance and time 

required for traveling from USG to Asia have been reduced substantially and 

total bunker cost for charterers does not vary that much whether the vessel heads 

to the East or the West compared to previously via Cape to the East. However, 

lower bunker prices in 2016 may also be the reason that this factor has less impact 

on charterers’ destination choice. The number of ships in the East, on the other 

hand, became a significant negative indicator for ships going East for the 

Houston port. This could be explained by the massive delivery of VLGCs since 

2016 and the Canal expansion that allows more ships moving to the East, which 
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ultimately caused oversupply and buyers’ inventory build-up. The average 

number of ships in the East were 47 for East going ships and 48 for West post 

the Panama Canal expansion, compared to 40 and 36 before the expansion for 

the Houston port. Nevertheless, a large number of ships will also have an impact 

on price spread between the USG and the Far East, leading to less profits for 

traders. 

In general, freight rate and the shipping capacity in the West are not significant 

attributes for all ports under both sample periods. For the freight rate, the result 

shows that it would not affect the destination choice at the time of loading since 

the rate is decided at the time of fixing and before loading. For the second factor, 

as regional LPG volumes are normally moved by smaller LPG carriers, the 

number of VLGC ships in the West region may not be an accurate proxy for the 

demand in that region.   
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Table 4.18 Results of vessel destination choice model 

 

***, ** and * indicate significance at 1%, 5% and 10%, respectively. Standard 

error in parenthesis. West destination serves as the reference level. 

Source: Author. 

In this study, the sample data is divided into two sub-periods: peri and post the 

Panama Canal expansion. The rationale is that ships going East have increased 

from 63% before the expansion to 72% post the expansion, indicating significant 

differences between the two periods. Furthermore, the expansion brings 

geographical changes (i.e. shorten the distance between the USG and the East), 

thus, the significant variables influencing ship spatial patterns may also be 

different. Initially, the logit model was built using the full sample data and 

incorporating a dummy variable to account for the Panama Canal expansion 

effect. However, the dummy variable was insignificant and failed to model the 

differences between the two periods. 

Variable Coeff USG Houston Galena Park Nederland 

Before Panama Canal expansion (Jan 2013 – May 2016) 

spread.WEST 𝛽1 
-0.004 

(0.004) 

-0.012** 

(0.006) 

0.003  

(0.01) 

0.000 

(0.015) 

spread.EAST 𝛽2 
0.005 

(0.004) 

0.011** 

(0.005) 

0.004 

(0.009) 

0.000 

(0.010) 

BLPG 𝛽3 
-0.006 

(0.005) 

-0.011 

(0.007) 

-0.008 

(0.013) 

-0.008 

(0.015) 

Fuel.Oil 𝛽4 
-0.002** 

(0.001) 

-0.001 

(0.001) 

-0.007*** 

(0.002) 

0.002 

(0.005) 

ships.WEST 𝛽5 
0.018 

(0.043) 

-0.003 

(0.057) 

0.0035 

(0.132) 

0.011 

(0.100) 

ships.EAST 𝛽6 
0.028*** 

(0.01) 

0.029** 

(0.013) 

0.053* 

(0.032) 

0.016 

(0.023) 

Log-likelihood  -537 -294 -88 -101 

𝑅2  0.208 0.220 0.356 0.132 

Post Panama Canal expansion (Jun 2016 – May 2017) 

spread.WEST 𝛽1 -0.013 

(0.012) 

0.002 

(0.019) 

-0.058** 

(0.029) 

0.014 

(0.032) 

spread.EAST 𝛽2 
0.018** 

(0.009) 

-0.003 

(0.014) 

0.044* 

(0.025) 

0.007 

(0.025) 

BLPG 𝛽3 
0.038 

(0.035) 

0.065 

(0.054) 

0.028 

(0.108) 

0.007 

(0.0084) 

Fuel.Oil 𝛽4 
-0.005 

(0.004) 

0.014 

(0.008) 

-0.007 

(0.014) 

-0.018 

(0.012) 

ships.WEST 𝛽5 
0.04   

(0.051) 

-0.08 

(0.083) 
0.001 

(0.152) 
0.165 

(0.133) 

ships.EAST 𝛽6 
-0.001 

(0.014) 

-0.068*** 

(0.025) 

0.037 

(0.038) 

0.045 

(0.034) 

Log-likelihood  -379 -151 -59 -74 

𝑅2  0.328 0.383 0.382 0.445 
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This study provides implications for energy shipping, particularly for the industry 

to understand the charterers’ rationale for choosing a destination. The significant 

attributes vary across different ports, as well as across different time frames, say, 

before and after the expansion of the Panama Canal. Overall speaking, charterers 

pay most attention to fuel cost and demand in the east before the expansion and 

the propane price spread post the expansion. Surprisingly, freight rate is 

considered insignificant. For charterers, since the freight rate is already decided 

at the time of fixing, it is shown to have no effect on their decision-making at the 

time of loading.  

The significant attributes also vary across different ports, justifying panel 

comparisons between different ports. Different types of charterers loading from 

different ports and different terminal operators can be one of the main reasons. 

The Nederland seems to be less well described by the attributes, as all factors are 

insignificant. This might be due to the fact that the major charterers loading from 

this port are chemical companies, who move the cargo for its own downstream 

use. For ports where more traders are involved, factors such as product price 

spread and bunker price would play more significant roles. The overall low R2 

for the models can be due to the fact that certain VLGC cargoes are covered on 

a long-term contractual basis where destinations are predetermined, and less 

influenced by market variables.  

The expansion of the Panama Canal brings significant changes to energy 

shipping, particularly for VLGCs, as they previously were too large to pass 

through Panama and needed to travel through Cape to reach Asia. It brings 

significant changes to both LPG trade flows and charterers’ destination choices. 

On the one hand, it is observed that more volumes are heading to the East. After 

the expansion of the Panama Canal, time and distance have been reduced for 

VLGCs to reach Asia, so do bunker cost and freight cost. The net difference 

between going to the East and the West considering both propane price spread 

and regional freight rates becomes positive for most times post the expansion, as 

the freight rate to the East has lowered due to a shorter distance. Higher profits 

and demand attracts more cargoes to the East over the second period. On the other 
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hand, the expansion of the Canal has made fuel cost a less concern for charterers 

to consider, while they focus more on the propane price spread post the 

expansion. It is noted that the maximum net difference between going to the East 

and the West is 100 dollars and 66% of the times the net difference falls within 

+/-60 dollars. Previously, although product price spread might be different for 

the East and the West, considering the higher bunker fuel compensation the 

charterer needs to pay to the East, the bunker price changes overweight the 

product price spread when charterers choose the destination. However, with the 

expansion of the Panama Canal, the bunker cost becomes irrelevant due to the 

shorter distance, and the product price spread now becomes a significant variable. 

Such phenomenon holds for both the USG as a whole and the Galena Park.  

The number of ships in the East is a significant and interesting attribute to 

consider for charterers. It first was a positive indicator for ships going East. 

However, with more VLGCs delivered and heading to the East, it may cause 

oversupply and inventory build-up by buyers. Furthermore, it will have an impact 

on LPG prices in Asia and affect product price spread. It would result in less 

demand for LPG import and less profitable trading environments. Under such 

circumstances, this factor may become a deterrent for ships going East.  

4.4 Conclusions 

This chapter sheds lights on the understanding of the VLGC market. It has first 

analyzed the various relationships in the VLGC market between supply/demand, 

freight rate, newbuilding and secondhand vessel prices in an integrated 

framework. It then examines both the constant and time-varying dependency 

between VLGC freight rate and propane location price spread, crude oil prices, 

as well as between crude oil prices and propane prices in different locations by 

copula-GARCH model. In the last step, it proposes a discrete choice model for 

VLGC destination choice analysis for LPG cargoes originated from the US Gulf 

and identify its relationship with several explanatory attributes, including the 

freight rate, commodity price spread, bunker price and the number of ships in a 

specific area. 
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This study takes a novel perspective in investigating the freight rate formation, 

where freight rate is related to demand/supply and vessel prices in an integrated 

manner, thus any direct and indirect relationships could be identified. It also 

relates the freight rate development to the product spatial price spread, which has 

been valued by industrial practitioners, but never been studied in the maritime 

literature. Overall speaking, ton-mile demand plays the most significant role in 

affecting VLGC freight rates compared to other factors such as fleet size and 

product price spread. 

This chapter has practical significance for shipping companies. This study aids 

shipowners’ and charterers’ decision making and forecasting process. By 

knowing the development of ton-mile demand, fleet size, crude oil prices and 

commodity product price spread, the industrial practitioners would have a clearer 

view of the shipping freight market movements. Furthermore, regarding 

destination choices, it is helpful for supply analysis and forecast in the destination 

region. The expected number of ships in a specific region could serve as an 

indicator for future port traffics. Such findings can be used by terminal operators 

to better plan their scheduling and operations. Furthermore, such results also 

provide insights for shipowners to better match their space with cargo, with the 

knowledge of the charter’s potential destinations. 
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CHAPTER 5 DEPENDENCY AND EXTREME CO-

MOVEMENTS ACROSS PRODUCT TANKER FREIGHT 

RATES 

 

This chapter provides econometric analyses of the product tanker shipping 

market. Specifically, it examines dependencies and extreme co-movements 

across six major clean product tanker shipping freight rates by the copula-

GARCH model. The findings provide significant implications for shipowners 

regarding decision making in many aspects, for example, portfolio 

diversifications and fleet deployment.  
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5.1 Background 

The shipping sector is known to be disaggregated into different segments to carry 

different cargoes on specific routes. Thus, the freight rates of the different 

segments typically follow different movements largely driven by the supply and 

demand balances for different commodities transported (Kavussanos and 

Visvikis, 2006). However, on the other hand, substitution effects occur between 

vessels of adjacent size categories (Tsouknidis, 2016), as there are overlaps 

between cargo transportation in the same or adjacent routes. Substitutions 

between shipping segments occur when there is a significant difference in freight 

rates between the segments. Charterers may then choose to divide or combine 

cargoes, making it possible to take cargoes into another vessel segment. For 

example, for refined products from Middle East to Asia, if freight rate for LR1 

tankers (60,000 – 79,999 dwt) is much lower than that for LR2 tankers (80,000 – 

119,000 dwt), charterers previously using LR2 may choose to divide cargoes and 

load on LR1. Owners may also switch trading routes of their vessels for profit 

maximization purposes. A series of switches between sectors may take place until 

both markets return to equilibrium. Such substitutions make freight rates of the 

two vessel sizes or two trading routes interrelated with each other.  

The trading routes of product shipping market are diverse across the globe. It is 

thus of interest to investigate the exact dependence structures and co-movements 

between freight rates of different trading routes and vessel sizes. Such findings 

would have significant implications for shipping participants, such as shipowners, 

regarding portfolio diversifications and asset allocations. Diversification in 

shipping is vital in view of a volatile shipping environment (Kavussanos, 2002, 

2010; Lam and Wong, 2017). Diversification is accomplished when a shipowner 

does not invest only in one sector, but operates several types of vessels in 

different sectors. Diversification is also achieved by allocating vessels in 

different trading routes across the global network. Diversification could serve as 

a tool to overcome rivals, reduce risks or choose between options when highly 

uncertain about the market (Hitt et al., 1999). The benefit of diversification is to 

reduce the risk of loss in expected earnings. Kavussanos (2010) showed that 

diversification can be achieved by holding different size ships in bulk shipping, 
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especially smaller size ships to reduce operational risks. However, on the other 

hand, Tsolakis (2005) argued that in the shipping domain, the high level of 

market integration makes diversification hard to achieve, especially in the dry 

bulk market. According to Tsolakis, risk reduction benefits may not be achieved 

by investing in more than one type of bulkers, but could be possible in more than 

one tanker type. Risk reduction benefits could be only obtained from the 

diversified fleet in certain cases (Koseoglu and Karagulle, 2013). Thus, it brings 

up the question of what is the level of market integration in the product tanker 

market and can diversification benefits be achieved in this market?   

With regard to the dependence modeling, freight rates have demonstrated skewed 

and leptokurtic behaviors. As illustrated by Goulielmos & Psifia (2007), non-

normality and non-linearity can be found in spot and time charter freight rate 

indices. Therefore, they conclude that linear and other traditional models are not 

suitable for modeling the distributions of the indices. Although t-distribution has 

been used previously to take into account fat tail behaviors that shipping freight 

rate exhibit both in the univariate case (Drobetz et al, 2010) and multivariate 

dimensions (Tsouknidis, 2016), the asymmetric correlation has not been well 

addressed in the literature. Like stock returns, shipping freight rates may exhibit 

asymmetric dependence and tail dependence structures, which are difficult to be 

captured by traditional multivariate time series model. Furthermore, as pointed 

by Jondeau and Rockinger (2006), for most kinds of univariate distributions it is 

not possible to extend to multivariate setup to capture the dependence structure. 

Freight rates may follow complex and dynamic marginal distributions, which 

makes it difficult to identify a multivariate extension based on their univariate 

distributions.   

Cointegration test, VAR model, and multivariate GARCH models are the main 

techniques employed in the maritime literature to investigate freight relationships. 

Most of the methods are based on a linear framework, which fails to model the 

non-linear dependence structures between freight rates. Although multivariate 

GARCH models explored by recent researchers shed light on the exact 

dependence structure among the variables, these models may not be convenient 

to capture the asymmetric and tail dependence behaviors, which many return 
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series may exhibit. Copula method overcomes such a problem by allowing 

flexible estimations of marginals with skewed Student-t distributions and 

different dependence structures separately. The model further allows tail 

dependences to be modeled in an accurate and easy manner. 

In this study, we propose a copula-GARCH model for dependence modeling. Our 

copula-GARCH model nests a traditional GARCH model as a special case. The 

advantages of copula-based GARCH models over traditional multivariate 

GARCH models are that they can be applied to link together any type of marginal 

distributions that are proposed for the individual series. On the other hand, 

different dependence structures could link the same marginal distributions into 

different joint distributions (Lee and Long, 2009). Thus, different dependence 

structures could be compared and the best-fitted one could be selected. 

Furthermore, Copula method serves as a more flexible and accurate tool for 

dependence modeling. Asymmetric correlations and tail dependence could be 

easily estimated by copula functions.  

The objective of this research is to examine the dependency structure between 

various product tanker shipping routes by copula-GARCH model. The copula-

GARCH model is built on a two-stage method. Firstly, univariate ARMA-

GARCH models are fitted separately to each freight rate series, with the 

assumption of independence between them. Then, the standardized residuals of 

ARMA-GARCH models are fitted in the copula function. This approach is of 

advantages as it provides the opportunity to model the margins (GARCH-based) 

and the associated dependency structures among different series (copula models) 

separately. To be more specific, GARCH models are employed first to capture 

the time-varying correlation of each series and then copula to identify the 

remaining dependence between standardized residuals, which are conditionally 

uncorrelated.  

The contribution to the literature is threefold. Primarily, it serves as one of the 

few studies adopting the copula-GARCH model in the maritime field in order to 

capture the non-linear dependence and extreme co-movements across freight 

rates of different shipping routes. Copula model allows the marginal distributions 
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to be estimated separately from joint distributions, thus provide more flexible and 

accurate dependence modeling. The model also captures the tail dependence, 

whether being symmetric or asymmetric, between different freight rates, which 

could be difficult to be estimated by traditional multivariate GARCH models. 

Secondly, the study sheds lights on the product tanker shipping market and its 

freight rate behavior, which has been a less researched area. Last but not least, it 

provides practical guidance for shipping practitioners. The knowledge of the 

degree of market integration in the product tanker market answers the question if 

diversification could be achieved. If diversification is possible, the dependence 

structures between freight rates on different trading routes would then aid 

shipowners regarding where to deploy their fleet to diversify and mitigate risks. 

Freight co-movements behavior under extreme market conditions will guide 

several participants in shipping, such as shipowners, charterers, and investors 

regarding hedging strategies and risk management. 

The rest of the chapter is structured as follows: Section 5.2 describes the dataset 

and statistical properties, Section 5.3 provides results and discussions. The 

conclusion is provided in Section 5.4. 

5.2 Data and descriptive statistics 

The dataset contains daily freight rate for six different clean tanker shipping 

routes over the period from January 12, 2011, to Jan 12, 2016, a total of 1253 

observations. The freight rate is measured in dollar per ton, which is calculated 

by taking the Worldscale (WS) rate published by Baltic Exchange multiplied by 

the flat rate and then divided by 100. The essential feature of WS is the flat rate 

where WS=100, which is reset at the beginning of each year by Worldscale 

Association. This represents a ton rate for a round trip between a given port pair 

by a standard vessel in standard conditions. Negotiated freight rates between 

shipowners and charterers are stated as a percentage of the nominal freight rate. 

The actual quotes are related to flat rate and reflect the state of the market and 

vessel size. WS quotes generally decline with increasing ship size as larger 

vessels have smaller unit costs when fully employed.  
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As the flat rate changes every year, WS rate is not comparable between different 

years. Therefore, it is necessary to convert it to a dollar per ton rate for historical 

comparison. Table 5.1 summarizes the freight index for key clean shipping routes 

and their respective descriptions. Four main size categories for product tankers 

are Handy size (25,000 – 34,999 dwt), Medium Range (MR) tankers (35,000 – 

59,999 dwt), Long Range One (LR1) tankers (60,000 – 79,999 dwt) and Long 

Range Two (LR2) tankers (80,000 – 119,000 dwt). The TC1 rate represents long 

range two (LR2) tankers from the Middle East Gulf to Japan and TC5 rate 

represents the rate for the same route for long range one (LR1) vessels. TC2, 

TC11, and TC12 indicate freight index for MRs’ major trading routes, while TC4 

and TC6 represent major handysize trading routes. These freight rates are based 

on Worldscale (except for TC11, which is based on dollar per ton). To make 

freight rates across different years comparable, they are converted to US dollar 

per ton by appropriate conversion rates.  

 

Table 5.1 Freight index for key clean product shipping routes and descriptions 

Type Index Route Loading 

port 

Unloading 

port 

Cargo type Capacity 

(MT) 

Data 

available 

since 

LR2 TC1 Middle East Gulf to Japan 

(AG/JPN) 

Ras Tanura Yokohama CPP, UNL, 

naphtha 

condensate 

75000 Aug-98 

LR1 TC5 Middle East Gulf to Japan 

(AG/JPN) 

Ras Tanura Yokohama CPP, UNL, 

naphtha 

condensate 

55000 Mar-03 

MR 

TC2 Continent to US Atlantic 

coast (UKC/USAC) 

Rotterdam New York CPP, UNL 37000 Mar-04 

TC11 South Korea to Singapore S. Korea Singapore CPP 40000 Apr-09 

TC12 West Coast India to Japan Jamnagar Chiba naphtha 

condensate 

40000 Jan-11 

Handy TC6 Algeria to European 

Mediterranean (WAF/MED) 

Skikda Lavera CPP, UNL 30000 Jul-04 

Source: compiled by author based on Baltic Exchange (2016). 

 

Figure 5.1 shows the dollar per ton rate development for the six routes and their 

descriptive statistics are presented in Table 5.2. 
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Figure 5.1 Daily dollar per ton (pmt) rate for six clean shipping routes 
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Source: drawn by author based on Baltic Exchange (2016). 
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Table 5.2 Summary of descriptive statistics and stochastic properties of freight 

rates 

 TC1PMT TC2PMT TC5PMT TC6PMT TC11PMT TC12PMT 

 Mean  26.41790  21.62083  30.42767  9.503344  11.41518  29.53933 

 Max  46.87683  37.72088  47.45086  17.50544  18.50000  41.85120 

 Min  18.43111  12.03038  19.64655  6.599472  8.726000  19.37693 

 Std. Dev.  4.660395  4.711982  4.691013  1.887073  1.740974  3.734831 

 Skewness  1.431687  0.315378  0.790447  1.076863  1.017313  0.537331 

 Kurtosis  6.342963  2.831982  4.214712  4.048488  4.634471  3.784261 

 Jarque-Bera  1011.500  22.24506  207.5151  299.5644  355.6011  92.40698 

 ADF (lags) -4.103901 (1)** -5.131760 (1)** -4.390876 (2)** -5.624935 (3)** -3.322355 (2)* -3.678202** 

 PP -3.769623** -3.946390** -3.989510** -4.222345** -3.038063* -3.285391* 

 KPSS 0.356010 0.158258** 0.252135 0.184685 1.269423** 0.135772 

** Indicate significance at 1 per cent level, * indicate significance at 5 per cent 

level. ADF and PP test are unit root test against the null hypothesis of a unit 

root. KPSS is the stationarity test which has stationarity under null hypothesis. 

Source: Author. 

ADF and PP tests have been criticized for their low power when the process is 

stationary but with a root close to the non-stationary boundary. The source of this 

problem is that, under the classical hypothesis-testing framework, the null 

hypothesis is never accepted. It is either rejected or not rejected. One method to 

overcome this is to perform stationarity tests where the null hypothesis assumes 

stationarity. The unit root test shows TC1, TC5, TC6, and TC12 are stationary in 

level form when converted to the dollar per ton from Worldscale. However, the 

test indicates inconsistent results for TC2 and TC11. Therefore, the stationarity 

cannot be concluded for these two freight rates in the level form. 

To stabilize and centralize all the freight series, original data are transformed to 

log returns by calculating the difference in the logarithm of the two consecutive 

daily freight rates. Figure 5.2 shows the six return series. As observed from the 

graphs, volatilities of most routes tend to be higher from second half 2014 

compared with the period of 2011 to 2013, this is the period when crude oil prices 

fall sharply, which changes refined oil trades dramatically and subsequently 

affects product shipping. TC2 returns are more volatile than other routes. This is 

because TC2 is the freight rate from the ARA region to New York, normally 
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loading gasoline, and very much dependent on the gasoline price difference 

between the two regions. The volatile gasoline prices in the two regions increase 

the freight volatility. At an initial glance, there is volatility clustering effect, 

which means the tendency for volatility to appear in branches. It also shows 

evidence of non-constant conditional variance, as such, volatility may need to be 

modeled simultaneously in addition to modeling the mean series.  

Figure 5.2 Daily Returns for six clean shipping routes 
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Source: Author. 

The descriptive statistics of the return series are reported in Table 5.3. Returns 

are not normally distributed, instead, exhibit skewness and excess kurtosis 

behaviors. Jarque-Bera test confirms the non-normality. ADF, PP and KPSS tests 

all suggest stationarity of all return series. Ljung-Box (LB) Q-statistic was made 

to test autocorrelation and the results in Table 5.3 suggest that the null hypothesis 

of non-correlation are all rejected at 5 percent level and all series demonstrate 

autocorrelation. As such, an ARMA process would be appropriate. The presence 

of ARCH effects is confirmed by the results of Lagrange Multiplier tests for all 

return series. Therefore, the decision to use the GARCH models for marginal 

specifications is supported.  
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Table 5.3 Summary statistics and stochastic properties of return series 

 R_TC1 R_TC2 R_TC5 R_TC6 R_TC11 R_TC12 

 Mean  0.000043  0.000047 -0.000007  0.000049 -0.000010 -0.000115 

 Max  0.051660  0.095299  0.046621  0.089724  0.039633  0.036176 

 Min -0.039715 -0.062349 -0.054025 -0.068922 -0.021065 -0.057464 

 Std. Dev.  0.006596  0.014767  0.006718  0.009163  0.004191  0.004840 

 Skewness  0.855893  1.386625 -0.038409  0.769244  1.853942 -0.540393 

 Kurtosis  12.26335  9.489836  14.72250  19.70912  20.10456  25.20939 

 Jarque-Bera  4632.962  2600.439  7174.626  14699.87  15992.16  25813.11 

 ADF (lags) 

-8.7488 

(10)** 

-10.99 

(10)** 

-8.998 

(10)** 

-10.172 

(10)** 

-9.1041 

(10)** 

-8.7869 

(10)** 

 PP -370.33** -585.38** -440.88** -515.4** -487.55** -550.17** 

 KPSS 0.024336 0.020495 0.033829 0.018774 0.1538 0.078368 

 

 𝑄 (5) 1382.4** 371.6** 1147.8** 1088.3** 1411.9** 

 

1067.2** 

 𝑄 (20) 1459.8** 413.5** 1253.1** 1248.1** 1533.6** 1178.4** 

 ARCH-LM (5) 11.32925** 6.92576** 6.26933** 42.55255** 14.77391** 14.77391** 

** Indicate significance at 1 per cent level, * indicate significance at 5 per cent 

level. 𝑄 (5) and 𝑄 (20) are the Ljung-Box statistics for 5th and 20th order 

serial correlation. ARCH-LM refers to Engle’s Lagrange Multiplier test for the 

presence of ARCH effects. ADF and PP test are unit root test against the null 

hypothesis of a unit root. KPSS is the stationarity test which has stationarity 

under null hypothesis. 

 

Source: Author. 

To get an initial idea of the correlation among all the return pairs, Table 5.4 shows 

the linear correlations, Kendall’s tau and Spearman’s rho rank correlations for all 

the return pairs. When the values are high and positive, it would suggest that two 

freight index move together in the same direction. The signs are mostly positive, 

indicating the most series move in the same directions in response to market 

conditions. However, the signs are negative for the pair TC2 and TC5, TC2 and 

TC12, TC6 and TC11 from all three dependence measures, indicating these pairs 

tend to move slightly in the opposite direction, although the relation is very low 

(all below 5 percent). TC1 and TC5 pair has the strongest linear dependence; the 

weakest dependences are between TC2 and TC11, TC6 and TC11. The three 

dependence measures are in line with each other, except for TC1-TC2 and TC1-

TC6 pairs, where the linear correlation shows opposite signs compared to 
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Kendall and Spearman measures. The preliminary results suggest that the 

correlation for different vessel sizes operating on the same trade route is high, for 

example, TC1-TC5 pair. However, for the same vessel sizes, the correlation for 

different trading routes is low, especially for ships operating East of Suez and 

West of Suez, the correlation is lower than 5 percent, for example, TC2-TC11 

and TC2-TC12 pairs. For the exact dependence measurement in the next stage, 

we only take the pairs with correlations over 10 percent for all measures. 

Table 5.4 Linear correlation, Kendall’s tau and Spearman’s rho rank 

correlations for all the return pairs 

 
Linear Correlation Kendall Spearman 

R_TC1-R_TC2 0.041 -0.020 -0.028 

R_TC1-R_TC5 0.429 0.330 0.468 

R_TC1-R_TC6 -0.022 0.007 0.010 

R_TC1-R_TC11 0.203 0.151 0.220 

R_TC1-R_TC12 0.245 0.215 0.312 

R_TC2-R_TC5 -0.060 -0.033 -0.050 

R_TC2-R_TC6 0.177 0.134 0.196 

R_TC2-R_TC11 0.008 -0.014 -0.019 

R_TC2-R_TC12 -0.039 -0.012 -0.017 

R_TC5-R_TC6 0.033 0.031 0.046 

R_TC5-R_TC11 0.195 0.172 0.252 

R_TC5-R_TC12 0.280 0.246 0.360 

R_TC6-R_TC11 -0.008 -0.012 -0.017 

R_TC6-R_TC12 0.066 0.048 0.007 

R_TC11-R_TC12 0.291 0.196 0.283 

Source: Author. 

5.3 Results and Discussion 

This section presents the results of the marginal specifications and fitness of 

different copula models. Implications are also drawn based on the results. 

5.3.1 Marginal specification results 

Before applying copula functions to examine the dependence structure among 

different return series, the marginal should be correctively specified. Our analysis 
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shows that all return series are correlated in terms of both the mean and variance. 

To better model these series, ARMA-GARCH models can be a good choice. The 

return series are then fitted to ARMA (p,q)-GARCH(1,1) process with skewed 

Student-t error distributions. The parameters p and q for each return series are 

estimated by different combinations from zero up to a maximum lag of five. The 

best-fitted models are then selected, determined by BIC Information Criterion. 

The best AR and MA lags are (1,0) for R_TC1, (1,0) for R_TC2, (1,1) for R_TC5, 

(1,1) for R_TC6, (1,1) for R_TC11 and (1,1) for R_TC12. Table 5.5 shows the 

parameter estimates for the marginal distributions. The p-values for Ljung-Box 

𝑄2 statistics and ARCH-LM test for ARCH effect are not significant for all series, 

indicating the models could capture the autocorrelation and GARCH effects in a 

good manner. 

Table 5.5 Marginal estimates with skewed Student-t distribution 

 R_TC1 R_TC2 R_TC5 R_TC6 R_TC11 R_TC12 

Mean equation  

𝜇  -0.000352  

(0.000243) 

-0.000410  

(0.000545) 

 -0.000406  

(0.000337)  

 -0.000140  

(0.000594) 

 0.000045 

(0.000176) 

-0.000272 

(0.000201) 

휃1 0.631438**  

(0.021642) 

0.462076**  

(0.024459) 

 0.720797**  

(0.024148) 

 0.705646**  

(0.032830) 

 0.773265**  

(0.022319) 

0.703592** 

(0.025896) 

𝜙1  

   

 -0.117198**  

(0.038566) 

 -0.206989**  

(0.044377) 

-0.332568** 

(0.035565) 

-0.203438** 

(0.039903) 

Variance equation 

𝜔 0.000003**  

(0.000001) 

0.000052**  

(0.000018) 

               

0.000009  

(0.000000) 

 0.000003  

(0.000003) 

 0.000002  

(0.000001) 

 

0.000004** 

(0.000000) 

𝛼 0.460986**  

(0.075806) 

0.501714**  

(0.124075) 

 0.631673**  

(0.102773) 

 0.353824**  

(0.056860) 

 0.438609**  

(0.072683) 

0.568122** 

(0.078616) 

𝛽 0.538014**  

(0.028253) 

0.497286**  

(0.100730) 

 0.347384**  

(0.049728) 

 0.645176**  

(0.075138) 

 0.560391**  

(0.036701) 

0.430878** 

(0.033292) 

𝜐 2.841980**  

(0.137075) 

2.488994**  

(0.136720) 

 2.621250**  

(0.082389) 

 2.877530**  

(0.182176) 

 2.639970**  

(0.096079) 

2.562136** 

(0.078737) 

𝜆 1.020977** 

(0.035251) 

1.125657** 

(0.039663) 

1.061789** 

(0.037864) 

1.035776** 

(0.034929) 

1.044810** 

(0.036248) 

0.984269** 

(0.036412)  
 

𝑄2(5) p-

value 0.9673  0.7601 

               

0.9429  

               

0.7939  

               

0.9393  

 

0.7820 

ARCH (5) 

p-value 

                          

0.9596  0.7451 

               

0.8734  

               

0.7882  

               

0.9228  

 

0.8308 

**Represents significance at the 1 per cent level; * significance at 5 per cent level. 

Standard errors are in parenthesis. 

Source: Author. 

Different parameters have different economic meaning. 𝛼 indicates the intensity 

of external shocks to volatilities and a higher value of 𝛼 means more intense 
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responses to market changes and a tendency to disperse further more. 𝛽, on the 

other hand, measures the memory of self-volatility. When 0 < 𝛽 < 1, the greater 

the value of 𝛽, the slower and longer the volatility decreases and lasts. The sum 

(𝛼 + 𝛽) measures the persistence of variance. When the sum approaches one, the 

persistence of shocks to volatility becomes greater. 

The highest value of 𝛼 is 0.6318 for TC5 and lowest is 0.3538 for TC6. The 

results indicate that the freight rate response of Middle East to Japan route for 

LR1 size (TC5) to outside shocks is more intense than the rest rates, while TC6 

handysize route being relative irresponsive compared with the rest. On the one 

hand, the responsiveness to market shocks does not vary a lot across trading 

routes for the same vessel size. For example, TC2, TC11 and TC12 represent 

different routes for MRs and their 𝛼  values are 0.5017, 0.4386 and 0.5681 

respectively, indicating little variations. In fact, the responsiveness to market 

changes depends on the number of trading route options. The more options 

available, the more responsive the ships are. MR size ships are very flexible and 

can call almost all ports. However, for handysize vessels, they are small in size 

and limited to regional trades, thus the responsiveness tends to be low (𝛼=0.3538). 

Besides, many of the handy vessels are chemical ships. The chemical market is 

normally less volatile than clean product market since it has a high COA coverage, 

especially in Europe. On the other hand, for different size vessels operating on 

the same route, the value of 𝛼 varies a lot and tends to be higher for smaller 

vessels. For instance, TC1 and TC5, representing the Middle East to Japan freight 

for LR2 and LR1, the value of 𝛼 are 0.4610 and 0.6317 respectively. The result 

is understandable as for vessels operating in the same route, LR1 vessels are more 

flexible and could switch routes more easily than the larger ones when the market 

condition changes, thus being more responsive. Furthermore, for LR2s, some of 

them are programmed or on contracts of affreightment (COAs), thus the 

corresponding responsiveness is compromised. The TC5 return has the lowest 𝛽 

value, suggesting that the shock to the volatility lasts for a shorter period than the 

rest routes. The results also show that for all return series, (𝛼 + 𝛽)  almost 

approaches one, which indicates the shocks tend to persist.  
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5.3.2 Copula estimation results 

With the conditional marginal models, we are now in a position to estimate 

copulas. We only report five different constant copula types here, as the rest 

copula types listed in Section 3.3.3 do not provide better fit compared to these 

five types. The estimated parameters for various copula functions are reported in 

Table 5.6. Out of the total 15 return pairs, only the pairs with correlation over 10 

percent reported in Table 5.4 are estimated with copula models, as the 

relationships for the rest return pairs are too weak. The best-fitted copulas for 

each return pair are selected based on BIC criterion. Asymmetric tail 

dependences are found for 5 out of the 7 return pairs. The Clayton copula exhibits 

better explanatory ability than the other copula models for 4 return pairs, which 

indicates the dependence for the pair TC1-TC11, TC5-TC11, TC5-TC12 and 

TC11-TC12 tends to be higher in market downturns. For the pair TC2-TC6, 

Gumbel copula is selected. The result indicates that TC2-TC6 pairs tend to have 

upper tail dependence, which means the correlation is high in market upturns. 

For example, an increase in TC6 handy rates will quickly attract MR ships 

previously doing TC2 routes to take part cargoes ex-Mediterranean, thus 

reducing the supply of ships engaging in TC2 trade, which drives up the TC2 

rates. Shipowners are profit driven, thus it gives more incentives to switch routes 

when the rate on a specific route is rising and become more profitable compared 

to alternative routes. However, in a market downturn, owners are less motived to 

change, as they have in general fewer options and potentially high opportunity 

cost. Thus, the dependence is higher in the upper right tail. For the rest two pairs 

(TC1-TC5 pair and TC1-TC12 pair), introducing the asymmetric tail dependence 

does not add many explanatory abilities. Furthermore, in almost all cases 

Gaussian copula underperforms the rest copulas (except TC1-TC12), suggesting 

rejection of no tail dependence. Another observation is that the relationship of 

trade lanes in the West of Suez and East of Suez is often very low, as such not 

reported in Table 5.6. TC2 and TC6 are the trade routes West of Suez, while TC1, 

TC5, TC11, and TC12 are east of Suez routes. TC2 is only paired with TC6 for 

copula estimations, not with any routes in the east due to the low correlation, and 

the same for TC6. The results indicate that product shipping market is 
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geographically segmented, particularly East of Suez and West of Suez, where the 

correlation is extremely low.  

Table 5.6 Estimates for the copula models 
 

TC1-TC5 TC1- TC11 TC1- TC12 TC2-TC6 TC5-TC11 TC5-TC12 TC11-TC12 

Gaussian      

𝜌 0.20405** 

(0.02676) 

0.04292 

(0.02845) 

0.13469** 

(0.02775)  

0.11173** 

(0.02799) 

0.07475** 

(0.02829) 

0.10643** 

(0.02804) 

0.17927** 

(0.02716) 

LL 26.15 1.13 11.25 7.72 3.44 7.00 20.08 

BIC -45.17 4.87 -15.37 -8.30 0.25 -6.86 -33.02 

Student-t 
  

 

𝜌 0.20373** 

(0.02868) 

0.04091 

(0.02915) 

0.13357** 

(0.02869) 

0.11295** 

(0.02928) 

0.07171* 

(0.02973) 

0.10489** 

(0.02936) 

0.17431** 

(0.02914) 

𝑣 11.81459* 

(4.71508) 

40.83705 

(50.26458) 

27.31881 

(22.91371) 

17.89887 

(10.63807) 

17.29162 

(9.69059) 

18.04100 

(10.27965) 

12.75162* 

(5.56929) 

LL 29.91 1.48 12.02 9.02 5.23 8.76 23.04 

BIC -45.55 11.31 -9.78 -3.77 3.81 -3.24 -31.82 

Clayton 
 

  
 

   

휃 0.22820** 

(0.03906) 

0.08477** 

(0.03171) 

0.14671** 

(0.03587) 

0.07818* 

(0.03469) 

0.11308** 

(0.03364) 

0.11564** 

(0.03427) 

0.22895** 

(0.03795) 

LL 22.08 4.33 10.46 2.88 7.00 7.09 24.09 

BIC -37.03 -1.53 -13.78 1.38 -6.86 -7.04 -41.05 

Gumbel 
 

  
 

   

휃 1.13385** 

(0.02246) 

1.00246** 

(0.01771) 

1.06909** 

(0.02021) 

1.07997** 

(0.01969) 

1.02655** 

(0.01865) 

1.06157** 

(0.01941) 

1.10110** 

(0.02143) 

LL 24.44 0.01 7.11 11.46 1.10 6.36 14.60 

BIC -41.75 7.11 -7.09 -15.79 4.94 -5.59 -22.07 

Frank        

휃 1.1896** 

(0.1735) 

0.1918 

(0.1704) 

0.7595** 

(0.1707) 

0.6685** 

(0.1725) 

0.3594* 

(0.1708) 

0.5873** 

(0.1707) 

0.9856** 

(0.1730) 

LL 23.49 0.63 9.90 7.51 2.21 5.92 16.20 

BIC -39.85 5.87 -12.66 -7.88 2.71 -4.71 -25.27 

Based on equations (3.7) to (3.11). Standard errors are in parenthesis. log-

likelihood and BIC value for different specifications for each pair are reported. 

The minimum BIC value is in bold, implying the best fitting copula for each 

return pairs. ** indicates significance at 1 percent level and * indicates 

significance at 5 percent level. LL stands for Log-Likelihood. 

Source: Author. 

Table 5.7 presents the values of Kendall’s 𝜏 , the lower and the upper tail 

dependence coefficients, estimated from the copula with the best fit. Kendall’s 𝜏 

values suggest TC1-TC5 has the highest dependence, followed by TC11-TC12 

return pairs, while tail dependence coefficients indicate that all the pairs show 

some degree of extreme co-movements, except for TC1 and TC12. TC2 and TC6 
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have the highest extreme co-movements in a bull market as the upper tail 

coefficient is 0.1001. The second strongest extreme co-movement is found for 

TC11-TC12, which is higher in a market downturn. For the TC1-TC5 pair, it is 

symmetric in both bear and bull markets as indicated by the same lower and upper 

tail dependence coefficients (0.0484). Although TC1-TC11, TC5-TC11, and 

TC5-TC12 pairs have lower tail dependences, their extreme co-movements in a 

market downturn is limited, as the pairs only have slight lower tail dependences 

with coefficients almost approaching zero.  

Table 5.7 Kendall’s τ and tail dependence coefficients of best-fitted copula 

Return pairs Kendall’s 𝜏 𝜆𝐿 𝜆𝑈 

TC1-TC5 0.1306 0.0123 0.0123 

TC1-TC11 0.0407 0.0003 0 

TC1- TC12 0.0860 0 0 

TC2-TC6 0.0740 0 0.1001 

TC5-TC11 0.0535 0.0022 0 

TC5-TC12 0.0547 0.0025 0 

TC11-TC12 0.1027 0.0484 0 

Source: Author. 

5.3.3 Implications 

The results have significant implications for both the academic field and industry 

practitioners. We have for the first time explored the exact dependence structure 

between different freight rates, allowing them to be skewed Student-t distributed. 

This has abandoned the standard normality assumption and better depicted the 

excess kurtosis and skewness of freight characteristics. The study also makes 

original contributions to the investigation of tail dependences among freight rates. 

The findings would provide useful guidance for shipping players. It is vital for 

them to understand the dependencies between different trade routes for 

diversification purposes and risk mitigations. The findings indicate that product 

tanker shipping market is quite fragmented and separated by geographical 

locations. On the one hand, the correlation is high for ships with different sizes 

operating in the same trade route. For example, TC1 and TC5, which represents 
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the Middle East to Japan trading routes for LR2 and LR1, has the highest 

dependency among all the pairs. On the other hand, the freight rates of same size 

ships operating in adjacent regions have higher dependencies compared with the 

ships operating in distant areas, say East and West. For example, TC2, TC11, and 

TC12 all represent trading routes for MR size vessels. TC2 is the route from 

Continent to US Atlantic Coast, which is West of Suez, while TC11 and TC12 

are East of Suez routes, namely South Korea to Singapore and West Coast India 

to Japan, respectively. The dependency between TC11 and TC12 is much higher 

than the dependency between TC2-TC11 and TC2-TC12 pairs. Furthermore, the 

dependencies for different size vessels operating in adjacent trade routes could 

also be high, for instance, the dependency between TC1-TC12, TC5-TC12 as 

well as TC2-TC6. Such a relationship exists due to the substitution effects of 

different vessel size categories. For example, when there is an increase in demand 

and subsequently freight rates for the Middle East to Japan routes, MRs 

previously loading West Coast India will take cargoes ex-Middle East if it is 

found to be profitable. The geographical approximation will allow ships to switch 

routes quickly and incur fewer opportunity costs, thus resulting in higher 

dependency structures between adjacent trading routes.  

It is also noted that the geographical segmentation is largely attributed to the fact 

that freight rate changes depend highly on regional product flows. The price 

spread, regional product balances are the key determinants for freight rate. The 

freight rates of the other trade routes do play a role in affecting freight rate on a 

certain route, however, the spill-over effects are only limited to the same or 

adjacent routes. This implies that for shipowners, it is wiser to deploy the vessels 

in different locations, both East of Suez and West Suez for diversification 

purposes. Allocating different size ships in the same trade route could barely 

mitigate risks. In addition, the examination of tail dependence structures and the 

implied extreme co-movements between different pairs also has practical 

significance. Out of the 7 trade route pairs estimated by copula models, 6 have 

tail dependences and 4 have lower tail dependences, which means that they tend 

to co-move in market downturns. However, the lower tail dependence 

coefficients are close to zero for TC1-TC11, TC5-TC11, and TC5-TC12 return 
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pairs. Normal copula is selected for TC1-TC12, indicating no tail dependence. 

As such, there seem to be no obvious extreme co-movements between the Middle 

East to Japan routes and West Coast India to Japan, South Korea to Singapore 

routes. Student-t copula is selected for the TC1-TC5 pair, indicating the 

symmetric dependency under extreme market conditions. For TC2-TC6 pair, 

Gumbel copula performs better than the other types and thus indicates the 

extreme co-movements in a market upturn. 

5.4 Conclusions 

This chapter investigates the dependency and extreme co-movements between 

different product tanker routes using copula-GARCH approach. The marginal 

and dependence structure are estimated separately in two stages, allowing for 

more flexibility and accuracy. Firstly we model the marginal as an ARMA (p,q)-

GARCH(1,1) process with skewed-t distributions. The best fitted (p,q) legs are 

selected based on the BIC criterion. Then different types of copulas are fitted to 

the standardized residuals obtained from the marginal specifications and the best-

fitted copulas are chosen by information criteria. The results show that Clayton 

copula provides the best fit for 4 out of 7 freight pairs. In addition, Gaussian 

copula underperforms other types of copulas in most cases, indicating significant 

tail dependence between different series. The findings suggest that product tanker 

shipping market is regionalized and segmented by geographical locations, 

especially West of Suez and East of Suez. As a new finding, the dependency for 

different size ships operating in the same trade route is high. Besides, freight rates 

of same size ships operating in adjacent regions have higher dependencies 

compared with the ships operating in distant areas. The dependency between the 

West of Suez and the East of Suez routes is quite weak. Furthermore, the findings 

suggest TC1-TC5 tends to co-move symmetrically in both bull and bear markets, 

whereas the extreme co-movements tend to be high for TC2-TC6 under market 

upturns and TC11-TC12 in market downturns. Therefore, for risk-averse 

investors, investing in different vessel sizes but employing them on the same 

trade route would not mitigate risks. Diversification can be achieved by 

deploying in different distant trading routes. Nevertheless, the results provide 
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practical guidance for shipowners regarding risk mitigation and diversification, 

but not profit maximization based on daily return movements. To maximize 

profit, shipowners care more about $/day earnings on different routes, instead of 

relative rate return movements.  
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CHAPTER 6 CONCLUSION AND 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This chapter serves as the last chapter of this thesis. All the research objectives 

set out in Chapter 1 were achieved through conducting research process in 

Chapter 2 through Chapter 5 sequentially. The main findings and contributions 

achieved in this thesis are summarized in this chapter. It also points out research 

limitations and recommendations for future research. 

Through conducting an in-depth literature review in the domain of econometric 

analysis in bulk shipping freight market, it is found that few research attentions 

have been given to the LPG and product tanker shipping markets. Furthermore, 

studies relating different market variables in an integrated manner are relatively 

scarce. In addition, research on the freight dependencies is most often based on 

linear models, which fails to capture the non-linear and time-varying dependency 

structure in a multivariate manner. Last but not least, research on vessels’ spatial 

behaviors and destination choices from an econometric point of view is rather 

limited. The above-mentioned research gaps were identified through a systematic 

literature review in Chapter 2. Chapter 4 and 5 fulfilled specific research gaps. 

Chapter 4 provides econometric analyses of the LPG shipping market, 

particularly VLGC market. It takes a novel perspective in investigating the 

freight formation process, relating it to supply/demand factors, 

newbuilding/secondhand shipping market, as well as product price location price 

spread. It further examines vessels’ destination choice behavior and identifies its 

associations with various market variables. It was considered as one of the first 

destination choice analysis in the maritime domain. Chapter 5 takes a 

disaggregate approach in studying the product tanker market. It assesses the 

dependency structure and extreme co-movements across major clean product 

tanker routes, which has significant implication for diversification and owners’ 

portfolio management. Such research can be used for shipping practitioners, like 
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shipowners and charterers while making investment, chartering and fleet 

deployment decisions.  

6.1 Summary of major findings 

The research objectives are stated in Chapter 1 and achieved in the following 

chapters. This section summarizes the major findings with regard to each 

objective accomplishment. 

1) To examine the relationships between the key market variables 

(supply/demand, freight rates, and secondhand and newbuilding prices) 

in the VLGC market in an integrated approach; 

This objective has been achieved in Section 4.1 using Structural Equation 

modeling approach. There are several important findings. Firstly, the study has 

identified the uniqueness and volatility of ton-mile demand changes in the VLGC 

market and its significant impact on freight rate determination. To have a clear 

understanding of freight rate movements, shipping practitioners should not look 

at fleet supply alone, but they should also pay attention to ton-mile demand 

forecasts. Secondly, the freight rate is identified as the dominant factor for 

secondhand vessel prices. The influence of freight rates on newbuilding prices is 

rather indirect, with secondhand vessel prices acting as a mediator. Furthermore, 

the impact of supply and demand on vessel prices, both newbuilding and 

secondhand, are found to be rather indirect. 

2) To investigate the dependency between VLGC freight rates and product 

price  spread and oil prices; 

Section 4.2 has met this objective. It examines both the constant and time-varying 

conditional dependency between BLPG freight rate and propane location price 

spread, crude oil prices, as well as between crude oil price and propane prices in 

different locations by conditional copula-GARCH model. The results show that 

firstly, the dependency between BLPG freight rate and AFEI-CP swap spread, 

being the price spread between propane Far East and Middle East price, could be 

best described by a time-varying Rotated Gumbel GAS copula, indicating the 

higher dependence in the market downturns. Furthermore, BLPG and AFEI-US 
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spread, being the spread between Far East and US prices, also have time-varying 

dependence and the relationship has strengthened since 2013 when the US 

gradually becomes a huge LPG exporter due to shale gas revolution. In fact, the 

relationship is relatively weak both in absolute terms and compared to that 

between BLPG and AFEI-CP swap. However, with more US volume exported, 

such a relationship is expected to continue increasing. The results further 

contribute to the understanding of how the oil price affects VLGC freight rate 

and the location price spread. Middle East propane price is found to have the 

strongest correlation with crude oil price compared to Far East and US prices, 

indicating higher sensitivity to crude oil price changes. In addition, the overall 

dependency between crude oil and BLPG freight rate is positive, although crude 

oil has a negative relationship with the arbitrage economics in a low oil price 

environment. This indicates the different and dynamic roles crude oil play in 

affecting the freight rate, both in terms of arbitrage economics and shipping 

demand. 

3) To study the spatial patterns of the VLGC market and examining how a 

set of explanatory variables relating to market conditions influence a 

charterer’s behavior regarding destination choices.  

This objective has been attained in Section 4.3 using logistic regression for 

destination choice analysis. Attributes include freight rate, propane price spread, 

bunker costs and the number of ships in the destination areas. The results show 

that the type of charterers has a significant impact on whether the destination can 

be ‘free choice’. Traders and oil majors tend to move the cargo based on arbitrage 

economics, fuel cost and demand in the destination region, while downstream 

consumers tend to be less influenced by market conditions and normally have 

fixed volume and trading patterns. The expansion of the Panama Canal brings 

significant changes to charterers with regards to destination choice. With time 

and distance reduction, bunker prices become insignificant for charterers’ 

destination decision making, on the other hand, product price difference becomes 

significant to consider.  
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4) To examine the dependency structure and extreme co-movements across 

various product tanker routes; 

Chapter 5 has achieved this objective by using a Copula-GARCH model. The 

findings suggest that product tanker shipping market is regionalized and 

segmented by geographical locations, especially West of Suez and East of Suez. 

As a new finding, the dependency for different size ships operating in the same 

trade route is high. Besides, freight rates of same size ships operating in adjacent 

regions have higher dependencies compared with the ships operating in distant 

areas. The dependency between West of Suez and East of Suez routes is quite 

weak. Furthermore, the findings suggest TC1-TC5 tends to co-move 

symmetrically in both bull and bear markets, whereas the extreme co-movements 

tend to be high for TC2-TC6 under market upturns and TC11-TC12 in market 

downturns. Therefore, for risk-averse investors, investing in different vessel sizes 

but employing them on the same trade route would not mitigate risks. 

Diversification can be achieved by deploying in different distant trading routes.  

6.2 Research contributions 

By achieving the above-mentioned objectives, this thesis has made several 

contributions, which are summarized below. 

1) Chapter 2 contributes to the overall understanding of bulk shipping 

literature. It identifies the major themes and methodologies. It 

summarizes the general research trend and potential future research areas. 

Future research could include the application of methods developed in the 

financial field to the maritime domain, as well as combine AIS data with 

econometric techniques for shipping market analysis. It can be used as a 

reference for future research directions. 

2) The contributions of Chapter 4 are multi-faceted. Overall speaking, it 

contributes to the understanding of the LPG shipping market, particularly, 

the VLGC market. 

Specifically, Section 4.1 has practical contributions: the results of this 

study could help shipowners and related companies to understand 

changes in ton-mile demand and fleet size, and their effect on freight rates 
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and ship prices. This, in turn, could aid decision makers in chartering and 

investment decisions.  

Section 4.2 contributes to the existing literature in the following ways. 

Firstly, this study takes a novel perspective in investigating the freight 

rate formation, relating the freight rate development to the product spatial 

price spread, which has not been studied in the literature. Secondly, it 

contributes to the understanding of how the oil price affects VLGC freight 

rate and the product price spread. Thirdly, this research makes 

methodological advancements by introducing the conditional copula-

GARCH model with both constant and time-varying dependence 

parameters into the field of energy transport economics. Freight rate, 

crude oil, and propane prices have been found to be skewed and 

leptokurtic and may have completely different marginal distributions. 

They may also exhibit asymmetric, tail dependence or even time-varying 

dependency structure. This makes the traditional multivariate GARCH 

model inaccurate in addressing such relationships. This research has 

adopted the copula-GARCH method to overcome the drawbacks of 

multivariate GARCH models and provide a more flexible and accurate 

estimation for the dependency structure. Last but not least, this study also 

has practical significance for LPG transport and trade. This study aids 

shipowners’ and charterers’ decision making and forecasting process. By 

knowing the development of crude oil price and the product price spread, 

industry practitioners have a clearer view of the shipping market 

movements. 

The contributions of Section 4.3 are twofold. Firstly, this work has made 

implications for energy shipping, especially for the gas sector. It is helpful 

for supply analysis and forecast in the destination region. The expected 

number of ships in a specific region could serve as an indicator for future 

port traffics. Such findings can be used by terminal operators to better 

plan their scheduling and operations. Furthermore, such results also 

provide insights for shipowners to better match their space with cargo, 

with the knowledge of the charter’s potential destinations. This model can 
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also be applied to other downstream commodity transport sectors where 

trade flows are not that sticky, arbitrage opportunities exist, and traders 

actively participate in the market. Secondly, this model advances the 

understanding of VLGC market spatial patterns and the application of 

AIS data in the field of energy transport. Previously, AIS data has been 

mostly used for descriptive analysis through visual inspection of shipping 

activities, or for safety concerns.  

Chapter 5 has made original contributions to the understanding of exact 

dependence structure and tail dependencies across different trading routes, 

which cannot be captured easily by conventional multivariate GARCH 

models. The methodological advancements are twofold. In the first place, 

this chapter examines the tail dependency structure between freight rates, 

which has seldom been addressed in previous literature. This has 

significant implications for risk management. For example, the existence 

of lower (upper) tail dependence would imply a much higher downside 

(upside) risk in the product tanker shipping market, compared to the no-

tail dependence scenario. Secondly, the freight rate return is allowed to 

be skewed-t distributed to better depict the skewness and excess kurtosis 

found in freight returns. Last but not least, this study also fills in the 

literature gap and contributes to the understanding of product tanker 

shipping markets with implications for portfolio diversifications, risk 

management, and fleet deployment purposes. Results have shown that 

product tanker shipping market is rather fragmented and segmented by 

geographical locations. Thus, the diversification benefits could be 

obtained by deploying vessels in distant trading routes.  

 

In a summary, this thesis contributes to the understanding of LPG and product 

tanker shipping market using econometric techniques. From a theoretical 

perspective, it introduces new econometric models, previously applied in other 

fields into the maritime domain to tackle the previously unsolved problems. For 

example, structural equation modeling, copula models, and discrete choice 

analysis are used. From a practical perspective, this research provides useful 
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information for shipping practitioners (shipowners, charterers, and investors) 

regarding decision makings in many aspects, for example, ship investment, 

chartering, fleet deployment and budget planning, to name just a few. 

6.3 Research limitations and future work 

The limitations of the current research and possible future research areas to 

improve this study are identified and presented in the following. 

Firstly, one limitation of this study is that it considers only physical freight rates 

which include spot and period rates in the bulk shipping market. The forward 

freight agreement (FFA) market alone is not included as it is often viewed as a 

financial risk management instrument and used to hedge huge physical freight 

fluctuations. Future researches can further explore this separate field.  

For Chapter 4, Section 4.1 tests the contemporaneous relationship between 

market variables. However, as noted by Adland and Jia (2015), newbuilding price 

and secondhand vessel price may not be directly comparable due to time-varying 

delivery lag. Future research can build upon the model by considering this time 

difference, which requires more detailed newbuilding contract and delivery data. 

Additionally, this study considers specifically the interrelationship within the 

VLGC market and does not account for the spillover effect between this market 

and smaller segments. Future research can push forward by incorporating 

interaction effects with other markets. Further studies could conduct multiple-

group modeling in the different LPG sub-sectors, especially in the area of 

measurement invariance, to investigate whether different LPG sub-sectors are 

similar or different in reference to the model parameters estimated in the VLGC 

market. 

Section 4.2 considers the dependency between LPG price spread and freight rate. 

In future research, to understand traders’ arbitrage economics and help traders for 

decision makings regarding whether to move the cargo between regions, the 

dependency between the absolute arbitrage economics (spread – cost of 

transportation) and oil prices can be examined. 
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Section 4.3 uses a single freight rate to represent freight rate movements for 

different routes, as the Baltic index only has one LPG route available. However, 

rates on individual routes may not follow exactly the same pattern in the short 

run. Furthermore, a more detailed database which separates spot and contract 

fixtures may yield interesting results. For future research, owners’ destination 

choice regarding where to load the cargo can be modeled to better understand the 

owners’ behavior. 

For Chapter 5, the scope of research is limited to the product tanker market itself. 

The dependency between product tanker rates and crude oil tanker rates can be a 

future research direction, as the two markets are often closely related and switch-

over activities from carrying clean cargoes to crude oil exist in the product tanker 

market.  
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