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Several articles have been written regarding the hydraulic permeability of ordered and disordered fibrous
media. Here, we explore wall effects on hydraulic permeabilities for ordered and disordered media using the
lattice Boltzmann(LB) simulation method. Simulation results are found to be in excellent agreement with the
semi analytic result of Sangani and Acrivos, and simulation results for disordered media are in good agreement
with the results of Jackson and James and Higdon and Ford’s fcc lattice. The macroscopic behavior, the
hydraulic permeability, shows a distinct connection with the geometry of the system. This connection is
explored and elucidated for ordered and disordered media. Finally, hydraulic permeabilities for bounded media
at various wall separations are presented for both ordered and disordered media and results are compared with
hydraulic permeabilities calculated for the unbounded media, and a phenomenological correlation is presented
to facilitate rapid prediction of hydraulic permeabilities for both unbounded and bounded fibrous media.

PACS numbes): 47.55.Mh

[. INTRODUCTION an analytic expression based on effective medium theory to
facilitate rapid predictions of hydraulic permeabilities for
In the study and characterization of fluid flow in fibrous bounded fibrous media. In their work, they also note that the
media, the transport property of interest is the hydraulic pereritical parameter in such flow systems is the cylinder-
meability [4]. Example processes that involve such mediacylinder separation rather than fiber volume fraction; see
include ultra filtration, gel permeation chromatography, andRef. [5]. In the work presented here, we explore both wall
filtration of blood (dialysig. These and other examples typi- effects and the influence of the cylinder-cylinder spacing on
cally involve flow through bounded fibrous media, i.e., wall the permeability. For a more complete look at the body of
effects. As noted by Tsay and WeinbadiB] and Lee and literature in this area, the interested reader is directed to the
Fung[6], the presence of bounding walls can have a proworks of Jackson and Jamég&], Higdon and Ford[3],
found effect on fluid flow rates. Here we examine wall ef- Clague and Phillip$4], and Skartsi®t al. [9].
fects on restricted flow through fibrous media. In the sections to follow, we rigorously benchmark the
The hydraulic permeability of fibrous media has been thdattice BoltzmannLB) method with well-established results
subject of many studig®-4,7,4. In these studies, a variety for two-dimensional[1] and three-dimensiondB] systems
of techniques have been employed to probe the behavior aff fibrous media and explore the intuitively obvious connec-
fluid flow in such media. All of these efforts have contrib- tion between the spacing between cylinders in the system
uted to understanding the physics of flow in fibrous mediaand the calculated hydraulic permeabilities. With this foun-
The study of Tsay and Weinbau&], however, is unique in  dation, we explore wall effects on the Darcy permeability for
that they explore the effects of walls on flow through or- ordered and disordered fibrous media for a complete range of
dered, biperiodic media made up of cylinders. They develogolids fractions. Since the effective medium theory is accu-
rate only in the dilute limit, we also put forth a correlation
for bounded fibrous media to facilitate more accurate predic-
* Author to whom correspondence should be directed. Presertions of hydraulic permeabilities for intermediate fiber vol-
mailing address: Lawrence Livermore National Laboratory, P.O.ume fractions.
Box 808, Mail Stop L-223 Livermore, CA 94550. Electronic ad-  The remainder of this paper is broken up into six addi-

dress: claguel@linl.gov tional sections. In Sec. Il, we briefly present the LB simula-
"Electronic address: kandhai@wins.uva.nl tion method and show how to use the LB method to calculate
*Electronic address: raoyang@!lanl.gov hydraulic permeabilities, and in Sec. lll, we discuss the fi-
$Electronic address: peterslo@wins.uva.nl brous media studied and present formulas to calculate the
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half distance between cylinders for each system as a function
of fiber volume fraction. Section IV contains a simple scal-
ing estimate for calculating hydraulic permeabilities and
comparisons between our LB simulation results and well-
accepted results for two- and three-dimensional media.
Simulation results and the associated geometry of each sys- n
tem are compared and discussed. In Sec. V, we present cal-
culated hydraulic permeabilities for bounded fibrous media.

This includes ordered and disordered media. A phenomeno- x, 5
logical correlation is presented to provide a rapid estimation 57
of hydraulic permeabilities for moderate fiber volume frac- X1

tions. Finally, in Sec. VI, we discuss the major conclusions n

of our findings.
FIG. 1. Two-dimensional simulation cell for a square array of

Il THEORETICAL BACKGROUND per!odlc cyllnders_. The simulation ceII_ con5|_sts of a cylinder of
radiusa centered in a square cell. The simulation cell edge length is

In the study of fluid flow through porous media at low N dsqr is the distance from the surface of the cylinder to the edge of

Reynolds number, the transport property of interest is thdhe cell or the half distance between periodic cylinders.

hydraulic permeabilityk. The hydraulic permeability is a o

measure of the fluid conductance in the porous medil@h by the square of the characteristic length of the obstacle. For

and is related to the average fluid velocity and the pressurg@ medium of cylinders of equal thickness, the characteristic

gradient by Darcy’s law11] length is simply the cylinder radius, i.a,

<V>=—E'VP (1) Ill. MEDIA STUDIED
P .

The media studied in this work include both two-
dimensional and three-dimensional systems. In the case of
three-dimensional systems both unbounded and bounded ar-
rays of cylinders are considered. Additionally, the depen-
dence of the hydraulic permeability on the cylinder-cylinder

pacing is also examined; consequently, we derive a formula
or the half spacing between nearest cylinders for each con-
figuration. This half spacing represents the distance over
which the fluid undergoes rapid changes and will be used in

Here (v) is the superficial average fluid velocity, is the
pure fluid viscosity,VP is the pressure gradient driving the
flow, andK is the hydraulic permeability tensor. For a ho-
mogeneous, isotropic systei=ké, whereéd is the identity
tensor. In the work performed here, we use the LB metho
[12] to calculatek for fibrous media.

A. Lattice Boltzmann method the scaling estimate to be presented in Sec. IV.
There are many derivations of the lattice Boltzmann equa-
tion and descriptions of the LB methd@i2—15. Suffice it to A. Unbounded media

say, we use the LB method to solve two- and three-
dimensional hydraulic permeability problems. We use an eg-
uispaced square lattice for all systems considered. For the To validate simulation results, we compare with the well
three-dimensional flow systems to be presented in Sec. IMocumented results for the two-dimensional square array of
and Sec. V, we use both the 15 and 19 lattice velocity modperiodic cylinderg1]. For this configuration, the simulation
els, and it is found at low Reynolds number flows that bothcell simply consists of a circular cylinder of radiasentered
models yielded nearly identical results. Furthermore, to acin a square fluid domain; see Fig. 1.
count for solid boundaries, we use the bounce back scheme. This simple simulation cell provides a rigorous test of the
As shown by Kandhaet al. [16], the simple bounce back LB approach. Also, shown in Fig. 1 is the half spacifig,
scheme achieves better than first-order accuracy when thgtween neighboring, periodic cylinders. The half spacing
position of the boundary is taken to be at the halfway posifor this particular system is related to the fiber volume frac-
tion along lattice links that represent the transition from solidtion ¢ by the following expression:
to liquid phas€g12].

The fluid density and momentum density are calculated in
the usual way12,17]), and with the bounce back scheme, we Osqr=2a
have all of the necessary information to calculate the hydrau-
lic permeability. Based on Edl), the LB representation for
k is given by

1. Two-dimensional periodic array of cylinders

1/2

()

2l¢

Here, ¢ is the fiber volume fraction of the system.

K=Va,0ulg. ) 2. Three-dimensional bcce lattice of cylinders

The bcc lattice provides an additional rigorous test of the
Here,v,,¢ is the velocity of the fluid averaged over the entire LB method for three-dimensional fibrous media. The pur-
domain including lattice sites within the partidl#7], andg  poses for looking at the BCC lattice is to perform direct
is the applied pressure gradient or gravitational force on theomparisons with Higdon and Fof8] for a complete range
fluid. To make the permeability dimensionless, we divide of fiber volume fractions, and to determine the necessary
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FIG. 2. Three-dimensional, body-centered-
cubic (bco lattice. The cylinders depicted here
have a radius of 3 lattice units. Cylinders emanate
from the center of the cell and intersect the eight
vertices of the cubic domain. The radius of each
of the cylinders is 3 lattice units. The dimensions
of the simulation cell are 660X 60, which rep-
resents a fiber volume fractiogh~ 0.36.

cylinder radii to ensure accurate predictions of hydraulic perowing to the singular nature of their numerical approach.
meabilities at the higher fiber volume fractions=0.5. The lattice Boltzmann method, however, does not exhibit
Briefly stated, the bcc lattice is simply the body-centered-singular behavior when obstacles overlap; consequently, the
cubic lattice, and the bcc positions denote locations of fibereylinders here are allowed to freely overlap. For the actual
fiber intersections; see Higdon and F§&d for details. ALB  disordered media presented in this work the fiber radii range
representation of a typical bcc simulation cell is shown infrom 6 to 18 lattice units, and the dimensions of the cubic
Fig. 2. simulation cells range from 100 to 300 lattice units on an
As will be discussed in Sec. IV, the actual cylinder radii edge depending on fiber volume fraction.
to this study this particular cylinder configuration range from To estimate the mean cylinder-cylinder half spacing for
5 to 30 lattice sites or lattice units, but for clarity, the cylin- this system, we use Ogstor{'$9] distribution. Ogston’s re-
der radius depicted above in Fig. 2 is only three lattice unitssult gives the distribution of distances to the nearest cylinder
In the bcc system, the fiber volume fractignis a non- in a random medium of infinitely long, freely overlapping
linear function of the simulation cell edge [3]. Conse- cylinders with infinitesimal radii. As a consequence, the
quently, the half distance between cylindefs.., in the  overlap volume is zero. Here we modify Ogston’s distribu-
dominant flux area is determined here by geometric argution for cylinders of finite radiugsee Ref[20)):
ments; see Fig. 3.

Shown in Fig. 3 is the fluid flux area denoted by the dp 2 D2
inscribed, shaded polygon, in this case a square, which is - - —¢D exg — d—|, (5)
formed by two adjacent simulation cells. To estimate the half dD a2 a2

spacingd, . between cylinders, we simply take one-half of

the square root of this flux area which has been corrected f - o it ;

the finite thickness of the cylinders and divide the resultingr&:aerrss?C';i::jirpg)r?;t?s“%edgggﬁggn of distances to the
characteristic length by 2. The resulting estimate for this par- ' '
ticular cylinder-cylinder half spacing is

21/2
Opcc™ Tn_a' (4)

Heren anda are the same as before; see Fig. 3.

3. Three-dimensional disordered array of cylinders ix3

In the study of disordered fibrous media, we use the ap- :1
proach put forth by Clague and Phillip8] to generate our
media. In their work[18], it was shown that their method G 3. void volume formed by two adjacent bee simulation
does indeed produce statistically random media. For detailgells. The bold lines represent the cylinders in the foreground of the
the interested reader is directed to their wpti]. There is  system; the bold dashed lines represent the the cylinders in the
one subtle difference, however, between the media studiehckground. The inscribed shaded region, a square, represents the
here and that of Clague and Phillip$,18]. Specifically, in  flux area where the fluid flows. The edge length for an individual,
their study, they were not able to allow cylinders to overlapcubic simulation cell is.

Void Volume Flux Area



PRE 61 HYDRAULIC PERMEABILITY OF (UN)BOUNDED. .. 619

When accounting for cylinders of finite radius, the solid
phase volume is double counted at positions of cylinder- o8y
cylinder overlap, which skews the distances calculated by L ;
Eq. (5). The more the cylinder radius is increased, the greatel
the error. In the LB method, the solid phase volume is ac-
counted for at precise lattice sites. As a result, the error as B
sociated with double counting the overlap volume is known P
and eliminated; therefore, for the disordered media consid- o~ - - _~"Mid Plane
ered here, we expect the modified version of Ogston’s distri- O S ——
bution given in Eq(5) to be valid for all fiber volume frac-
tions considered.

Additionally, Ogston’s distribution has the form of a 4x, B

e
[

Weibull distribution[21] with known mean and variance.
The mean gives the average half distance between adjace
cylinders, or X

Ssq,7_/ Bottom Wall

FIG. 4. Three-dimensional, bounded biperiodic simulation cell.
—a. (6) The cylinder in the system is bounded on the top and bottom by
solid walls. The distance from each wall to the midplane of the

. ) ) simulation cell isB. The half distance between neighboring, peri-
Here,(d.an) is the average half spacing between cylinders ogic cylinders iS85, given in Eq.(3).

and I is the gamma function. The result in E@) is ad-
justed for cylinders of finite thickne$49] by subtracting by s the half distance from a bounding wall to the midplane of
the cylinder radiusa. It also can be shown that,n) is  the simulation cell, ands,,, given by Eq.(3), is again half
equivalent todsq, given in Eq.(3). The difference being the the distance between neighboring periodic cylinders. The
associated standard deviation(@,,), which is given by  bounded, disordered media include walls in an identical fash-
ion as described in Fig. 4.
In Sec. IV to follow, we compare our simulation results
: ™ with accepted results for a square array of cylinders, the bcc
lattice, and a random array of cylinders. We also present the

The role of this upper bound will be discussed further wherfonnection between the geometry of the system and the ob-

the results for disordered media are presented. For examplg€"ved macroscopic behaviér,in Sec. V, we present results
at maximum packingg = m/4, the upper bound predicted by for bounded ordered and disordered fibrous media. Addition-

Eq. (7) gives a finite cylinder-cylinder spacing of ally, th_e LB_ simulation results, l_mbounded and bo_unded, are
(al 73 (2= Y2, This is a clear indication that fluid flow is CUV€ fit using a phenom_e_nolog|ca_ll mode_l. T_he fitting param-
possible beyond this critical volume fraction. eters are_prpwded to facilitate rgpld predications of hydraulic
permeabilities of bounded media.

All LB simulations for the square array of cylinders, two
and three dimensional, were performed on a single processor
Here we consider bounded media. Specifically, we exambec Alpha. The mean simulation time was 180 CPU min-
ine three-dimensional biperiodic, square, and disordered awutes. All three-dimensional disordered media were simulated
rays of cylinderd18]. In each system, the wall-wall separa- on the Parsytec CC parallel system in Amsterdam. This in-
tion is specified in terms of the Brinkman screening lengthcludes the three-dimensional bcc lattices and the disordered
[22] a1, media. The mean simulation time was 240 CPU minutes.

T Finally, it should be noted that all fiber volume fractiogs
L ) are calculated by dividing the total number of solid lattice
) ) - sites by the total number of lattice sites in the system. The
wherek is the hydraulic permeability of the unbounded ren-gjaxation timer (see Sec. Ml was chosen to be 1 for all
dering of the medium under consideration. The correspondsjmylations. Additionally, the gravitational constant used in
ing numbern of screening lengths is specified By where Eq. (2) was chosen to ensure that the Reynolds number,

B=na 1. For the three-dimensional square array of cylin-pased on the particle radius, was much less thaiNg,
ders, the hydraulic permeability used to calculate the desired. 0(0.0001).

Brinkman screening lengths is taken from Sangani and Ac-
rivos[1], and for the disordered media, we use the hydraulic
permeabilities determined from our LB simulation results for
unbounded, disordered media. For both the ordered and dis- In this section, we present LB simulation results for flow

ordered media, hydraulic permeabilities are calculated fothrough unbounded media. Specifically, we calculate the hy-
wall to midplane separations in the range of 2—7 Brinkmandraulic permeability for two-dimensional media and for

screening lengths. The bounded three-dimensional, biperthree-dimensional media. We perform resolution studies at
odic array of cylinders is shown below in Fig. 4. the higher volume fractions using the bcc lattice shown in

As shown above, the simulation cell is bounded on topFig. 2 for comparison with Higdon and Fof#] over a com-
and bottom. Using the notation of Tsay and Weinbd6iB  plete range of fiber volume fractions. Finally, we present

a 3
<5ran>: ¢_1Qr(§

a
=+ —
lo== ¢1/2

H
re)-r|5

B. Bounded media

IV. RESULTS: UNBOUNDED MEDIA
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hydraulic permeabilities for disordered media and compare 10 g NPT 10
with the cubic lattice model of Jackson and Jarfglsand FEN e Sangani and Acsivos 11|
Higdon and Ford’d3] result for the fcc lattice, which has Lk @(@\ | —
been shown to be comparable to random fibrous media AN | s | 11
Additionally, we perform a simple scaling analysis based on e ]
the system’s geometry and compare the predictions from the 01 } >@f®}. R ‘
scaling estimate with the calculated hydraulic permeabilities. 2 f | B 101 g2 ;2
k/a [ Semi-Dilute | ©L 1 Concentrated Region] 8sqr/ a
0.01 £ Region | Intermediate Region X@_\ 1
A. Scaling estimate g | | "-1\@\ ]
Before presenting the results, we present here a simple g L l } \ o0
scaling estimate based on an analysis of the governing equa- }6 ]
tions that will be used to explore the connection between the ‘ ‘ ‘ ‘ ‘ ‘ ‘
observed hydraulic permeability and the geometry of each 09! 0.001

(=

01 02 03 04 05 06 07 08

system. The following estimate is not intended to be rigor- ¢ (Fiber Volume Fraction)

ous, but it is intended to simply give physical insight into the
geometric dependences of the hydraulic permeabilities to be FIG. 5. Hydraulic permeability: two-dimensional square array

presented in this section. of periodic cylinders. Nondimensional hydraulic permeabilities cal-
The simple scaling analysis is based on the continuityculated using the LB method are compared with the result of San-
equation gani and Acrivog1], and the scaling estimate given in Eg1) for
a complete range of fiber volume fractiosts The line through their
V.v=0, (9)  data is provided to guide the eye. The cylinder radii in the LB
) simulations range from 6 to 12 lattice units dependinggonThe
Stokes equation dashed vertical lines separate regions of transitional behavior in the
,uVZV—VP=O, (10) hydraulic permeability. These regions include three distinct ranges

of ¢, i.e., the dilute to semidilute limit, the intermediate range, and

) ; . . the concentrated range. The transitions between these regions occur
and Darcy’s law given in Eq(l). If we take the cylinder- at ¢~0.2 andep~0.52, respectively.

cylinder half spacing for a square array of cylinders as the
length scale over which rapid changes in velocity occur, themcrivos [1] over the entire range of fiber volume fractions
both x; andx, scale asdsq,. From the continuity equation, considered. This result is significant because the LB ap-
we obtain a local estimate far, i.e.,v~(v), where(v) isthe  proach is comparable in the range &f and accuracy to
average fluid velocity. In the continuing analysis, we focusspectral-boundary-element methods used by Higdon and
on deriving our estimate for the, component of velocity Ford[3].

because this is the quantity that represents velocity distur- In Fig. 5, above, there are a few interesting features to be
bances orthogonal to the imposed pressure gradient. We nomoted. Specifically, in the dilute regian<<0.2, the hydraulic
make scaling estimates for the quantities in Stokes equatiorgermeability exhibits the expectdd,2] —In(¢)/¢ depen-
and find that the left hand side scales,zﬂ(s/)léﬁqr. If we  dence ong, and in the intermediate region 8:26<0.5 the
leave the right hand side unchanged B and make a permeability decays in what appears to be an exponential-

simple rearrangement of terms, we find tat~ 5§q/,uVP_ “like” fashion [8]. Finally, in the concentrated regiog
By directly comparing this estimate with Darcy’s law, Eq. =0.5, where the fluid flux area is significantly reduced, the
(1), we find that permeability decreases with the expected, rapid downturn.
This behavior occurs in the lubrication-“like['1] or perco-
K~ 8%4:- (1) lation limit. It seems intuitively obvious that there is a direct

correlation between the observed hydraulic permeability and
Here, 55, is the half distance between adjacent cylinders inthe available flux area, i.e., the geometric spacing in the me-
a periodic array of cylinders as described in Sec. Ill. As will djum. As can be clearly seen in Fig. 5, the scaling estimate
be demonstrated in the sections to follow, this simple estifor k gives the proper trend over the entire range of fiber
mate fork predicts at what¢ the hydraulic permeability yvolume fractions considered and surprisingly predicts perme-
exhibits interesting behavior and generally captures the exabilities of the same order of magnitude. Furthermore, the

pected dependence ah estimate enables us to immediately predict at witathe
important regions of behavior are and where interesting tran-
B. Two-dimensional periodic array of cylinders sitions in the permeability occur. The more significant result,

For two-dimensional fibrous media, the result of Sangamhowever, Is that the scaling estimate shows that the geom-

and Acrivos[1] is well accepted as the benchmark result foretry’ .€., meéan spacing beltween obstacles, of the sys_tem IS
e . . . the dominant factor governing the observed permeability.
the square array of periodic cylinders. The simulation cell for
this configuration is shown in Fig. 1 in Sec. lll. Shown in
Fig. 5 is our LB results compared to Sangani and Acridds
and the scaling estimate given in Ef1). The cylinder radii In the study of three-dimensional media, it is important to
used in the LB calculations range from 6 to 12 lattice unitsverify that our LB calculations are indeed correct. Because
depending on the fiber volume fraction. As shown, the simuthe interstitial fluid is accounted for at lattice sites, it is nec-
lation results exhibit excellent agreement with Sangani an@éssary to ensure that a minimum of three to five lattice sites

C. Three-dimensional bcc lattice.
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1E . . — 102“”””””” HH‘H_HWIWHHUH_IOO
3 a = 30 Lattice Units f O Lattice Boltzmann

a = 24 Lattice Units [ ®~\ ¢ BCC Lanice (3]

& Scaling Estimate | 3 10

a = 18 Lattice Units
a =12 Lattice Units

>< a=. 6 Lattice Units | ]
—— BCC Lattice [3]

> »Od

01 ¢
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Concentrated Region| 6 la
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0.001
f 0.001 £

0.0001 ¢ E 0.0001

X
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¢ (Fiber Volume Fraction) ¢ (Fiber Volume Fraction)

FIG. 7. Hydraulic permeability: bcc lattice of cylinders. Nondi-
mensional hydraulic permeabilities calculated using the LB method
are compared with the result of Higdon and Fg8di and the scal-
ing estimate using Eq4) for a periodic, bcc configuration of cyl-
inders or the bcc lattice. The line through their data is provided to
‘guide the eye. The dashed vertical lines separate regions of transi-
tional behavior in the hydraulic permeability. As before, these re-
gions include the dilute to semidilute limit, the intermediate range
exists between solid obstacles to properly capture hydrodyef ¢, and the concentrated range. Here the transitions between these
namic interactions. As a consequence, one typically needs tggions occur at~0.35 and¢~0.68.
increase both the cylinder radius and the simulation cell POz - ctions than for the sauare arrav of cvlinders. This is due to
portionately to achieve the desired cylinder-cylinder spacin 4 y Y X

X . . . Yhe fact that in the bcc lattice the fluid flux area is less con-
at a particular fiber volume fraction. To determine the appro-

. . .. . . . strictive than in the square array of cylinders. In particular,
priate cylinder radii as a function of fiber volume fractign he transition between the intermediate rangapoéind the
we perform a resolution study and compare with the resun%:oncentrated region occurs beyond a fiber vglume fraction of
of Higdon and Ford3] for the bcc lattice configuration, see 9 y

Fig. 2. In their work, Higdon and For3] use spectral- 0.6 as compared tp~0.5 for the periodic, square array of

i . cylinders.
boundary-element methods to calculate the hydraulic perme Here again the scaling estimate captures the trend and

ability. Their approach is both rigorous and accurate for

nearly all possible fiber volume fractions. Because the highe?ges;ﬁfa? dV\{P:r:sfilt?c?;svfc)(lucmiufrra%(;nessiiomea)égi(gr;ntﬁgevigcgr
fiber volume fractions are the most critical, we perform the 9 : ’ K

) : predicts permeabilities an order of magnitude greater than
study for ¢p= 0.35; see Fig. 6 below_' . . the LB method, and it also predicts that the rapid downturn
Here we consider cylinder radii ranging from 6 lattice

units to 30 lattice units. Results for a cylinder radius of e?heegggti;tﬁ;(;b(srirzztr‘]li;tz:?emabTsoﬁi(ts.tgglga:rsngvgetr;]%er?;?ze d
lattice units are accurate up to a fiber volume fraction of 0.6

Using this cylinder radius beyon@=0.6 gives a hydraulic flux area. Given the resolution study and the excellent agree-

permeability greater than expected. To ensure accurate r(rer]ent with Higdon and ForfB], we can now with confidence

sults beyondp=0.6, a cylinder radius of 12 lattice units is calculate_hydraulic p_ermeabilities for three-dimensional, dis-
. ) ordered fibrous media.
required to obtain accurate results up t@ef 0.8, and to
achieve the accurate results near maximum packing
~0.95, it is necessary to use a cylinder radius of 18 lattice
units. We now turn our attention to three-dimensional disor-
With this understanding, we can now compare our LBdered media. Because we cannot simulate an infinite medium
simulation results with the scaling estimate, using &g.in of disordered cylinders, all simulation cells are of sufficient
Eq. (11), and Higdon and Ford’g3] results for the bcc lattice  dimensions to ensure that hydrodynamic disturbances gener-
for a complete range of fiber volume fractions; see Fig. 7ated at the cell edges have little effect on the resulting hy-
below. draulic permeability calculations. It has been shown else-
As is clearly seen here, the LB results are nearly identicalvhere[4] that a simulation cell edge length of 14 Brinkman
to that of Higdon and Forf3] over the entire range of fiber screening lengths is indeed sufficient to eliminate these
volume fractions considered. The shape of the permeabilitgources of error. In all of the results to follow, we chose the
curve exhibits similar regions and transitions as was obsimulation cell edge length to be a minimum of 14 Brinkman
served with the square array of cylinders shown above iscreening lengths, an=14« 1. In addition to suppressing
Fig. 5. Note, also, that for the bcc lattice these regions anédge effects, this also ensures that the cell size is large
the transitions between regions occur at higher fiber volumenough to smooth out local inhomogeneities. For the results

FIG. 6. Resolution study using the bcc lattice. The hydraulic
permeability is calculated using the LB method for various cylinder
radii a at moderate to high fiber volume fractioms>0.35. The
results are compared with the results of Higdon and F8tdor the
same configuration of cylinders. The line through their data is pro
vided to guide the eye.

D. Three-dimensional disordered media
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100 £ : : rrre 100 ior has two plausible explanations. First, in a random or dis-
i O Lattice Boltzmann ordered medium, the cylinders sample many more orienta-
K3 ¢ FCClLattice [3] I tions relative to the incident flow field than the fcc lattice;
0 éi DX Jackson and Tames [2] 3 10 therefore, it is possible to have a higher percentage of cylin-
[ \j&\ ‘ -+~ - Scaling Estimate ] ders oriented parallel to the flow than in the fcc configura-
| E \$+ 21 tion. Second, while the media are indeed randd|, the
3 ST - E - . .
Wa: | L ! 1 U probability of the_ presence of large mters_thes and or paths
i O e T that span the finite simulation cell length is increased as the
O e Dite Region! * d‘é\* 01 simulation cell sizen is reduced. In general, however, the
l R 0 s agreement is good, and the LB method provides good results
001 £ | * l 0% 1 001 for a wide range of fiber volume fractions.
| } @n_ceMeﬁ' Also shown is the scaling estimate. The horizontal lines
e that bound the scaling estimate represerito. Beyond a
00 ol o2 03 o4 o5 os o™ fiber volume fraction of 0.3, the lower error bound is such a

small value that it does not appear on the logarithmic scale.
It should be noted here that the scaling estimate is for local
FIG. 8. Hydraulic permeability: three-dimensional, disorderedCylinder-cylinder half spacing. In random or disordered me-
array of cylinders. Nondimensional hydraulic permeabilities for dis-dia, a chain of these interstices must exist across the entire
ordered arrays of cylinders are calculated using the LB methodsimulation cell to permit fluid conductance. Given the aver-
Results are compared with the correlation of Jackson and J@thes age half spacing between cylinde¢s;,.), it is a reasonable
[see Eq(12)], the result of Higdon and For] for the fcc lattice, to assume that this spacing is indeed representative of the
and the scaling estimate using E§). The dashed line through the average “channel” width that spans the medium. The first
Jackson- Jamdg] data is provided to guide the eye. The horizontal feature to note here is that the scaling estimate captures the
lines that bound the scaling estimate represent-ttier given in  trend and surprisingly estimates permeabilities of the proper
Eq. (7). The dashed vertical lines identify transitions between re-grder of magnitude. Also, in the semidilute limit the scaling
gions of dominant behavior. The transition between the dilute toegtimate predicts permeabilities similar to the expected
semidilute limit and the intermediate region appears where eX-|n(¢)/¢ dependence. As noted above, the LB result does
pected. The expected dramatic down term in permeability betweefqt exhibit a downturn consistent with the onset of the per-
the intermed'iate and the con(_:entrated regions, however, is not evé:'olation limit beyond$=0.5. Considering the upper bound
dent at the fiber volume fractions shown. for (S;an), + 1o, it is clear that there exists the probability
L that the cylinder-cylinder half spacing is large enough, even
presented here the rativa is always greater than 18, con- 4t the higher fiber volume fractions, so that the expected
sistent with the findings above for the bee lattice; we US€joyniurn is not observed. An additional LB simulation was
cylinder radii, of 6 and 12 lattices units. conducted atp= 0.8 with a cylinder radius of 18 lattice units

In Fig. 8, we compare hydraulic permeabilities calculated, 4 4 edge length equal to 300 lattice units. At this fiber

using the LB method with the cubic lattice model of Jackson,o)yme fraction, the system was found to be percolated. This
and Jame$2], which is given by clearly represents the distinct downturn that we sekita
not shown.

¢ (Fiber Volume Fraction)

k 3
—=5a7[—In(¢)—0.931, (12)
a2 20¢ V. RESULTS: BOUNDED MEDIA

Here we present hydraulic permeabilities calculated using
the LB method for bounded fibrous media. Results are com-
pared with the appropriate unbounded rendering of the same
cylinder configuration. This includes both ordered and disor-
dered media. The LB results are fit with a phenomenological
correlation that is based on the scaling estimate given in Eq.
(3), existing theony5,6], and a stretched exponential depen-
dence ong. The fitting parameters are given in tabular form
to facilitate use of the result.

the fcc lattice result of Higdon and Fofa], and the scaling
estimate, using Ed6) in Eq.(13). The cubic lattice model of
Jackson and Jamég] is only accurate in the dilute limit,
i.e., $=<0.25, where to leading order the functionality for
k/a? is —In(¢)¢. This dependence o in the very dilute
limit $=<0.1 is well known and accepted. As noted in Fig. 8,
our LB result at¢=0.05 is nearly identical to Jackson and
James[2], which is a very promising result; moreover, a
curve fit of our simulation data in this domain using the
—In(¢#)/ ¢ functionality yields a correlation coefficient of 1, . _ _
R=1. A. Bounded, three-dimensional, square array of cylinders

We also compare with the results of Higdon and Ha&H In this subsection, we present LB simulation results for
for the fcc lattice. This configuration of cylinders was chosenhydraulic permeabilities of bounded ordered media. The
because it is the best representation of disordered media pretmulation cell for the biperiodic, square array of cylinders is
sented in their work. Our results in the semidilute and conshown in Fig. 4. Results for wall to midplane separations
centrated regions exhibit good agreement with Higdon andanging from 2 to 7 Brinkman screening lengths?® are
Ford[3]. Beyond¢=0.25, our results predict slightly higher compared with the unbounded result of Sangani and Acrivos
hydraulic permeabilities than Higdon and F¢8&]. This was  [1] in Fig. 9.
also the case in the study of flow through a flexible, random The characteristics of the hydraulic permeability curves
mat, performed by Koponeet al.[8]. This observed behav- for each case are similar. The trends exhibit the same transi-
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TABLE I. Curve-fit parameters, Eq14), b, andb, as a func-
tion of the wall to midplane separatio®(« 1), for biperiodic,
square arrays of cylinders.

—>¢— Sangani and Acrivos [1] [1
S—p=2q' i

=—B=3q"

*B=5¢"

B b, b,
33 7 B=70"
j 2 0.4369 —4.7912
2 i ] 3 0.4575 —3.8270
Ka” oo ¢ ] 5 0.4692 —2.9423
7 0.4705 —2.5775
0.001 ¢ E © 0.50941 —1.8042
0.0001 £ 3
or b,exp{,®), we arrive at the following curve fit equation
0 2] used in Fig. 9:
0 0l 02 03 04 05 06 07 08
¢ (Fiber Volume Fraction) . e ) tanH(B/a~ 1)
FIG. 9. Hydraulic permeability: bounded three-dimensional, bounded™ 9sql P1EXPA(D2¢) ]| 1 B/a ! '
square array of cylinders. Hydraulic permeabilities calculated using (14)

the LB method are compared with the unbounded result of Sangani
and Acrivos[1] for bounded systems. The wall to midplane sepa-
rationsB considered are 2, 3, 5, and 7 Brinkman screening lengthswhereb; andb, are the curve fitting parameters. The fitting
Hydraulic permeabilities are made dimensionless with the cylindeparameterb; rescales the estimated permeability given by
radius squared. Here, the lines through the data are from a curvggqr, andb, adjusts the slope of the prediction for interme-
fitting using Eq.(14). The curve-fit parameters are given in Table I. djate to highe. The effective medium approximation in Eq.
(13) is merely a constant for a fixeBl/a~* (or B') and can
tions between regions of dominant functional behavg®#e be lumped with the constart;. Here we distinguish our,
Sec. IV) at similar fiber volume fractions. Additionally, the curve-fit, estimate for the hydraulic permeability from the
slopes of the curves in regions of dominant functional behaveffective medium result, E413), of Tsay and Weinbaur]
ior appear to be similar. The gap between wallB, 2auses with an asterisk, *.
a noticeable reduction ik over the entire range of fiber As shown in Fig. 9, all curve fits exhibit excellent agree-
volume fractions. The percent differences between the calctiment out to ag equal to approximately 0.65. The resulting
lated hydraulic permeabilities and the unbounded result arget of fitting parameters; andb, for the wall separationB
80%, 66%, 47%, and 38% on average for 2, 3, 5, and Eited above are given in Table I.
Brinkman screening lengths, respectively. These percent dif- For the fit of the permeabilities of the unbounded media,
ferences decrease in an exponential fashion with increasirg=, the effective medium term in parentheses is ne-
B. This is consistent with the notion that the bounding wallsg|ected_ If we further fit the curve-fit parametdss and b,
behave like an effective medium where the gap between thgr the bounded results as a function Bfwith a second-
walls represents the average spacing between fixed obstaclggree polynomial plus a natural logarithmic dependence,
The line fit through the data comes from a phenomenoi e, C,+C,B+C3B?+C,In(B). The resulting coefficients
logical model that is based on the scaling estimate in Eqc, ... C, are given below in Table Il. The curve-fit equa-
(12), the effective medium result of Tsay and Weinbali  tion for b, andb, nearly matches the data exactly and has a
and a stretched exponential dependencepotv adjust the  correlation coefficienR of 1. We note, however, that the
trend predicted by the scaling estimate for a wider range ogquation chosen to fit the fitting parameters has no apparent
fiber volume fractions. In brief, the effective medium result physical meaning. This result is simply provided to enable

derived by Tsay and Weinbaufb] is given by rapid use of the curve-fit equation given in Eg4). All that
. is necessary to predict hydraulic permeabilities for bounded
K —kl1- tanh(B/a™") (13) ordered, fibrous media is knowing the half spacing between
bounded™ Blat |’ adjacent cylinders as a function of fiber volume fractipn

and the wall to midplane separati@nin terms of Brinkman

; -1
wherek is the hydraulic permeability of the unbounded ren-SCT€eNING lengthe .

dering of the same medium. As stated by étal. [23], the
expression given above in E€L3) is accurate when the as- TABLE II. (_3urve-fit of the “cur've fitting parameters” in Eq.
pect ratioB/a is greater than 5 or when the bounding walls (14 @s a function of the wall to midplane separati@a "), for
are reasonably far apart. Furthermore, at intermediate arfjPeriodic, square array of cylinders.

concentratedg>0.20, fiber volume fractions the expression

given in Eq.(13) captures the correct trend but over predicts 1 C Cs Ca
hydraulic permeabilities. b, 0.4204 —0.0403 0.0016 0.1310
By combining Eq.(13) with the appropriate scaling esti- b, —6.0877 ~0.8671 0.0289 4.1965

mate, Eq.3), and a stretched exponential dependence pn
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10— T e TABLE IIl. Curve-fit parameters, Eq14), b, andb, as a func-
tion of the wall to midplane separatioB{« 1), for bounded, dis-
ordered arrays of cylinders.

1E i
B b, b,
3 0.5977 —4.1839
Ka® o1l - 5 0.5249 —2.6794
7 0.6355 —1.6834
© 0.71407 —0.51854
001 | E
3 Here again the lines through the data obtain from the LB
] method are a result of curve fits using the appropriate scaling
0001 et L estimate,(5,,,) in Eqg. (14) The curve fits capture the ex-
0 01 02 03 04 0.5 pected trends and the important transitions. Also, since we

¢ (Fiber Volume Fraction) consider a reduced range #fhere, the fits are in excellent
agreement with the LB result over the majority of the range
FIG. 10. Hydraulic permeability: bounded three-dimensional,of fiber volume fractions considered. The curve fitting pa-
disordered array of cylinders. Hydraulic permeabilities calculatedametersh; andb, used in Eq(14) for the range of wall to
using the LB method for bounded, disordered arrays of cylindersnidplane separations considered, i.e., Bor 3,5,7, andw,
are compared with the unbounded results for the same system prare given in Table IlI.
sented in Sec. V. The wall to midplane separati@sonsidered Again, for the unbounded system, i.e., Bk, the ef-
are 3, 5, and 7 Brinkman screening lengths. Hydraulic permeabilifective medium term in parentheses has been neglected.
ties are made dimensionless with the cylinder radius squared. The As in the case of the bounded ordered system, the fitting
lines through the data are from a curve fitting using 8¢). The  parameters for the bounded data are fit to enable rapid pre-

curve-fit parameters are given in Table IIl. dictions of bounded hydraulic permeabilities. The curve-fit
function used here to fit the fitting parameters for disordered
B. Bounded disordered media media is the same as in Sd&/ A). As stated before, this

. functionality has no apparent physical meaning but is pre-
Here we calculate hydraulic permeabilities for bounOIecjSented to facilitate rapid predictions of hydraulic permeabili-

disordered fibrous media using the LB method. Again, W&jeg of hounded, disordered media. The curve-fit parameters
compare our LB results for wall to mid-plane separations ofc1 ...,Cq for b, andb, as a function of8 are given in

3, 5, and 7 Brinkman screening lengths with results fromrgpie v.
Sec. IV for the same unbounded configuration of cylinders in
Fig. 10. , , _ VI. CONCLUSIONS

At these wall to midplane separations the bounding walls _ _
have a significant influence on the observed hydraulic per- In this paper, we have shown that the lattice Boltzmann
meability; e.g., foB=5a"" at $=0.2, there is a 61% dif- method is an accurate and versatile method for the study of
ference between the calculated hydraulic permeability andluid flow in fibrous media. Hydraulic permeabilities calcu-
the unbounded result. At higher volume fractiapis 0.2, the  lated using the LB method for both two- and three-
percent difference relative to the unbounded resut &%  dimensional configurations of unbounded cylinders are in ex-
on average. Also, unlike the ordered media, the slopes in thgellent agreement with existing theorfl] and well-
trends for increasingp steepen as is reduced below 4 established numerical resulf8]. Resolution studies using
Brinkman screening lengths, and the transition between th&e three-dimensional, bce lattice in Sec. IV show that LB
dilute and the intermediate regions for each case occurs &tmulations require greater than three lattice sites between
$~0.2. obstacles to properly capture hydrodynamic interactions for

The apparent difference in the trends and data scatter b&tationary media. When applied properly, the LB method is
tween the calculated hydraulic permeabilities in Fig. 10 andg®omparable in the range @f and accuracy to boundary el-
the ordered results above in Fig. 9 is due in large part t¢ment methodg3] in the study of fluid flow through fibrous
large variations in local fiber volume fractions within the media. With these foundational results and the ease of in-
simulation cell, i.e., the ratio of vertical cell edge lengtto ~ cluding bounding walls in the LB method, this approach
Cy"nder radiusn/a, is less than the to|eranc|e/’a> 12’ nec- I’eadl|y enables the calculation of hydraulIC permeabllltles for
essary for accurate predictions of hydraulic permeabilities; ] ] _
see discussion in Sec. IV. As the simulation cell size is re- TABLE IV. Afit of the curve-fit parameters in Eq14) as a
duced, which is the case when considering bounded, disofunction of the wall to midplane separatid(«-), for bounded,
dered media, local heterogeneities in the microstructure ardsordered arrays of cylinders.
accentuated. These heterogeneities have a more and madre

dominant influence ok as the bounding walls are brought €1 C Cs Ca
closer together. As a result, there is a noticeable increase inp, 0.4211 —0.0046 0.0 0.1246
variations in the calculated hydraulic permeabilities shown b, —7.8261 —0.2350 0.0 4.0000

above forB<a 1.
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bounded fibrous media, which previously have required amylinders does indeed permit sufficient fluid flow so that the

significant amount of efforf5]. onset of the dramatic reduction in permeability predicted by
The simple scaling estimate put forth in Sec. IV clearly EQ. (6) in the range of¢ studied was not observed.

shows that the geometry of the system is the dominant factor The hydraulic permeabilities for unbounded and bounded

that influences the behavior of the resulting hydraulic permeMedia calculated using the LB method were curve fit with a

ability. The scaling estimate also enables rapid determinatio henomenological equation, EQ.4), to permit rapid calcu-

of the trend and important transitions observed in the hydrau-atlon of the hydraulic permeabilities of unbounded and

i bil f . ¢ fib | fracti bounded fibrous media for a wide range of This range
ic permeability as a function of fiber volume fractigh includes the semidilute to intermediate fiber volume frac-

Because the LB method accounts for the solid phase &fons j.e., 0.05 ¢<0.7. The fitting equation is based on the
specific lattice sites, the overlap volume in a three-appropriate scaling estimate, Sec. IV, the effective medium
dimensional, random medium of freely overlapping cylindersestimate put forth by Tsay and Weinbaufs], and a
of finite radius is known and accounted for appropriately. Asstretched exponential dependencedorThe curve fit param-

a consequence, the modified version of Ogston’s distributiorters in Eq(14), b; andb,, have been tabulated in Tables |
[19,20Q is considered valid over the entire range of fiber vol-and 1lI; furthermore, these fit parameters have also been
ume fractions studied. Furthermore, the statistical disee  curve fit to enable a rapid prediction of permeabilities for
Eq. (7)] predicted by Ogston’s distribution demonstrates thasystems with wall to midplane separations not considered
in the upper bound;+ 1o, for the average spacing between here.

[1] A.S. Sangani and A. Acrivos, Int. J. Multiphase FI@v193  [12] Anthony J.C. Ladd, J. Fluid Mecl271, 285 (1994.

(1982. [13] S. Chen and G.D. Doolen, Annu. Rev. Fluid Me@&, 329
[2] G.W. Jackson and D.F. James, Can. J. Chem. BAg364 (1998.

(1986. [14] X. He and L. Luo, Phys. Rev. B5, R6333(1997.
[3] J.J.L. Higdon and G.D. Ford, J. Fluid Mec308 341(1996. [15] T. Abe, J. Comput. Phy4.31, 241(1997).
[4] D.S. Clague and R.J. Phillips, Phys. Fluis1562(1997. [16] B.D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Ti-
[5] R. Tsay and S. Weinbaum, J. Fluid Me@26, 125 (1991J). monen, and P.M.A. Sloot, J. Comput. Phy50, 482 (1999.
[6] J.S. Lee and Y.C. Fung, J. Fluid Med®i, 657 (1969. [17] Anthony J.C. Ladd, J. Fluid Mecl271, 311 (1994).

[7] E. Schweers and F. Loffler, Powder Techr&, 191 (1994). [18] D.S. Clague and R.J. Phillips, Phys. Fluigls1720(1996.
[8] A. Koponen, D. Kandhai, E. Hellen, M. Alava, A. Hoekstra, [19] A.G. Ogston, Trans. Faraday Sdgl, 1754 (1958.
M. Kataja, K. Niskanen, P. Sloot, and J. Timonen, Phys. Rev[20] T.F. Kosar and R.J. Phillips, AIChE. 41, 701(1994).

Lett. 80, 716 (1998. [21] S. B. Vardeman Statistics for Engineering Problem Solving
[9] L. Skartsis, J.L. Kardos, and B. Khomami, Polym. Eng. Sci. (PWS, Boston, 1994
32, 221(1992. [22] H.C. Brinkman, Appl. Sci. Res., Sect. B 27 (1947).
[10] D.A. Edwards, M. Shapiro, P. Bar-Yoseph, and M. Shapira,[23] B.M. Fu, S. Weinbaum, R.Y. Tsay, and F.E. Curry, J. Bio-
Phys. Fluids A2, 45 (1990. mech. Eng. Trans. ASME, Ser. C: J. Heat Trangf&6 502

[11] S. Whitaker, Trans. Porous Media 3 (1986. (1994.



