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Several articles have been written regarding the hydraulic permeability of ordered and disordered fibrous
media. Here, we explore wall effects on hydraulic permeabilities for ordered and disordered media using the
lattice Boltzmann~LB! simulation method. Simulation results are found to be in excellent agreement with the
semi analytic result of Sangani and Acrivos, and simulation results for disordered media are in good agreement
with the results of Jackson and James and Higdon and Ford’s fcc lattice. The macroscopic behavior, the
hydraulic permeability, shows a distinct connection with the geometry of the system. This connection is
explored and elucidated for ordered and disordered media. Finally, hydraulic permeabilities for bounded media
at various wall separations are presented for both ordered and disordered media and results are compared with
hydraulic permeabilities calculated for the unbounded media, and a phenomenological correlation is presented
to facilitate rapid prediction of hydraulic permeabilities for both unbounded and bounded fibrous media.
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I. INTRODUCTION

In the study and characterization of fluid flow in fibrou
media, the transport property of interest is the hydraulic p
meability @4#. Example processes that involve such me
include ultra filtration, gel permeation chromatography, a
filtration of blood~dialysis!. These and other examples typ
cally involve flow through bounded fibrous media, i.e., w
effects. As noted by Tsay and Weinbaum@5# and Lee and
Fung @6#, the presence of bounding walls can have a p
found effect on fluid flow rates. Here we examine wall e
fects on restricted flow through fibrous media.

The hydraulic permeability of fibrous media has been
subject of many studies@2–4,7,8#. In these studies, a variet
of techniques have been employed to probe the behavio
fluid flow in such media. All of these efforts have contri
uted to understanding the physics of flow in fibrous med
The study of Tsay and Weinbaum@5#, however, is unique in
that they explore the effects of walls on flow through o
dered, biperiodic media made up of cylinders. They deve
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an analytic expression based on effective medium theor
facilitate rapid predictions of hydraulic permeabilities f
bounded fibrous media. In their work, they also note that
critical parameter in such flow systems is the cylind
cylinder separation rather than fiber volume fraction; s
Ref. @5#. In the work presented here, we explore both w
effects and the influence of the cylinder-cylinder spacing
the permeability. For a more complete look at the body
literature in this area, the interested reader is directed to
works of Jackson and James@2#, Higdon and Ford@3#,
Clague and Phillips@4#, and Skartsiset al. @9#.

In the sections to follow, we rigorously benchmark th
lattice Boltzmann~LB! method with well-established result
for two-dimensional@1# and three-dimensional@3# systems
of fibrous media and explore the intuitively obvious conne
tion between the spacing between cylinders in the sys
and the calculated hydraulic permeabilities. With this fou
dation, we explore wall effects on the Darcy permeability f
ordered and disordered fibrous media for a complete rang
solids fractions. Since the effective medium theory is ac
rate only in the dilute limit, we also put forth a correlatio
for bounded fibrous media to facilitate more accurate pred
tions of hydraulic permeabilities for intermediate fiber vo
ume fractions.

The remainder of this paper is broken up into six ad
tional sections. In Sec. II, we briefly present the LB simu
tion method and show how to use the LB method to calcu
hydraulic permeabilities, and in Sec. III, we discuss the
brous media studied and present formulas to calculate

nt
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PRE 61 617HYDRAULIC PERMEABILITY OF ~UN!BOUNDED . . .
half distance between cylinders for each system as a func
of fiber volume fraction. Section IV contains a simple sc
ing estimate for calculating hydraulic permeabilities a
comparisons between our LB simulation results and w
accepted results for two- and three-dimensional me
Simulation results and the associated geometry of each
tem are compared and discussed. In Sec. V, we present
culated hydraulic permeabilities for bounded fibrous med
This includes ordered and disordered media. A phenome
logical correlation is presented to provide a rapid estimat
of hydraulic permeabilities for moderate fiber volume fra
tions. Finally, in Sec. VI, we discuss the major conclusio
of our findings.

II. THEORETICAL BACKGROUND

In the study of fluid flow through porous media at lo
Reynolds number, the transport property of interest is
hydraulic permeability,k. The hydraulic permeability is a
measure of the fluid conductance in the porous medium@10#
and is related to the average fluid velocity and the press
gradient by Darcy’s law@11#

^v&52
K

m
•¹P. ~1!

Here ^v& is the superficial average fluid velocity,m is the
pure fluid viscosity,¹P is the pressure gradient driving th
flow, andK is the hydraulic permeability tensor. For a h
mogeneous, isotropic system,K5kd, whered is the identity
tensor. In the work performed here, we use the LB meth
@12# to calculatek for fibrous media.

A. Lattice Boltzmann method

There are many derivations of the lattice Boltzmann eq
tion and descriptions of the LB method@12–15#. Suffice it to
say, we use the LB method to solve two- and thre
dimensional hydraulic permeability problems. We use an
uispaced square lattice for all systems considered. For
three-dimensional flow systems to be presented in Sec
and Sec. V, we use both the 15 and 19 lattice velocity m
els, and it is found at low Reynolds number flows that bo
models yielded nearly identical results. Furthermore, to
count for solid boundaries, we use the bounce back sche
As shown by Kandhaiet al. @16#, the simple bounce bac
scheme achieves better than first-order accuracy when
position of the boundary is taken to be at the halfway po
tion along lattice links that represent the transition from so
to liquid phase@12#.

The fluid density and momentum density are calculated
the usual way@12,17#, and with the bounce back scheme, w
have all of the necessary information to calculate the hydr
lic permeability. Based on Eq.~1!, the LB representation fo
k is given by

k5vavem/g. ~2!

Here,vave is the velocity of the fluid averaged over the ent
domain including lattice sites within the particle@17#, andg
is the applied pressure gradient or gravitational force on
fluid. To make the permeability dimensionless, we dividek
on
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by the square of the characteristic length of the obstacle.
a medium of cylinders of equal thickness, the characteri
length is simply the cylinder radius, i.e.,a.

III. MEDIA STUDIED

The media studied in this work include both two
dimensional and three-dimensional systems. In the cas
three-dimensional systems both unbounded and bounde
rays of cylinders are considered. Additionally, the depe
dence of the hydraulic permeability on the cylinder-cylind
spacing is also examined; consequently, we derive a form
for the half spacing between nearest cylinders for each c
figuration. This half spacing represents the distance o
which the fluid undergoes rapid changes and will be used
the scaling estimate to be presented in Sec. IV.

A. Unbounded media

1. Two-dimensional periodic array of cylinders

To validate simulation results, we compare with the w
documented results for the two-dimensional square arra
periodic cylinders@1#. For this configuration, the simulatio
cell simply consists of a circular cylinder of radiusa centered
in a square fluid domain; see Fig. 1.

This simple simulation cell provides a rigorous test of t
LB approach. Also, shown in Fig. 1 is the half spacingdsqr
between neighboring, periodic cylinders. The half spac
for this particular system is related to the fiber volume fra
tion f by the following expression:

dsqr5aF1

2 S p

f D 1/2

21G . ~3!

Here,f is the fiber volume fraction of the system.

2. Three-dimensional bcc lattice of cylinders

The bcc lattice provides an additional rigorous test of
LB method for three-dimensional fibrous media. The p
poses for looking at the BCC lattice is to perform dire
comparisons with Higdon and Ford@3# for a complete range
of fiber volume fractions, and to determine the necess

FIG. 1. Two-dimensional simulation cell for a square array
periodic cylinders. The simulation cell consists of a cylinder
radiusa centered in a square cell. The simulation cell edge lengt
n. dsqr is the distance from the surface of the cylinder to the edge
the cell or the half distance between periodic cylinders.
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FIG. 2. Three-dimensional, body-centere
cubic ~bcc! lattice. The cylinders depicted her
have a radius of 3 lattice units. Cylinders emana
from the center of the cell and intersect the eig
vertices of the cubic domain. The radius of ea
of the cylinders is 3 lattice units. The dimension
of the simulation cell are 60360360, which rep-
resents a fiber volume fraction,f'0.36.
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cylinder radii to ensure accurate predictions of hydraulic p
meabilities at the higher fiber volume fractionsf>0.5.
Briefly stated, the bcc lattice is simply the body-centere
cubic lattice, and the bcc positions denote locations of fib
fiber intersections; see Higdon and Ford@3# for details. A LB
representation of a typical bcc simulation cell is shown
Fig. 2.

As will be discussed in Sec. IV, the actual cylinder ra
to this study this particular cylinder configuration range fro
5 to 30 lattice sites or lattice units, but for clarity, the cyli
der radius depicted above in Fig. 2 is only three lattice un

In the bcc system, the fiber volume fractionf is a non-
linear function of the simulation cell edgen @3#. Conse-
quently, the half distance between cylinders,dbcc , in the
dominant flux area is determined here by geometric ar
ments; see Fig. 3.

Shown in Fig. 3 is the fluid flux area denoted by t
inscribed, shaded polygon, in this case a square, whic
formed by two adjacent simulation cells. To estimate the h
spacingdbcc between cylinders, we simply take one-half
the square root of this flux area which has been corrected
the finite thickness of the cylinders and divide the result
characteristic length by 2. The resulting estimate for this p
ticular cylinder-cylinder half spacing is

dbcc'
21/2

4
n2a. ~4!

Heren anda are the same as before; see Fig. 3.

3. Three-dimensional disordered array of cylinders

In the study of disordered fibrous media, we use the
proach put forth by Clague and Phillips@18# to generate our
media. In their work@18#, it was shown that their metho
does indeed produce statistically random media. For det
the interested reader is directed to their work@18#. There is
one subtle difference, however, between the media stu
here and that of Clague and Phillips@4,18#. Specifically, in
their study, they were not able to allow cylinders to overl
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owing to the singular nature of their numerical approa
The lattice Boltzmann method, however, does not exh
singular behavior when obstacles overlap; consequently,
cylinders here are allowed to freely overlap. For the act
disordered media presented in this work the fiber radii ra
from 6 to 18 lattice units, and the dimensions of the cu
simulation cells range from 100 to 300 lattice units on
edge depending on fiber volume fraction.

To estimate the mean cylinder-cylinder half spacing
this system, we use Ogston’s@19# distribution. Ogston’s re-
sult gives the distribution of distances to the nearest cylin
in a random medium of infinitely long, freely overlappin
cylinders with infinitesimal radii. As a consequence, t
overlap volume is zero. Here we modify Ogston’s distrib
tion for cylinders of finite radius~see Ref.@20#!:

dP

dD
5

2f

a2
D expF2f

D2

a2 G , ~5!

where P is the probability distribution of distances to th
nearest cylinder, andD is the distance.

FIG. 3. Void volume formed by two adjacent bcc simulatio
cells. The bold lines represent the cylinders in the foreground of
system; the bold dashed lines represent the the cylinders in
background. The inscribed shaded region, a square, represen
flux area where the fluid flows. The edge length for an individu
cubic simulation cell isn.
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When accounting for cylinders of finite radius, the so
phase volume is double counted at positions of cylind
cylinder overlap, which skews the distances calculated
Eq. ~5!. The more the cylinder radius is increased, the gre
the error. In the LB method, the solid phase volume is
counted for at precise lattice sites. As a result, the error
sociated with double counting the overlap volume is kno
and eliminated; therefore, for the disordered media con
ered here, we expect the modified version of Ogston’s dis
bution given in Eq.~5! to be valid for all fiber volume frac-
tions considered.

Additionally, Ogston’s distribution has the form of
Weibull distribution @21# with known mean and variance
The mean gives the average half distance between adja
cylinders, or

^d ran&5
a

f1/2
GS 3

2D2a. ~6!

Here, ^d ran& is the average half spacing between cylinde
and G is the gamma function. The result in Eq.~6! is ad-
justed for cylinders of finite thickness@19# by subtracting by
the cylinder radiusa. It also can be shown that^d ran& is
equivalent todsqr given in Eq.~3!. The difference being the
associated standard deviation of^d ran&, which is given by

1s56
a

f1/2FG~2!2GS 3

2D G . ~7!

The role of this upper bound will be discussed further wh
the results for disordered media are presented. For exam
at maximum packing,f5p/4, the upper bound predicted b
Eq. ~7! gives a finite cylinder-cylinder spacing o
(a/p1/2)(22p1/2). This is a clear indication that fluid flow is
possible beyond this critical volume fraction.

B. Bounded media

Here we consider bounded media. Specifically, we exa
ine three-dimensional biperiodic, square, and disordered
rays of cylinders@18#. In each system, the wall-wall separ
tion is specified in terms of the Brinkman screening len
@22# a21,

a215k1/2, ~8!

wherek is the hydraulic permeability of the unbounded re
dering of the medium under consideration. The correspo
ing numbern of screening lengths is specified byB, where
B5na21. For the three-dimensional square array of cyl
ders, the hydraulic permeability used to calculate the des
Brinkman screening lengths is taken from Sangani and
rivos @1#, and for the disordered media, we use the hydra
permeabilities determined from our LB simulation results
unbounded, disordered media. For both the ordered and
ordered media, hydraulic permeabilities are calculated
wall to midplane separations in the range of 2–7 Brinkm
screening lengths. The bounded three-dimensional, bip
odic array of cylinders is shown below in Fig. 4.

As shown above, the simulation cell is bounded on
and bottom. Using the notation of Tsay and Weinbaum@5#, B
r-
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is the half distance from a bounding wall to the midplane
the simulation cell, anddsqr , given by Eq.~3!, is again half
the distance between neighboring periodic cylinders. T
bounded, disordered media include walls in an identical fa
ion as described in Fig. 4.

In Sec. IV to follow, we compare our simulation resul
with accepted results for a square array of cylinders, the
lattice, and a random array of cylinders. We also present
connection between the geometry of the system and the
served macroscopic behavior,k. In Sec. V, we present result
for bounded ordered and disordered fibrous media. Additi
ally, the LB simulation results, unbounded and bounded,
curve fit using a phenomenological model. The fitting para
eters are provided to facilitate rapid predications of hydrau
permeabilities of bounded media.

All LB simulations for the square array of cylinders, tw
and three dimensional, were performed on a single proce
Dec Alpha. The mean simulation time was 180 CPU m
utes. All three-dimensional disordered media were simula
on the Parsytec CC parallel system in Amsterdam. This
cludes the three-dimensional bcc lattices and the disord
media. The mean simulation time was 240 CPU minut
Finally, it should be noted that all fiber volume fractionsf
are calculated by dividing the total number of solid latti
sites by the total number of lattice sites in the system. T
relaxation timet ~see Sec. II! was chosen to be 1 for al
simulations. Additionally, the gravitational constant used
Eq. ~2! was chosen to ensure that the Reynolds numb
based on the particle radius, was much less than 1,NRe
;O(0.0001).

IV. RESULTS: UNBOUNDED MEDIA

In this section, we present LB simulation results for flo
through unbounded media. Specifically, we calculate the
draulic permeability for two-dimensional media and f
three-dimensional media. We perform resolution studies
the higher volume fractions using the bcc lattice shown
Fig. 2 for comparison with Higdon and Ford@3# over a com-
plete range of fiber volume fractions. Finally, we prese

FIG. 4. Three-dimensional, bounded biperiodic simulation c
The cylinder in the system is bounded on the top and bottom
solid walls. The distance from each wall to the midplane of t
simulation cell isB. The half distance between neighboring, pe
odic cylinders isdsqr given in Eq.~3!.
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620 PRE 61CLAGUE, KANDHAI, ZHANG, AND SLOOT
hydraulic permeabilities for disordered media and comp
with the cubic lattice model of Jackson and James@2# and
Higdon and Ford’s@3# result for the fcc lattice, which ha
been shown to be comparable to random fibrous media@4#.
Additionally, we perform a simple scaling analysis based
the system’s geometry and compare the predictions from
scaling estimate with the calculated hydraulic permeabilit

A. Scaling estimate

Before presenting the results, we present here a sim
scaling estimate based on an analysis of the governing e
tions that will be used to explore the connection between
observed hydraulic permeability and the geometry of e
system. The following estimate is not intended to be rig
ous, but it is intended to simply give physical insight into t
geometric dependences of the hydraulic permeabilities to
presented in this section.

The simple scaling analysis is based on the continu
equation

“•v50, ~9!

Stokes equation

m¹2v2¹P50, ~10!

and Darcy’s law given in Eq.~1!. If we take the cylinder-
cylinder half spacing for a square array of cylinders as
length scale over which rapid changes in velocity occur, th
both x1 andx2 scale asdsqr . From the continuity equation
we obtain a local estimate forv, i.e.,v;^v&, where^v& is the
average fluid velocity. In the continuing analysis, we foc
on deriving our estimate for thex2 component of velocity
because this is the quantity that represents velocity dis
bances orthogonal to the imposed pressure gradient. We
make scaling estimates for the quantities in Stokes equat
and find that the left hand side scales asm^v&/dsqr

2 . If we
leave the right hand side unchanged as¹P and make a
simple rearrangement of terms, we find that^v&;dsqr

2 /m¹P.
By directly comparing this estimate with Darcy’s law, E
~1!, we find that

k;dsqr
2 . ~11!

Here,dsqr is the half distance between adjacent cylinders
a periodic array of cylinders as described in Sec. III. As w
be demonstrated in the sections to follow, this simple e
mate for k predicts at whatf the hydraulic permeability
exhibits interesting behavior and generally captures the
pected dependence onf.

B. Two-dimensional periodic array of cylinders

For two-dimensional fibrous media, the result of Sang
and Acrivos@1# is well accepted as the benchmark result
the square array of periodic cylinders. The simulation cell
this configuration is shown in Fig. 1 in Sec. III. Shown
Fig. 5 is our LB results compared to Sangani and Acrivos@1#
and the scaling estimate given in Eq.~11!. The cylinder radii
used in the LB calculations range from 6 to 12 lattice un
depending on the fiber volume fraction. As shown, the sim
lation results exhibit excellent agreement with Sangani
e
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Acrivos @1# over the entire range of fiber volume fraction
considered. This result is significant because the LB
proach is comparable in the range off and accuracy to
spectral-boundary-element methods used by Higdon
Ford @3#.

In Fig. 5, above, there are a few interesting features to
noted. Specifically, in the dilute regionf,0.2, the hydraulic
permeability exhibits the expected@1,2# 2 ln(f)/f depen-
dence onf, and in the intermediate region 0.2,f,0.5 the
permeability decays in what appears to be an exponen
‘‘like’’ fashion @8#. Finally, in the concentrated regionf
>0.5, where the fluid flux area is significantly reduced, t
permeability decreases with the expected, rapid downt
This behavior occurs in the lubrication-‘‘like’’@1# or perco-
lation limit. It seems intuitively obvious that there is a dire
correlation between the observed hydraulic permeability
the available flux area, i.e., the geometric spacing in the
dium. As can be clearly seen in Fig. 5, the scaling estim
for k gives the proper trend over the entire range of fib
volume fractions considered and surprisingly predicts perm
abilities of the same order of magnitude. Furthermore,
estimate enables us to immediately predict at whatf the
important regions of behavior are and where interesting tr
sitions in the permeability occur. The more significant res
however, is that the scaling estimate shows that the ge
etry, i.e., mean spacing between obstacles, of the syste
the dominant factor governing the observed permeability

C. Three-dimensional bcc lattice.

In the study of three-dimensional media, it is important
verify that our LB calculations are indeed correct. Becau
the interstitial fluid is accounted for at lattice sites, it is ne
essary to ensure that a minimum of three to five lattice s

FIG. 5. Hydraulic permeability: two-dimensional square arr
of periodic cylinders. Nondimensional hydraulic permeabilities c
culated using the LB method are compared with the result of S
gani and Acrivos@1#, and the scaling estimate given in Eq.~11! for
a complete range of fiber volume fractionsf. The line through their
data is provided to guide the eye. The cylinder radii in the L
simulations range from 6 to 12 lattice units depending onf. The
dashed vertical lines separate regions of transitional behavior in
hydraulic permeability. These regions include three distinct ran
of f, i.e., the dilute to semidilute limit, the intermediate range, a
the concentrated range. The transitions between these regions
at f'0.2 andf'0.52, respectively.
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PRE 61 621HYDRAULIC PERMEABILITY OF ~UN!BOUNDED . . .
exists between solid obstacles to properly capture hydro
namic interactions. As a consequence, one typically need
increase both the cylinder radius and the simulation cell p
portionately to achieve the desired cylinder-cylinder spac
at a particular fiber volume fraction. To determine the app
priate cylinder radii as a function of fiber volume fractionf,
we perform a resolution study and compare with the res
of Higdon and Ford@3# for the bcc lattice configuration, se
Fig. 2. In their work, Higdon and Ford@3# use spectral-
boundary-element methods to calculate the hydraulic per
ability. Their approach is both rigorous and accurate
nearly all possible fiber volume fractions. Because the hig
fiber volume fractions are the most critical, we perform t
study forf>0.35; see Fig. 6 below.

Here we consider cylinder radii ranging from 6 lattic
units to 30 lattice units. Results for a cylinder radius of
lattice units are accurate up to a fiber volume fraction of 0
Using this cylinder radius beyondf50.6 gives a hydraulic
permeability greater than expected. To ensure accurate
sults beyondf50.6, a cylinder radius of 12 lattice units
required to obtain accurate results up to af of 0.8, and to
achieve the accurate results near maximum packingf
'0.95, it is necessary to use a cylinder radius of 18 lat
units.

With this understanding, we can now compare our
simulation results with the scaling estimate, using Eq.~4! in
Eq. ~11!, and Higdon and Ford’s@3# results for the bcc lattice
for a complete range of fiber volume fractions; see Fig
below.

As is clearly seen here, the LB results are nearly ident
to that of Higdon and Ford@3# over the entire range of fibe
volume fractions considered. The shape of the permeab
curve exhibits similar regions and transitions as was
served with the square array of cylinders shown above
Fig. 5. Note, also, that for the bcc lattice these regions
the transitions between regions occur at higher fiber volu

FIG. 6. Resolution study using the bcc lattice. The hydrau
permeability is calculated using the LB method for various cylind
radii a at moderate to high fiber volume fractionsf.0.35. The
results are compared with the results of Higdon and Ford@3# for the
same configuration of cylinders. The line through their data is p
vided to guide the eye.
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fractions than for the square array of cylinders. This is due
the fact that in the bcc lattice the fluid flux area is less co
strictive than in the square array of cylinders. In particul
the transition between the intermediate range off and the
concentrated region occurs beyond a fiber volume fraction
0.6 as compared tof'0.5 for the periodic, square array o
cylinders.

Here again the scaling estimate captures the trend
predicts at what fiber volume fractions to expect interest
regions and transitions to occur. The estimate here, howe
predicts permeabilities an order of magnitude greater t
the LB method, and it also predicts that the rapid downtu
begins atf'0.68 rather thanf'0.66. This is evidence tha
the estimate for the flux area is not the same as the real
flux area. Given the resolution study and the excellent ag
ment with Higdon and Ford@3#, we can now with confidence
calculate hydraulic permeabilities for three-dimensional, d
ordered fibrous media.

D. Three-dimensional disordered media

We now turn our attention to three-dimensional diso
dered media. Because we cannot simulate an infinite med
of disordered cylinders, all simulation cells are of sufficie
dimensions to ensure that hydrodynamic disturbances ge
ated at the cell edges have little effect on the resulting
draulic permeability calculations. It has been shown el
where@4# that a simulation cell edge length of 14 Brinkma
screening lengths is indeed sufficient to eliminate th
sources of error. In all of the results to follow, we chose t
simulation cell edge length to be a minimum of 14 Brinkm
screening lengths, orn>14a21. In addition to suppressing
edge effects, this also ensures that the cell size is la
enough to smooth out local inhomogeneities. For the res

r

-

FIG. 7. Hydraulic permeability: bcc lattice of cylinders. Nond
mensional hydraulic permeabilities calculated using the LB met
are compared with the result of Higdon and Ford@3#, and the scal-
ing estimate using Eq.~4! for a periodic, bcc configuration of cyl-
inders or the bcc lattice. The line through their data is provided
guide the eye. The dashed vertical lines separate regions of tr
tional behavior in the hydraulic permeability. As before, these
gions include the dilute to semidilute limit, the intermediate ran
of f, and the concentrated range. Here the transitions between
regions occur atf'0.35 andf'0.68.



-
s

te
o

,
or

8
d
a

he
,

e
p

on
an
r

om
-

is-
ta-

e;
lin-
ra-

ths
the
e
ults

es

a
ale.
cal
e-

ntire
er-

the
rst

the
per
g

ted
oes
er-
d
y
en
ted
as
s
r
his

ing
m-

ame
or-
ical
Eq.
n-
m

for
he
is
ns

vos

es
nsi-

ed
is
o
s

e
ta

re
t

e
ee
e

622 PRE 61CLAGUE, KANDHAI, ZHANG, AND SLOOT
presented here the ration/a is always greater than 18, con
sistent with the findings above for the bcc lattice; we u
cylinder radii, of 6 and 12 lattices units.

In Fig. 8, we compare hydraulic permeabilities calcula
using the LB method with the cubic lattice model of Jacks
and James@2#, which is given by

k

a2
5

3

20f
@2 ln~f!20.931#, ~12!

the fcc lattice result of Higdon and Ford@3#, and the scaling
estimate, using Eq.~6! in Eq. ~13!. The cubic lattice model of
Jackson and James@2# is only accurate in the dilute limit
i.e., f<0.25, where to leading order the functionality f
k/a2 is 2 ln(f)f. This dependence onf in the very dilute
limit f<0.1 is well known and accepted. As noted in Fig.
our LB result atf50.05 is nearly identical to Jackson an
James@2#, which is a very promising result; moreover,
curve fit of our simulation data in this domain using t
2 ln(f)/f functionality yields a correlation coefficient of 1
R51.

We also compare with the results of Higdon and Ford@3#
for the fcc lattice. This configuration of cylinders was chos
because it is the best representation of disordered media
sented in their work. Our results in the semidilute and c
centrated regions exhibit good agreement with Higdon
Ford @3#. Beyondf>0.25, our results predict slightly highe
hydraulic permeabilities than Higdon and Ford@3#. This was
also the case in the study of flow through a flexible, rand
mat, performed by Koponenet al. @8#. This observed behav

FIG. 8. Hydraulic permeability: three-dimensional, disorder
array of cylinders. Nondimensional hydraulic permeabilities for d
ordered arrays of cylinders are calculated using the LB meth
Results are compared with the correlation of Jackson and Jame@2#
@see Eq.~12!#, the result of Higdon and Ford@3# for the fcc lattice,
and the scaling estimate using Eq.~5!. The dashed line through th
Jackson- James@2# data is provided to guide the eye. The horizon
lines that bound the scaling estimate represent the61s given in
Eq. ~7!. The dashed vertical lines identify transitions between
gions of dominant behavior. The transition between the dilute
semidilute limit and the intermediate region appears where
pected. The expected dramatic down term in permeability betw
the intermediate and the concentrated regions, however, is not
dent at the fiber volume fractions shown.
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ior has two plausible explanations. First, in a random or d
ordered medium, the cylinders sample many more orien
tions relative to the incident flow field than the fcc lattic
therefore, it is possible to have a higher percentage of cy
ders oriented parallel to the flow than in the fcc configu
tion. Second, while the media are indeed random@18#, the
probability of the presence of large interstices and or pa
that span the finite simulation cell length is increased as
simulation cell sizen is reduced. In general, however, th
agreement is good, and the LB method provides good res
for a wide range of fiber volume fractions.

Also shown is the scaling estimate. The horizontal lin
that bound the scaling estimate represent61s. Beyond a
fiber volume fraction of 0.3, the lower error bound is such
small value that it does not appear on the logarithmic sc
It should be noted here that the scaling estimate is for lo
cylinder-cylinder half spacing. In random or disordered m
dia, a chain of these interstices must exist across the e
simulation cell to permit fluid conductance. Given the av
age half spacing between cylinders,^d ran&, it is a reasonable
to assume that this spacing is indeed representative of
average ‘‘channel’’ width that spans the medium. The fi
feature to note here is that the scaling estimate captures
trend and surprisingly estimates permeabilities of the pro
order of magnitude. Also, in the semidilute limit the scalin
estimate predicts permeabilities similar to the expec
2 ln(f)/f dependence. As noted above, the LB result d
not exhibit a downturn consistent with the onset of the p
colation limit beyondf>0.5. Considering the upper boun
for ^d ran&,11s, it is clear that there exists the probabilit
that the cylinder-cylinder half spacing is large enough, ev
at the higher fiber volume fractions, so that the expec
downturn is not observed. An additional LB simulation w
conducted atf50.8 with a cylinder radius of 18 lattice unit
and an edge lengthn equal to 300 lattice units. At this fibe
volume fraction, the system was found to be percolated. T
clearly represents the distinct downturn that we seek~data
not shown!.

V. RESULTS: BOUNDED MEDIA

Here we present hydraulic permeabilities calculated us
the LB method for bounded fibrous media. Results are co
pared with the appropriate unbounded rendering of the s
cylinder configuration. This includes both ordered and dis
dered media. The LB results are fit with a phenomenolog
correlation that is based on the scaling estimate given in
~3!, existing theory@5,6#, and a stretched exponential depe
dence onf. The fitting parameters are given in tabular for
to facilitate use of the result.

A. Bounded, three-dimensional, square array of cylinders

In this subsection, we present LB simulation results
hydraulic permeabilities of bounded ordered media. T
simulation cell for the biperiodic, square array of cylinders
shown in Fig. 4. Results for wall to midplane separatio
ranging from 2 to 7 Brinkman screening lengthsa21 are
compared with the unbounded result of Sangani and Acri
@1# in Fig. 9.

The characteristics of the hydraulic permeability curv
for each case are similar. The trends exhibit the same tra
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tions between regions of dominant functional behavior~see
Sec. IV! at similar fiber volume fractions. Additionally, th
slopes of the curves in regions of dominant functional beh
ior appear to be similar. The gap between walls, 2B, causes
a noticeable reduction ink over the entire range of fibe
volume fractions. The percent differences between the ca
lated hydraulic permeabilities and the unbounded result
80%, 66%, 47%, and 38% on average for 2, 3, 5, an
Brinkman screening lengths, respectively. These percent
ferences decrease in an exponential fashion with increa
B. This is consistent with the notion that the bounding wa
behave like an effective medium where the gap between
walls represents the average spacing between fixed obsta

The line fit through the data comes from a phenome
logical model that is based on the scaling estimate in
~11!, the effective medium result of Tsay and Weinbaum@5#,
and a stretched exponential dependence onf to adjust the
trend predicted by the scaling estimate for a wider range
fiber volume fractions. In brief, the effective medium res
derived by Tsay and Weinbaum@5# is given by

kbounded5kS 12
tanh~B/a21!

B/a21 D , ~13!

wherek is the hydraulic permeability of the unbounded re
dering of the same medium. As stated by Fuet al. @23#, the
expression given above in Eq.~13! is accurate when the as
pect ratioB/a is greater than 5 or when the bounding wa
are reasonably far apart. Furthermore, at intermediate
concentrated,f.0.20, fiber volume fractions the expressio
given in Eq.~13! captures the correct trend but over predi
hydraulic permeabilities.

By combining Eq.~13! with the appropriate scaling est
mate, Eq.~3!, and a stretched exponential dependence onf,

FIG. 9. Hydraulic permeability: bounded three-dimension
square array of cylinders. Hydraulic permeabilities calculated us
the LB method are compared with the unbounded result of San
and Acrivos@1# for bounded systems. The wall to midplane sep
rationsB considered are 2, 3, 5, and 7 Brinkman screening leng
Hydraulic permeabilities are made dimensionless with the cylin
radius squared. Here, the lines through the data are from a c
fitting using Eq.~14!. The curve-fit parameters are given in Table
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or b1exp(b2f), we arrive at the following curve fit equatio
used in Fig. 9:

kbounded* 5dsqr
2 @b1exp~b2f!#S 12

tanh~B/a21!

B/a21 D ,

~14!

whereb1 andb2 are the curve fitting parameters. The fittin
parameterb1 rescales the estimated permeability given
dsqr

2 , andb2 adjusts the slope of the prediction for interm
diate to highf. The effective medium approximation in Eq
~13! is merely a constant for a fixedB/a21 ~or B8) and can
be lumped with the constantb1. Here we distinguish our
curve-fit, estimate for the hydraulic permeability from th
effective medium result, Eq.~13!, of Tsay and Weinbaum@5#
with an asterisk, *.

As shown in Fig. 9, all curve fits exhibit excellent agre
ment out to af equal to approximately 0.65. The resultin
set of fitting parametersb1 andb2 for the wall separationsB
cited above are given in Table I.

For the fit of the permeabilities of the unbounded med
B5`, the effective medium term in parentheses is n
glected. If we further fit the curve-fit parametersb1 and b2
for the bounded results as a function ofB with a second-
degree polynomial plus a natural logarithmic dependen
i.e., C11C2B1C3B21C4ln(B). The resulting coefficients
C1 , . . . ,C4 are given below in Table II. The curve-fit equa
tion for b1 andb2 nearly matches the data exactly and ha
correlation coefficientR of 1. We note, however, that th
equation chosen to fit the fitting parameters has no appa
physical meaning. This result is simply provided to ena
rapid use of the curve-fit equation given in Eq.~14!. All that
is necessary to predict hydraulic permeabilities for bound
ordered, fibrous media is knowing the half spacing betwe
adjacent cylinders as a function of fiber volume fractionf
and the wall to midplane separationB in terms of Brinkman
screening lengthsa21.
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TABLE I. Curve-fit parameters, Eq.~14!, b1 andb2 as a func-
tion of the wall to midplane separation,B(a21), for biperiodic,
square arrays of cylinders.

B b1 b2

2 0.4369 24.7912
3 0.4575 23.8270
5 0.4692 22.9423
7 0.4705 22.5775
` 0.50941 21.8042

TABLE II. Curve-fit of the ‘‘curve fitting parameters’’ in Eq.
~14! as a function of the wall to midplane separation,B(a21), for
biperiodic, square array of cylinders.

C1 C2 C3 C4

b1 0.4204 20.0403 0.0016 0.1310
b2 26.0877 20.8671 0.0289 4.1965
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B. Bounded disordered media

Here we calculate hydraulic permeabilities for bound
disordered fibrous media using the LB method. Again,
compare our LB results for wall to mid-plane separations
3, 5, and 7 Brinkman screening lengths with results fr
Sec. IV for the same unbounded configuration of cylinders
Fig. 10.

At these wall to midplane separations the bounding w
have a significant influence on the observed hydraulic p
meability; e.g., forB55a21 at f50.2, there is a 61% dif-
ference between the calculated hydraulic permeability
the unbounded result. At higher volume fractionsf.0.2, the
percent difference relative to the unbounded result is'75%
on average. Also, unlike the ordered media, the slopes in
trends for increasingf steepen asB is reduced below 4
Brinkman screening lengths, and the transition between
dilute and the intermediate regions for each case occur
f'0.2.

The apparent difference in the trends and data scatter
tween the calculated hydraulic permeabilities in Fig. 10 a
the ordered results above in Fig. 9 is due in large par
large variations in local fiber volume fractions within th
simulation cell, i.e., the ratio of vertical cell edge lengthn to
cylinder radius,n/a, is less than the tolerance,n/a.12, nec-
essary for accurate predictions of hydraulic permeabilit
see discussion in Sec. IV. As the simulation cell size is
duced, which is the case when considering bounded, di
dered media, local heterogeneities in the microstructure
accentuated. These heterogeneities have a more and
dominant influence onk as the bounding walls are broug
closer together. As a result, there is a noticeable increas
variations in the calculated hydraulic permeabilities sho
above forB,a21.

FIG. 10. Hydraulic permeability: bounded three-dimension
disordered array of cylinders. Hydraulic permeabilities calcula
using the LB method for bounded, disordered arrays of cylind
are compared with the unbounded results for the same system
sented in Sec. IV. The wall to midplane separationsB considered
are 3, 5, and 7 Brinkman screening lengths. Hydraulic permea
ties are made dimensionless with the cylinder radius squared.
lines through the data are from a curve fitting using Eq.~14!. The
curve-fit parameters are given in Table III.
,
e
f

n

s
r-

d

he

e
at

e-
d
o

;
-
r-
re
ore

in
n

Here again the lines through the data obtain from the
method are a result of curve fits using the appropriate sca
estimate,̂ d ran& in Eq. ~14! The curve fits capture the ex
pected trends and the important transitions. Also, since
consider a reduced range off here, the fits are in excellen
agreement with the LB result over the majority of the ran
of fiber volume fractions considered. The curve fitting p
rametersb1 andb2 used in Eq.~14! for the range of wall to
midplane separations considered, i.e., forB53,5,7, and`,
are given in Table III.

Again, for the unbounded system, i.e., forB5`, the ef-
fective medium term in parentheses has been neglected

As in the case of the bounded ordered system, the fit
parameters for the bounded data are fit to enable rapid
dictions of bounded hydraulic permeabilities. The curve
function used here to fit the fitting parameters for disorde
media is the same as in Sec.~V A !. As stated before, this
functionality has no apparent physical meaning but is p
sented to facilitate rapid predictions of hydraulic permeab
ties of bounded, disordered media. The curve-fit parame
C1 , . . . ,C4 for b1 and b2 as a function ofB are given in
Table IV.

VI. CONCLUSIONS

In this paper, we have shown that the lattice Boltzma
method is an accurate and versatile method for the stud
fluid flow in fibrous media. Hydraulic permeabilities calcu
lated using the LB method for both two- and thre
dimensional configurations of unbounded cylinders are in
cellent agreement with existing theory@1# and well-
established numerical results@3#. Resolution studies using
the three-dimensional, bcc lattice in Sec. IV show that
simulations require greater than three lattice sites betw
obstacles to properly capture hydrodynamic interactions
stationary media. When applied properly, the LB method
comparable in the range off and accuracy to boundary e
ement methods@3# in the study of fluid flow through fibrous
media. With these foundational results and the ease of
cluding bounding walls in the LB method, this approa
readily enables the calculation of hydraulic permeabilities
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TABLE III. Curve-fit parameters, Eq.~14!, b1 andb2 as a func-
tion of the wall to midplane separation,B(a21), for bounded, dis-
ordered arrays of cylinders.

B b1 b2

3 0.5977 24.1839
5 0.5249 22.6794
7 0.6355 21.6834
` 0.71407 20.51854

TABLE IV. A fit of the curve-fit parameters in Eq.~14! as a
function of the wall to midplane separation,B(a21), for bounded,
disordered arrays of cylinders.

C1 C2 C3 C4

b1 0.4211 20.0046 0.0 0.1246
b2 27.8261 20.2350 0.0 4.0000
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bounded fibrous media, which previously have required
significant amount of effort@5#.

The simple scaling estimate put forth in Sec. IV clea
shows that the geometry of the system is the dominant fa
that influences the behavior of the resulting hydraulic perm
ability. The scaling estimate also enables rapid determina
of the trend and important transitions observed in the hydr
lic permeability as a function of fiber volume fractionf.

Because the LB method accounts for the solid phas
specific lattice sites, the overlap volume in a thre
dimensional, random medium of freely overlapping cylinde
of finite radius is known and accounted for appropriately.
a consequence, the modified version of Ogston’s distribu
@19,20# is considered valid over the entire range of fiber v
ume fractions studied. Furthermore, the statistical error@see
Eq. ~7!# predicted by Ogston’s distribution demonstrates t
in the upper bound,11s, for the average spacing betwee
a,
ev
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or
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cylinders does indeed permit sufficient fluid flow so that t
onset of the dramatic reduction in permeability predicted
Eq. ~6! in the range off studied was not observed.

The hydraulic permeabilities for unbounded and bound
media calculated using the LB method were curve fit with
phenomenological equation, Eq.~14!, to permit rapid calcu-
lation of the hydraulic permeabilities of unbounded a
bounded fibrous media for a wide range off. This range
includes the semidilute to intermediate fiber volume fra
tions, i.e., 0.05<f,0.7. The fitting equation is based on th
appropriate scaling estimate, Sec. IV, the effective medi
estimate put forth by Tsay and Weinbaum@5#, and a
stretched exponential dependence onf. The curve fit param-
eters in Eq.~14!, b1 andb2, have been tabulated in Tables
and III; furthermore, these fit parameters have also b
curve fit to enable a rapid prediction of permeabilities f
systems with wall to midplane separations not conside
here.
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