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Abstract

To learn the network structures used in probabilistic models (e.g., Bayesian net-

work), many researchers proposed structure learning algorithms to extract the

network structure from data. However, structure learning is a challenging problem

due to the extremely large number of possible structure candidates. One challenge

relates to structure learning in Bayesian network is the conflicts among local struc-

tures obtained from the local structure learning algorithms. This is the so-called

symmetry correction problem. Another challenge is the V-structure selection prob-

lem, which is related to the determination of edge orientation in Bayesian network.

In this thesis, we investigate the above two challenges in structure learning and

propose novel data-driven approaches to overcome these challenges when building

a Bayesian network. First, two new data-driven symmetry correction methods

are developed to learn an undirected graph of Bayesian network. The proposed

methods outperform the existing heuristic rule. Second, a weighted maximum

satisfiability (MAX-SAT) problem is formulated to solve the V-structures selection

problem. The weights are learned from data to quantify the strength of the V-

structures. Our proposed solution outperforms existing methods.

Besides, we investigate how transfer learning can be used for structure learning

with limited training examples and a source structure. In particular, we propose a

transfer learning approach to learn the structure of a Sum-Product Network (SPN)

which can be converted to a Bayesian network under certain conditions. Our novel

approach allows one to construct the target SPN with limited training examples,

given an existing source SPN from a similar domain.
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Chapter 1

Introduction

1.1 Motivation

Probability plays an important role in modeling since it can properly handle uncer-

tainty. In contrast to the deterministic models, which only give a single outcome,

the probabilistic models provide a probability distribution as a solution. Proba-

bility distributions and random variables used in probabilistic models enable the

modeling of uncertainty. But naive probabilistic modeling on the joint probabil-

ity distribution of all variables is not computationally affordable because of the

“the curse of dimensionality” problem. Hence, the probabilistic models require

certain network structures, which can simplify the relations between variables and

reduce the dimension in the model. The structure of a model sometimes can be

constructed manually using the domain knowledge. However, domain knowledge is

not always available. Hence, we have to learn the structure from the data. More-

over, if the network structure is simplified too much, the model will not be able

to capture useful relations due to its limited capacity. This is not desirable as it

loses the relations we would like to model. A good structure can keep important

relations while ignoring the insignificant ones.

Because the space of network structures is usually huge, finding an optimal struc-

ture is a difficult and challenging task. This drives the interest in structure learning,

which attempts to learn good structures efficiently and effectively from data. Af-

ter studying many structure learning algorithms, we identify the key limitation of

existing works: they did not fully utilize the given data. In particular, data is only

1
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directly used in the earliest stage of the algorithms but not in the later stages. Here,

a stage represents a group of steps for a sub-task in the algorithm. The following

stage only takes the intermediate structure results produced by the earliest stage

as input. For example, in our first study, some algorithms for Bayesian network

structure learning learn the neighborhood of each node as their intermediate struc-

ture results from data [1, 2]. The heuristic symmetry correction rule is applied to

the neighborhoods in the next stage. Then the symmetry corrected neighborhoods

are used to construct the skeleton, i.e., the undirected graph. The process is shown

in Figure 1.1. In contrast, our data-driven symmetry correction methods use data

to correct the learned neighborhoods as shown in Figure 1.2.

Data Learning the
neighborhoods

Applying the heuristic
symmetry correction rule

Constructing the
skeleton

Figure 1.1: The workflow chart of some Bayesian network structure learning
algorithms that apply the heuristic symmetry correction rule.

Data Learning the
neighborhoods

Applying our data-driven
symmetry correction method

Constructing the
skeleton

Figure 1.2: The workflow chart of Bayesian network structure learning algo-
rithms with our data-driven symmetry correction method.

Due to the difficulty and complexity in structure learning, even if the intermediate

structure results are extracted from data, data can still be useful in the later

stages of the algorithm. For instance, one of the later stages in some algorithms

for Bayesian network structure learning is learning the edge orientation. Data is

directly used to orient edges in the skeleton, where the skeleton is the intermediate

structure result from the previous stage. We attempted to deepen the idea of

multiple uses of data in the algorithm. We believed and have shown that such

multiple uses of data at different stages in the algorithm can be extended further

and used to improve the overall quality of the structure learning.

The workflow chart in Figure 1.2 is similar to the classifier chain models used in

multi-class and multi-label classification tasks [3]. The classifier chain models try

to find the optimal order for all the classification tasks. Easy ones are done first

followed by the hard ones. In our structure learning process, data is used in the

earliest stage to obtain the intermediate structure(s). The feed of both the data

and the intermediate structure(s) into the later stages is similar to the classifier

chain models. However, the difference is that in our structure learning the order
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cannot be changed and optimised like those in classifier chain models, since the

later stages in our structure learning depend on the early stage and cannot be

re-ordered.

Multiple uses of data are actually not new and have been applied to model learning.

Many probabilistic models, including Bayesian network and sum-product network,

require both structure learning and parameter learning as components in learning

the model. Data is first used to find a good structure and then further used to

find the parameters by fitting the learned structure. The same set of data is used

twice. This shows that in order to learn a model, it is common to use data to learn

different components of the model, especially learning a complex model.

1.2 Research Problems

Bayesian network (BN) has been widely used in many tasks for modeling and

inference. It is a compact and interpretable representation of a joint probability

distribution. A directed acyclic graph (DAG) represents the structure component

of BN, which is the target of structure learning. In the learning process, some BN

structure learning algorithms learn the neighborhood of each node to construct

the skeleton. The conflict between two neighborhoods is the so-called symmetry

correction problem which we will first investigate in this thesis. The V-structure

selection for edge orientation is our second research problem. It appears after we

have obtained the skeleton from the early stages of the learning algorithm. The

previous heuristic method also reuses data but we found it only considers the

conflicts among the V-structures greedily and may fail under certain conditions,

where V-structure is a key structure in BN and contains two directed arcs. So we

work on the edge orientation problem to improve the selection of V-structures for

the skeleton.

For the above two research problems, we reuse the same training data for learning

the BN structure. On the other hand, transfer learning techniques have been

developed for BN to transfer the structure or data in the source domain to the

target domain to help the structure learning in the target domain. This can be

viewed as multiple uses of data across domains. Moreover, a probabilistic model

that is closely related to BN, named Sum-Product Network (SPN), recently attracts
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much interest. SPN structure learning requires a large amount of data. When only

limited target data is available, the learned SPN does not perform well. Our

third research study investigates the use of transfer learning to improve the SPN

structure learning.

1.3 Research Contributions

Our data-driven methods aim to better handle the three research problems than

existing heuristic methods. By making better use of data, we can achieve much

better performance. Our major contributions in this dissertation are summarized

as follows:

• We investigate the symmetry correction problem which exists in the Bayesian

network local structure learning algorithms and propose two novel data-

driven symmetry correction methods. The symmetry correction is a middle

stage of the algorithms to deal with the conflict of local structures. Data is

used to perform a conditional test or a search of graphs among the nodes

involving each conflict. The result from the test or the search is used to

resolve the conflict. Our methods handle the conflicts more reasonably, com-

pared to existing simple heuristic rule. Our proposed methods achieve better

symmetry corrections and hence, produce a better Bayesian network.

• We propose a successful formulation of weighted MAX-SAT for V-structures

selection in the edge orientation of Bayesian network structure learning.

We also propose two weighting methods that measure the strength of V-

structures in terms of the dependence and conditional dependence on each

V-structure. The previous tests of V-structures are performed separately for

each V-structure. On the other hand, we test the V-structures jointly with

weights and constraints. And for a particular V-structure, the data of other

V-structures can help to decide the existence of that V-structure. We obtain

a better selection of V-structures, compared to previous methods.

• We propose a novel approach that allows one to learn and utilize a sum-

product network with limited training examples, given a sum-product net-

work derived from a similar domain. Our proposed transfer learning approach
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first utilizes the top layer clustering information on the source SPN structure

to lay the foundation for the target SPN structure. Then, the deeper layers in

the SPN structure are learned with the target data. We can take the learning

of the top layer of SPN as one stage and learning the deeper layers as another

one. With transfer learning, we do not simply reuse the target data at those

two stages. Instead, we use the target data in the later stage based on the

top layer structure of the source SPN, which is learned with the source data.

This is because limited target data cannot learn a good top layer of the SPN.

This structural transfer improves the performance of the learned SPN.

1.4 Dissertation Organization

Chapter 1 Introduction

Chapter 2 Background

BN structure learning SPN structure learning

Chapter 3 Symmetry
correction

Chapter 4 Vstructure
selection

Chapter 5 Transfer learning
on SPNs

Chapter 6 Conclusions
and future work

Figure 1.3: The content arrangement of the thesis.

The goal of this thesis is

to design and develop new data-driven techniques for improving the ex-

isting structure learning algorithms of probabilistic models derived from

data, as well as demonstrate their utility from multiple uses of data at

later stages in the algorithms.
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The dissertation is organized as follows and shown in Figure 1.3:

In Chapter 2, we provide the background for BN and SPN, including an overview of

BN structure learning and the inference in SPN. In Chapter 3 and 4, by analyzing

the procedures of existing algorithms, we propose two improvements for BN, which

use the training data multiple times, at the later stages of the structure learning to

obtain better intermediate structure results. Firstly, we propose two data-driven

symmetry correction methods to better handle the inconsistency in the local struc-

tures for learning the skeleton, described in Chapter 3. Secondly, we design two

weighting methods and build a formulation to incorporate V-structures and their

constraints as a weighted MAX-SAT problem for learning the edge orientation of

a known skeleton, described in Chapter 4. In Chapter 5, we demonstrate that

transfer learning techniques can be applied to improve the SPN structure learning

algorithm, LearnSPN. Finally, Chapter 6 concludes this dissertation and points out

three promising directions for future work.



Chapter 2

Background

In this chapter, we provide some background knowledge of Bayesian network and

sum-product network, two representatives of probabilistic models, and an overview

of the Bayesian network structure learning algorithms, since we will investigate the

structure learning for Bayesian network in Chapter 3 and 4 and the transfer learning

on the structure learning for sum-product network in Chapter 5. This background

knowledge serves as a basis for understanding the problem that this dissertation

tries to solve. Specifically, we first make a brief introduction to Bayesian network

and then move to different types of Bayesian network structure learning. For

the sum-product network, we introduce the basic definitions and explain how the

inference is performed.

2.1 Bayesian Network

2.1.1 Bayesian Network Model

A Bayesian network (BN) represents the probability distribution P of a set of n

variables X = {X1, . . . , Xn} [4]. It contains a directed acyclic graph (DAG) G

which represents its structure, and a set of conditional probability tables (CPTs) Θ

which represents its parameters. The nodes in the DAG represent the variables in

the distribution while the arcs between nodes represent the possible dependency

and determine how the CPTs are constructed. The CPTs store the probability of

each state given the parents of the target node, P (Xi|Pai), where Pai is the set

7
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of the parents of Xi in G. From this, the joint distribution P (X) is factorized as

follows:

P (X) =
n∏
i=1

P (Xi|Pai) (2.1)

In Figure 2.1, an example of Bayesian network is shown. It models the probability

dependencies among four binary random variables: Cloudy, Sprinkler, Rain and

WetGrass. Each row of each CPT records a set of the probabilities that sum up

to one. For a particular combination of values (“True” or “False”) of the parents

of a variable, the probabilities of the variable taking all possible values (“True”

and “False”) are listed in the corresponding entries. For example, given that it is

cloudy, the probability of raining is 0.8.

Rain

Wetgrass

Sprinkle

P(C = T) P(C = F)

0.5 0.5

C P(S = T) P(S = F)

C = T 0.1 0.9

C = F 0.8 0.2

Cloudy

C P(R = T) P(R = F)

C = T 0.8 0.2

C = F 0.1 0.9

S R P(W = T) P(W = F)

S = T R = T 0.99 0.01

S = T R = F 0.9 0.1

S = F R = T 0.9 0.1

S = F R = F 0.01 0.99

Figure 2.1: An example of Bayesian network with four binary variables.

Node X is a parent of Node T and then node T is a child of node X if there is an

arc from node X to node T . Nodes X and Y are spouses of each other if they have

a common child and there is no arc between X and Y . Nodes X, Y and Z form a V-

structure if X and Y are spouses and Z is their common child. The skeleton of a BN

is obtained by stripping the orientation of the DAG. A V-structure X → Z ← Y

implies one dependence and one independence based on its structural properties.

One is that given the common child Z, X and Y are dependent and the other one

is that X and Y are independent. V-structures are crucial to the structure of a BN.

From Theorem 2.1.1, the skeleton and V-structures uniquely decide an equivalent

class, which can be represented by a completed partially directed acyclic graph



Chapter 2. Background 9

(CPDAG), covering a set of DAGs. CPDAG may have directed and undirected

edges. CPDAG has edge X → Y if and only if the edge X → Y is common to

all DAGs in its equivalence class. If the class contains a DAG with X → Y and a

DAG with X ← Y , then the CPDAG has the undirected edge X − Y .

Theorem 2.1.1. [5] Two DAGs are equivalent if and only if they have the same

skeleton and the same V-structures.

If X,Y and Z are three disjointed subsets of nodes in a DAG G, then Z is said

to d-separate X from Y if along every path between a node in X and a node

in Y there is node W satisfying one of the following two conditions: (1) W has

converging arrows, and none of W or its descendants are in Z, or (2) W does not

have converging arrows and W is in Z [4]. The d-separation relationship of X and Y

given Z can be read from the DAG G. On the other hand, within a distribution P,

there hold conditional independence relations among variables or sets of variables.

A DAG G and a distribution P are faithful to one another when the d-separation

statements of G and the independence statements of P are equivalent [6].

For each node in the DAG, there are local structures that describe the relationship

between the target node and its neighboring nodes. The local structures consist of

the parents and children set (PC) and the Markov Blanket (MB) [4]. The nodes

in the PC are also known as neighbors because the parent nodes and child nodes

are the only nodes that have direct arc connections to the target node. The MB of

a target variable T is defined to be a set of nodes conditioned on which all other

nodes are independent of T [4]. In BNs, the MB consists of PC and spouses, since

by conditioning on it, all other nodes are independent of the target node, due to

the structure of DAG.

2.1.2 Overview of Structure Learning

Compared to the well-studied parameter learning of BN given a known DAG [7],

the structure learning is a challenging task. Since the exact BN structure learning

is an NP-hard problem [8], there is no algorithm that can scale to a large number

of variables. However, it is worth noting that there are still exact search algorithms

proposed to find the optimal DAG for a certain score criterion. A dynamic pro-

gramming approach decomposes the task of finding the best DAG for a variable
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set W ⊆ V into three sub-tasks, which are finding the best sink S ∈ W, finding

the best parents for the sink S, and finding the best DAG for W \ S [9]. By us-

ing this decomposition repetitively, the algorithm finds an optimal ordering that is

compatible with the best DAG. Given such an optimal ordering, it is much easier

to find the best DAG. The ordering limits the candidate parents for each node

since only the predecessors of a node in the ordering can be its parents. Moreover,

integer programming is also used to solve the search over graph structures [10, 11].

The structure learning problem is formulated as a linear program over a polytope,

which represents DAGs. Hence, various integer programming solving techniques

can be applied and then the solution is interpreted back to BN to get an optimal

DAG.

In addition, the tree-structured BN, a structure where each node has at most one

parent, can be solved optimally by the Chow-Liu algorithm [12]. The Chow-Liu

algorithm constructs the approximate distribution that has the minimum Kullback-

Leibler divergence to the actual distribution, by finding the maximal spanning tree,

with weights from the mutual information.

The algorithms above find the optimal DAG but they also have their limitations.

The exact search methods cannot handle a large number of variables and the

Chow-Liu algorithm restricts the learned BN to be tree-structured. To address

the problem of learning the general BN with a large number of variables, heuristic

local algorithms [2] are proposed, as they can scale to high-dimensional data sets

without structure restrictions. Another approach is the heuristic search algorithms,

which can scale to high-dimensional data sets as well. There are three types of

algorithms for BN structure learning, namely: constraint-based algorithms, score-

based algorithms, and hybrid algorithms.

Constraint-based algorithms learn the network structure by analyzing the prob-

abilistic relations using conditional independence tests on the training data [13].

It then uses these relations as constraints to find the network structures that are

consistent with these constraints by removing or keeping edges in the network.

There are many constraint-based algorithms proposed, such as the SGS [14], the

PC algorithm [15], and Max-Min Parents and Children (MMPC) algorithm [1].

On the other hand, score-based algorithms perform some heuristic search, such as

hill-climbing and tabu search [16] in the space of graph structures. It assigns a
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score to each candidate DAG G and this score describes how well the data D fits

G. The score is the posterior probability of G given D. By the Bayes’ rule,

Score(G,D) = P(G|D) =
P(D|G)P(G)

P(D)
(2.2)

P(D|G) is the likelihood of D given G and P(G) is the prior over the DAGs.

During the search, the score is used to evaluate the candidate DAGs, and it is

maximised to find the optimal DAG. We only need to maximise the numerator,

since the denominator does not depend on G. Widely-used scores include the

Bayesian Information Criterion (BIC) [17] and Bayesian Dirichlet equivalent uni-

form (BDeu) [18]. As the search is a greedy search, it may be trapped at some

local optimal point and cannot reach the global optimal point. A common space

of graph structure would be the space of DAGs. The allowed operators on DAG

are arc addition, arc deletion, and arc reversal. Another space can be used is the

space of CPDAGs, which represents the equivalence class of DAGs. The greedy

equivalence search (GES) performs a greedy search on the space of CPDAGs [19].

The search space of CPDAGs is smaller than the space of DAGs and the search

steps between equivalent DAGs are saved because of the equivalence class.

Furthermore, a hybrid algorithm is a combination of score-based and constraint-

based algorithms. One popular type of hybrid algorithms learns the skeleton by

using the constraint-based algorithm and performs search on the space restricted

by the skeleton. An example of such hybrid algorithms is the max-min hill-climbing

algorithm (MMHC) [20].

2.2 Sum Product Network

2.2.1 Sum Product Network Model

A Sum-Product Network (SPN) is a probabilistic model with a deep architec-

ture [21]. An SPN S is represented by a rooted, directed acyclic graph (DAG)

with internal sum nodes and product nodes over a set of random variables V =

{X1, . . . , Xn}. The leaves of SPNs are univariate distributions and there is a pos-

itive weight wij attached to each edge between sum node i and its corresponding
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child node j. S(x) is the unnormalized probability of the instance x, i.e., the value

of the root when the network is evaluated bottom-up, given X = x.

The scope of a node i, Xφi is the set of variables in its descendants. An SPN

is decomposable if the scopes of the children of product nodes are all disjointed.

An SPN is complete if the scopes of the sum node’s children are the same. If

an SPN is decomposable and complete, then it is valid [21]. Validity, together

with normalization conditions,
∑

j wij = 1 and the normalized leaf distribution

ensures that evidence probability can be calculated by evaluating the network, i.e.

P (X = x) = S(x) and the partition function Z, define as Z =
∑

x S(x) becomes

1. In the evaluation of the probability of an instance, for a leaf node i representing

variable Xk, Si(xk) = P (Xk = xk). For a sum node i, Si(xφi) =
∑

j wijSj(xφj) and

for a product node i, Si(xφi) =
∏

j Sj(xφj), where node j is a child of node i and

φi, φj are corresponding sets of variables. For example, a valid SPN containing four

components over binary variables X1 and X2 is shown in Figure 2.2. The root is a

sum node and its weights sum up to 1. The product nodes combine variables X1

and X2. The leaf nodes X̄1 and X ′
1 represent Bernoulli distributions for variable

X1 with different parameters while nodes X̄2 and X ′
2 are for variable X2.

+

* * **

�1
¯ �

′

1 �2
¯ �

′

2

0.4 0.2 0.1 0.3

Figure 2.2: An example of a valid SPN containing four components over
binary variables X1 and X2.

2.2.2 Inference

One major advantage of an SPN is its capability of performing exact probabilistic

inference, which enables the accurate and efficient query of conditional probability
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and marginal probability. For example, we can easily compute the probability

P (X1 = 1, X2 = 1) in Figure 2.2 by setting the bottom leaf nodes (X̄1 = 1, X ′
1 =

0, X̄2 = 1, X ′
2 = 0). The product nodes in the middle layer compute the product of

the corresponding leaf nodes. Only the leftmost product node gives 1 while others

give 0. And the top sum node returns the probability, 0.4∗1+0.2∗0+0.3∗0+0.1∗0 =

0.4. We can also compute the marginal probability P (X1 = 1) by setting the leaf

nodes (X̄1 = 1, X ′
1 = 0, X̄2 = 1, X ′

2 = 1). Similarly, the values are passed upwards

and the probability is 0.4 ∗ 1 + 0.2 ∗ 1 + 0.3 ∗ 0 + 0.1 ∗ 0 = 0.6. We can compute the

conditional probability by using the joint probability and marginal probability.

P (X1 = x1|X2 = x2) =
P (X1 = x1, X2 = x2)

P (X2 = x2)
(2.3)

Given an SPN, the exact inference can be performed efficiently by feeding the

data instance to the leaf nodes. In fact, inference and modeling are performed

together. This overcomes performance degradation due to approximate inference

used in intractable models, such as Bayesian networks [21]. Furthermore, an SPN

has a deep architecture which allows for more expressiveness [22, 23] and much

more efficient representation compared to shallow architecture [24]. On the other

hand, the SPN structure can be large and complex, which requires a large amount

of data and computation time to achieve an accurate structure.





Chapter 3

Improving Bayesian Network

Local Structure Learning via

Data-driven Symmetry

Correction Methods

As mentioned in Chapter 2, there are constraint-based algorithms and score-based

algorithms proposed for Bayesian network structure learning. These algorithms

learn the local structures for each node separately, which are more efficient than

learning the structure for all nodes globally. Constraint-based local algorithms [1, 2,

25, 26] and some recently proposed score-based local algorithms [27, 28] have shown

their capability of using learned local structures to construct the skeleton. However,

most of these algorithms suffer from the symmetry correction problem [2, 20] when

they build the Bayesian network from the local structures. This problem arises

when there are conflicts in the separately learned local structures.

This chapter proposes two data-driven methods to solve the symmetry correction

problem: a score-based method symG and a constraint-based method symC. To

decide the existence of the link between a pair of nodes, our score-based method

symG utilizes the Greedy Hill-Climbing search over the union of the nodes of the

local structures of the pair of nodes. On the other hand, our constraint-based

method symC performs conditional tests over those nodes. Our experimental

results show that for constraint-based algorithms, the symmetry correction problem

15
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can be better handled by symG, compared to AND-rule and symC. Moreover,

the performance of a score-based local learning algorithm (e.g., SLL [27]) is better

when symC is used, compared to using symG. We observe that the combination of

a learning algorithm of a particular type (i.e., constraint-based or score-based) and

a symmetry correction method of another type improves the overall performance.

This chapter is from our published paper [29] and organized as follows: we first

introduce the local structure algorithms that require the symmetry correction in

Section 3.1; we then describe the symmetry correction problem and the AND-rule,

a commonly used heuristic rule to solve the symmetry correction problem in Section

3.2; we propose our symmetry correction methods and describe how they work in

Section 3.3, followed by the empirical evaluation in different settings in Section 3.4.

Finally, in Section 3.5 we conclude this chapter.

3.1 Local Structure Learning

A constraint-based algorithm or a score-based algorithm can be categorized as

either a global or a local algorithm. A global algorithm takes into consideration

all the variables in the dataset when building the BN. For example, a score-based

global algorithm performs a search to find the whole network. On the other hand,

a local algorithm learns the local structures for each node separately, which usually

only involves a limited number of variables and then uses them to build the whole

network structure. The advantage of the local structure method is efficiency. The

global method considers the relations among all nodes. The computational cost

rises exponentially as the size of the nodes increases. This limits the network size

when using global methods. In contrast, the local methods focus on the target

node. If another node depends on the target node given its current local structure,

then it can be added into the local structure. Otherwise, it would be ignored. So

for each target node, only a small number of nodes often are considered, which

greatly improves efficiency.

Since only local algorithms contain the symmetry correction problem, we focus

on local algorithms in this chapter. In particular, we focus on constraint-based

ones. This is because there are many proposed constraint-based local algorithms.
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Recently, a few score-based local algorithms have been proposed. We will look at

the symmetry correction problem for one of them.

3.1.1 Constraint-based Local Structure Learning

For the constraint-based algorithms, there are global algorithms such as the SGS [14]

and the PC algorithm [15], which learn the whole Bayesian structure. There

are also local algorithms such as Grow-Shrink (GS) algorithm [25], Incremental

Association Markov Blanket (IAMB) algorithm [26], Max-Min Parents and Chil-

dren (MMPC) algorithm [1] and semi-interleaved HITON-PC (SI-HITON-PC) [2].

These constraint-based algorithms can be summarized in three stages, which are

learning Markov blankets (optional), learning neighbors and learning arc direc-

tions [30]. They learn the local structures, MB and PC, to construct the BN

structure.

In Algorithm 1, we show how the general constraint-based BN structure learning

algorithm works. After we input data and choose a learning algorithm and a

symmetry correction algorithm, we need to check that the local structure learned

from the algorithm is MB or PC (line 1). If it is PC, then we apply the symmetry

correction and construct the skeleton (lines 2,9). If it is MB, then we apply the

symmetry correction to get corrected MBs (line 2). By using these corrected MBs,

we find the PCs and we apply the symmetry correction to some of these PCs,

which contain asymmetric pairs (lines 3-8). The number of the asymmetric pairs is

usually limited due to the corrected MB. The corrected PCs are used to construct

the skeleton (line 9). After obtaining the skeleton, we learn and apply the V-

structures (line 10). The last step is to orient other possible edges while avoiding

new V-structures and directed cycles (line 11). Finally, the algorithm returns the

learned partial DAG (PDAG).

In contrast to global algorithms, such as the PC algorithm [15], which can only

handle a limited number of variables in BN, the GS algorithm [25] as a local learning

algorithm can learn much larger networks. It follows steps in Algorithm 1. It learns

the graph structure by first learning the MB and then using the MB to find the PC.

Finally, based on the MB and PC, a PDAG is constructed after the determination

of edge orientations and acyclicity checks. The algorithm usually requires the

existence of a faithful DAG and it uses the following theorem to determine the PC.
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Algorithm 1: General constraint-based BN structure learning algo-
rithm
Input: constraint-based local structure learning algorithm C, dataset D,

symmetry correction method SC.
Output: Partial DAG G.

1: Learn the local structure LS, which can be the Markov blanket MB or the
parent-child set PC, of each node Xi from V, the set of nodes, using a
constraint-based local structure learning algorithm C and dataset D.

2: Perform symmetry correction SC on LS to get symmetry corrected local
structure LS for each node Xi, if necessary.

3: if LS is the Markov blanket then
4: for Xi ∈ V do
5: Use LS(Xi) to find the PC(Xi) and perform symmetry correction SC on

PC(Xi) to get PC(Xi).
6: Set LS(Xi) to be PC(Xi).
7: end for
8: end if
9: Construct the skeleton SK based on LS from all nodes.

10: Learn the V-structures on SK from D and apply them on SK to get GV .
11: Orient other possible edges in GV while avoiding new V-structures and

directed cycles to get a partial DAG G.
12: return G.

Theorem 3.1.1. [6] Let X = (X1, . . . , Xn) be a random vector, with probability

distribution P. A faithful DAG G contains an edge between two distinct variables

Xi and Xj if and only if Xi 6⊥ Xj|S for any S ⊆ V \ {Xi, Xj}, where V =

{X1, . . . , Xn} is the variable set.

An edge should be removed when any of the tests conditioning on all subsets of the

set S are found to show independence. The set SXi,Xj
such that Xi ⊥ Xj|SXi,Xj

and causes the removal of the edge (Xi, Xj) is called the sep-set.

The first part of the GS algorithm is the GS Markov blanket algorithm, which

learns the MB. It contains two phases: a growing phase and a shrinking phase.

The growing phase adds any variables that are dependent on the target variable

one by one into the set S. In each iteration, the conditioning set is the previously

obtained S and S starts from the empty set. The set S at the end of the growing

phase should contain the MB. However, it may contain some variables which are

not in the MB. So the shrinking phase is to remove these variables by checking if

each one is independent of the target variable given the rest nodes in S. Based on

the definition of MB, the target variable is independent of the rest of the variables
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given the MB. Hence, conditional independence tests are used to obtain MB from

S. After getting the MB, the PC is constructed by testing whether one can find a

sep-set such that by conditioning on it, the target node and the tested node in the

PC are independent. With the help of MB, candidates of sep-set can be limited to

the MB of both nodes [30]. Then a V-structure detection approach [31] is applied

to the skeleton obtained from the PC, to orient the edges. Finally, the Meek’s

rule [32] and acyclicity constraints are applied to orient the rest of the edges to

form the DAG.

The IAMB algorithm [26] also has two phases similar to the GS algorithm. The

difference lies in the growing phase (phase I). The order of variables added to S in

the GS algorithm is predefined or based on the strength of association conditioned

on the empty set. However, for the IAMB algorithm, the next variable is found

based on the association conditioning on the current Markov Blanket (CMB), an

estimate of the MB. Hence, strongly associated variables can be added earlier to

reduce the number of variables needed to remove in the shrinking phase (phase II).

The MMPC algorithm [1] has two phases as well but it focuses on learning the

PC directly instead of learning the MB first. In phase I, a max-min method is

used to choose variables. For each variable, a conditioning set which minimizes

the association to the target variable is found. Then the variable that has the

maximum association is added into the candidate parents and children (CPC) set.

In phase II, if there is any independence between the target node and one node of

the CPC, given all subsets of the rest of the nodes in CPC, then this node should

be removed from the CPC.

MMPC only finds the PC of each node. To find the MB, the MMMB algorithm

is needed. The MMMB algorithm contains the MMPC algorithm as a subroutine.

Since spouses have common children with the target variable, the fake MB, which

is a superset of the MB, can be found by applying the MMPC algorithm twice,

which is the union of the PCs of the PC nodes of the target variable. In phase II,

spouses are identified by testing the property that spouses are dependent on the

target variable conditioning on their common children.

The semi-interleaved HITON-PC algorithm is similar to the MMPC algorithm.

The inclusion step is done by prioritizing variables, throwing away independent

ones, and moving the highest-priority variable to tentative parents and children
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(TPC) set, a superset of PC. Every time a new variable is added to TPC, the elim-

ination step tries to remove some weakly relevant variables. The word “interleaved”

means that the inclusion and elimination steps are alternately repeated. The word

“semi” means that a full variable elimination is only performed when the priority

queue is empty; during other iterations only the most recently included variable is

checked for elimination. The MB can be found through the same algorithm used

in the Max-Min Markov Blanket (MMMB) algorithm.

In summary, all these constraint-based local algorithms contain two phases. The

first one is expanding the set of candidates of MB or PC. The second phase is

deleting the unnecessary variables and keeps the necessary ones in the MB or PC.

Through these two phases, it learns the MB or PC. The MB and PC can be used

to find each other. So the local BN structure is obtained, consisting of the MB

and PC, of each variable. These local structures are then used to get the skeleton.

Finally, after directing the orientation of the edges, the partial DAG is constructed.

3.1.2 Score-based Local Structure Learning

The score-based local learning algorithm (SLL) [27] learns the PC and MB for each

node by locally applying the BN exact learning algorithm and then constructing

the DAG, based on these learned MB and PC. During each iteration of the local

search of each node, SLL will add one node from the rest of the unused nodes and

perform the exact algorithm, dynamic programming algorithm [9], over the union

of the target node, the added node and the current PC(MB) to get the optimal

local DAG. The PC(MB) of the target node in the optimal local DAG is then used

for the next iteration. The final PC(MB) is obtained after all nodes have been

processed.

The graph growing structure learning (GGSL) [28], applying SLL as a subroutine,

is a score-based algorithm as well. The difference is that it does not use the learned

PC and MB of each node together but instead updates the learned local DAG into

the global DAG gradually. It is an expanding process as it starts from a node to

update its local DAG and then moves to the nodes in the PC of this node to update

their local DAG while avoiding conflicts with previous updates. It continues until

all nodes are updated. This algorithm, in a way, bridges the gap between local and

global algorithms.
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3.2 Symmetry Correction Problem

3.2.1 Problem Description

From the definition of PC and MB, they should be symmetric; i.e., if node X is

in the PC(MB) of node T , then T should be in the PC(MB) of X as well. For

global algorithms, symmetry correction is not necessary, as the PC and MB are

always symmetric. However, the local algorithms may produce asymmetric pairs

of PC(MB) because local structure learning is applied to nodes independent of one

another. For both constraint-based and score-based local algorithms, symmetric

correction is required.

For example, in Figure 3.1, the PC of node C and F are learned from a local

algorithm. PC(C) = {A,D, F} and PC(F ) = {E,H}. There is an asymmetric

pair (C,F ). The problem is whether the edge between node C and F should be

kept or not.

E
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                   (a)                                                (b)

Figure 3.1: (a) The local structures of Node C and F . (b) The symmetry
correction problem for the integrated structure.

3.2.2 Previous Approach

One common method to handle the symmetry correction problem is to simply

correct the asymmetric pairs by treating them as false positive and removing both

nodes from the PC or MB of each other [13]. This is called the AND-rule [28].



22 3.2. Symmetry Correction Problem

Definition 3.2.1. AND-rule [28] For a node X to be adjacent to T in G, the

following two statements hold true: (1) X must be in the PC of T and (2) T must

be in the PC of X, i.e., X ∈ PCG(T ) and T ∈ PCG(X).

The AND-rule is widely used in constraint-based and score-based local algorithms.

For the example in Figure 3.1, after applying the AND-rule to the asymmetric pair

(C,F ), PC(C) = {A,D}, and PC(F ) = {E,H}. The AND-rule is simple and it

fits Theorem 3.1.1.

Let us apply MMPC to the example in Figure 3.1. In phase II of MMPC, the

CPC is already obtained, and some nodes should be removed to get the PC. The

criterion for removal is to check whether the node is conditionally independent

of the target node, given any subset of the rest of the CPC. Assume CPC(C) =

{A,D, F} and CPC(F ) = {C,E,H}. For node C, by conditioning on any subsets

of CPC(C) \ {F} = {A,D}, node C and node F are dependent. So node F

is kept in the CPC(C). However, for node F , by conditioning on a subset of

CPC(F ) \ {C} = {E,H}, (say) set {E}, node F and node C are independent. So

node C is removed from the CPC(F ). This evidence indicates that node E is a sep-

set, which separates node C and F , but it is irrelevant of what happens to CPC(C).

So an asymmetric pair (C,F ) is produced from the algorithm due to separate

PC learning for the two nodes. The AND-rule returning CPC(C) = {A,D} and

CPC(F ) = {E,H} based on this evidence may not be accurate and may lead to

inaccurate DAG learned from the PC and MB.

An asymmetric pair in PC or MB occurs when there is a conflict of learned PC or

MB between a pair of nodes. This indicates a possible dependency or conditional

dependence between the pair of nodes. Hence, a more careful examination is needed

to decide whether such dependency exists. There can be two cases: Type I error

and Type II error. In the first case, the algorithm wrongly detects some dependency

though the dependency does not exist. In the second case, the dependency exists,

but the algorithm fails to detect it fully. As both cases are possible, we need to

utilize available data to verify the existence of the dependency.

As the PC and MB relations are symmetric, the symmetry correction can be viewed

as a symmetry restriction, which appears in other BN learning algorithms as well.

The Constrained Hill Climbing (CHC) [33] algorithm uses a progressive restriction

of the neighborhood to help the search. The restriction on arcs can be extended
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to restriction on edges due to the symmetry of conditional independence [34] and

this can improve the search. This restriction over edges is similar to the symme-

try correction for PC and MB. Enforcing such restrictions can make the learned

network more consistent and help the BN structure learning.

GGSL can avoid the symmetry correction problem as it includes the score-based

local learning (SLL) to learn the local DAG and update the global DAG [28]. Since

for each updating, the locally learned DAG is a proper DAG, which has symmetric

PC and MB, it avoids the symmetry correction problem implicitly. However, there

may be conflicts between the current global DAG and updating local DAG. Hence,

some rules are used to adapt the updating local DAG to the global DAG. This can

be viewed as a shift from the symmetry correction problem to the global and local

DAG consistency problem. Besides, this cannot be applied to constraint-based local

algorithms, because there is no local search updating to guarantee symmetries in

constraint-based algorithms. Therefore, symmetry correction is still required for

constraint-based local algorithms.

3.3 Proposed Symmetry Correction Methods

In Section 3.2, we describe how the symmetry correction problem occurs when

conflicts and inconsistency arise in learned local structures. The most common

approach for symmetry correction is the use of AND-rule [28], which allows the

relation between a pair of nodes to exist when local structures agree on the re-

lation. Its advantage is simplicity and consistency with the evidence from the

local structures. However, the AND-rule is a heuristic approach, and it cannot

accommodate uncertain conflicts in the learned local structures. These weaknesses

can be overcome when the training data is used for symmetry correction. Here,

we describe and discuss two novel data-driven methods to handle the symmetry

correction problem: a score-based method symG and a constraint-based method

symC.
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3.3.1 Intuition

The occurrence of conflicts in local structures is similar to inconsistencies from

the edge restrictions [35]. For example, a simple inconsistency of edge restriction

happens when the existence and absence of the same edge occur at the same time.

Similarly, in the symmetry correction problem, the existence and absence of the

PC(MB) relation contradict to each other in two local structures learned using a

BN local structure learning algorithm. One of the reasons for the occurrence of

conflicts is that in the learning algorithms, the ordering of nodes processed for the

target node affects the learned local structure of the target node. Take node C in

Figure 3.1 as an example. The neighbors of node C, {A,D, F}, can be different if

we test the dependency with node C in a different ordering. Suppose the ordering

{A,D, F,E,H} lead to the neighbors {A,D, F}. The ordering {D,A, F,E,H},
which tests node D first, may lead to the neighbors {D,F}, because conditioning

on node D, node C and node A can be tested to be independent while previously

conditioning on node A, node C and node D are dependent. The change of con-

ditioning sets along the way of testing also affects the local structure of the target

node.

For existing local structure learning algorithms, training data are used only to

learn the local structures with only the AND-rule heuristic correction mechanism

for both constraint-based and score-based algorithms. Either of the algorithms

cannot identify and eliminate conflicts when the local structures are learned.

Our proposed hybrid framework overcomes the limitation of existing BN local struc-

ture learning algorithms by integrating an alternative data-driven symmetric cor-

rection mechanism with an existing learning algorithm. The symmetric correction

mechanism provides another “viewpoint” based on the same training set to correct

the learned structures. For our proposed hybrid framework, a constraint-based

learning algorithm is paired up with a score-based correction method. Similarly,

a score-based learning algorithm is paired up with a constraint-based correction

method. Towards this end, the hybrid framework can be understood as the inclu-

sion of two different types of information to build the BN structure.
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3.3.2 Score-based Symmetry Correction Method

For a constraint-based structure learning algorithm, an asymmetric pair of relations

indicates a possible failure of the hypothesis test. This may be due to the large

conditioning set. As a result, a different type of test cannot work either. Hence, a

shift to the score-based method can be a better choice. Furthermore, the success

of MMHC, which restricts the search space and performs a search on the skeleton,

suggested that a search over local constraints is a good approach.

Constraint-based algorithms use the conditional independence test to decide whether

the conditional independence X ⊥ Y |S holds or not, where X and Y are variables

and S is a subset of variables. The results of the tests are called constraints. The

graph learned by the method is the one that satisfies the most constraints. As

mentioned in [6], constraint-based algorithms require the assumption of faithful-

ness, that the data to which the algorithm is applied is generated from distri-

butions which have a corresponding faithful DAG. But in some cases, the DAGs

are not faithful. And even if a faithful DAG exists, the power of the hypothesis

test decreases rapidly as the size of the conditioning set increases. When the null

hypothesis H0 : X ⊥ Y |S is accepted, the edge X − Y is removed. But for hy-

pothesis testing, the null hypothesis is never accepted. The alternative hypothesis

H1 : X 6⊥ Y |S is accepted when there exists an evidence to reject H0. No evidence

to reject H0 does not mean H0 is true and should be accepted.

The score-based method symG shown in Algorithm 2 performs a local (tabu)

search [36] for a PC asymmetric pair (X,T ) over the union of the PC(X) and

PC(T ) in the space of DAG. The allowed operators are arc addition, arc deletion,

and arc reversal. We start the search with a network G0 which has no arc between

X and T , and X connects to the PC of X with directed arcs from X and so does

T . The number of iterations the tabu search can perform without improving the

best network score is set as the number of arcs in the graph. If locally learned

network Gl finally contains an arc between X and T , we put X and T into the PC

of each other. Otherwise, we exclude both of them. It is worth noting that the

search result is only used to decide the link of the asymmetric pair (X,T ). This is

done separately for each asymmetric pair so the search result for pair (X,T ) does

not affect other asymmetric pairs. Any other information obtained in the search is

discarded. For example, in Figure 3.1, for the asymmetric PC pair (C,F ), symG

perform a search over the nodes of their neighborhood, {A,C,D,E, F,H}. Only
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Algorithm 2: SymG(LS, D)

Input: local structures LS of each node obtained from a learning algorithm,
where LS can be the Markov blanket MB or the parent-child set PC,
dataset D.

Output: symmetry corrected local structures LS of each node.
1: Extract asymmetric pairs of nodes A by going through all local structures LS

of each node and checking if the pair of nodes is contained in the local
structure of each other.

2: The existent set E ← ∅ and non-existent set N ← ∅.
3: for each pair of nodes (Xi, Xj) in A do
4: Perform a greedy search using D over the union of LS(Xi) and LS(Xj)

with a starting DAG G0, where G0 contains arcs from Xi to LS(Xi) and Xj

to LS(Xj) and no arc between Xi and Xj, and obtain a DAG Gl.
5: if in Gl, LS(Xi) contains Xj and LS(Xj) contains Xi. then
6: The pair (Xi, Xj) is confirmed to be existent and add it into E .
7: else
8: The pair (Xi, Xj) is confirmed to be non-existent and add it into N .
9: end if

10: end for
11: Update the LS of each node to symmetry local structures LS according to E

and N .
12: return symmetry corrected local structures LS of each node.

the link between C and F is considered. Other links, such as the link between A

and E, are ignored. Similarly, this can be done to the MB asymmetric pair.

Our search-based method examines the potential edge directly. In GGSL, the

determination of the edge is more implicit. The number of such searches depends

on the number of asymmetric pairs, but it is usually only a portion of the total

number of pairs of nodes in the DAG as shown in Table 3.2. This also depends on

the data size and the algorithm used, but this means that we do not need to perform

the search for every pair of nodes during symmetry correction. The computation

cost in enforcing the AND-rule is high in SLL, but it can be reduced [37]. Here,

we care more about the cost of a single symmetry correction and the number of

symmetry corrections required instead of the cost for the exact BN learning due to

symmetry restriction.
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3.3.3 Constraint-based Symmetry Correction Method

Score-based structure learning algorithms evaluate a few candidate structures and

choose the best one based on a score criterion. An asymmetric pair resulted from

two local searches indicates that one or both of them get stuck at some local optimal

structure, especially when the search space is large compared to the number of

visited structures. An additional search over the local structures may not be very

helpful, but a constraint-based method can be an alternative to get around with

those sub-optimal points, as it only considers the conditional dependence between

the pair of nodes.

Figure 3.2: Examples of three types of relationship among three nodes (A-C-
B).

The constraint-based method symC shown in Algorithm 3 and 4 is based on

conditional independence tests. For an MB asymmetric pair, we perform the test

conditioning on the union of the MBs of both nodes and they are not in the MB

of each other if the test shows independence. If we happen to know the PC of

both nodes, then we can check the set of common neighbors. No common neighbor

means no common child, which implies that the MB pair is non-existent. We note

that in the V-structure, conditioning on the common child C, the two parents, A

and B, are dependent, as shown in Figure 3.2 (a). On the other hand, for the

networks in Figure 3.2 (b) and (c), conditioning on C, A and B are independent.

If the set of common neighbors is not empty, we can perform tests conditioning on

all subsets of them. Any dependency would indicate the existence of the MB pair.

For a PC asymmetric pair, we could apply a conditional independent test between

X and T conditioned on all subsets of the intersection of their PCs if the intersection

exists. However, the intersection is usually empty. Therefore for a particular

pair (Xi, Xj), we decide to test the conditional independence by conditioning on



28 3.3. Proposed Symmetry Correction Methods

Algorithm 3: SymC(MB, D)

Input: The Markov blanket MB of each node obtained from a learning
algorithm, the parent-child set PC(optional), dataset D

Output: symmetry corrected MB of each node.
1: Extract all asymmetric MB pairs of nodes, A by going through all MB and

checking if a pair of nodes is contained in the MB of each other.
2: The existent set E ← ∅ and non-existent set N ← ∅.
3: for each pair of nodes (Xi, Xj) in A do
4: if the PCs of Xi, Xj are not known then
5: Apply a conditional independent test between Xi and Xj conditioned on

the union of the MB(Xi) and MB(Xj).
6: if the test shows dependence then
7: The MB pair (Xi, Xj) should exist and add it into E .
8: else
9: The MB pair (Xi, Xj) should not exist and add it into N .

10: end if
11: else
12: if the intersection of PC(Xi) and PC(Xj) is not empty then
13: Apply conditional independent tests between Xi and Xj conditioned

on all subsets of the intersection of their PCs.
14: if any test shows dependence then
15: The MB pair (Xi, Xj) should exist and add it into E .
16: else
17: The MB pair (Xi, Xj) should not exist and add it into N .
18: end if
19: else
20: The MB pair (Xi, Xj) should not exist and add it into N .
21: end if
22: end if
23: end for
24: Update the MB of each node to symmetry corrected MB according to E and
N .

25: return MB of each node.

the all subsets of a set S to find a sep-set. If no sep-set SXi,Xj
exists, which

makes Xi and Xj independent, then it implies that there is an arc between Xi

and Xj from Theorem 3.1.1. S can be the set of the rest of the nodes but it

does not have to be that big. Since we have already learned the Markov blankets

MB(Xi) and MB(Xj), (or CPC(Xi) and CPC(Xj)), we can limit the size of S to

reduce the number of tests. If Xj /∈ MB(Xi), then by the definition of MB, Xi is

separated from Xj by SXi,Xj
= MB(Xi). On the other hand, if Xj ∈ MB(Xi),

then SXi,Xj
⊆MB(Xi)\Xj and SXi,Xj

⊆MB(Xj)\Xi [30]. To further reduce the



Chapter 3. Improving Bayesian Network Local Structure Learning via
Data-driven Symmetry Correction Methods 29

Algorithm 4: SymC(PC, MB, D)

Input: The parent-child set PC and the Markov blanket (or candidate
parent-child set) MB of each node obtained from a learning
algorithm, dataset D

Output: symmetry corrected PC of each node.
1: Extract all asymmetric PC pairs of nodes A by going through all PCs and

checking if a pair of nodes is contained in PC of each other.
2: The existent set E ← ∅ and non-existent set N ← ∅.
3: for each pair of nodes (Xi, Xj) in A do
4: Set S to be the smaller one of {MB(Xi),MB(Xj)}.
5: if S is empty then
6: Xi and Xj should be not connected and add them into set N .
7: else
8: Apply conditional tests on Xi and Xj conditioned on all subsets of S.
9: if all tests show dependence then

10: Xi and Xj should be connected and add them into E .
11: else
12: Xi and Xj should be not connected and add them into N .
13: end if
14: end if
15: end for
16: Update the PC of each node to symmetry corrected PC according to E and
N .

17: return PC of each node

number of tests, we take the smaller MB from MB(Xi) and MB(Xj) as S. For

example, in Figure 3.1, for the asymmetric PC pair (C,F ), let us assumeMB(C) =

PC(C) = {A,D, F} and MB(F ) = PC(F ) = {E,H}, as |MB(C)| > |MB(F )|,
we will test all subsets of {E,H}.

3.3.4 Time and Space Complexity

In Algorithm 2, 3 and 4, the for loop is executed at most n(n − 1)/2 times, i.e.,

the number of possible pairs of nodes, where n is the number of nodes. Within one

loop, for symG, the cost is dominated by the greedy search and for symC, the

cost mainly depends on the size of the conditioning set.

For symG, the number of nodes in the search depends on the size of the PCs and

MBs of the two nodes in the asymmetric pair. For PC, it is approximately limited

to twice the maximum degree of the network, m, as the learned PCs are not exact.
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For MB, in the worst case, it may contain all nodes as the MB is not limited by

the maximum degree. In practice, however, the number of asymmetric pairs and

the number of nodes in the greedy search are actually much lower.

For symC, the number of tests we need to perform is 2b, where b is the size of the

conditioning set, which is bounded by the size of MB. Though still in the worst

case, the MB may cover all nodes, in our experiments, it is not very large.

3.4 Empirical Evaluation

Table 3.1: Information about the networks used in the experiments.

Name Nodes Arcs Parameters Maximum in-degree

ALARM 37 46 509 4
ANDES 223 338 1157 6
ASIA 8 8 18 2
BARLEY 48 84 114005 4
CHILD 20 25 230 2
DIABETES 413 602 429409 2
HAILFINDER 56 66 2656 4
LINK 724 1125 14211 3
MILDEW 35 46 540150 3
HEPAR2 70 123 1453 6
INSURANCE 27 52 984 3
MUNIN1 186 273 15622 3
PATHFINDER 135 200 77155 5
PIGS 441 592 5618 2
WATER 32 66 10083 5
WIN95PTS 76 112 574 7

3.4.1 Experimental Setup

We ran our experiments using software R [38] on Intel Xeon E5-1650 Processor(Six

Core HT, 3.2GHz Turbo) with 16GB of RAM. We evaluated our two proposed

methods using data generated from probability distributions of 16 BNs shown in

Table 3.1, from the BN repository of bnlearn 1 [13]. The GS, IAMB, MMPC, and

SI-HITON-PC structure learning algorithms were implemented using the R package

bnlearn [13]. The tests used were the default tests based on the asymptotic

mutual information with α = 0.05. The default maximum allowed the size of the

conditioning set was unlimited. The SLL algorithm was implemented using the

codes from [27]. Our methods modified the intermediate steps of the algorithms

1http://www.bnlearn.com/bnrepository/
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to perform the symmetry correction. We generated 500, 1,000 and 5,000 samples

from each BNs with 10 different seeds. Then we applied each algorithm to these

10 sets of data to learn the PC and MB. After that, we applied the AND-rule, and

our methods, symG and symC to the learned PC and MB to compute the results

and took the averages. We used the R package pcalg [39] to get the extension of

PDAG and bnlearn [13] to compute the Structural Hamming Distance (SHD) [20],

Bayesian information criteria (BIC) [17] and Bayesian Dirichlet equivalent uniform

(BDeu) [18]. The imaginary sample size of BDeu was set to 1. The significance of

the results was tested by paired t-test with α = 0.05 and shown in bold (if they

are better than the baseline) and underline (if they are worse than the baseline).

In addition, we ran some global score-based methods, Fast Greedy Equivalence

Search (FGES) [40], a faster version of the Greedy Equivalence Search (GES) [19],

from package r-causal, which is the R Wrapper for Tetrad Library 2, Hill Climbing

(HC) search in DAG with arc operations from bnlearn and fast constrained Hill

Climbing (FastCHC) in default settings 3 [34].

In the three stages of the constraint-based algorithms [30], the optional learning of

Markov blankets makes a difference, so we applied our proposed symmetry correc-

tion methods accordingly to the GS and IAMB algorithms as shown in Algorithm

1. These algorithms find the MB first and then perform the symmetry correction

for MB. They find the PC using the MB and perform the symmetry correction

for PC. Hence, the symmetry corrections are done twice. We only listed the MB

results since only a few asymmetric pairs of PC were obtained from the symmetry

corrected MB. MMPC and SI-HITON-PC algorithms find the candidate PC (CPC)

first and use it to find the PC. Then a symmetry correction method is applied to

the PC. The corrected PC can be used to find the MB or it simply produces the

fake MB. The fake MB is then used in the detection of V-structures to obtain

PDAG. SLL is similar to MMPC and SI-HITON-PC but it outputs both the PC

and MB. A symmetry correction method is first applied to the PC and then the

MB. As the corrected PC was known when correcting the MB using symC, we

used the information of the corrected PC as shown in Algorithm 3. The average

asymmetric pairs were shown in Table 3.2. Some networks were omitted for SLL

because the dynamic programming applied in SLL had a high cost for handling

2http://www.phil.cmu.edu/tetrad/
3http://simd.albacete.org/supplements/FastCHC.html
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large networks. Also, we ran out of memory for DIABETES, MUNIN1, and PIGS

when computing the scores.

Table 3.2: The average number of asymmetric MB pairs for GS, IAMB and
asymmetric PC pairs for MMPC, SI-HITON-PC, and SLL with 1,000 samples.
Some networks are omitted for SLL (”-”) due to the high computation cost.

MB PC

GS IAMB MMPC SI-HITON-PC SLL

ALARM 34.7 25.4 25.2 20.6 7
ANDES 373.5 477.8 160.3 204.9 128.2
ASIA 6.4 5.1 4.8 3.4 0.6

BARLEY 62 32.9 43.9 26.6 19.6
CHILD 27 14.7 11.2 9.8 1.2

DIABETES 449.5 200.3 372.9 176 -
HAILFINDER 79.7 50.5 38.3 37.4 21.3

LINK 1532.4 1642.3 580.2 744.2 -
MILDEW 22.5 20.3 20.8 16.5 -
HEPAR2 112.2 122.4 56.4 58.1 12.2

INSURANCE 24.9 24.5 19.9 18 7.8
MUNIN1 207.3 127.9 133 113.5 -

PATHFINDER 104 125.8 99.8 106 -
PIGS 1214.5 233 361.3 244.3 -

WATER 5.4 6.2 4.9 5.3 12.6
WIN95PTS 87.9 92.5 47 50.1 77.6

3.4.2 Performance Measures

We compared our two proposed symmetry correction methods with the AND-

rule over four constraint-based local BN structure learning algorithms (GS, IAMB,

MMPC, and SI-HITON-PC) and one score-based algorithm, SLL. We measured

their performance based on three criteria. The first one is the set difference in PC

and MB between the learned network and the true network and the second one is

the SHD between the learned network and the true network. The third one is the

BIC and BDeu scores of training data on the learned BN.

Let LSSC be the symmetry corrected local structures (PCs or MBs) using symme-

try correction method SC and LStrue be the local structures of the true network.

The set difference in PC(MB), DiffSC, is measured by the symmetrical difference

between the true PC(MB) and the learned PC(MB). Let a be the number of asym-

metric pairs and cSC be the number of wrongly corrected pairs using SC. SC can

be symG or symC.



Chapter 3. Improving Bayesian Network Local Structure Learning via
Data-driven Symmetry Correction Methods 33

DiffSC = Diff(LSSC,LStrue)

=
1

2a

∑
Xi∈V

|LSSC(Xi) ∪ LStrue(Xi)| − |LSSC(Xi) ∩ LStrue(Xi)|

=
cSC
a

(3.1)

It is summed over all variables and normalized with twice the number of asymmetric

pairs as one pair affects two PC(MB).

DSC = DiffAND-rule −DiffSC =
cAND-rule − cSC

a
(3.2)

DSC measures how close the learned PC(MB) is to the true network, compared

to the AND-rule method. The more positive DSC is, the better the performance

of our compared method is. As the only difference in the results of symmetry

correction methods is produced on the asymmetric pairs, it can also be viewed as

the difference in the number of asymmetric pairs corrected correctly between our

method and the baseline method as shown in 3.2. For example, assume there are

10 asymmetric pairs, the baseline method gives 2 right corrections and 8 wrong

corrections while our method gives 4 right corrections and 6 wrong corrections,

then the output is (8− 6)/10 = 0.2. It is worth noting that the output is bounded

between -1 and 1, as the extreme cases happen when one method gives all right

corrections while the other gives all wrong corrections.

To compute the BIC or BDeu scores, we need to obtain the DAG extension of the

PDAG. We orient the edges in the learned skeleton using the detected V-structures

and the Meek’s rule to get the PDAG, which may contain undirected edges and

then extend this PDAG to DAG. However, not all PDAG can be extended to

DAG. A successful extension means the undirected edges can be directed without

creating any additional V-structure or directed cycle. Finally, the DAG is fitted

with data to get the final BN and its corresponding BIC or BDeu score. A higher

score indicates a better model. On the other hand, a better symmetry corrected

MB and PC can produce a better skeleton. This can be used as the restriction

phase of the hybrid algorithms, which applies the hill-climbing algorithm on the

skeleton. Towards this end, we compute the SHD for the PDAG and the DAG

from the hybrid algorithms and the BIC and BDeu scores for the DAG extension

of the PDAG and the DAG from the hybrid algorithms.
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Table 3.3: The summary of the results symC(“C”) and symG(“G”) for GS,
IAMB, MMPC, and SI-HITON-PC in total. The numbers a/b represents a
significantly better results compared to the AND-rule baseline and b significantly
worse results. Across 16 networks and 4 algorithms, the maximum number of
significant results is 64.

Sample size 500 1000 5000

C G C G C G
diff in MB/PC 29/14 50/13 33/14 52/10 35/15 50/11
SHD 10/23 28/22 18/20 33/21 20/25 37/21
SHD hybrid 21/13 28/19 25/12 33/19 34/13 42/15
BIC 17/2 25/3 18/2 23/3 20/3 19/5
BIC hybrid 45/0 64/0 48/0 63/1 54/0 64/0
BDeu 28/1 35/1 24/0 31/1 24/0 27/0
BDeu hybrid 46/0 64/0 48/0 63/1 55/0 64/0

3.4.3 Comparison Results

Detailed comparison results are presented in Table 3.4-3.7,3.9-3.17. Table 3.3 sum-

marizes these experimental results in terms of the number of significantly better

results and significantly worse results. The hybrid algorithms using our symG and

symC show a big improvement over the AND-rule. This is because better learned

skeleton gives the hybrid algorithm a better search space.

Set Differences in PC and MB The comparison results in Table 3.4 and 3.5

show the average difference DsymG between the set difference DiffsymG using our

score-based method, symG and DiffAND-rule using the AND-rule baseline method

on the 16 datasets described in Table 3.1. The comparison results in Table 3.6

and 3.7 show the average difference DsymC between set difference DiffsymC using

our constraint-based method, symC and DiffAND-rule. Since the numbers in Table

3.4 and 3.5 are mostly positive, it is clear that symG performs better than the

AND-rule. From Table 3.6 and 3.7, one observes that the improvement of symC is

not as significant as symG. The results for the MB of MMPC and SI-HITON-PC

are not shown here because the skeleton could be constructed from PC directly.

One notes that the fake MB can provide all V-structure candidates for V-structure

detection.

Structural Hamming Distance From Table 3.3 and 3.9-3.11, one observes that

symG generally performed better than symC. As the PDAG is obtained from
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Table 3.4: The average difference DsymG between set difference DiffsymG in MB
of constraint-based algorithms (GS and IAMB) using our score-based method
symG and DiffAND-rule of the AND-rule baseline method normalized with twice
the number of asymmetric pairs.

GS IAMB
Sample size 500 1000 5000 500 1000 5000

ALARM 0.09 0.06 -0.03 0.58 0.66 0.51
ANDES 0.18 0.27 0.42 0.08 0.17 0.24
ASIA -0.06 -0.17 -0.23 0.6 0.7 0.82
BARLEY 0.12 0.02 0.1 0.22 0.27 0.38
CHILD 0.13 0.07 0.2 0.31 0.25 0.49
DIABETES 0.11 0.05 -0.12 0.37 0.14 0.19
HAILFINDER 0.2 0.27 0.18 0.37 0.36 0.32
LINK -0.08 -0.07 -0.06 0.05 0.08 0.18
MILDEW 0.1 0.25 0.32 0.29 0.41 0.28
HEPAR2 0.08 0.15 0.32 0.06 0.13 0.21
INSURANCE 0.35 0.44 0.42 0.47 0.56 0.73
MUNIN1 -0.29 -0.32 -0.34 0.19 0.26 0.08
PATHFINDER -0.05 0.07 0.33 -0.21 -0.24 0.11
PIGS -0.01 -0.01 -0.06 0.97 0.99 0.99
WATER 0.51 0.23 0.22 0.49 0.36 0.44
WIN95PTS 0.44 0.5 0.44 0.52 0.63 0.75

detecting and applying V-structures to the skeleton, the SHD partially depends on

the V-structure detection. Hence, it may not fully reflect the improvements from

set differences shown in Table 3.4-3.7.

BIC and BDeu Scores

For Table 3.12-3.17, the results of the PDAG are included. PDAG may be extended

to DAG and the average scores are computed. The one that cannot be extended to

DAG in all 10 runs is labelled with “n.e.”. As the extension requires no additional

V-structure, the PDAG sometimes extended to a DAG with a low score. On the

other hand, the DAG from hybrid algorithms has shown great improvement over

the AND-rule in both BIC and BDeu scores.

SLL Results

One observes from Table 3.8 that the score-based local algorithm has limited im-

provement against the AND-rule. However, symC is clearly more suitable than

symG for SLL. Results in Table 3.18 for PDAG are mostly negative values. Also,
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Table 3.5: The average difference DsymG between set difference DiffsymG in
PC of constraint-based algorithms (MMPC and SI-HITON-PC) using our score-
based method symG and DiffAND-rule of the AND-rule baseline method normal-
ized with twice the number of asymmetric pairs. “*” indicates the test fails due
to a constant difference for all 10 iterations.

MMPC SI-HITON-PC
Sample size 500 1000 5000 500 1000 5000

ALARM 0.3 0.44 0.39 0.39 0.41 0.38
ANDES -0.01 0.08 0.23 -0.26 -0.12 0.03
ASIA -0.17 -0.33 -0.59 0.53 0.64 0.68*
BARLEY 0.1 0.04 0.19 0.23 0.3 0.41
CHILD 0.6 0.49 0.88 0.47 0.46 0.6
DIABETES 0.11 0.01 0.03 0.39 0.22 -0.01
HAILFINDER 0.49 0.58 0.46 0.43 0.4 0.45
LINK -0.07 0.11 -0.03 -0.18 -0.17 -0.13
MILDEW 0.12 0.27 0.28 0.33 0.48 0.01
HEPAR2 0.12 0.27 0.47 0.1 0.2 0.38
INSURANCE 0.42 0.51 0.56 0.46 0.35 0.46
MUNIN1 -0.13 -0.03 -0.05 0.24 0.26 -0.13
PATHFINDER -0.04 0.08 0.23 -0.18 -0.22 0.29
PIGS 0.86 0.94 0.91 0.7 0.6 0.51
WATER 0.74 0.53 0.5 0.54 0.33 0.31
WIN95PTS 0.42 0.38 0.31 0.29 0.28 0.26

in Table 3.19 and 3.20, there are only several positive values. This could be due to

poor V-structure detections or restricted DAG extension. For DAGs returned from

the hybrid algorithm (SLL+ hill-climbing), the results are quite positive. However,

those improvements are much less compared to those from the constraint-based al-

gorithms in Table 3.12-3.17. This may be due to the fact that SLL produces less

asymmetric pairs than the constraint-based algorithms except for WATER and

WIN95PTS (see Table 3.2).

3.4.4 Discussions

The performance of FGES and HC in Table 3.9-3.17 are better than the constraint-

based algorithms. However, the computational time for these score-based algo-

rithms is usually relatively high. For example, for the network ANDES, with 1,000

samples, MMPC spends 2.2 seconds but HC spends 5.0 seconds and FGES spends

30.9 seconds. There are a few cases such as HAILFINDER using SI-HITON-PC
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Table 3.6: The average difference DsymC between set difference DiffsymC in
MB of constraint-based algorithms (GS and IAMB) using our constraint-based
method symC and DiffAND-rule of the AND-rule baseline method normalized
with twice the number of asymmetric pairs. “*” indicates the test fails due to a
constant difference for all 10 iterations.

GS IAMB
Sample size 500 1000 5000 500 1000 5000

ALARM 0.039 0.034 0.041 0 0.004 0.023
ANDES 0.196 0.255 0.409 0.004 0.003 0.001
ASIA 0.003 0 0 0 -0.032 0
BARLEY 0.004 0.003 0.038 0 0 0.026
CHILD 0.094 0.101 0.23 -0.008 -0.007 -0.018
DIABETES 0.055 -0.04 -0.079 0 0.005 0.094
HAILFINDER 0.122 0.177 0.139 0 0 0.006
LINK -0.017 -0.015 0.035 0.001 0.005 0.035
MILDEW 0.058 0.165 0.232 0 0 0.149*
HEPAR2 0.028 0.049 0.109 -0.003 -0.003 -0.001
INSURANCE 0.119 0.227 0.282 0 0 0.004
MUNIN1 -0.048 -0.04 -0.044 0 0.002 0.053
PATHFINDER 0.007 0.039 0.065 0 0 -0.008
PIGS 0.001 0.035 -0.001 0.001 0 0
WATER 0.225 0.041 0.092 0 0 0
WIN95PTS 0.159 0.151 0.198 0.028 0.041 0.044

(see Table 3.9), which outperforms FGES and HC with the help of our symG

method.

The score-based and constraint-based algorithms can be viewed as two different

ways to capture the structure information about BN from data. To understand

the relationship between the type of algorithm and the type of symmetry correction

method, we investigate the four kinds of combinations as follows.

• constraint-based algorithm + symG

• constraint-based algorithm + symC

• score-based algorithm + symG

• score-based algorithm + symC

The empirical results of average differences in PC and MB set differences show

that the most improvement can be obtained in the case of constraint-based algo-

rithm + symG. For constraint-based algorithms, symG is better than symC.
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Table 3.7: The average difference DsymC between set difference DiffsymC in PC
of constraint-based algorithms (MMPC and SI-HITON-PC) using our constraint-
based method symC and DiffAND-rule of the AND-rule baseline method normal-
ized with twice the number of asymmetric pairs. “*” indicates the test fails due
to a constant difference for all 10 iterations.

MMPC SI-HITON-PC
Sample size 500 1000 5000 500 1000 5000

ALARM -0.04 0.03 0.16 0.29 0.17 0.16
ANDES -0.17 -0.18 -0.17 -0.37 -0.37 -0.43
ASIA -0.05 -0.03 -0.06 0.16 0.21 0.31*
BARLEY -0.24 -0.41 -0.02 0.17 0.3 0.14
CHILD 0.32 0.31 0.7 0.5 0.3 0.28
DIABETES -0.16 -0.41 -0.2 0.12 -0.02 -0.45
HAILFINDER 0.25 0.28 0.21 -0.06 -0.05 -0.08
LINK -0.24 -0.05 -0.29 -0.22 -0.29 -0.28
MILDEW 0.02 0.16 0.17 0.02 0.09 -0.24
HEPAR2 -0.05 0.15 0.39 -0.06 0.05 0.23
INSURANCE 0.28 0.4 0.33 0.21 0.23 0.24
MUNIN1 -0.27 -0.16 -0.2 0.02 0.1 -0.26
PATHFINDER -0.01 0.2 0.34 -0.18 -0.2 0.27
PIGS 0.74 0.77 0.81 0.45 0.25 0.13
WATER 0.41 0.48 0.54 0.15 0.34 0.27
WIN95PTS 0.26 0.18 0.09 -0.07 -0.08 -0.17

For the score-based algorithm, SLL, symC is better than symG. To some ex-

tent, this coincides with our intuition that the combination of different types of

structure learning algorithm and symmetry correction method outperforms that of

the same type of learning algorithm and symmetry correction method. This can

be explained by the weaknesses of the structure learning algorithms, low power

hypothesis testing and sub-optimal points in the search discussed in Section 3.3.1.

A combination of a learning algorithm and a different type symmetry correction

method can alleviate the weakness of the learning algorithm to achieve better over-

all performance. This hybrid framework approach can be understood as structure

learning using two different types of BN structure information compared to using

only information used in either the constraint-based algorithm or the score-based

algorithm.

Lastly, to illustrate the complexity of the proposed symG and symC methods,

we listed the maximum number of nodes in the greedy search and the maximum



Chapter 3. Improving Bayesian Network Local Structure Learning via
Data-driven Symmetry Correction Methods 39

Table 3.8: The average difference DsymC (DsymG) between set difference
DiffsymC (DiffsymG) in PC of score-based algorithm SLL using symC (symG),
and the AND-rule baseline method normalized with twice the number of asym-
metric pairs. “*” indicates the test fails due to a constant difference for all 10
iterations.

symC symG
Sample size 500 1000 5000 500 1000 5000

ALARM 0.04 -0.02 -0.06 -0.14 -0.12 -0.29
ANDES 0 -0.01 0 -0.15 -0.13 -0.09
ASIA -0.07 0.08 -0.25 -0.27 0.25 0
BARLEY 0.05 0.09 0.15 -0.09 0.04 0.14
CHILD -0.36 -0.05 0.6 -0.5 0.11 0.45*
HAILFINDER 0 0 0 -0.35 -0.48 -0.61
HEPAR2 -0.06 -0.06 0.28 -0.07 -0.02 0.13
INSURANCE 0.12 -0.04 0.18 0.02 0.1 0.5
WATER 0 0.01 0.1 0 0 0.01
WIN95PTS 0 0.02 0.01 -0.05 -0.06 -0.12

size of conditioning set used in our experiments for each dataset in Table 3.21. We

also included the running time of symG and symC in Table 3.22.

3.5 Summary

We investigated the symmetry correction problem which exists in the BN local

structure learning algorithms and proposed a score-based symmetry correction

method symG and a constraint-based method symC. We found that there is a

big improvement when symG is applied to the constraint-based algorithms. From

our experimental results, we found that for constraint-based learning algorithms,

symG is better than symC, and symC has reasonable performance. For the

score-based learning algorithm, symC results in a limited improvement compared

to the baseline, but the use of symG does not result in better performance. This

coincides with our intuition that a hybrid algorithm that combines different types

of learning algorithms and symmetry correction methods is better than a com-

bination of a learning algorithm and a symmetry correction method of the same

type.
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Table 3.18: The average SHD of PDAG using the AND-rule(“A”), symC(“C”)
and symG(“G”) for the PDAG learned from the SLL algorithm and the DAG
learned from the hybrid algorithm (SLL + hill-climbing).

PDAG DAG

Sample size 500 1000 5000 500 1000 5000

A C G A C G A C G A C G A C G A C G

ALARM 29.4 28.2 29.3 22.4 21.6 23.5 10.6 12.2 16.7 26.2 25 26.4 17.9 17.6 18.6 13.1 13.4 14.1
ANDES 362.8 362.8 386.9 332.1 334.9 355.7 250.3 250.1 256.9 156.3 156.3 157.7 159.9 159.4 158.8 78.3 78.1 76.4
ASIA 2.8 3.2 3.2 1.5 1.4 1.4 2.1 1.9 1.8 2.3 2.7 2.7 1.5 1.1 1.3 0.8 0.8 0.8
BARLEY 77.1 78.7 78.4 71.5 72.7 70.1 64.2 65.8 64 83.9 84.9 85.5 80.8 80 79.4 62.6 58.8 62.8
CHILD 17.4 17.3 17.3 15.8 15.7 15.7 12.1 9.8 9.9 16.5 16.5 16.5 15.8 15.5 15.3 14.2 12.9 13.2
HAILFINDER 58.6 57 61.9 49 47.4 57.7 41 41.1 56 64.4 62.7 67.8 48.5 47.5 56.3 34.3 34.2 45.7
HEPAR2 135.2 136.4 136.2 117.5 118.8 117.1 90.4 88.9 88.4 108.7 108.7 109 95.3 94.6 94.8 67.9 65.9 67.4
INSURANCE 42.1 44.2 44.4 34.4 39 37.9 26.9 28.9 27.1 43.2 43.3 43.1 41.5 42.1 42.6 39.8 38.9 39.4
WATER 79.3 79.3 79.3 78.1 78.3 78.4 72.3 76.3 75.3 60.2 60.2 60.2 60.3 60.3 60.3 56.1 56.1 56.1
WIN95PTS 103.6 108.4 117.4 92.4 95.9 105 70.3 70.1 81.2 83.1 82.3 86.7 68.4 65.5 71.7 49.8 48.4 60.1

Table 3.19: The average BIC scores per sample of the DAG learned from the
hybrid algorithm (SLL + hill-climbing), with the AND-rule(“A”), symC(“C”)
and symG(“G”). “n.e.” is the short name of ”no extension”.

PDAG DAG

Sample size 500 1000 5000 500 1000 5000

A C G A C G A C G A C G A C G A C G

ALARM n.e. n.e. n.e. n.e. n.e. n.e. -11.051 -11.034 -11.023 -13.017 -12.906 -12.953 -11.926 -11.917 -11.907 -11.1 -11.099 -10.943
ANDES n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -433.878 -433.878 -433.265 -91.196 -91.182 -90.923 -93.749 -93.747 -93.681
ASIA -2.34 -2.319 -2.328 -2.299 -2.297 -2.296 -2.338 -2.319 -2.319 -2.341 -2.338 -2.338 -2.298 -2.295 -2.296 -2.259 -2.259 -2.259
BARLEY -77.705 -77.065 -78.421 -73.081 n.e. n.e. n.e. n.e. n.e. -74.424 -74.04 -74.148 -70.415 -69.927 -70.272 -61.45 -61.154 -61.248
CHILD -13.617 -13.659 -13.423 -13.017 -12.751 -13.018 -12.683 -12.619 -12.65 -13.369 -13.369 -13.369 -12.986 -12.985 -12.985 -12.534 -12.512 -12.515
HAILFINDER -82.419 -80.01 -82.828 -81.498 -80.573 -83.082 -60.942 -60.859 -58.151 -57.166 -57.104 -55.876 -56.068 -56.005 -53.307 -54.823 -54.785 -50.537
HEPAR2 n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -33.643 -33.639 -33.639 -33.278 -33.271 -33.271 -32.798 -32.79 -32.789
INSURANCE n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -15.63 -15.523 -15.615 -14.819 -14.773 -14.788 -13.846 -13.784 -13.8
WATER -28.637 -28.637 -28.637 n.e. n.e. n.e. n.e. n.e. n.e. -14.283 -14.283 -14.283 -13.736 -13.736 -13.736 -13.164 -13.146 -13.162
WIN95PTS -12.14 n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -12.175 -11.897 -11.536 -11.645 -11.322 -10.988 -10.699 -10.517 -10.188

Table 3.20: The average BDeu scores per sample of the DAG learned from the
hybrid algorithm (SLL + hill-climbing), with the AND-rule(“A”), symC(“C”)
and symG(“G”). “n.e.” is the short name of ”no extension”.

PDAG DAG

Sample size 500 1000 5000 500 1000 5000

A C G A C G A C G A C G A C G A C G

ALARM n.e. n.e. n.e. n.e. n.e. n.e. -10.94 -10.919 -10.894 -12.348 -12.213 -12.287 -11.506 -11.487 -11.451 -11.01 -11.008 -10.849
ANDES n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -433.445 -433.445 -432.834 -90.996 -90.982 -90.721 -93.691 -93.689 -93.625
ASIA -2.32 -2.298 -2.307 -2.288 -2.286 -2.285 -2.332 -2.314 -2.314 -2.323 -2.319 -2.319 -2.288 -2.285 -2.286 -2.256 -2.256 -2.256
BARLEY -69.347 -68.791 -69.917 -66.369 n.e. n.e. n.e. n.e. n.e. -71.583 -71.07 -71.198 -68.024 -67.032 -67.777 -57.721 -57.225 -57.522
CHILD -13.496 -13.515 -13.436 -13.033 -12.762 -13.041 -12.677 -12.622 -12.652 -13.378 -13.378 -13.378 -13.007 -13.006 -13.005 -12.547 -12.526 -12.529
HAILFINDER -56.723 -56.417 -55.774 -55.887 -55.374 -53.694 -54.757 -54.681 -51.071 -55.837 -55.755 -54.607 -55.318 -55.245 -52.691 -54.637 -54.598 -50.394
HEPAR2 n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -33.618 -33.613 -33.613 -33.262 -33.255 -33.255 -32.792 -32.784 -32.783
INSURANCE n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -15.211 -15.047 -15.184 -14.494 -14.439 -14.454 -13.739 -13.669 -13.69
WATER -13.717 -13.717 -13.717 n.e. n.e. n.e. n.e. n.e. n.e. -13.818 -13.818 -13.818 -13.448 -13.448 -13.448 -13.07 -13.048 -13.068
WIN95PTS -11.785 n.e. n.e. n.e. n.e. n.e. n.e. n.e. n.e. -11.901 -11.6 -11.199 -11.426 -11.081 -10.737 -10.627 -10.434 -10.107
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Table 3.21: The complexity of the symG and symC. The maximum num-
ber of nodes in the greedy search (symG) and maximum size of conditioning
set(symC) for GS, IAMB, MMPC, and SI-HITON-PC with 5,000 samples.

maximum local search (symG) maximum conditioning set(symC)

GS IAMB MMPC SI-HITON-PC GS IAMB MMPC SI-HITON-PC

ALARM 9 9 11 9 3 2 4 4
ANDES 20 18 17 16 8 1 7 7
ASIA 6 6 6 6 1 1 3 2
BARLEY 7 7 8 7 1 1 2 2
CHILD 10 9 11 10 3 1 4 3
DIABETES 7 6 8 7 2 1 3 2
HAILFINDER 11 10 11 8 1 1 5 3
LINK 16 21 13 11 4 2 5 4
MILDEW 6 7 7 6 2 1 2 2
HEPAR2 13 13 13 11 3 2 6 4
INSURANCE 8 11 9 10 3 3 4 4
MUNIN1 8 9 9 11 3 1 4 4
PATHFINDER 6 7 8 9 1 1 2 2
PIGS 13 11 13 11 3 1 5 5
WATER 6 6 8 6 1 1 3 2
WIN95PTS 13 14 17 14 4 3 6 6

Table 3.22: The average running time of symmetry correction (in second) for
GS, IAMB, MMPC, and SI-HITON-PC, using symG and symC with 5,000
samples. The experiments were performed on Intel Xeon E5-1650 Processor(Six
Core HT, 3.2GHz Turbo) with 16GB of RAM.

symG symC

GS IAMB MMPC SI-HITON-PC GS IAMB MMPC SI-HITON-PC

ALARM 0.61 0.08 0.54 0.05 1.74 0.1 0.61 0.06
ANDES 12.25 0.84 36.73 2.48 14.14 0.81 5.54 0.51
ASIA 0.08 0.01 0.06 0.01 0.09 0.01 0.03 0.01
BARLEY 0.89 0.86 0.62 0.17 1.13 0.12 0.69 0.09
CHILD 0.55 0.07 0.49 0.06 1.03 0.05 0.24 0.03
DIABETES 4.81 1.31 7.28 2.45 13.23 1.92 11.23 1.81
HAILFINDER 1.74 0.53 0.84 0.17 1.77 0.15 0.49 0.08
LINK 40.3 9.81 18.46 1.62 41.17 4.38 16.22 2.72
MILDEW 0.19 0.07 0.31 0.09 0.4 0.06 0.34 0.06
HEPAR2 2.83 0.26 4.5 0.37 2.69 0.2 1.45 0.16
INSURANCE 0.41 0.06 0.44 0.05 1.25 0.09 0.57 0.06
MUNIN1 3.5 0.54 1.55 0.29 6.06 0.61 5.43 0.51
PATHFINDER 1.16 0.21 1.61 0.27 2.26 0.23 1.38 0.25
PIGS 40.96 18.42 7.61 1.72 35.62 2.13 5.53 0.8
WATER 0.1 0.03 0.12 0.03 0.38 0.04 0.12 0.02
WIN95PTS 3.82 0.23 3.93 0.22 3.21 0.2 1.58 0.13



Chapter 4

Weighted MAX-SAT for

V-structure Selection in Bayesian

Network Structure Learning

After obtaining the skeleton, the next key step is to orient the directions of the

edges in the graph. The quality of the final output network highly depends on the

edge orientation. Detection of V-structures is important in the edge orientation

as V-structures carry the conditional dependency relation between nodes. Previ-

ously the V-structures are first learned based on the conditional independence tests

and the significant ones are applied to the skeleton greedily one by one based on

their p-values. To avoid the conflicts, the later applied V-structure which conflicts

with any previously applied V-structure is ignored. For V-structure selection, the

aforementioned greedy method is straightforward but it does not consider the re-

lationship among V-structures. This motivates us to develop a method that can

consider all V-structures jointly as a few ignored V-structures may together beat a

more significant previously applied V-structure. Using data to test the V-structure

is an example of multiple uses of data in structure learning. Furthermore, when

we consider all V-structures jointly, for a particular V-structure, the data in other

V-structure helps to determine its existence. This also can be viewed as a kind of

multiple uses of data through network connections. To represent the confidence

or strength of V-structures, we propose two methods to compute their weights by

using the information of conditional dependence and dependence. We overcome

47
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the limitation of the greedy method by applying weighted maximum satisfiabil-

ity (MAX-SAT) to deal with all possible V-structures together and thus obtain a

better solution.

This chapter is organized as follows: we first briefly introduce the weighted MAX-

SAT, which serves as a formulation of our problem in Section 4.1; we then describe

the edge orientation problem and the greedy method for edge orientation in Section

4.2; we propose our edge orientation approach, including two weighting methods

and a weighted MAX-SAT formulation in Section 4.3, followed by the empirical

evaluation in Section 4.4. Finally, we summarize this chapter in Section 4.5.

4.1 Weighted MAX-SAT

Weighted MAX-SAT is a variant of the SAT problem, where weights are added to

each clause and the goal is to find an assignment that maximises the sum of the

weights of satisfied clauses. To solve the SAT problem or the weighted MAX-SAT

problem, one approach is to search for a satisfying assignment of a conjunctive

normal form (CNF) formula by flipping the truth-values of atoms in that CNF.

Common choices of flipping include flips that decrease the number or weights of

unsatisfied clauses and random flips. One of the successful algorithms called the

local search WalkSAT algorithm [41] combines these two kinds of flips and achieves

good results.

Note that weighted MAX-SAT has been used in Bayesian network learning in [42],

which encodes the total order or ancestors of all nodes into clauses with weights

transformed from the corresponding scores. The difference between our proposed

approach and previous ones is that we apply weighted MAX-SAT to V-structures

which are more complicated with essential relations among three nodes in BNs

rather than the parent-child relations.
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4.2 Edge Orientation in Bayesian Network Struc-

ture Learning

Most of the constraint-based BN structure learning algorithms consist of three

stages [13]:

1. Learning the skeleton of the network.

2. Setting the directions of arcs in the detected V-structures.

3. Setting the directions of other arcs while satisfying the acyclicity constraint.

We focus on the detection (selection) of V-structures in the second stage. For the

constraint-based algorithms, the V-structures are usually detected by conditional

independence tests. For X→ Z← Y , the test checks if X and Y are dependent

given Z and shows its significance in a p-value. Furthermore, the significant V-

structures are selected greedily by sorting with increasing p-values within a certain

threshold α (e.g. α = 0.05). This means that a more significant V-structure is put

front and a greedy method is applied to this sorted list to apply V-structures to

the skeleton one by one. If a later V-structure contradicts any previously applied

V-structure in terms of a conflict in the edge orientation or producing a directed

cycle, then it is ignored and the algorithm continues to apply V-structures until all

significant V-structures are processed.

On the other hand, the score-based algorithms directly find the DAG by searching,

so they do not need to consider the edge orientation alone. The constrained hill-

climbing search used in the hybrid algorithms is similar to the constraint-based

algorithms because it requires the skeleton, which is used to restrict the search.

The greedy method in the constraint-based algorithms and the constrained hill-

climbing search used in the hybrid algorithms serve as two baseline methods for

our method.

Our approach is to replace the greedy method in the constraint-based algorithms of

finding V-structures with the weighted MAX-SAT solver. We consider all possible

V-structures as a whole and test them together. In contrast to testing each V-

structure separately, our approach has a few advantages. First, a single test is
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prone to be wrong and limited by the amount of data used. A significant wrongly

found V-structure can dominate and worsen the structure learning as shown in

the following example. Instead, our approach allows the selection of V-structures

to be optimised by considering their weights. Second, the significance level of the

tests affects the test results and the selection of V-structure. Thus, the significance

level can be very sensitive to the learned structure. Instead, our approach avoids

setting the significance level and considers all V-structures, including previously

insignificant V-structures by computing relatively low weights for them. Our idea

shares some similarities with the edge orientation as constraint optimization in [43],

which considers the constraints jointly. But they did not extract explicit weights

for the constraints.

As an illustrative example shown in Figure 4.1, in the “W” shape undirected graph

in Figure a, there are three possible V-structures: vs(A,D,B), vs(D,B,E) and

vs(B,E,C). vs(D,B,E) conflicts with vs(A,D,B) and vs(B,E,C) respectively

as they contains reversed arcs. Suppose vs(D,B,E) is most significant with the

least p-value, but the DAG containing vs(A,D,B) and vs(B,E,C) (Figure f) is the

true network. The greedy method will output Figure c. However, our approach

can output Figure f after considering the weights of all three V-structures with

weighted MAX-SAT.

4.3 Proposed Methodology

We describe our approach in two parts: learning the weights of V-structures and

solving the V-structures selection problem with weighted MAX-SAT. In the first

part, we introduce two methods to compute weights for each V-structure from data.

In the second part, the learned weights and their corresponding V-structures are

imported into the weighted MAX-SAT solver with constraints, which are extracted

from the skeleton. The solution decides what V-structures should be selected. The

selected V-structures together with the skeleton can give a partial directed acyclic

graph (PDAG), which may contain both directed and undirected edges.

From Theorem 2.1.1, we know that the skeleton and the V-structures together

uniquely decide the equivalence class a BN belongs to. Suppose the learned skele-

ton is perfect. A key issue becomes how to accurately find the true V-structures
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Figure 4.1: An example of possible DAGs with different V-structures. (a) The
skeleton of the DAGs. (b) A DAG with no V-structure. (c) A DAG with the
V-structure D → B ← E. (d) A DAG with the V-structure A → D ← B. (e)
A DAG with the V-structure B → E ← C. (f) The DAG with the V-structures
A→ D ← B and B → E ← C.

from the data. In the max-min hill-climbing algorithm (MMHC) [20], a hybrid

structure learning algorithm, the search of edge orientations takes 10 times as

skeleton learning [6], which can be viewed as an indirect search of V-structures.

Our weighting methods measure the strength of V-structures. Similarly, to orient

the edges, some researchers attempted to measure the reliability of independence by

estimating the probabilities of the logic statements [44]. However, the statements

are selected based on the threshold and sorted. More reliable statements are kept

first as the greedy method selects more significant V-structures first. They have the

same problem of applying wrong dominating V-structures or statements as shown

in our illustrative example in Figure 4.1. Our weighted MAX-SAT formulation can

overcome this problem.

Our approach optimises the selection of V-structures while another closely related

work weighs the conditional independence constraints and minimises the total

weight of the violated constraints [45]. The difference is that we only consider

V-structures as key structural dependence constraints while they consider all de-

pendence (independence) constraints. As an exact search method, they find the
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optimal graph. But the largest networks in their experiments contains only 12

nodes, even if they already provide efficient ways to check and update the con-

straints. On the other hand, our methods consider V-structures, a small number of

dependence constraints on the skeleton. This allows us to capture the dependence

information to orient edges and handle relatively large graphs.

4.3.1 Learning Weights of V-structures

Since a V-structure vs(X1, Z,X2) contains two pieces of information, the condi-

tional dependence X1 6⊥⊥ X2|Z and the independence X1 ⊥⊥ X2, the weight that

measures the strength of the V-structure should cover both of them. In a V-

structure, it is assumed that the parents X1 and X2 are independent so the criterion

for the V-structure detection is the conditional dependence X1 6⊥⊥ X2|Z. However,

in the full graph of a DAG, the independence X1 ⊥⊥ X2 may not hold due to a

possible common cause of X1 and X2 or a possible directed path from one of X1

and X2 to the other. So we need to consider this dependence between X1 and X2

in our weights. We choose to use the additional dependence by knowing Z, i.e.,

the difference between the conditional dependence X1 6⊥⊥ X2|Z and the dependence

X1 6⊥⊥ X2, to measure the strength of V-structure.

With the independence X1⊥⊥ X2 assumption, the strength of V-structure can be

measured by the conditional dependence X1 6⊥⊥ X2|Z alone, because the additional

dependence by knowing Z is equal to the conditional dependence. In a DAG,

without the independence assumption, the additional dependence X1 6⊥⊥ X2|Z by

knowing Z becomes the difference between the conditional dependence X1 6⊥⊥ X2|Z
and the dependence X1 6⊥⊥ X2. Suppose X1 and X2 are highly dependent due to a

common cause, then a high conditional dependenceX1 6⊥⊥ X2|Z does not necessarily

indicate a V-structure as the dependence is not due to the conditioned Z. On the

other hand, suppose X1 and X2 are not very dependent by conditioning Z, but X1

and X2 are not dependent at all. This could still suggest a possible V-structure.

The additional dependence measures the dependence from conditioning on Z by

taking the direct dependence X1 6⊥⊥ X2 into consideration as a baseline.

So we consider two cases: (1) the conditional dependence X1 6⊥⊥ X2|Z and (2) the

difference between the conditional dependence X1 6⊥⊥ X2|Z and the dependence

X1 6⊥⊥ X2.
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We propose two methods to estimate weights for V-structures. The most straight

forward one is to use statistics obtained in conditional independence (CI) tests.

The second one is based on the Bayes factor to compare the likelihood of the

existence of V-structure and its absence (the conditionally independent model).

Mutual Information To measure statistical independence between variables, in

this chapter we adopt Mutual Information (MI) or conditional Mutual Information

(CMI), where MI(X1, X2) and CMI(X1, X2|Z) are non-negative and MI(X1, X2) =

0 (CMI(X1, X2|Z) = 0) if and only if X1 and X2 are independent (conditionally

independent given Z). MI between variables X1 and X2 measures the amount of

information shared by those two variables, which is defined as follows [46]:

MI(X1, X2) =
∑
x1,x2

P (x1, x2)log

(
P (x1, x2)

P (x1)P (x2)

)
.

Similarly, CMI between variables X and Y , conditioning on Z is defined as follows.

CMI(X1, X2|Z) =
∑
x1,x2,z

P (x1, x2|z)log

(
P (x1, x2|z)

P (x1|z)P (x2|z)

)
.

In our case on V-structures, a high value of CMI indicates a dependency between

parents X1 and X2, conditioning on the common child Z while a high value of MI

indicates a dependency between parents X1 and X2. Both CMI and the difference

between CMI and MI could imply the existence of the V-structure vs(X1, Z,X2).

Hence, besides only using CMI as the weights, we also consider the difference

between CMI and MI as the weights.

Bayes Factors Bayes factor is a ratio of likelihood between different hypothesis

models [47]: P (d|g1)
P (d|g2) , where d is the data, g1 is the dependent model and g2 is

the independent model. It has been used in conditional independence (CI) tests

to decide BNs structures [48], encoded into the recursive autonomy identification

(RAI) algorithm [49] to learn BNs structures [50].

The marginal likelihood of a Bayesian network of n discrete variables {x1, . . . , xn}
with Dirichlet priors can be expressed as follows, which is known as Bayesian
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Dirichlet (BD) score [36]:

P (d|g, α) =
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij + cij)

ri∏
k=1

Γ(αijk + cijk)

Γ(αijk)
,

where cijk represents the number of examples of Xi = k when its parent set Πi = j,

cij =
∑ri

k=1 cijk, αijk is the hyperparameters of the Dirichlet priors, αij =
∑ri

k=1 αijk,

and qi signifies the number of instances of Πi, qi =
∏

xl∈Πi
rl. Γ(x) is the gamma

function1. When αijk = 1, BD becomes the K2 score [51]; when αijk = 1/2, BD

becomes the BD score with Jeffreys’ prior [52]; and when αijk = ᾱ/(riqi), where

ᾱ is known as the imaginary or equivalent sample size, BD becomes the Bayesian

Dirichlet equivalent uniform (BDeu) score [36].

We modify the hypothesis models to represent the existence and the absence of a

V-structure using Bayes factor. The difference is that we compute Bayes factor

for a V-structure after learning the skeleton while methods in [48, 50] update the

learned DAG, including its underlying skeleton structure based on the Bayes factor.

Specifically, we compute two Bayes factors for one V-structure: B1 = P (d|u1)
P (d|u2) for

conditional dependence and B2 = P (d|h1)
P (d|h2) for dependence, as shown in Figures 4.2

and 4.3, respectively. After that we take logarithm on them to generate weights:

log(B1) if we only consider the conditional dependence and log(B1)− log(B2) if we

consider the difference between the conditional dependence and the dependence.

X1 X2

Z

(a) u1; conditionally dependent.

X1 X2

Z

(b) u2; conditionally independent.

Figure 4.2: Hypothesis models for a V-structure.

X1 X2

(a) h1; dependent model.

X1 X2

(b) h2; independent model.

Figure 4.3: Hypothesis models for the parents in a V-structure.

1The gamma function is defined as Γ(x) =
∞∫
0

sx−1e−tdt. When x is a non-negative integer,

Γ(x+ 1) = x!.
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4.3.2 Weighted MAX-SAT Formulation

We now describe how to formulate V-structure selection as a weighted MAX-SAT

problem.

Unit Clauses Let a Boolean variable Vi represent the existence of the i-th V-

structure. The unit clauses are vi and ¬vi with their correspondingly computed

weights. For the method of mutual information, as CMI and MI are both non-

negative, in order to avoid negative weights, CMI is assigned to vi while MI is

assigned to ¬vi. For the method of Bayes factor, if the weight w is positive then

it is assigned to vi and the weight of ¬vi is set to zero. If w is negative then |w| is

assigned to ¬vi and the weight of vi is set to zero.

Constraints We define four kinds of constraints. The first three are hard con-

straints while the last one is soft and optional. The unit clauses are soft constraints

as well. The hard constraints are assigned with a weight equal to the sum of the

weights of soft constraints.

• Conflict of V-structures: If one V-structure contains an arc and another

V-structure contains the reversed arc of that arc, then there is a conflict

between them. This means that the two V-structures cannot exist at the

same time in the graph. Let the j-th and k-th V-structures be such two

V-structures. We define a clause as follows,

¬vj ∨ ¬vk. (4.1)

• V-structures implication: A V-structure contains two directed arcs. Two

V-structures may share an arc if they share the child node. When we confirm

the existence of some V-structures, this may automatically imply some other

V-structures. For example, suppose there are four nodes A,B,C and X in a

graph, where A,B,C are disconnected and three edges are connecting A,B

and C to X respectively. If V-structures (A→ X ← B) and (B → X ← C)

are confirmed, then the V-structure (A→ X ← C) is implied automatically.

Therefore, we have vi ← (∨j∈A1vj)∧ (∨k∈A2vk), where A1 is the set of indices

of V-structures which contain the first arc of the V-structure vi and similarly
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A2 is for the second arc. This can be converted to CNF equivalently as

follows,

∧j∈A1,k∈A2 (vi ∨ ¬vj ∨ ¬vk). (4.2)

As the original constraint is a hard constraint, the converted clauses in the

CNF are hard constraints as well.

• Acyclicity: By definition of DAG, there should be no directed cycles. The

arcs of a set of V-structure may form a direct cycle. Thus we need constraints

to avoid such a set of V-structures. Besides, V-structures can form directed

cycles of different lengths. So we need to find all possible cycles in the skeleton

and encode them into clauses. However, the number of cycles in BNs of

only medium sizes can be huge. For each cycle, the number of generated

constraints can be also large, because each directed arc in the cycle may be

contained by a few V-structures. Let a directed cycle be of size n, and the

number of V-structures containing the i-th arc be mi. Then the number of

constraints is
∏n

i=1mi. Due to the large number of constraints, we do not

impose the acyclicity constraints but make the learned V-structures from the

weighted MAX-SAT solver to be applied greedily. This means that when

applying V-structures to the skeleton, the ones that produce a directed cycle

will be ignored.

• The penalty/gain on V-structures sharing child: The intuition on

adding a penalty on the V-structures sharing the same child is two-fold. The

first one is to regularize the number of parameters in the learned BN. This

is similar to the regularization used in the Bayesian Information Criterion

(BIC). The second one is to accommodate the additional weight gains due

to implied V-structures. Suppose a few disconnected parents are sharing the

same child forming some V-structures, and for each possible V-structure, the

weight wi for vi is greater than the weight ŵi for ¬vi. Then an additional

confirmed V-structure on the same child will produce not only a gain from

its own weight but also gains from many implied new V-structures. A shared

child is contained in more V-structures, then it is more attractive to new

V-structures. For the j-th and the k-th V-structures sharing the same child,

we can define

¬vj ∨ ¬vk. (4.3)
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The clause is not satisfied when both vj and vk are TRUE. The weight can

be set according to the weight differences of vj and vk against their own

negation. One intuition behind this weight setting is that the direct gain

obtained from violating this clause is the minimum of the weights of vj and

vk. Thus, the weight can be set to this direct gain to offset additional gain

effect due to the implied new V-structures. On the other hand, if we have

some domain knowledge about the dataset, which tells us that there exist

many V-structures sharing the same child, then constraints can be created

to encourage such structures as follows,

vj ∧ vk. (4.4)

However, as some of our experimental results get worse when adding this

kind of constraint, we omit it.

In summary, we only impose the conflict and implication constraints. We feed those

constraints and the unit clauses into MAX-SAT solver. The solution is matched

with corresponding V-structures. These V-structures are applied to the skeleton

greedily to avoid directed cycles.

4.3.3 Algorithm of V-structure selection through Weighted

MAX-SAT

In this section, we present our complete algorithm for V-structure selection via

weighted MAX-SAT. In Algorithm 5, we input the skeleton and the dataset and

choose a weighting method. We first extract all possible V-structures from the

skeleton and compute the weights for their existence and absence (lines 1-2). Then

we extract the clauses from the conflict and implication constraints, which are

obtained from the arcs of V-structures (line 3). The weighted MAX-SAT solver is

used to find the selected V-structures, given the clauses with their weights (line 4).

At last, we apply the selected V-structures greedily to the skeleton to avoid cycles

and obtain our PDAG (line 5). The outputs are the selected V-structures and the

PDAG.
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Algorithm 5: V-structure Selection through Weighted MAX-SAT

Input: The skeleton SK, a weighting method W , dataset D
Output: A set of V-structures VSselected obtained from weighted MAX-SAT

solver and a partial DAG G which contains V-structures in
VSselected.

1: Extract all possible V-structures from SK and let VSall = {Vi}ni=1.
2: Compute the weights wi and ŵi for the corresponding Boolean variable vi and

its negation ¬vi of each V-structure in VSall using method W .
3: Based on the arcs of V-structures in VSall, produce the conflict and

implication hard constraints as clauses.
4: Feed all clauses with their weights into the weighted MAX-SAT solver and

obtain the set of selected V-structures VSselected as the solution.
5: Apply VSselected to the skeleton SK greedily to avoid directed cycles and

obtain the the partial DAG G.
6: return VSselected and G.

Table 4.1: Information of the BNs used in the experiments.

Name Nodes Arcs Parameters Maximum in-degree

ALARM 37 46 509 4
ANDES 223 338 1157 6
ASIA 8 8 18 2
CHILD 20 25 230 2
MILDEW 35 46 540,150 3
INSURANCE 27 52 984 3
WIN95PTS 76 112 574 7

4.4 Experiments

We evaluate our proposed weighted MAX-SAT method, and two baseline methods:

the greedy method with conditional independence tests and the constrained hill-

climbing search used in the hybrid algorithms, on both true skeletons and learned

skeletons, using datasets of size 102, 103 and 104 sampled from the probability dis-

tributions of 7 BNs as shown in Table 4.1 from the BN repository of bnlearn 2 [13].

The tests used in the greedy method are the default tests in the bnlearn package,

which are the asymptotic mutual information with α = 0.05.

For our MAX-SAT method, we attempt many weighting methods and their varia-

tions. One major variation is whether we only consider the conditional dependence

of the two parent nodes in the V-structure or include their dependence to compute

the dependence difference. For methods using the Dirichlet priors, we run three

kinds of hyperparameters (αijk = 1 (k2); αijk = 1/2 (Jeffreys), and αijk = ᾱ/(riqi)

2http://www.bnlearn.com/bnrepository/
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with α=1 (BDeu)). We use Open-WBO [53] with default settings as the weighted

MAX-SAT solver on Intel Xeon E5-1650 Processor(Six Core HT, 3.2GHz Turbo)

with 16GB of RAM. There are 1,032 variables, 2,064 soft clauses and 20,541 hard

clauses in the weighted MAX-SAT problem for the true skeleton of the largest

BN we used, ANDES. And this does not change as the sample size rises. It is

much smaller than the weighted MAX-SAT in [42]. The greedy method is included

in the constraint-based algorithms in bnlearn. Their corresponding hybrid algo-

rithms are also implemented in bnlearn [20] with the true skeleton and the default

score criterion, BIC.

The metrics of performance are Structural Hamming Distance (SHD) [20], precision

and recall of the learned V-structures compared to the V-structures in the true

network. A low SHD indicates that the learned network is close to the true network

which is preferred. A high precision or recall indicates a better match to the V-

structures in the true network. Sometimes the algorithm does not output any

V-structure. For instance, in the greedy method if no V-structure is tested to

be significant then it will not output any V-structure. In this case, we set their

precision to zero and their recall is also zero. We repeat the experiments with

different samples generated from the true network with different seeds for 10 times

and take the averaged SHD, precision and recall.

Table 4.2: Performance in averaged SHD on true skeletons. “OT” means
“out of time”, “d” means “difference between conditional dependence and de-
pendence”, “bf” means “Bayes factors”, and “k2” denotes the hyperparameter
αijk = 1.

ALARM ANDES ASIA CHILD MILDEW INSURANCE WIN95PTS

sample size 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104

greedy 34.7 22.6 14.3 156.8 74.8 41 4.6 0.3 1.3 13.9 12.1 12.1 46 21 18.5 32.6 28.2 29.2 72.2 40.3 32.7
search 39.1 16.8 12.9 152.2 68.3 34.1 4 0.9 0.8 18.4 14.5 12.2 46 46 41 44.5 41.7 39.7 76.3 33.6 23.5

GOBNILP 12.2 3.7 1.8 OT 2.3 0.7 0.2 16.6 9 0 39.5 30.9 16.6 31.4 20.4 11.8 OT
cmi 26.3 23.7 21 94.9 31.3 13.2 3.2 2.7 1.8 18.4 19.6 20 21.8 14 12 36.5 40.1 41 63.5 45.4 43.8

cmi-d 8 1.6 1.2 68.7 15.3 0.6 1.9 0.2 0.2 14.7 12.3 10.4 14.6 9.3 1 32.3 21.4 22 33.7 11.2 9.3
bf k2 11.9 4.7 2 101.3 39.6 13.2 1.7 0.2 0.2 13.4 10.3 5.7 25.7 24.7 17 36.9 29.2 26.8 19.8 12.4 8.6

bf k2-d 13 3.5 3 111.9 55.8 26.3 1.6 0.6 0.2 15.1 12.7 9.6 23.4 21.7 17 34.6 28.8 26.7 17.1 13.1 9.8

4.4.1 Experimental Results

Our experiments are run on true skeletons and learned skeletons. Experiments on

true skeletons are used to show the full potential of the orientation methods. By
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Table 4.3: Performance in averaged SHD using Bayes factors with different
hyperparameters on true skeletons. “d” means “difference between conditional
dependence and dependence”, “bf” means “Bayes factors”, and “Jeffreys” and
“BDeu” denote the hyperparameter αijk taking the values of 1/2 and 1/(riqi),
respectively.

ALARM ANDES ASIA CHILD MILDEW INSURANCE WIN95PTS

sample size 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104

bf Jeffreys-d 37.1 13.6 4.7 181.8 61.7 39 5 1.6 0 11.6 10.3 9.9 24.5 19.4 17.4 33.5 25 22.7 73.7 48.3 20.9
bf BDeu-d 12 3 2.5 OT 27.6 15 1.9 0.6 0.2 16.8 11.9 8.1 22.3 19.2 15 22.4 23.8 18.8 28.8 10.3 9.1

using true skeletons, we avoid the effect of the inaccurate skeletons and the true

DAG can be learned in theory. So we could better compare the performances of

orientation methods. In practice, we usually only have learned skeletons so we

run experiments on learned skeletons to show our orientation methods work on

inaccurate skeletons as well.

On the True Skeletons.

In Table 4.2, we show the results from the greedy method, search in the hybrid

algorithms, the exact search algorithm, GOBNILP 3 [10] and our weighted MAX-

SAT methods in terms of SHD. The first trend is that the SHD values drop as the

amount of data examples increases for most cases. GOBNILP is given the true

skeleton by removing inconsistent scores in the file. GOBNILP finds the optimal

network and shows good performance but it cannot handle networks with a large

number of variables (ANDES and WIN95PTS). For the weighting methods using

MI, the additional dependence show much better performance. For the weighting

methods using the Bayes factor, the additional dependence does not make a big

difference. Here we take “k2” (αijk = 1) as an example. Across seven datasets,

“cmi-d” gives the best SHD for most cases. In Table 4.3, we show the results of

the Bayes factor for the other two kinds of hyperparameters with the additional

dependence. There are some performance differences but none of them outperforms

“cmi-d” generally. It is worth noting that when the sample size is small (102), for

some weighting methods, the solver needs a long time to finish or cannot finish (over

4 hours) for ANDES. But with a larger sample size (103), it only takes seconds.

This could be due to the inconsistent weights computed from the insufficient data.

3https://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 4.4: Performance in averaged precision on true skeletons. “d” means
“difference between conditional dependence and dependence”. “bf” means
“Bayes factors”.

ALARM ANDES ASIA CHILD MILDEW INSURANCE WIN95PTS

sample size 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104

greedy 0.23 0.61 0.82 0.53 0.86 0.95 0.2 0.92 0.66 0.1 0.45 0.59 0 0.43 0.94 0.09 0.28 0.91 0.38 0.87 0.93
search 0.98 1 0.98 1 1 1 0.65 1 1 0 0.52 0.66 0 0 1 0.4 0.53 0.48 0.95 0.94 0.95

GOBNILP 0.92 1 1 OT 0.9 1 1 0.72 0.78 1 0.74 1 1 0.7 0.79 0.84 OT
cmi-d 0.93 1 1 0.66 0.89 1 0.75 0.97 0.97 0.13 0.3 0.68 0.52 0.61 0.96 0.13 0.5 0.61 0.84 0.97 0.97

bf k2-d 0.63 0.95 0.95 0.41 0.68 0.84 0.77 0.9 0.97 0.25 0.56 0.83 0.37 0.51 0.72 0.13 0.25 0.37 0.81 0.94 0.97

Table 4.5: Performance in averaged recall on true skeletons. “d” means “dif-
ference between conditional dependence and dependence”. “bf” means “Bayes
factors”.

ALARM ANDES ASIA CHILD MILDEW INSURANCE WIN95PTS

sample size 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104 102 103 104

greedy 0.04 0.27 0.45 0.18 0.52 0.7 0.1 0.95 0.8 0.1 0.34 0.64 0 0.16 0.24 0.03 0.14 0.15 0.09 0.38 0.54
search 0.08 0.46 0.53 0.28 0.56 0.74 0.45 1 1 0 0.34 0.8 0 0 0.05 0.02 0.18 0.24 0.11 0.52 0.69

GOBNILP 0.51 0.75 0.81 OT 0.7 1 1 0.2 0.46 1 0.07 0.09 0.36 0.24 0.44 0.66 OT
cmi-d 0.69 0.85 0.86 0.64 0.91 0.99 0.75 1 1 0.58 0.7 0.86 0.58 0.72 0.93 0.29 0.63 0.67 0.6 0.85 0.86

bf k2-d 0.61 0.74 0.75 0.44 0.67 0.8 0.95 1 1 0.46 0.62 0.58 0.32 0.2 0.22 0.28 0.28 0.3 0.82 0.84 0.85

To further analyze the quality of the selected V-structures, we picked “cmi-d” and

“bf k2-d” as representatives and investigated their precision and recall against the

baseline methods. In Table 4.4, our two methods generally give better precision

compared to the greedy method while the search method achieves very good results.

And GOBNILP gives the best results on small networks. Among our methods,

“bf k2-d” produces slightly weaker results, compared to “cmi-d”. However, in

Table 4.5, our methods, especially “cmi-d”, produce much better recall, and even

outperform GOBNILP for some datasets. This indicates that our methods can

more accurately detect the V-structures in the true network. The key advantage of

our method is using the relationship among V-structures encoded in the constraints

to help the V-structures selection rather than testing each V-structure alone. On

the other hand, the search method finds many true V-structures but it also misses

some V-structures as the search method does not consider V-structures specifically.

On the Learned Skeletons.

In practice, the true skeleton is not always available so we have to use the learned

skeleton instead. The learned skeleton may differ from the true skeleton and con-

tains false positive and false negative errors. Furthermore, the learned skeleton
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can be too sparse to give a reasonable number of candidate V-structures, espe-

cially when data is limited. Since we cannot select the V-structures whose arcs are

missing in the skeleton. We should try to avoid false negative errors. In contrast,

false positive errors produce extra edges in the skeleton and allow more V-structure

candidates but they do not limit the V-structures selection. This coincides with

the so-called super-structures [54] that are learned to cover the true skeleton. The

aim of super-structures is to reduce the false negative errors as much as possible

at the cost of more false positive errors. By increasing the significance level of the

independence tests, the constraint-based algorithms, such as MMPC can be used

to produce these super-structures [54]. A specific algorithm for super-structures,

Hybrid Parents and Children (HPC) is developed in [55].

Table 4.6: Performance in averaged SHD on the skeleton learned from HPC
with 104 samples. “OT” means “out of time”. “*” means ASOBS is used instead
of GOBNILP due to the size of the network.

ALAR ANDE ASIA CHIL MILD INSU WIN9

greedy 12.5 134.4 2 12.2 41.7 30.8 52.5
search 13.2 78.3 0.8 11.2 43 41.2 52.9

pc 15.6 150.5 4.2 9.3 38 33.6 58.6
cmi-d 4.1 128.6 2.1 13.4 37 29.3 47.2

bf k2-d 5.2 134.4 2.1 13 42.1 29.3 48.2
GOBNILP/ASOBS 3.2 347.5* 1.4 0.0 22.0 12.8 113.6*

Table 4.7: Performance in averaged precision on the skeleton learned from
HPC with 104 samples. “OT” means “out of time”. “*” means ASOBS is used
instead of GOBNILP due to the size of the network.

ALAR ANDE ASIA CHIL MILD INSU WIN9

greedy 0.89 0.89 0.88 0.69 1 0.76 0.79
search 0.97 1 1 0.7 1 0.49 0.89

pc 0.91 0.51 0.75 0.84 1 0.51 0.8
cmi-d 0.98 0.7 0.75 0.53 0.98 0.55 0.89

bf k2-d 0.92 0.69 0.75 0.69 1 0.65 0.88
GOBNILP/ASOBS 0.99 0.45* 0.92 1.00 1.00 0.83 0.57*

We compared the learned skeleton from IAMB, MMPC and HPC with significance

level α = 0.05 and 0.5. HPC with the default α = 0.05 gives the most accurate

skeleton. We then compare our weighting methods on this skeleton obtained from

HPC in Table 4.6. We also ran GOBNILP in default settings (no node having more

than 3 parents and BDeu score) and the PC algorithm [15] as other baselines.

Our methods still beat the greedy method but the improvement is limited due

to the imperfect skeleton. Similar to the true skeleton, we keep the advantages
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Table 4.8: Performance in averaged recall on the skeleton learned from HPC
with 104 samples. “OT” means “out of time”. “*” means ASOBS is used instead
of GOBNILP due to the size of the network.

ALAR ANDE ASIA CHIL MILD INSU WIN9

greedy 0.53 0.59 0.95 0.5 0.07 0.31 0.42
search 0.53 0.63 1 0.82 0.03 0.21 0.39

pc 0.48 0.38 0.45 0.7 0.11 0.34 0.26
cmi-d 0.71 0.62 0.95 0.7 0.14 0.36 0.48

bf k2-d 0.67 0.59 0.95 0.52 0.07 0.3 0.45
GOBNILP/ASOBS 0.81 0.32* 0.95 1.00 0.32 0.66 0.37*

in recall with comparable precision, as shown in Table 4.7 and 4.8. The search

method gives a good result because the super-structure from HPC is also good

for the search as shown in [56]. For the dataset ANDES and WIN95PTS that

GOBNILP cannot handle, we further ran the acyclic selection ordering-based search

(ASOBS) [57] once instead, which is an approximate local-search-based method

using the R package r.blip with settings: time=3600(1 hour), scorefunction =”k2”,

cores=4. And the PC algorithm gives relatively weak results for most datasets.

4.5 Summary

The edge orientation is the next stage of BN structure learning after learning the

skeleton. In this chapter, we first proposed two weighting methods that measure

the strength of V-structures in terms of the conditional dependence and additional

dependence in each V-structure and then formulate V-structures selection in BNs

as a weighted MAX-SAT problem. Furthermore, we demonstrate that our approach

can jointly test all possible V-structures in the skeleton empirically. This takes the

advantages from the competition of the weights for the conditional dependence and

additional dependence of each V-structure, through the computed weights and the

constraints in the skeleton. The selection of a particular V-structure not only uses

the data in this V-structure but also considers data in other V-structures.





Chapter 5

Structural Knowledge Transfer for

Learning Sum-Product Networks

In chapter 3 and 4, we introduced methods to improving the structure learning for

Bayesian network. There are other methods, which are available to improve the

structure learning for Bayesian network. Transfer learning is one of them and a

few papers have studied transfer methods on the structure learning for Bayesian

network and shown good progress [58–60]. On the other hand, other probabilistic

models are continuously being proposed. Sum-Product Network (SPN) is a recently

proposed probabilistic graphical model with a deep architecture [21] that has a net-

work structure in its model representation. Moreover, there is a strong connection

between Bayesian network and sum-product network. Under certain conditions, a

sum-product network can be converted to a Bayesian network [61]. Therefore, we

would like to investigate whether transfer learning can help the structure learning

for sum-product network as well.

To overcome small training dataset issues in learning inference model, transfer

learning [62] can be utilized to improve the performance and efficiency of a learn-

ing (target) task with the help of knowledge from other related (source) tasks.

Conventional transfer learning settings assume the availability of either labelled

or unlabelled data from the source tasks [62]. However, when one is given only a

source inference model instead of data instances from a source task, the problem

becomes more challenging.

65
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In this chapter, our proposed transfer learning approach TopTrSPN first utilizes

the top layer clustering information of the source SPN structure to lay the founda-

tion for the target SPN structure. Then, the deeper layers in the SPN structure are

learned using the target data. With transfer learning, we use the target data with

the top layer of the source SPN structure because limited target data cannot learn

a good top layer of the SPN. In the learning process of LearnSPN, the algorithm

actually makes multiple uses of data by clustering and partitioning the big data

blocks into small data blocks recursively to form the layer structures of SPN. Dif-

ferent from LearnSPN and Bayesian network structure learning in Chapter 3 and

4 , we do not make multiple uses of the same data at different stages or layers but

use the source SPN at the top layer clustering and the target data at the deeper

layers learning.

This chapter is from our published paper [63] and organized as follows. In Section

5.1, we present related work on transfer learning for inference models with network

structure. In Section 5.2, we define our problem setting and state our assumptions.

In Section 5.3, we describe in detail our proposed transfer learning approach for

SPN given a source structure and a limited number of target examples. In Section

5.4, we present and discuss empirical results, and further discuss our investigations

in deeper layer transfer. Finally, in Section 5.5, we summarize our main results of

this chapter.

5.1 Related Work

Transfer learning approaches have been proposed for learning network structure,

including Bayesian network [60]. In general, the approaches can be categorized into

three types. The first one is transfer learning at data instance level. The source

data is transformed to be coherent with the target data. The transformed source

data is viewed as additional target data, with updated weights [64]. By combining

the transformed source data and target data, one obtains a larger dataset. Towards

this end, the standard structure learning can be performed more accurately using

this larger dataset.

The second way is transferring the knowledge in the structure search space. This

can be a score-based approach, which searches for structures with high scores based
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on conditional probability [58, 59]. For Bayesian network, in [58], the posterior

probability P (G|D) of structure G given data D, is used as a score to enable

heuristic search for a better Bayesian network structure. P (G|D) is obtained from

the prior distribution of structures P (G) and data. Transfer learning is attained

through P (G), defined to encourage similar structures for related tasks. Shapiro

et. al [65] suggested using transferred network structures to reduce the number

of structures to be searched for a target task. Mihalkova and Mooney [66] also

followed this scheme to perform transfer learning on Markov logic networks.

Finally, transfer learning can be performed at model level. In particular, the source

domain knowledge is integrated into the structure learning algorithm. For example,

Luis et al. [67] modified the PC algorithm [15] by incorporating knowledge in

related tasks. The main idea of the PC algorithm is to perform local independence

tests between each pair of variables to determine whether there should be an edge

between them in the Bayesian network. A structural similarity measure is used in

the independence test as a criterion for structural transfer learning.

5.2 Problem Setting and Assumption

A domain is defined by two components: a feature space of data X and a marginal

probability distribution P (X) [62], where X = {x1, . . . , xk} ∈ X and k is the

number of data instances. The source and target domains are represented by DS
and DT , respectively.

The dimension of the source and target data can be different. An SPN SS is

learned from the source training data (not disclosed) and an SPN ST is learned from

the target training data and auxiliary knowledge from SS. While discriminative

learning is possible for SPNs [68], we only consider the generative SPNs here. We

have the following assumption to simplify our transfer learning problem setting:

Assumption: The feature space X , is shared by the source domain DS and the

target domain DT completely or partially, i.e., XS ∩XT 6= ∅, but the marginal prob-

ability distributions are different, i.e., PS(X) 6= PT (X), X ∈ XS ∩ XT . Moreover,

the number of instances kT in DT is much smaller than kS in DS, i.e., kT � kS.
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In this chapter, our problem setting assumes that only the source SPN structure is

available without any source training data. We proposed an approach that transfers

SPN structure knowledge in the source domain to improve the performance of an

SPN for the target domain with limited training examples. It belongs to the third

way of transfer learning described in Section 5.1.

5.3 Proposed Transfer Learning Approach

5.3.1 Motivation

SPNs can be viewed as “probabilistic, general-purpose convolution networks” [21].

Earlier work on transfer learning on convolution neural networks (CNN) [69] shows

that (i) first layer features learned from CNN are general for the data domain, and

(ii) transferability is negatively affected by “the specialization of higher [or deeper]

layer features to the original [source] task”. The main difference between CNNs and

SPNs is their representations: the former uses features and the later uses clusters.

Based on the first point, the source data distribution and its representation in

SPN through clusters are general information that supports the SPN structure

learning for the target task. For an SPN, the distributions become more specific

and local in the lower layers of the network structure. As a result, irrelevant local

information from the source domain may negatively impact the SPN construction

for the target domain. Based on the above two characteristics, our proposed SPN

transfer learning approach transfers the most general distribution information in

the form of top layer clusters in the source SPN. To obtain the top layer clusters

in the target SPN, we utilize the target dataset and the centroids of the clusters

in the source SPN.

Another reason why the top layer clustering has the most significant effect on SPN

is that once the instances in the top layer are clustered into a wrong cluster it

cannot be recovered in the lower layers. Hence, it weakens the SPN performance.

Suppose we have four binary variables X1, . . . , X4, Xi ∈ {0, 1} assigned to one of

two clusters, c1 and c2. The probability for an instance to be in each cluster is

the same, P (C = c1) = P (C = c2) = 0.5. For c1, let P (X1 = 1) = P (X2 =

1) = P (X3 = 1) = 0.9 and P (X4 = 1) = 0.01; for c2, let P (X1 = 1) = 0.2 and

P (X2 = 1) = P (X3 = 1) = P (X4 = 1) = 0.9. For simplicity, the four variables are
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Figure 5.1: An example illustrating how TopTrSPN learns the first layer of
the SPN for data instances {1, 2, 3, 4} with the help of the centroids m1,m2

and m3 generated from the source SPN.

assumed to be independent. For a given instance x̂ = (x1, x2, x3, x4) = (1, 1, 1, 1),

it is more likely to be in c2, since 0.93 · 0.2 > 0.93 · 0.01, but we do not have

this information when we first perform clustering to construct an SPN. We may

wrongly cluster x̂ with instances coming from c1 but are close to it, such as x̄ =

(1, 1, 1, 0), especially when we have only a few training instances. This will lead to

an inaccurate representation of the distribution. While we may learn lower layers in

the SPN for a subset of variables, it cannot recover the mistake of the first clustering

for the top layer as the instance x̂ will still be with instances from c1. On the other

hand, if we have the centroids generated from our procedure, (0.9, 0.9, 0.9, 0.01)

and (0.2, 0.9, 0.9, 0.9) then clustering is simplified and more accurate. In practice,

we only have finite samples and the source SPN to approximate these centroids to

improve the clustering performance.

An illustration of how our proposed TopTrSPN approach works is shown in Figure

5.1. To learn the SPN structure for the target data instances {1, 2, 3, 4}, we

first compute the centroids mi, (i = 1, 2, and 3) from the samples generated from

the source SPN. Then we learn the first layer by clustering the instances {1, 2, 3,

4} to their nearest centroids. The weights are based on the number of instances

in each cluster. The lower layers of the SPN is learned from the clustered target



70 5.3. Proposed Transfer Learning Approach

instances using LearnSPN. We describe in detail the proposed TopTrSPN approach

in Section 5.2.

There are many variants of SPN implementations such as ID-SPN [70] and Learn-

SPN variant [22], we use the vanilla version of LearnSPN [71] in our algorithm and

implementation to demonstrate the feasibility of our proposed transfer approach.

5.3.2 LearnSPN and Transfer learning algorithm

Algorithm 6: LearnSPN(T,V)

Input: set of instances T, set of variables V
Output: an SPN S representing a distribution over V learned from T.

1: if |V| = 1 then
2: return univariate distribution estimated from the variable’s values in T
3: else
4: partition V into approximately independent subsets Vj

5: if success then
6: return

∏
j LearnSPN(T, Vj)

7: else
8: partition T into subsets of similar instances Ti

9: return
∑

i
|Ti|
|T| LearnSPN(Ti,V)

10: end if
11: end if

Before introducing our algorithm, we would like to present the structure learning

algorithm, LearnSPN [71], shown in Algorithm 6, which learns the SPN structure

by recursively partitioning variables and data instances. The partitioning of vari-

ables by independence testing corresponds to a product node (lines 4-6) whereas

the partitioning of data instances by clustering (lines 8-9) corresponds to a sum

node with weights attached to its children. The partitioning continues and oper-

ates on subsets of variables and data instances. The learning ends when there is

only one variable in each partition (lines 1-2), which forms a leaf node.

Algorithm 7 shows the steps of TopTrSPN which include the two key steps.

1. DiffVariable(T, V, SS): filter out those variables in the source SPN SS that

have a marginal probability that is different from the target domain when

calculating the nearest centroids.
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2. TransCluster(T, SS, Vignore): partition the set of data instances T into

subsets of similar instances Ti based on the nearest centroids provided by

the clusters in the top layer of SS.

Note that by removing DiffVariable(T, V, SS) and TransCluster(T, SS, Vignore),

i.e. line 8 - 12, Algorithm 7 becomes LearnSPN, as shown in Algorithm 6.

TopTrSPN

Algorithm 7: TopTrSPN(T,V,SS)

Input: set of instances T, set of variables V, the source SPN SS
Output: The target SPN ST representing a distribution over V learned from

T.
1: if |V| = 1 then
2: return univariate distribution estimated from the variable’s values in T
3: else
4: partition V into approximately independent subsets Vj

5: if success then
6: return

∏
j LearnSPN(T, Vj)

7: else
8: if doing the first clustering then
9: Vignore ←DiffVariable(T, V, SS)

10: {TK
i }i=1 ← TransCluster(T, SS,Vignore)

11: return
∑

i
|Ti|
|T| LearnSPN(Ti,V)

12: else
13: partition T into subsets of similar instances Ti

14: return
∑

i
|Ti|
|T| LearnSPN(Ti,V)

15: end if
16: end if
17: end if

As described in Section 5.3.2, LearnSPN [71] consists of two recursive steps, namely:

(i) clustering data instances and (ii) partitioning variables based on independence

testing. The internal sum nodes and product nodes are obtained by recursively and

alternatively doing these two steps. This scheme means that different clustering

methods and independence tests can be applied. We follow their settings [71],

which are the Expectation-Maximization (EM) algorithm for clustering and the

G-test for pairwise independence testing [72], for all layers in an SPN except the

top layer.

To perform transfer learning for the target SPN constructed using LearnSPN, an

intuitive approach is to utilize clustering and independence test approaches to
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match similar variables. This can be done directly on the top layer of the SPN

(i.e., the layer directly under the root node). Our proposed approach, TopTrSPN,

transfers the source SPN information from the top layer cluster centroids to help

the target SPN learning when only limited target data is available.

As one traverses deeper down the source SPN, the correspondence between the

source SPN SS and the target SPN ST starts to weaken. This is because the

variables contained in each node in the same layer start to differ significantly due

to the large number of possible variable set partitions that do not resemble the

source SPN. Further discussion on the weaknesses of transfer learning in the lower

layers is deferred to Section 5.4.4.

One notes that the first clustering to get the children of the root node using the EM

algorithm takes up a large proportion of the total training time. The expensive

first clustering step is due to a large number of instances and variables at the

beginning of the learning process. As the structure continues to be built, the

number of instances and variables involved reduces, leading to faster clustering

and independence testing.

Algorithm 8: DiffVariable(T,V,SS)

Input: set of instances T, set of variables V, the source SPN SS
Output: a set of variables Vignore.

1: Vignore ← ∅
2: Compute the marginal probabilities pt from T and ps from SS for each

variable i from V.
3: d← pt − ps

4: MAD ← median{|d−median(d)|}.
5: for each Xi ∈ V do
6: The modified Z-score Mi ← (0.6745 ∗ (di−median(d)))/MAD .
7: if |Mi| > 3.5 then
8: Vignore ← Vignore

⋃
{Xi}

9: end if
10: end for
11: return Vignore

DiffVariable

There may exist a discrepancy between the source domain and the target domain.

For example, some variables have different (or shifted) distributions between the
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source domain and the target domain. Those variables showing significant differ-

ences between the marginal distributions in the two domains are filtered out in the

centroid estimation to ensure that the clusters for the target SPN are not skewed

by these variables. To identify such variables, the marginal distributions from the

source structure and the target data are compared for each variable. To find a sig-

nificant difference between the two marginal distributions, we identify the outliers

among those differences.

Let pt and ps be the vectors of the marginal probability [P (X1 = 1), P (X2 =

1), . . . , P (Xn = 1)] for the target data and the source SPN, respectively. Let

d = pt − ps (5.1)

be the difference between pt and ps.

For any variable Xi whose di is in the region of outliers, its values in the centroids

of the top layer nodes are ignored and simply set to zero so that it does not affect

the clustering process.

We use the modified Z-Score Mi for variable Xi, computed from d and the criteria

|Mi| > 3.5 to detect the significant difference [73]. The advantage of the modified

Z-Score is that it avoids the effects of a few extreme values on the estimated mean

and variance by using the median and the median of the absolute deviation (MAD)

of the median instead.

For the case that two different domains have different numbers of features where

only some of the features are shared between these two domains, we perform a

direct matching for these shared features. The matched features are used when

computing the distance between the instance and the centroid in the top layer

clustering process.

TransCluster

TransCluster in algorithm TopTrSPN transfers only the top layer clustering infor-

mation in the source SPN and TopTrSPN learns the rest of the structure using

the target data and the original LearnSPN with the assumption that the source

domain is similar to the target domain of interest. Our algorithm clusters the

target instances to their nearest centroids obtained from the top layer nodes in
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Algorithm 9: TransCluster(T,SS ,Vignore)

Input: set of instances T, the source SPN SS and a set of variables Vignore

Output: a collection of sets of instances {Ti}Ki=1.
1: Use SS to generate samples and compute centroid mi for cluster i in the top

layer of SS.
2: K ← Number of top layer clusters in SS.
3: for each i = 1, . . . , K do
4: Ti ← ∅
5: end for
6: for each Xj ∈ Vignore do
7: for each i = 1, . . . , K do
8: mi[j]← 0
9: end for

10: end for
11: for each t ∈ T do
12: î← argminiEucildeanDistance(t,mi)
13: Tî ← Tî ∪ {t}
14: end for
15: return {Ti}Ki=1

the source SPN, where the Euclidean distance measure is used. The centroids are

the generated sample means of the corresponding nodes. Note that although sam-

ples are generated from the source SPN, they are not directly used in the target

SPN learning. The sample size can vary since they are only used to compute the

centroids.

Figure 5.1 shows an example where four data instances from the target domain

are used to learn the first layer of the target SPN based on the source SPN. Three

clusters are learned from the source SPN and the target data. The number of

instances in each cluster determines the corresponding weight in the learned SPN.

5.3.3 Complexity Analysis

We briefly analyze the computational complexity of DiffVariable and TransClus-

ter. Suppose the number of instances is k, the number of variables is n, the number

of clusters in the top layer of the source SPN SS is K and the number of nodes in

SS is m(m > n).

The running time of DiffVariable is dominated by the querying of the source SPN

SS for the marginal probabilities. The running time of a single query grows linearly
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as the size of SS, m increases due to the property of SPN [21]. Hence, the total

running time is O(nm).

For TransCluster, the number of samples generated to compute the centroids is

flexible. The running time of setting zeros is at most O(Kn). A significant amount

of the running time is used to find the nearest centroid cluster for each instance.

The running time for one instance is O(Kn). The total running time is O(Knk).

5.4 Experimental Results

In this section, we present experimental results comparing our algorithms with some

existing SPN implementations on the twenty binary datasets used in [71]. We also

present results on the knowledge transfer between two real-world text datasets, 20

Newsgroups and Reuters-52, where there is a difference in their marginal distribu-

tions. Most importantly, the set of variables from the two text datasets are not

the same. In Section 5.4.1, we briefly describe the datasets used. In Section 5.4.2,

we describe the experimental settings for the approaches we compared. In Section

5.4.3, we discuss in detail our empirical results. In Section 5.4.4, we discuss our

investigations on lower layer transfer for SPN.

5.4.1 Datasets.

Among the twenty binary datasets, the number of data instances ranges from 2,225

to 388,434 and the number of variables ranges from 16 to 1,556. For most datasets,

10% of instances are used for validation and 15% are used for testing [71]. Each

instance is a binary vector. The binary value indicates whether a certain feature

exists or not in the instance.

To investigate transfer learning between two tasks with a different set of vari-

ables, we use the text datasets 20 Newsgroups and Reuters-52 which correspond to

C20NG and CR52, respectively, in the binary datasets. We extracted the binary

features that represent whether a certain word appears in a document or not, under

the same criteria as in [74], i.e., for 20 Newsgroups, only words that appeared in at

least 200 documents are taken as a feature. For Reuters-52, words are required to

appear in at least 50 documents to be a feature. We obtained a slightly different
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Table 5.1: Average test log-likelihoods for 20 binary datasets, 20 Newsgroups
and Reuters-52.

Dataset LearnSPN ID-SPN-t SPN-t TopTrSPN Top2TrSPN

EachMovie -52.485 -59.760 -58.727 -59.743 -60.325
MSWeb -10.252 -10.685 -11.040 -10.876 -11.036
KDD -2.182 -2.199 -2.246 -2.269 -2.231
Audio 40.503 -41.652 -42.112 -41.451 -41.427
Book -35.886 -37.974 -36.927 -36.844 -36.780
Jester -75.989 (-53.405) -55.006 -55.211 -54.396 -54.391
MSNBC -6.113 -6.093 -6.155 -6.133 -6.211
Netflix -57.328 -58.465 -59.075 -58.401 -58.428
NLTCS -6.110 -6.159 -6.203 -6.210 -6.211
Plants -12.977 -13.531 -14.754 -14.810 -15.092
Accidents -30.038 -30.471 -32.248 -32.329 -35.447
Ad -19.733 -58.030 -47.460 -45.444 -52.160
BBC -250.687 -282.126 -276.081 -275.554 -276.213
C20NG -155.925 -161.526 -162.617 -160.364 -160.520
CWebKB -158.204 -183.524 -172.477 -169.286 -170.404
DNA -82.523 -100.990 -87.514 -88.622 -93.728
Kosarak -10.989 -11.199 -11.195 -11.654 -11.610
Retail -11.043 -11.393 -11.416 -11.314 -11.324
Pumsb-Star -24.781 -26.052 -27.291 -27.593 -31.929
CR52 -85.067 -98.099 -95.335 -95.265 -99.194

20 Newsgroups -158.782 -161.881 -163.748 -162.782 -162.733
Reuters-52 -87.168 -99.607 -95.907 -94.629 -94.627

number of features (in brackets) from 20 Newsgroups (916) and Reuters-52 (908)

compared to C20NG (910) and CR52 (889). We keep the partitions of training,

validation, and testing unchanged. For 20 Newsgroups and C20NG, the partitions

are (11293, 3764, 3764); for Reuters-52 and CR52, the partitions are (6532, 1028,

1540).

5.4.2 Experimental Settings.

1. LearnSPN [71]: The full training data is used to obtain the results. The

results shown in Table 5.1 are from [71]. 1

2. ID-SPN-t : ID-SPN [70] is used on 10% of the training data as the target

domain without any source structure.

1For the dataset Jester, there is a big difference between the result reported in [71] and our
result in the bracket reusing their codes.
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3. SPN-t: LearnSPN is used on 10% of the training data as the target domain

without any source structure.

4. TopTrSPN: The target data is the same 10% training data as in SPN-t.

Source SPNs are learned by LearnSPN with the other 90% of the training

data, i.e. no overlapping with the training data in SPN-t, and 20% of vari-

ables are replaced by Bernoulli random variables with a uniform random

p ∈ [0, 1], introducing variations in the marginal distributions.

5. Top2TrSPN: Top2TrSPN (see Section 5.4.4) is similar to TopTrSPN, but it

has a second layer transfer, i.e., the first layer of independence partitioning,

copied from the source SPN.

When we applied TopTrSPN to 20 Newsgroups and Reuters-52, they took each

other’s SPN learned with full training data using LearnSPN as the source SPN.

We matched the words in the two datasets and the same words appearing in both

datasets became shared features across the two domains. During the top layer

clustering transfer, we only consider those shared words. For Top2TrSPN, we use

those independence partitions of shared words in the source SPN as the seeds for

the target independence partitioning. The experiments were performed on Intel

Xeon E5-1650 Processor(Six Core HT, 3.2GHz Turbo) with 16GB of RAM.

5.4.3 Results and Discussions.

We follow prior work on SPN structure learning [71] and take the test-set log-

likelihood and query conditional log-likelihood as measures of SPN performance.

Furthermore, we add the training time to compare the learning efficiency.

For ID-SPN-t and SPN-t, we repeated 10 trials and took the average. For TopTr-

SPN and Top2TrSPN, we use 5 different source SPNs and repeated 10 times for

each source SPN. We take SPN-t as our baseline model and compare TopTrSPN

with it. Significant results in TopTrSPN are identified with a two-sample t-test

against SPN-t with p = 0.05 and shown in bold in Table 5.1 and 5.2.

Test-set Log Likelihood
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Table 5.1 2 shows the average test-set log-likelihood of LearnSPN, SPN-t, TopTr-

SPN, and Top2TrSPN. We present results for all datasets in [71] without cherry-

picking in favor of our proposed approaches. Here, LearnSPN serves as an upper

bound of the performance. In eleven out of twenty datasets, we obtain a signifi-

cantly better SPN by utilizing TopTrSPN on the source SPN than SPN-t.

Some additional observations from Table 5.1 are as follows:

• There are three datasets (Accidents, DNA, CR52) which our approaches do

not improve the performance of SPN-t. This is due to the lack of useful

structural information being transferred from the source SPN structure in

the first layer clustering step.

• There are six datasets (EachMovie, KDD, NLTCS, Plants, Kosarak, Pumsb-

Star) that have worse results than SPN-t when both our approaches are

applied. This is due to the negative transfer [62] from the source SPN which

could be due to our experimental setting when up to 20% of the variables

have their marginal distribution changed.

• The test-set log-likelihoods of using LearnSPN (based on the original training

datasets) for all the datasets are significantly better than performing transfer

learning from a source SPN. This should not be surprising as the source SPN

does not exactly model the dataset due to our 20% variations of the variables.

For 20 Newsgroups and Reuters-52, TopTrSPN shows significantly better results.

We further investigate the effect of the target data size on 20 Newsgroups shown

in Figure 5.2 and Reuters-52 shown in Figure 5.3 with error bars for SPN-t and

TopTrSPN. In both Figure 5.2 and Figure 5.3, for both methods, the log-likelihood

tends to increase as the size of target data increases from 10% to 50%. However, in

Figure 5.2, there is a drop in performance when the target data size is 30%. This

may be caused by the conflict between the source SPN and the target data. When

either the source SPN or the target data dominates, the performance improves.

When their strengths are even, it may lead to a worse model.

When the target data is very limited, e.g. 10%, our methods with the help from

the source SPN perform better than SPN-t. However, as the size of the target data

2The result for Jester dataset reported in [71] for LearnSPN is -75.989. It is likely to be a
typo. We reported it as -53.405.
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Figure 5.2: Average test log-likelihoods for 20 Newsgroups given Reuters-52
as source SPN.

rises our methods start to lose their advantage over SPN-t which directly learns

from the target data. In particular, in Figure 5.3, the standard deviation of SPN-t

decreases while the one for TopTrSPN increases as data size grows. This is because

more target data makes the source SPN information less valuable. If enough target

data is available, then the source SPN may not help but mislead the target SPN

and reduce its performance.

Query Conditional Log Likelihood

Queries are generated with different proportions of query variables Q and evidence

variables E. A set of instances are randomly selected from the test set in each

dataset. Then, queries P (Q = q|E = e) are created by randomly fixing proportions

of query variables Q and evidence variables E. These results are used to compare

the inference performance of the SPNs. Results are normalized by the number of

query variables.
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Figure 5.3: Average test log-likelihoods for Reuters-52 given 20 Newsgroups
as source SPN.

In our experiments, the proportions of query/evidence are fixed as 30%/50% and

50%/30%. The significant results are six and eight out of twenty for TopTrSPN

over SPN-t, shown in Table 5.2. Seven datasets have significantly worse results

than SPN-t in both query/evidence settings when our approaches are applied. In

summary, TopTrSPN does not perform better in query conditional probability.

However, the results for TopTrSPN in the two text datasets are better than SPN-t.

Note that there are strong correlations between the test-set log-likelihood in Table

5.1 and the query conditional log-likelihoods.

Training Time

From Table 5.3, TopTrSPN needs less time to train than SPN-t for twelve datasets.

This does not sound significant. However, the training time of TopTrSPN includes

some pre-computation time of querying the marginal distribution for each variable,

sampling 10,000 samples from the source SPN and calculating the centroid. The

number in the bracket is the remaining time for learning the SPN structure. If we
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Table 5.2: Average conditional log-likelihoods for 20 binary datasets, 20 News-
groups, and Reuters-52. Results are normalized by the number of query vari-
ables.

Q./Ev. % 30%/50% 50%/30%

Dataset SPN-t TopTrSPN SPN-t TopTrSPN

EachMovie -0.1135 -0.1160 -0.1149 -0.1170
MSWeb -0.0335 -0.0337 -0.0326 -0.0327
KDD -0.0287 -0.0286 -0.0304 -0.0305
Audio -0.4041 -0.3969 -0.4109 -0.4032
Book -0.0696 -0.0702 -0.0689 -0.0695
Jester -0.5395 -0.5310 -0.5389 -0.5309
MSNBC -0.3503 -0.3499 -0.3148 -0.3145
Netflix -0.5815 -0.5743 -0.5842 -0.5770
NLTCS -0.2693 -0.2710 -0.3519 -0.3522
Plants -0.1730 -0.1751 -0.1818 -0.1825
Accidents -0.2464 -0.2471 -0.2616 -0.2625
Ad -0.0263 -0.0258 -0.0272 -0.0262
BBC -0.2598 -0.2605 -0.2585 -0.2583
C20NG -0.1812 -0.1787 -0.1816 -0.1791
CWebKB -0.2014 -0.1990 -0.2009 -0.1977
DNA -0.4558 -0.4659 -0.4729 -0.4798
Kosarak -0.0558 -0.0571 -0.0574 -0.0587
Retail -0.0829 -0.0840 -0.0807 -0.0817
Pumsb-Star -0.1256 -0.1281 -0.1397 -0.1419
CR52 -0.1027 -0.1026 -0.1029 -0.1027

20 Newsgroups -0.1779 -0.1771 -0.1795 -0.1794
Reuters-52 -0.1055 -0.1044 -0.1033 -0.1020

only consider and compare these remaining learning time, then seventeen datasets

are learned faster.

For all twenty datasets except Ad, Top2TrSPN has lower training time compared

with TopTrSPN. There is a big training time saving if we directly copy the source

independence partitions in the first independence partitioning layer. The tradeoff

for this saving is a possible degradation in performance (see Table 5.1).

5.4.4 Limitations in Transferring Lower Layer Information

While our proposed method utilizes the clustering information in the top layer of

the source SPN, we also investigate transferring information from the lower layers

in the SPN. We implement a variant of TopTrSPN, called Top2TrSPN, which after
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Table 5.3: Average training time (seconds) for 20 binary datasets, 20 News-
groups and Reuters-52. The numbers in the brackets are the time of only learning
the SPN structure without precomputations.

Dataset SPN-t TopTrSPN Top2TrSPN

EachMovie 6.2 7.5 (4.9) 4.9
MSWeb 10.4 8.2 (6.9) 3.7
KDD 15.5 8.6 (3.8) 5.9
Audio 32.1 6.4 (5.8) 1.0
Book 6.6 6.6 (4.8) 2.8
Jester 32.0 9.2 (8.5) 1.0
MSNBC 96.7 42.8 (32.7) 12.6
Netflix 48.4 16.5 (15.5) 1.9
NLTCS 1.8 0.9 (0.8) 0.2
Plants 7.7 4.8 (4.4) 1.1
Accidents 55.2 6.1 (5.2) 3.7
Ad 120.1 135.9 (10.9) 184.1
BBC 8.5 31.0 (6.0) 27.2
C20NG 54.5 204.3 (42.6) 173.7
CWebKB 8.9 24.4 (8.6) 18.1
DNA 2.9 1.4 (1.1) 0.8
Kosarak 6.7 6.0 (5.0) 2.0
Retail 3.2 2.4 (1.9) 0.9
Pumsb-Star 10.0 10.2 (9.2) 5.1
CR52 36.1 71.4 (19.2) 58.1

20 Newsgroups 55.9 110.9 (45.4) 117.0
Reuters-52 38.2 227.1 (20.7) 243.5

the first clustering in TopTrSPN, copies the first layer of independence sets in the

source SPN to the corresponding clusters.

In LearnSPN, the sum nodes of SPNs are learned by clustering instances while

the product nodes are learned by partitioning independence sets. To transfer the

deeper clustering information, one needs to transfer the partitioning information

first. However, there is a difference between these two kinds of information. For

clustering information, such as the cluster centroids, the outliers usually do not

degrade the clustering of the target data because the cluster centroids from the

source SPN are only possible candidates. Unlike the clustering information, the

partitioning information among variables is hard to decide between the source

SPN and the target data. If we try to deviate from the source partitioning, the

independence sets will contain different variables and cannot be matched with the

partitioning of the source SPN completely. This affects learning in the lower layers
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of the SPN. As a result, the clustering outcomes have different variables from the

source centroids.

We attempted two approaches to overcome this issue, but neither of them pro-

vides noticeable improvements in the SPN performance compared with TopTr-

SPN. The first approach extends Top2TrSPN and goes deeper down the network.

Top2TrSPN, as mentioned in Section 5.3, copies the independence sets partitions

under the top clustering layer from the source SPN to the target SPN. This is simi-

lar to the “frozen” step in [69]. This gives some savings in training time mentioned

in Section 5.4.3. Furthermore, Top2TrSPN provides us a bunch of sum nodes in

the second clustering layer. This allows us to run our method on those sum nodes,

which is similar to TopTrSPN on the root node. For the second approach, we

exhaustively search all possible centroids in the second layer by combining mean

values from different partitions, and clustering instances. We abandon those cen-

troids with few instances assigned and then redo clustering on those instances.

Both of them show striking similarity with the observations by [69] that (i) first

layer features learned in convolution neural networks are general for the data do-

main, and (ii) transferability is negatively affected by “the specialization of higher

[or deeper] layer features to the original [source] task”.

5.5 Summary

In this chapter, we investigate how transfer learning can be used to improve an

SPN performance when the number of training examples is limited. In partic-

ular, we consider a structural transfer learning setting where we do not have a

source dataset but a source SPN. We propose a transfer learning approach called

TopTrSPN which utilizes the information of the first layer clusters in the source

SPN to learn the first layer of the target SPN. The source structure and target

data are used at different layers of the SPN structure learning respectively. Fur-

thermore, our algorithms consider the difference between the source SPN and the

target domain by further removing variables that have big marginal distribution

variations. Empirical results on benchmark datasets show the feasibility of our

proposed transfer learning approach for SPN structure learning.





Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the contributions of this dissertation and then

point out three promising directions for future work.

6.1 Summary of Contributions

Probabilistic models are useful models that can handle uncertainty. These models

usually require a certain network structure for their model representation. How-

ever, structure learning is generally hard. Therefore, in this dissertation, we aimed

to develop data-driven methods involving multiple uses of data to improve the

structure learning of Bayesian network and sum-product network, as two represen-

tatives of the probabilistic models.

In Chapter 3, we investigated the symmetry correction problem in the BN local

structure learning algorithms. To make the local structures of each node consis-

tent and obtain the skeleton, we proposed two data-driven symmetry correction

methods, which use data to better learn relations between a pair of nodes which

suffers from a conflict in their local structures. We not only showed the improve-

ment due to our symmetry correction methods but also investigated the effect of

the different combinations of our methods (score-based or constraint-based) and

the learning algorithms (score-based or constraint-based).

Chapter 4 moved to the edge orientation, which is the next stage of BN structure

learning after obtaining the skeleton. With improved skeleton obtained in Chapter

85
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3, we found that even if the skeleton is learned perfectly, without a good orientation

of the edges, the learned DAG can model data badly and stay far away from the

true DAG. We considered V-structure as a key concept in the orientation problem

since the set of V-structures determines the equivalent class that the DAGs belong

to. Given the skeleton is known, we extracted all possible V-structures and let them

compete against each other. For each V-structure, this competition helps to decide

its existence by utilizing the data from all other V-structures. Then we found that

the competition can be formulated as a weighted MAX-SAT problem. The weights

should be able to represent the conditional dependence and the dependence in a V-

structure. With this in mind, we found two kinds of reasonable weighting methods.

The experimental results demonstrated the usefulness of our approach in the edge

orientation.

Besides our approaches, one of the other approaches that can improve the structure

learning of BN is transfer learning. And SPN has been proposed as a new kind of

probabilistic model, which can be converted to BN under certain conditions. So we

attempted to improve the structure learning of SPN with transfer learning. Learn-

SPN is one of the structure learning algorithms for SPN. Based on it, in Chapter 5,

we thus proposed a transfer learning approach TopTrSPN that allows one to utilize

SPN with limited training examples, given a source SPN. Our proposed TopTrSPN

first utilizes the top layer clustering information of the source SPN structure to lay

the foundation for the target SPN structure. Then, the deeper layers in the SPN

structure are learned using the target data. We can take the learning of the top

layer of SPN as one stage and the learning of the deeper layers as another one.

With transfer learning, the different sources of data contribute at different stages

of the SPN structure learning.

To sum up, in this dissertation, we contributed to novel data-driven methods that

improve the structure learning of BN and SPN. We achieved this goal by carefully

examining the structure learning algorithms and then replaced the heuristic rule

or default procedure with a data-driven method. The experimental results showed

that it is promising to extract different aspects of the structural information from

data to improve different stages in the structure learning of probabilistic models.
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6.2 Future Work

There are multiple potential directions for future work. In this section, we present

three promising directions and summarize their relations to our contributions in

Figure 6.1.

Chapter 3 Symmetry
correction

Chapter 4 Vstructure
selection

Chapter 5 Transfer learning
on SPNs

Utilizing and unifying 
structural information

Multiple uses of data in other
structure learning

Transfer learning in structure
learning

Figure 6.1: The relations between future work and our contributions.

Utilizing and Unifying Structural Information. One direction is to further

utilize data in the later stages of the structure learning and unify them at a higher

level. For example, from our investigations on constraint-based and score-based

symmetry correction methods for Bayesian network structure learning, the two

types of approaches can capture different kinds of structural information. This can

be useful in the design of better hybrid learning algorithms and further improving

the structure learning. Multiple uses of data in different stages extract different

aspects of structural information, which are stored in different intermediate struc-

tural results. However, to obtain the final network structure, we should combine

and unify these intermediate structural results consistently.

Inspired by [43], besides making multiple uses of data, we can reuse the intermediate

structure results in other stages to make the final output network more consistent.

In particular, moving backwards from a later stage to improve the early stage is

an attractive option. While the later stages naturally depend on the early stage

and can benefit from a better early stage result, the early stage is not affected by

the later stages. So after the later stage is done, a further backward revision for

the early stage is beneficial. For example, the edge orientation results in Bayesian

network structure learning can be helpful to refine the skeleton obtained in the

early stage. The orientations of edges could suggest adding or removing certain

edges in the skeleton. If this refinement improves the skeleton, then we can rerun

the later stages and achieve a recursive algorithm, which can run the early stage
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and the later stages iteratively. This provides a consistent final network structure,

which is a mixture of results from different structural information.

Multiple Uses of Data in Other Structure Learning. Another direction is

spreading the idea of multiple uses of data at different stages of structure learning to

other probabilistic models or more general models. For example, Markov networks,

as another kind of probabilistic graphical model [75], is a good candidate. It

requires structure learning, so there are opportunities to make multiple uses of

data at various stages of an existing structure learning algorithm to improve their

performance.

For Markov network, some structure learning algorithm tries to learn the neigh-

borhoods of each variable [76], which is similar to the local structure learning

algorithms for Bayesian network. It has to face the symmetry correction prob-

lem as well. So the idea of multiple uses of data and our data-driven symmetry

correction methods can be extended to this kind of algorithm without much effort.

Transfer Learning in Structure Learning. The last direction is designing

new transfer learning techniques for structure learning. There have been a few

papers on applying transfer learning on other probabilistic models, such as Markov

logic network [77], where Markov logic network [78] combines logic reasoning and

probability. The aims of applying transfer learning are improving the efficiency

to deal with the high computational cost in structure learning and improving the

performance of structure learned from limited data. The data or structure in the

source domain is what we can use to do the transfer. The structural transfer is

harder than the data transfer, but the structural transfer can work across different

domains and capture the common structures from very different domains, which

may hide under the data. For example, the second-order transfer in Markov logic

network discovers new structures in the target domain [79].

The idea of transfer learning is suitable for improving the structure learning, but

the traditional transfer learning techniques are not very helpful due to the com-

plexity of structure learning algorithms. So new transfer learning techniques need

to be designed for network models and their learning algorithms specifically. This

requires a good understanding of the transfer learning, the network model and the

corresponding structure learning algorithms.
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