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User-based collaborative filtering, a widely-used nearest neighbour-based recommendation technique, pre-
dicts an item’s rating by aggregating its ratings from similar users. User similarity is traditionally calculated
by cosine similarity or the Pearson correlation coefficient. However, both of these measures consider only the
direction of rating vectors, and suffer from a range of drawbacks. To overcome these issues, we propose a
novel Bayesian similarity measure based on the Dirichlet distribution, taking into consideration both the
direction and length of rating vectors. We posit that not all the rating pairs should be equally counted in
order to accurately model user correlation. Three different evidence factors are designed to compute the
weights of rating pairs. Further, our principled method reduces correlation due to chance and potential sys-
tem bias. Experimental results on six real-world data sets show that our method achieves superior accuracy
in comparison with other counterparts.
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1. INTRODUCTION
Recommender systems aim to provide users with personalized suggestions and
thus ameliorate the information overload of an overwhelming number of choices of
items. User-based collaborative filtering (CF) is one of the most widely-used nearest
neighbour-based recommendation techniques in practice [Mohan et al. 2007; Cacheda
et al. 2011]. The intuition is that users with similar preferences in the past are likely
to have similar opinions (ratings) on new items in the future. Similarity plays an im-
portant role in CF techniques. First, it serves as a criterion to select a group of similar
users whose ratings will be aggregated as a basis of recommendations. Second, it is also
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Fig. 1. The problems of traditional similarity measures, i.e., Pearson correlation coefficient and cosine sim-
ilarity. The filled rectangles and empty circles represent the ratings given by user u and user v, respectively.

used to weight the ratings so that more similar users will have greater impact on the
recommendations. Hence, similarity computation has direct and significant influence
on the performance of CF. It is widely applied in two main categories of CF techniques,
namely memory-based [Guo et al. 2012; Ren et al. 2012] and model-based [Ma et al.
2011; Shi et al. 2013] approaches.

Cosine similarity (COS) and Pearson correlation coefficient (PCC) [Breese et al.
1998] are the methods most usually adopted to calculate user similarity in CF. COS
defines user similarity as the cosine value of the angle between two vectors of ratings
(the rating profiles); PCC defines user similarity as the linear correlation between the
two rating profiles. Formally, these ‘traditional’ similarity measures are defined by:

su,v =

∑
i∈Iu,v

ru,i · rv,i√∑
i∈Iu,v

r2
u,i

√∑
i∈Iu,v

r2
v,i

(COS)

su,v =

∑
i∈Iu,v

(ru,i − r̄u)(rv,i − r̄v)√∑
i∈Iu,v

(ru,i − r̄u)2
√∑

i∈Iu,v
(rv,i − r̄v)2

(PCC)

where su,v is the similarity between user u and user v computed based on their rat-
ings on the set Iu,v of commonly rated items, ru,i denotes the rating given by user u on
item i, and r̄u and r̄v represent the average rating given by user u and user v, respec-
tively. Despite the popularity and simplicity of the two methods, it is well recognized
that they only consider the direction of rating vectors but ignore the length [Ma et al.
2007]. Ahn [2008] points out that the computed similarity could even be misleading
if vector length is ignored. Both PCC and COS are also known to suffer from several
inherent drawbacks [Ahn 2008]. These drawbacks can be summarized in the following
four specific cases, and illustrated in Figure 1 where two users u and v have given their
ratings (from 1 to 5) on five items (denoted by i1, . . . , i5). The ratings are represented
by filled rectangles and by empty circles for user u and user v, respectively.

— Flat-value problem: if all the rating values are flat, e.g., [1, 1, 1] given by user u on
three items i2, i3, i4 with values 1, or [2, 2, 2] given by user v on the same items with
values 2, PCC is not computable as the correlation formula denominator becomes 0,
and COS is always 1 regardless of the rating values. In our example of Figure 1(a),
since both users give low ratings to all the three items, their similarity should be
computable (because of existing rating pairs1) and less than 1 (not exactly the same).

1A rating pair is defined as two ratings that are given by two users on a certain commonly rated item.
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— Opposite-value problem: if two users specify opposite ratings on the commonly-
rated items, PCC is always −1. As shown in Figure 1(b), user u disagrees with the
ratings given by user v on the commonly rated items and the computed PCC is −1.
However, two comments can be made: (1) the number of co-rated items has no effect
on the computed PCC; and (2) their opinions are not extremely opposite in terms of
rating semantics. Hence, the computed PCC value −1 could be misleading.

— Single-value problem: if two users have only rated one item in common, PCC is
not computable, and COS results in 1 regardless of the rating values. In Figure 1(c),
although both users rated three items, only one item is commonly rated. In this case,
PCC is not computable and COS yields 1. Both similarity measures cannot effectively
reflect the situation where two users disagree with each other on the co-rated item.

— Cross-value problem: if two users have only rated two items in common, PCC is
always −1 when the rating vectors cross each other, e.g., [1, 3] and [2, 1]; otherwise
PCC is 1 if computable. Both users in Figure 1(d) have rated two items in common and
their ratings are crossing with each other. Then, PCC is computed as −1 indicating
that they have distinct opinions about items i1 and i3. However, although the rating
values are different and crossing, they both tend to give low ratings to these items
and hence their opinions are similar to some extent.

To overcome the deficiencies of the traditional similarity measures, we propose a
novel Bayesian similarity measure by taking into account both the direction and length
of rating vectors. An attractive advantage of Bayesian approaches is that one can infer
posterior probabilities in the same manner from a small sample as from a large sam-
ple [O’Hagan 2004]. This is especially useful when the length of rating vectors is short.
We apply the Dirichlet distribution to accommodate the distance between two ratings
in a rating pair. Similarity is defined as the inverse normalization of user distance,
which is computed by the weighted average of rating distances and of importance
weights corresponding to the amount of rating pairs falling in that distance. Three
different evidence factors, namely rating consistency, Gaussian singularity and rating
semantics, are developed to compute the weights of rating pairs. We further exclude
the probability of the scenario where users happen to be ‘similar’ due to a small num-
ber of co-rated items, termed as chance correlation, and remove the potential system
bias caused by the formulation of Bayesian similarity. Experimental results based on
six real-world data sets show that our approach achieves superior accuracy to other
similarity measures.

This article extends and elaborates a preliminary version of the work that appeared
at the IJCAI’13 conference [Guo et al. 2013]. The significant extensions are: (1) richer
description, such as explanation of parameter settings, specifications of data sets, anal-
ysis of results, and survey of the literature; (2) technical improvements, namely besides
the evidence weight factor, two more evidence factors are proposed and integrated with
the previous factor to achieve better performance; (3) reworked experiments, which
show that better performance is obtained, especially on the MovieLens data set where
our method now outperforms all the others; (4) the effect of system bias is empirically
studied; and (5) the performance of different similarity measures for cold-start users
and niche items is investigated.

The rest of the article is organized as follows. Section 2 gives an overview of related
studies on similarity measures. Our approach is elaborated in Section 3, including ev-
idence weights, chance correlation, and system bias as the three main components.
We exemplify the differences between traditional approaches and our proposal in Sec-
tion 4.1, and conduct a more general study on the nature of those similarity measures
in Section 4.2. Our approach is evaluated on six real-world data sets in Section 5.
Finally, Section 6 concludes our current work and outlines the future research.
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:4 G. Guo et al.

2. RELATED WORK
The ‘traditional approaches’ of PCC and COS are the most widely adopted similarity
measures in the literature. Although it is reported that PCC works better than COS
in CF [Breese et al. 1998]—as the former performs data standardization whereas the
latter does not—others show that COS rivals or outperforms PCC in some scenar-
ios [Lathia et al. 2008]. In other words, there is no consistent conclusion about the
performance of PCC and COS in different cases. However, the literature rarely has
sought to investigate the reasons for such phenomena, rather simply attributing them
to the difference of data sets. We provide a reasonable and insightful explanation by
conducting an empirical study on the nature of PCC, COS, and our method in Section 4.

Various similarity measures have been proposed in the literature, given the con-
cerned issues of the traditional approaches [Lathia et al. 2008]. Broadly, they can be
classified into two categories. First, some researchers attempt to modify the traditional
measures in some way. One direction is to weight computed similarity by taking into
consideration the properties of commonly rated items. Breese et al. [1998] adopt the
inverse user frequency as weights to restrict the contribution of popular items in the
PCC computation. The intuition is that two users who agree on popular items are less
likely to be similar than those who agree on less popular items, because users gen-
erally tend to like popular items. Said et al. [2012] design several weighting schemes
based on the intuition that popular items have less impact on the similarity compu-
tation of PCC and COS than those receiving few number of ratings. The results show
that the weighting schemes have only little effect on COS in all cases, while more dis-
cernible impact for PCC is only observable on some data sets for the users who rate
many items. Breese et al. [1998] also propose to use a case amplification parameter
ρ to transform the PCC value from w to wρ. A typical value of ρ in their experiments
is 2.5. The transformation helps emphasize the high weights closer to 1, and suppress
the low weights closer to zero. As a result, it can reduce noise in the data.

With the recognition of inability of PCC in cold conditions, Ma et al. [2007] propose
a significance weight factor min(n, γ)/γ to devalue the PCC value when the number
n of co-rated items is small, where γ is a constant that is empirically determined.
Similarly, Koren [2010] suggests (n − 1)/(n − 1 + λ) as a shrinking factor, where n
is the number of co-rated items, and λ is a parameter determined by cross validation.
Candillier et al. [2008] use Jaccard similarity as a weighting factor and combine it with
other similarity measures (e.g., PCC) to appreciate the influence of co-rated items. All
these weighting schemes can be regarded as the confidence of computed similarity. If
similarity is based on sufficient ratings, we have a high confidence that the similarity
is reliable and reflecting realistic user correlation; otherwise it has high chance that
the similarity will be error-prone and even misleading.

Another direction is to enhance the similarity from the viewpoint of the properties
of raters (i.e., users). Shi et al. [2009] categorize users into three different pools: ‘posi-
tive’, ‘neutral’ and ‘negative’ according to their rank preferences of items. Then, along
with the similarity based on all ratings, three pool-based similarities are computed
which will be integrated to produce recommendations. Ortega et al. [2013] adopt the
concept of Pareto dominance to preprocess and narrow the whole user set to a set of
users dominating others in terms of rating distances. Traditional similarity methods
are then applied to compute user similarity. Although many approaches have been pro-
posed, none of them makes any changes to the calculation of PCC or COS itself. As a
result, however, the inherent issues mentioned in Section 1 are not addressed.

Second, instead of trying to modify traditional measures, other researchers propose
new similarity measures. Shardanand and Maes [1995] propose a measure based on
the mean square difference (MSD) normalized by the number of commonly rated items.
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However, as we will show in Section 5, its performance is generally worse than PCC
or COS. Lathia et al. [2007] develop a concordance-based measure which estimates
the user correlation based on the number of concordant, discordant and tied pairs of
common ratings, i.e., the proportion of agreement between two users. Since it depends
on the mean of ratings to determine the concordance, this approach also suffers from
the flat-value and single-value problems where user similarity is not computable.

Ahn [2008] proposes the PIP measure based on three semantic heuristics: Proximity,
Impact and Popularity. The motivation is to explicitly consider the semantic meanings
behind numerical rating values. For example, value 5 indicates a stronger preference
than a value of 4, while both values mean that the user likes a specific item. Hence,
the nuanced difference in semantics may matter and result in different similarity mea-
surements. PIP attempts to enlarge the discrepancies of similarity between users with
semantic agreements and those with semantic disagreements in ratings. However, the
computed similarity is not bounded and often greater than 1, resulting in less mean-
ingful user correlation.

Bobadilla et al. [2012] propose the singularities measure (SM) based on the intuition
that users with mutually close ratings but inconsistent with the majority (high singu-
larity) are more similar than those with close ratings and consistent with the others
(low singularity). This measure bears similarity to the idea of popularity of items but
differs in that singularity further investigates the deviation between one’s rating and
the majority’s, and that even a popular item may receive distinct ratings from differ-
ent users. Although SM considers the mean of agreements, the length of rating vector
is not taken into consideration. It tends to treat users with similar opinions as un-
correlated if all of their ratings are consistent with others’. SM was evaluated only
on a single data set in comparison with traditional approaches. We evaluate it more
thoroughly as part of our work.

Although these various approaches proposed to date have achieved improvements
to some extent, two main criticisms can be suggested. First, a better similarity mea-
sure is expected to consistently perform better on different data sets. Second, most of
these approaches are based on heuristics and lack a fundamental theoretical under-
pinning. We aim to develop a principled similarity measure that achieves a significant
improvement in predictive accuracy when used in recommendations.

3. BAYESIAN SIMILARITY
In this section we present a novel similarity measure based on Bayesian inference,
termed as Bayesian similarity. Section 3.1 introduces the model of Dirichlet distri-
bution based on user ratings. Then, Section 3.2 elaborates three different factors to
weight the importance of a rating pair, based on which a ‘raw’ user similarity is for-
mulated in Section 3.3. Correlation due to chance and system bias are discussed in
Sections 3.4 and 3.5, respectively. Finally, the pseudo-code of our algorithm and an
illustrative example are presented in Section 3.6.

The proposed Bayesian similarity measure is distinct from PCC and COS, and aims
to solve the issues of these traditional similarity measures. It takes into consideration
both the direction (rating distances) and the length (rating amount) of rating vectors.
Specifically, the rating distances are modelled by the Dirichlet distribution based on
the amount of observed evidences, each of which is a pair of ratings (from the two
vectors) towards a commonly rated item. Then the overall user similarity is modelled
as the weighted average of rating distances according to their importance weights,
corresponding to the amount of new evidences falling in the distance. Further, we
consider the scenario where users happen to be ‘similar’ due to the small length of the
rating vectors, termed as chance correlation. Therefore, the length of the rating vectors
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is taken into account in our approach via (1) the modelling of Dirichlet distribution,
and (2) the chance correlation.

3.1. Dirichlet-based Measure
The Dirichlet distribution represents an unknown event by a prior distribution on
the basis of initial beliefs [Russell and Norvig 2009]. As new evidences come in, the
beliefs of the event can be represented and updated by a posterior distribution. The
posterior distribution well suits a similarity measure since the similarity is updated
based on the records of new ratings of commonly-rated items issued by two users. In
addition, many existing recommender systems are based on users’ ratings on a number
of discrete values (e.g., 1 to 5) which can be well handled by the Dirichlet distribution.

We first introduce a number of notations in order to mathematically model the sim-
ilarity computation using the Dirichlet distribution. Let (ru,k, rv,k) be a pair of ratings
(i.e., a rating pair) reported by users u and v on item k. The rating values are drawn
from a discrete and equal-distance rating scale L = {l1, . . . , ln} (lj+1 > lj , j ∈ [1, n− 1])
defined by a recommender system, where n is the number of different rating values.
We define the rating distance as the absolute difference between two user ratings,
i.e., d = |ru,k − rv,k|. We use the rating distance rather than rating difference in or-
der to ensure the symmetry of similarity measure, i.e., su,v = sv,u, where su,v denotes
the similarity between users u and v. According to the rating scale L, we can define
D = {d1, . . . , dn} as a set of possible rating distances, where di = |lj+i−1 − lj |, di+1 > di,
for any i, j, i+j−1 ∈ [1, n]. For example, d1 is the distance between two identical rating
values lj , i.e., d1 = 0, and dn = ln− l1 is the maximum rating distance between any two
rating values.

Let x = (x1, . . . , xn) be the probability distribution vector of D, i.e., P (D = di) = xi,
which satisfies the additivity requirement

∑n
i=1 xi = 1. The probability density of the

Dirichlet distribution for variables x = (x1, . . . , xn) with parameters α = (α1, . . . , αn)
is given by:

p(x|α) =
Γ(α0)∏n
i=1 Γ(αi)

n∏
i=1

xαi−1
i , (2)

where x1, . . . , xn ≥ 0, α1, . . . , αn > 0 and α0 =
∑n
i=1 αi. The parameter αi can be inter-

preted as the amount of pseudo-observations of the event in question, i.e., rating pairs
that are observed before real events happen. Hence, α0 is the total amount of prior
observations. It is important to set appropriate values for the parameters αi as they
will significantly influence the posterior probability.

Before observing any rating pairs, and without any prior knowledge to the contrary,
we assume that ratings from two users are random and uncorrelated as illustrated in
Table I. The rows and columns represent the first and second elements in the rating
pairs whose values are taken from the predefined rating scale L, and each entry is
the rating distance of a corresponding rating pair. Therefore, there are n2 pseudo-
observations corresponding to all the possible combinations of rating values. Thus,
parameter αi will be the number of pseudo observations located in rating distance di.

Table I. The distribution of prior rating evidences

l1 l2 . . . ln−1 ln
l1 d1 d2 . . . dn−1 dn
l2 d2 d1 . . . dn−2 dn−1

...
...

...
...

...
...

ln−1 dn−1 dn−2 . . . d1 d2
ln dn dn−1 . . . d2 d1
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For generality, let pj be the prior probability of a rating being value lj taken out of
the rating scale L. Then we set the values of parameters αi as follows:

αi =

{∑n
j=1 n

2p2
j if i = 1;

2
∑n−i+1
j=1 n2pjpj+i−1 if 1 < i ≤ n. (3)

To explain this parameter setting, observe that the case of rating distance d1 only oc-
curs when both ratings in a rating pair are identical, i.e., (lj , lj), the probability of
an identical rating pair with both rating values lj is the multiplication of their re-
spective probabilities, i.e., p2

j . Hence, the estimated number of pseudo-observations (at
the rating distance of d1) is n2p2

j , and thus the total number of such kind of pseudo-
observations is the summation over all the possible rating values, i.e., j ∈ [1, n]. For the
other distance levels di, 1 < i ≤ n, two possible combinations (lj , lj+i−1) and (lj+i−1, lj)
could produce the same rating distance, leading to the estimated number of pseudo-
observations being n2(pjpj+i−1 + pj+i−1pj) = 2n2pjpj+i−1. We then iterate all the pos-
sible rating values to yield the total number of pseudo-observations of this kind.

Since the values of parameter αi have important influence on the computation of
posterior probability for the Dirichlet distribution, we proceed to determine the values
of probabilities pj (see Equation 3) for this purpose. In this article, we consider two
possible ways, namely to learn from training data or to presume a simple uniform
distribution. Experimental results show that the uninformed uniform parameters (i.e.,
pj = 1/n) works as well as learning from the training data. One possible explanation
is that learning the exact distribution of ratings from the training set may give rise to
certain over-fitting. A deep analysis is necessary for further understanding. We leave
it as a part of future work.

3.2. Evidence Weights
New evidence for the Dirichlet distribution is often represented by a vector. Specifi-
cally, we can represent the rating pair (ru,k, rv,k) by a vector γ = (γ1, . . . , γn) where
γi = 1 (where i is such that di = |ru,k − rv,k|) and the remaining entries equal zero. For
example, a rating pair (5, 3) on a certain item can be represented as γ = (0, 0, 1, 0, 0)
if the rating scale is the integers from 1 to 5. Such an evidence vector treats all evi-
dences equally. However, in this article we claim that not all the evidences should and
will be considered as equally useful for similarity computation. Three evidence factors
are taken into account for this purpose.

3.2.1. Rating Consistency. The first factor we propose posits that realistic user similar-
ity should be calculated based on the (reliable) items with consistent ratings, and that
using the (unreliable) items with inconsistent ratings is risky and may cause unex-
pected influence on similarity computation. The motivation is because of the observa-
tion that most users tend to give positive ratings overall, for example, in Epinions2

most users give rating values 4 and 5 (out of 5). Hence, it would be valuable to focus
more on distinguishing the ratings on the consistent items.

Rating consistency is determined by two factors: (1) the standard deviation σk of
ratings on item k; and (2) the rating tendency of all users. First, generally, the value of
σk reflects the extent of inconsistency of user ratings on item k. We define the accept-
able range of rating deviations by cσk, where c is a scale constant that can be adapted
for different data sets. Second, however, the value of σk may be less meaningful if the
ratings on all items are highly deviated, i.e., users tend to disagree with each other in
general. In this case, we consider the distance between the mode rm and mean rµ of

2Refer to Section 5.1 for the description of data sets used in our experiments.
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ratings, i.e., dm,µ = |rm− rµ|. Since the mode represents the most frequently occurring
value, the distance dm,µ reflects the tendency of all user ratings. The greater the value
of dm,µ is, the more user ratings are deviated and the less meaningful σk will be. When
dm,µ > 1,3 our experiments indicate that σk is not meaningful at all.

Hence, the important evidences will be those whose rating distance for reliable item
k is within a small range cσk, given that users achieve agreements in most cases. We
define the evidence weight of γi as:

ϕik =


1 if cσk = 0;
1− di

cσk
if 0 ≤ di < 2cσk;

−1 otherwise,
(4)

where the upper bound 2cσk is chosen to restrict the value range to be (−1, 1].
Let σ be the standard deviation of all ratings in a recommender system. We restrict

the important evidences within a range cσ no more than the minimal rating value
l1, i.e., c = l1/σ. In case that the distributions of user ratings are unknown or that
users generally do not have consensus ratings, we may set c = 0 so as not to consider
evidence weights, or simply fall back to treating all evidences as equally important.
The settings of c in different data sets used in our experiments are given in Table III.
For BookCrossing, the mean and mode values are 7.6 and 8.0, respectively. Since dm,µ =
0.4 ≤ 1, the value of c is given by c = l1/σ = 1.0/1.84 ≈ 0.5, where the standard
deviation of all ratings is σ = 1.84. Therefore, for an item where the standard deviation
of received ratings is σk, the smaller rating distance di is, the more important the
evidence is. In contrast for Epinions, the mean and mode values are 3.99 and 5.0, and
hence dm,µ = 1.01 > 1. In this case, we will set c = 0 to treat all evidences equally.

3.2.2. Gaussian Singularity. A commonly-used factor for similarity computation is called
singularity [Bobadilla et al. 2012]. The intuition is that two users agree more if their
ratings are close to one another but distinct from the majority, than they do if their
ratings are close to the value of most users. Bobadilla et al. [2012] formulate singu-
larity based on opinions, i.e., positive or negative ratings. Specifically, a rating that
is greater than a certain rating value (often the median, e.g., 3 in the range [1, 5]) is
regarded as a positive opinion; otherwise it is negative. They define the singularity
of a positive (respectively, negative) rating as the proportion of negative (respectively,
positive) opinions relative to the set of all opinions. In other words, a positive rating
has high singularity if most ratings are negative.

However, this formulation ignores the differences between positive (or negative)
opinions, that is, two ratings 4 and 5 are indifferently treated as positive opinions
with the same singularity. Hence, we propose a more refined and general definition
of singularity: the likelihood that a rating does not fall into the rating distribution.
We use the assumption that a user’s ratings given on all the items follow a Gaussian
distribution, which can be adapted to both discrete and continuous rating scales. We
term it Gaussian singularity.

Specifically, according to all the ratings of user u on item k, we can fit a Gaussian
distribution R ∼ N (µ, σ), where µ and σ represent the average and standard devia-
tion of user ratings. Then the singularity ψu,k of a rating ru,k is computed using the
probability density function as follows:

ψu,k = 1− 1√
2πσ

exp
(
− (ru,k − µ)2

2σ2

)
. (5)

3The value 1 is empirically determined based on the analysis of specifications of six real-world data sets
that we will use in Section 5.
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Thus, the singularity of a pair of ratings (ru,k, rv,k) is computed by:

ψiu,v,k = ψu,k ∗ ψv,k, (6)

where i refers to the subscript of rating evidence γi.
To illustrate, if two users u and v have each rated a number of items, we can use the

ratings to fit two Gaussian probability distributions of ratings, respectively for each
user. Suppose that for user u, the fitted distribution is Ru ∼ N (4.2, 1.0), i.e., with the
mean 4.2 and standard deviation 1.0. Then, the singularity of giving a rating ru,k = 5
to item k is ψu,k = 0.71. Similarly for user v, given a fitted distribution Rv ∼ N (3.0, 1.0),
the singularity of rating item k as rv,k = 5 is: ψv,k = 0.95. As expected, ψv,k is greater
than ψu,k since it is more singular for user v to give a rating 5. Together, the overall
singularity for two users giving both ratings as 5 (i.e., evidence γi) is: ψiu,v,k = 0.71 ∗
0.95 ≈ 0.67.

Although the Gaussian distribution is adopted in our work, it must be recognized
that not all users’ ratings follow exactly a Gaussian distribution. Other kinds of prob-
ability distributions may be used as an alternative. However, since we find that the
Gaussian distribution produces good results (for most users), we will not work with
alternative distributions here.

3.2.3. Rating Semantics. Ahn [2008] stresses the importance of considering the under-
lying semantics of rating scales in the computation of user similarity. Specifically, Ahn
[2008] defines three semantic factors, namely Proximity, Impact, and Popularity. How-
ever, the formulation of these factors is not bounded (often greater than 1) and thus
cannot be used as evidence weights in our method. Hence, we adapt and generalize the
original definitions and give new formulations for each factor.

— Proximity reflects the difference of two ratings in terms of positive and/or negative
opinions. For example, a pair of ratings (5, 3) is closer with each other than a pair of
ratings (4, 2). Although the rating distance is the same, the former pair of ratings are
both positive whereas the latter contains different opinions. Note that a rating that
is less than the median of a rating scale is regarded as negative opinions; otherwise
it is positive. Hence, we can define the agreement of two ratings as:

agreement =

{
True if (ru,k − rmed)(rv,k − rmed) ≥ 0;
False otherwise, (7)

where rmed is the median rating of a rating scale predefined by a recommender sys-
tem, given by rmed = (l1 + ln)/2. Then the proximity is defined by:

priu,v,k =


1− di

dn
if agreement is True;

− di
dn

otherwise,
(8)

where dn is the maximal distance implied by a rating scale. Unlike the Gaussian
Singularity focusing on the differences of specific rating values, the Proximity views
user ratings from a more abstract level—the level of opinion. That is, both ratings
4 and 5 (out of 5) are regarding as the same positive opinions, but they differ in the
level of singularity.

— Impact considers the extent to which an item is preferred or disliked by users. For
example, a rating 1 (out of 5) means a user does not like an item at all while a rating
4 indicates a strong preference. To facilitate discussion, we denote µ = (ru,k + rv,k)/2
as the average rating of the pair. For a pair of ratings, we consider three cases:
(1) If both ratings are positive, the greater µ is, the more preferred the item will be.
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(2) If both ratings are negative, the smaller µ is, the more disliked the item will be.
(3) If the opinions are different, the smaller µ is, the less distinct two opinions will

be in terms of like and dislike.
Here a rating is regarded as positive if it is greater than or equal to the median of
a rating scale, e.g., if ru,k ≥ rmed; otherwise it is negative. Based on these considera-
tions, we obtain the following formulations of the impact factor:

imi
u,v,k =


µ

ln
if case 1;

1− µ

ln
if case 2;

− µ
ln

if case 3,

(9)

where ln is the maximal rating value predefined by a recommender system. Both
cases 1 and 2 show positive impact on user similarity since users agree with each
other, whereas case 3 has negative impact due to the disagreement in user opinions.

— Popularity is similar to singularity in that it gives bigger value to the ratings whose
values are further away from the average rating of a specific item. For example,
consider identical rating pairs (4, 5) for two items k and p: the proximity and impact
measures for the two items will be the same. However, if the average rating of item
k is 3 and that of item p is 4, then the first pair on item k should be more important
since it reflects the similarity of two users better. We denote r̄k as the average rating
of a specific item, and d̄k = |(ru,k + rv,k)/2 − r̄k| as the distance between rating pair
and the average. Hence, we compute the popularity as follows:

poiu,v,k =


d̄k
dn

if (ru,k − r̄k)(rv,k − r̄k) ≥ 0;

− d̄k
dn

otherwise.
(10)

Having defined our three PIP factors, following Ahn [2008], the rating semantics is
defined by multiplying them together:

ηiu,v,k = priu,v,k ∗ imi
u,v,k ∗ poiu,v,k. (11)

3.2.4. Factor Integration. The proposed three evidence factors, namely rating consis-
tency, Gaussian singularity, and rating semantics, reflect the different aspects of user
ratings and rating pairs. Some of the factors can partially overlap, such as singularity
and semantics. Hence, an effective combination of these three factors may bring the
benefits and combat the drawbacks of each factor simultaneously. Specifically, for the
sake of generality and simplicity, in this article the commonly-used linear combination
is adopted as follows. For simplicity, we drop the dependency subscripts u, v, k of the
three evidence factors and write:

ei = β1 ∗ ϕi + β2 ∗ ψi + β3 ∗ ηi, (12)

where ei is the overall evidence weight of a rating pair; β1, β2 and β3 indicate the rel-
ative importance of the factors, rating consistency, Gaussian singularity and rating
semantics, respectively; they are constrained by β1 + β2 + β3 = 1 and β1, β2, β3 ∈ [0, 1].
Tuning the best settings of parameters β1 and β2 is typically done by cross valida-
tion. The linear combination (with two freedom degrees β1, β2) can greatly reduce the
searching space (in the range of [0, 1]) than using an affine combination with three
independent parameters each of which varies in the whole space of real values. Nev-
ertheless, the noted overlapping between singularity and semantics may result in the
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dominance of one factor over the other. Hence, together with rating consistency, the
best settings can be achieved. We will elaborate in detail in Section 5.3.

3.3. Raw User Similarity
We are now in the position to explain how the Dirichlet distribution can be updated
based on the observations of new evidences. Specifically, for an observation of a vec-
tor γ, the posterior probability density distribution will be p(x|α + γ). This proce-
dure can be conducted sequentially to update the posterior probability density distri-
bution when any new rating pairs are observed. Upon observation of N rating pairs
γ1, . . . ,γN , the latest posterior probability density function becomes p(x|α+

∑N
j=1 γ

j).
Hence, the probability that a rating distance of new rating pair is di given the observed
data will be equivalent to the expected value of the probability variable xi:

p(D = di|γ0) = E(xi|γ0) =
αi + γi0
α0 + π

, (13)

where γi0 =
∑N
j=1 γ

j
i e
j
i and π =

∑n
i=1 γ

i
0. Note that γji represents the i-th component

of the j-th observation γj and eji denotes the evidence weights of the j-th observation
given by Equation 12, and hence γi0 is the amount of accumulated evidences whose
rating distance is di.

Based on the posterior probability of each rating distance, we define user distance as
the weighted average of rating distances di according to their importance weights wi:

du,v =

∑n
i=1 wi · di∑n
i=1 wi

, (14)

where du,v denotes the distance between two users u and v, and wi represents the
importance of the rating distance di according to the amount of cumulated evidence
γi0 between users u and v. For simplicity, we neglect the symbols u, v for importance
weights. Intuitively, the more new evidences that are accumulated at a rating distance
di, the more important the distance di will be. Hence, the importance weight of di is
computed by:

wi = max
(
0, p(di|π)− p(di)

)
= max

(
0,
αi + γi0
α0 + π

− αi
α0

)
= max

(
0,
α0γ

i
0 − αiπ

α0(α0 + π)

)
, (15)

where we constrain wi ≥ 0 in order to remove the situation where a posterior proba-
bility is less than a prior probability, which can arise when a rating level receives very
few evidences (relative to all the evidences). We then normalize the distance to derive
user similarity:

s′u,v = 1− du,v
dn

, (16)

where s′u,v denotes the ‘raw’ similarity between two users u and v, and dn is the maxi-
mum rating distance. We will build on raw similarity in the sequel.

3.4. Chance Correlation
Until now, we have defined user similarity according to the distributions of rating
distances. However, it is possible that two users are regarded as similar just because
their rating distances happen to be relatively small, especially when the number of
ratings is small. Hence it would be useful to reduce such correlation due to chance,
or chance correlation for short. As described above, γi0 out of γ0 evidences are located
at the level of distance di. Recall that the prior probability of rating pairs with rating
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distance di is αi/α0, and so the chance that γi0 evidences fall in that level independently
will be (αi/α0)γ

i
0 . Hence, the chance correlation is computed as the probability that any

amount of evidences falls in different rating distances independently:

s′′u,v =

n∏
i=1

(
αi
α0

)γ
i
0 , (17)

where s′′u,v is the chance correlation between users u and v. Note that small values of
γ0
i (i.e., few evidences) lead to large chance correlation while big values of γ0

i (i.e., many
evidences) result in indiscernible chance correlation.

3.5. System Bias and Bayesian Similarity
The final consideration we treat is that similarity measures usually possess a certain
level of system bias, i.e., the estimated similarity tends to be higher or lower to some
extent than the realistic similarity. Intuitively, the system bias is partially due to the
bias caused by the formulation of similarity measures. For example, PCC removes user
averages when computing user similarity whereas COS does not. We will elaborate this
issue later in Section 4.2. Therefore, user similarity is derived by excluding the chance
correlation and system bias from the ‘raw’ similarity:

su,v = max(s′u,v − s′′u,v − δ, 0), (18)

where su,v denotes the user similarity between users u and v, and δ is a constant
representing the general system bias. As analyzed in Section 4.2, our method will
generally hold a limited system bias around 0.04, i.e., δ = 0.04, given that only rating
consistency is used to compute evidence weights. However, if three evidence factors are
effectively combined together, since they may complement with each other, the system
bias could be ignorable, i.e., δ = 0 as discussed in Section 5.

3.6. Algorithm and Example
The pseudo-code of the computation of Bayesian similarity for two users u and v is
presented in Algorithm 1. The algorithm takes as input users u and v’s ratings Ru
and Rv and their rated items Iu and Iv, the prior probability of rating values pi, com-
binational parameters β1, β2, and a number of pre-computed constants: items’ stan-
dard deviations σk and users’ average ratings µ. The computed Bayesian similarity
is returned as output. The whole algorithm consists of two main parts. The first part
computes evidence weights (lines 1–11). Specifically, we first compute the Dirichlet pa-
rameters αi based on the input prior probability pi by Equation 3 (line 1). A variable
γ0 is initialized as 0 to accumulate the total amount of new evidences (line 2). For each
commonly rated item (line 3), we obtain a new rating pair (line 4) whereby the rating
distance can be computed (line 5). Then, we proceed to compute the three evidence
factors subsequently (lines 6–8) which will be combined to yield the evidence weight ei
by Equation 12 (line 9) and summed to variable γ0 (line 10).

The second part of the algorithm computes the similarity measure. We declare two
variables sumd and sumw (line 12) to accumulate the summation of weighted distances
and importance weights, respectively. For each rating distance di (line 13), we compute
its importance weight by Equation 15. After accumulating all the values in sumd and
sumw (lines 16–17), we can compute user distance du,v by Equation 14 (line 20) and
thus the ‘raw’ user similarity by Equation 16 (line 21). Once the chance correlation
is computed (line 22), the Bayesian similarity for the two users can be derived by
Equation 18 (line 23), i.e., by removing the chance correlation and system bias from
the ‘raw’ user similarity.
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ALGORITHM 1: The Computation of Bayesian Similarity
Input : users u, v’s ratings Ru, Rv and rated items Iu, Iv, rating prior probabilities pi,

parameters β1, β2, items’ standard deviations σk, users’ average ratings µ.
Output: Bayesian similarity between users u and v, i.e, su,v

1 compute Dirichlet parameters αi by Equation 3;
2 set π ← 0;
3 foreach k ∈ Iu ∩ Iv do
4 obtain a rating pair of users u, v: (ru,k, rv,k);
5 choose rating distance di ← |ru,k − rv,k|;
6 compute rating consistency ϕi

k by Equation 4;
7 compute Gaussian singularity ψi

u,v,k by Equation 6;
8 compute rating semantics ηiu,v,k by Equation 11;
9 combine three factors to obtain evidence weight ei by Equation 12;

10 γi
0 ← γi

0 + ei;
11 end
12 set sumd ← 0, sumw ← 0;
13 foreach di ∈ D do
14 compute importance weight wi of rating distance di by Equations 15;
15 if wi > 0 then
16 sumd ← sumd + wi ∗ di;
17 sumw ← sumw + |wi|;
18 end
19 end
20 compute user distance du,v by Equation 14: du,v = sumd/sumw;
21 compute the ‘raw’ similarity s′u,v by Equation 16;
22 compute chance correlation s′′u,v by Equation 17;
23 return Bayesian similarity su,v by Equation 18;

Regarding the time complexity of Algorithm 1, the most time-consuming part is the
foreach loop in lines 3–11. Specifically, for each iteration, the computational complex-
ity for each step (e.g., Equation 4 in line 6) can be completed in O(1). Hence, the overall
time complexity isO(m), wherem is the average number of co-rated items of two users.
In other words, our similarity measure is linear to the number of items commonly rated
by the two users. Therefore, the time complexity of Bayesian similarity is of the same
order of magnitude as PCC and COS. This is also confirmed in our experiments where
no significant difference is observed in terms of computational cost.

Here we give an intuitive example to show the procedure of Algorithm 1 step by
step. Suppose that two users u and v have rated four items in common, and their rat-
ing profiles are [2, 4, 4, 1] and [4, 2, 2, 5], respectively. First of all, we need to determine
the values of parameters αi by Equation 3. We use the uniform distribution and thus
pj = 1/5 = 0.2 if rating values vary from 1 to 5 (i.e., n = 5). Accordingly, we can obtain:
(α1, α2, α3, α4, α5) = (5, 8, 6, 4, 2) and α0 =

∑5
i=1 αi = 25. Hence, the prior probabil-

ity distribution will be (p(d1), p(d2), p(d3), p(d4), p(d5)) = (0.2, 0.32, 0.24, 0.16, 0.08). For
simplicity, we set β1 = 1, β2 = β3 = 0, i.e., only the factor rating consistency is consid-
ered. Since the characteristics of the whole data set is unknown, according to Equa-
tion 4, the parameter c is set to 0 and the evidence weight ei = ϕi = 1 for each rating
pair. After collecting γ0 = 4 new rating pairs, the posterior probability distribution
turns to be

(
p(d1|γ0), p(d2|γ0), p(d3|γ0), p(d4|γ0), p(d5|γ0)

)
=(5/29, 8/29, 9/29, 4/29, 3/29).

Hence, the importance weights can be computed by Equation 15: (w1, w2, w3, w4, w5) =
(−20/725,−32/725, 51/725,−16/725, 17/725). Using Equation 14, the user distance du,v
is obtained by: du,v = (2 ∗ 51/725 + 4 ∗ 17/725)/(51/725 + 17/725) = 2.5. Hence, the ‘raw’
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similarity is derived by s′u,v = 1− du,v/dn = 1− 2.5/4 = 0.375. Then, the chance corre-
lation by Equation 17 is given by: s′′u,v = 0.20 ∗ 0.320 ∗ 0.243 ∗ 0.160 ∗ 0.081 = 0.00110592,
and the system bias is taken as 0.04. Overall, the Bayesian similarity is determined
by: su,v = max(0.375− 0.00110592− 0.04, 0) = 0.33389408 ≈ 0.334. This example is also
presented as an instance (a6) in Table II, where the computed PCC is −1 and COS
value is 0.681.

4. SIMILARITY MEASURES ANALYSIS
This section aims to provide intuitive examples of different similarity measures in the
light of the four specific issues summarized in Section 1, and to give insight into the
nature of different similarity measures.

4.1. Examples
Earlier we summarized four specific problems from which PCC and COS suffer. Here
we illustrate by examples the differences among the similarity values computed by our
Bayesian similarity (BS) measure and the two traditional measures. We denote BS-1
as the variant of our method that does not remove chance correlation. The results are
shown in Table II. All ratings in the table are integers in the range [1, 5]. We assume
that the ratings are uniformly distributed, i.e., pj = 0.2 for Equation 3. We only adopt
the rating consistency to compute evidence weights, i.e., β1 = 1, β2 = β3 = 0 for Equa-
tion 12, for simplicity and also partially due to the observation that rating consistency
works better than other factors which will be analyzed in Section 5.3.

Table II. Examples of PCC, COS and BS similarity measures

Problems Examples PCC COS BS BS-1ID Vector u Vector v
Flat-value a1 [1, 1, 1] [1, 1, 1] NaN 1.0 0.952 0.96

a2 [1, 1, 1] [2, 2, 2] NaN 1.0 0.677 0.71
a3 [1, 1, 1] [5, 5, 5] NaN 1.0 0.0 0.0

Opposite-value a4 [1, 5, 1] [5, 1, 5] -1.0 0.404 0.0 0.0
a5 [2, 4, 4] [4, 2, 2] -1.0 0.816 0.446 0.46
a6 [2, 4, 4, 1] [4, 2, 2, 5] -1.0 0.681 0.334 0.336

Single-value a7 [1] [1] NaN 1.0 0.76 0.96
a8 [1] [2] NaN 1.0 0.39 0.71
a9 [1] [5] NaN 1.0 0.0 0.0

Cross-value a10 [1, 5] [5, 1] -1.0 0.385 0.0 0.0
a11 [1, 3] [4, 2] -1.0 0.707 0.332 0.383
a12 [5, 1] [5, 4] 1.0 0.888 0.530 0.5616
a13 [4, 3] [3, 1] 1.0 0.949 0.485 0.5623

It is observed that our method can solve the four problems of PCC and COS, and
generate more realistic similarity measurements overall. Specifically, for the flat-value
and single-value problems, PCC is non-computable and COS is always 1, whereas BS
produces more reasonable similarities. In addition, BS generates higher similarity in
a1, a2 than in a7, a8 respectively. Although the rating directions are the same, the for-
mer situations have a greater amount of rating evidences than the latter. Instead,
BS-1 computes the same values in these cases where chance correlation is not con-
sidered. Overall, BS-1 tends to generate larger values than BS. The differences be-
tween BS and BS-1 are not trivial, especially when the length of rating vectors is short
(e.g., a2, a7, a8, a12, a13), which indicates the importance of removing chance correla-
tion. Further, when the ratings are diametrically opposite (a3, a4, a9, a10), BS always
gives 0 no matter how much information we have. This behaviour matches intuition.
However, COS continues to generate relatively high similarity while PCC may not be
computable. When the ratings are opposite but not extreme (a5, a6, a11), PCC gives the
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Fig. 2. The trends of similarity measures according to the variation of vector length

extreme value −1 all the time and COS tends to produce high similarity, whereas the
similarity calculated by BS is kept low. Finally, if the rating vectors are not crossing
(a12, a13), PCC will yield 1 if computable and COS produces large values relative to BS
even if some of the ratings are conflicting. Hence, these values are counter-intuitive
and misleading, as pointed out by Ahn [2008]. In contrast, our method can produce
more realistic measurements.

4.2. Similarity Trend Analysis
We further investigate the nature of the three similarity measures in a more general
manner. The trends of computed similarity values are analyzed when the length of
rating vectors varies in a large range, using the same settings as in the previous sub-
section. In particular, a normal distribution is used to describe the distribution of user
similarity. Since the similarity value is located in [0, 1], the mean value of user sim-
ilarity will be equal to the median of the normal distribution, i.e., 0.5. Note that for
comparison purpose, PCC similarity is normalized from [−1, 1] to [0, 1] via (1 + PCC)/2.
We vary the length of rating vectors from 1 to 200. For each length, we randomly gener-
ate one million samples of two rating vectors and calculate the similarity for each pair
by applying PCC, COS, and BS similarity measures. The mean and standard deviation
for each length are summarized and shown in Figure 2.

For the mean value, PCC stays at the value of 0.5, while COS starts with high values
and decreases quickly (length ≤ 10), reaching a stable state with the value of 0.82. Lin
[1998] contends that one intuition a consistent similarity measure should obey is: the
more commonality two users share, the more similar they are. In this regard, the COS
similarity is counterintuitive in that it produces higher values when the length of
rating vectors is short, and lower values when the length of rating vectors is long. In
other words, the COS similarity is likely to be inconsistent when vector length is small.
In contrast, BS begins with a low value at length 1 and then stays around 0.54 with
a limited fluctuation when the length is short. Therefore, the BS similarity is more
consistent than the COS similarity. These results indicate that in general for any two
users: (1) PCC is able to remove system bias due to the data standardization involved;
(2) COS always tends to generate high similarity around 0.82, i.e., with a large bias
around 0.32; and (3) BS exhibits only a limited bias (δ = 0.04) under the experimental
settings. This phenomenon is also observed by Lathia et al. [2008] who find that in the
MovieLens data set, nearly 80% of the whole community has COS similarity between
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0.9 and 1.0, and that the most frequent PCC values are distributed around 0 (without
normalization), which corresponds to 0.5 in our settings.

For the standard deviation, PCC makes large deviations when the length of vectors
is less than 20, COS generates very limited deviation, whereas BS keeps a stable devi-
ation around 0.22. A large deviation may cause the unstable values, i.e., inconsistent
values are likely to be produced, while a small deviation may result in values that
can not be well distinguished from each other. In conclusion: (1) PCC is not stable and
varies considerably when the vector length is short; (2) COS similarity is distributed
densely around its mean value which makes it less distinguishable; and (3) BS tends
to be distributed within a range of 0.22 which makes its value more easily distinguish-
able from others.

Note that our experiments assume that evidence weights are purely based on rat-
ing consistency. Under this condition, we find that our approach causes a limited sys-
tem bias (0.04). As indicated by Equation 12, rating consistency can be combined with
other evidence factors to form a more reliable and powerful factor to compute evidence
weights. Thus, it is possible that the system bias can be further limited or eliminated
by effectively combining the three evidence factors, and that the user similarity can be
further distinguished by including more aspects of ratings. We will demonstrate the
proposition in Section 5.4.

5. EVALUATION
A series of experiments are conducted in this section to investigate: (1) the effects of
different evidence factors as well as the best combinations of them on the performance
of rating prediction; (2) the effects of chance correlation and system bias in our method;
and (3) the performance of our approach in comparison with other similarity measures
in terms of predictive accuracy.

5.1. Data Sets
Six real-world data sets are used in our experiments; their statistics are illustrated
in Table III. They differ from each other in terms of predefined rating scales and den-
sity. BookCrossing.com is a free online book club to facilitate book sharing around the
world. The data set4 contains 433K ratings issued by 77.8K users on 186K books from
the BookCrossing community. Epinions.com allows users to rate many different items
(books, movies, etc.) by issuing an integer value from 1 to 5 and by adding textual re-
view comments. The data set5 includes 40.2K users, 139.7K items and 664.8K ratings.
The remaining four data sets contain the data of three online communities in which
users can give and share movie ratings with each other. Flixster6 has the smallest
rating density relative to the others and permits users to give more fine-grained and
real-valued ratings from 0.5 to 5.0 with step 0.5. FilmTrust7 is the smallest data set
with only 35.5K user ratings. Notably, the two MovieLens data sets (100K and 1M)8

have been pre-processed (by the GroupLens team) such that each user has rated at
least 20 movies, resulting in the highest rating densities comparing with the others.
The detailed specifications of all the data sets are presented in Table III, together with
the computed values of c (see Equation 4) in the last column.

In addition, the distributions of the number of users with respect to the number of
ratings given by per user are illustrated in Figure 3. The figure shows that generally

4http://www.informatik.uni-freiburg.de/∼cziegler/BX/
5http://www.trustlet.org/wiki/Epinions datasets
6http://www.cs.sfu.ca/∼sja25/personal/datasets/
7http://www.librec.net/datasets/filmtrust.zip
8http://www.grouplens.org/node/12
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Fig. 3. The distributions of the number of users with respect to the number of ratings given by per user
across all the data sets
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Table III. The statistics of data sets used in the experiments

Data Sets # users # items # ratings scales density c
FilmTrust 1508 2071 35.5K [1, 5] 1.14% 0.6
Flixster 53.2K 18.2K 409.8K [0.5, 5.0] 0.04% 0.0
MovieLens 100K 943 1682 100K [1, 5] 6.30% 0.9
MovieLens 1M 6040 3952 1M [1, 5] 4.47% 0.9
Epinions 40.2K 139.7K 664.8K [1, 5] 0.05% 0.0
BookCrossing 77.8K 186K 433K [1, 10] 0.03% 0.5

most users have only rated a small number of items (often no more than 20), and only
a small portion of users have rated a large number of items. Since the MovieLens data
sets have been pre-processed, each user has rated at least 20 items. On the other hand,
different data sets show some distinct characteristics, for example, over 60% users
have rated less than 5 items in Flixster and the ratio is even up to 80% in BookCrossing
where the percentage is around 40% in Epinions and less than 20% in FilmTrust. The
distributions on the other ranges of rating amounts also present the differences to
some extent. In conclusion, the data sets vary from each other and thus represent a
number of different kinds of communities with different types of users’ rating patterns.

5.2. Experimental Settings
We evaluate recommendation performance using the 5-fold cross validation method.
The data set is split into five disjoint subsets; for each iteration, four folds are used as
training data and one as a test set. We apply the K-NN approach to select a group of
similar users whose ranking is in the top K according to similarity; we vary K from
5 to 50 with step 5 in all the experiments. The ratings of selected similar users are
aggregated to predict items’ ratings by a mean-centering approach [Desrosiers and
Karypis 2011]:

pu,i = r̄u +

∑
v∈Nu

su,v(rv,i − r̄v)∑
v∈Nu

|su,v|
, (19)

where pu,i is the predicted rating for user u on item i, Nu is the set of top K nearest
neighbours, su,v is the user similarity between users u and v, r̄u and r̄v are the average
of ratings given by users u and v, respectively.

To study more aspects of the utilities of different similarity measures on recommen-
dation performance, we consider three different testing views in our experiments.

— All Users is the view where all the ratings in the test set are used for prediction.
— Cold Users refers to the view where only the ratings of cold users (in the test set)

who rated less than 5 items in the training set will be predicted.
— Niche Items refers to the view where only the ratings of niche items (in the test set)

which received less than 5 ratings in the training set will be evaluated.

The predictive accuracy is measured by two popular metrics, namely mean absolute
error (MAE) and root mean square error (RMSE) between the prediction pu,i and the
ground truth ru,i using the test set:

MAE =

∑
u,i∈Ω |pu,i − ru,i|

|Ω|
, RMSE =

√∑
u,i∈Ω(pu,i − ru,i)2

|Ω|
(20)

where Ω represents the test set, and |Ω| is the cardinality of set Ω. Thus, lower MAE
and RMSE values indicate better predictive accuracy. While our experiments use
memory-based CF, we emphasize that similarity computation is equally relevant to
model-based methods, including those based on matrix factorization such as Ma et al.
[2011] and Shi et al. [2013].
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Fig. 4. The predictive performance using different evidence factors

5.3. Effects of Different Evidence Factors
Until now, we have introduced three different evidence factors to compute evidence
weights, namely rating consistency, Gaussian singularity, and rating semantics. Hence
it is necessary to investigate the impact of each evidence factor on the predictive per-
formance as well as the best combination of three factors denoted by BestComb, ob-
tained by tuning the values of parameters β1 and β2 in Equation 12. Specifically, we
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conduct an exhaustive grid search9 of the possible combinations of (β1, β2) and obtain
their performance based on 5-fold cross validation while setting the number of most
similar users as 10 for predictions10, i.e., K = 10. The experiments show that the best
combinations of parameters (β1, β2) are (0.2, 0.1) on FilmTrust, (0.8, 0.1) on Flixster,
(0.2, 0.2) on MovieLens 100K, (0.1, 0) on MovieLens 1M, (0.9, 0.1) on Epinions and (1, 0)
on BookCrossing, respectively. After the grid search, we run 5-fold cross validation to
show the predictive performance of different evidence factors. The results are illus-
trated in Figure 4. Significance tests (paired t-tests, confidence 0.95) are conducted
between the best combination BestComb and the best of other single evidence factors.
The significance test results are presented in Table IV.

In general, the best combination method, i.e., BestComb, achieves the best perfor-
mance across all the data sets, and different individual evidence factors have various
effect on different data sets. More specifically, Consistency reaches comparable results
with BestComb on the Flixster, Epinions and BookCrossing data sets (i.e., in terms of
MAE and RMSE, no significant differences). We note that the best combinational set-
tings are (0.8, 0.1), (0.9, 0.1) and (1, 0), respectively; where Consistency has the greatest
influence on the overall combination. In addition, Consistency outperforms Singularity
and Semantics on FilmTrust, and only performs worse than other single factors (i.e.,
Semantics) on two MovieLens data sets. Singularity performs the worst on FilmTrust,
MovieLens 100K and 1M data sets, while Semantics is demonstrated to be the worst
on the rest of the data sets. In conclusion, as a single evidence factor, Consistency is
likely to be more reliable and effective than Semantics and Singularity.

As the best combination of three single factors, BestComb can always outperform
the others over all the data sets, and significant improvements are observed on the
FilmTrust, MovieLens 100K and 1M data sets (see Table IV). This may be explained
by the fact that rating consistency focuses more on distinguishing similar ratings and
that most users tend to give positive ratings, i.e., most ratings are likely to be similar
to some extent. Recall in Section 4.2 we showed that our method can produce more
realistic and distinguishable user similarities. In contrast, Gaussian singularity at-
tends to consider more dissimilar ratings while rating semantics attempts to assume
that ratings are distributed randomly. A proper integration of these evidence factors
may benefit from each single factor and give the best predictive accuracy. Further, we
note that rating consistency and semantics consistently have more important impact
(i.e., greater coefficients) than Gaussian singularity across all the data sets. In other
words, concentrating more on the similar ratings and taking into account their rating
semantics can give the best value for similarity computation. One possible reason is
that rating semantics has some overlapping with Gaussian singularity as explained in
Section 3.2.4.

5.4. Effects of Chance Correlation and System Bias
After determining the best settings for parameters β1 and β2 in Equation 12, we pro-
ceed to explore the effects of the other two components of our approach BS, namely
chance correlation and system bias. We denote BS-1 and BS-2 as the variants that
disable chance correlation (setting s′′u,v = 0) and system bias (setting δ = 0) in Equa-
tion 18, respectively. The experimental results are presented in Figure 5. It is observed
that BS consistently outperforms BS-1 across all the data sets, though it is only slightly
better than BS-1 on Flixster. Hence, we conclude that chance correlation is critical in
our approach as disabling it will greatly decrease the predictive accuracy. However,

9The search space for each parameter is from 0 to 1 with step 0.1, with the constraint that β1 + β2 ≤ 1.
10The setting K = 10 is chosen arbitrarily. In fact, other values of K also exhibit similar trends, indicating
the suitability of our setting to investigate the effects of different evidence factors.
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Table IV. Significance tests of the best combination BestComb w.r.t. the best of other
single evidence factors in terms of MAE and RMSE across all the data sets, where p-
values are denoted by the significance symbols: < 0.05 with ∗, < 0.01 with ∗∗, < 0.001
with ∗∗∗; and ‘NA’ means not computable (or available).

Data Set (MAE) df t value p value Best of Single Factors
FilmTrust 9 -30.0271 1.232e-10∗∗∗ Consistency
Flixster 9 4.1408 0.9987 Consistency
MovieLens 100K 9 -2.0664 0.03438∗ Semantics
MovieLens 1M 9 -5.1098 3.183e-4∗∗∗ Semantics
Epinions 9 NA NA Consistency
BookCrossing 9 NA NA Consistency
Data Set (RMSE) df t value p value Best of Single Factors
FilmTrust 9 -65.3828 1.156e-13∗∗∗ Consistency
Flixster 9 3.5094 0.9967 Consistency
MovieLens 100K 9 -2.9583 8.002e-3∗∗ Semantics
MovieLens 1M 9 -23.1675 1.237e-9∗∗∗ Consistency
Epinions 9 4.6288 0.9994 Consistency
BookCrossing 9 NA NA Consistency

Table V. Significance tests of the best combination BestComb w.r.t. the best of other meth-
ods on the view of all users in terms of MAE and RMSE. Note that for the Epinions data
set, two tests are available where the second one is with the second in MAE (third in
RMSE) best method. The p-values are denoted by the significance symbols: < 0.05 with
∗, < 0.01 with ∗∗, < 0.001 with ∗∗∗.

Data Set (MAE) df t value p value Best of Other Methods
FilmTrust 9 -7.4407 1.965e-5∗∗∗ caPCC
MovieLens 1M 9 -7.9515 1.162e-5∗∗∗ SM
BookCrossing 9 -32.6342 5.859e-11∗∗∗ COS
Flixster 9 -2.7009 0.01218∗ SM
MovieLens 100K 9 -3.0699 6.678e-3∗∗ PIP
Epinions 9 3.4852 0.9966 SM
Epinions 9 -4.1937 1.164e-3∗∗ COS
Data Set (RMSE) df t value p value Best of Other Methods
FilmTrust 9 -7.5298 1.790e-5∗∗∗ caPCC
MovieLens 1M 9 -28.2894 2.096e-10∗∗∗ SM
BookCrossing 9 -19.4044 5.926e-9∗∗∗ COS
Flixster 9 -2.9437 8.194e-3∗∗ SM
MovieLens 100K 9 -4.3736 8.939e-4∗∗∗ PIP
Epinions 9 5.4422 0.9998 SM
Epinions 9 -34.0306 4.03e-11∗∗∗ MSD

the effect of the system bias is not as significant as chance correlation. Specifically,
BS-2 achieves comparable results with BS on most data sets and even exceeds BS on
Epinions. That is, disabling system bias (i.e., δ = 0) may cause only slight decrement
or even sometimes reach slight increment relative to BS (with δ = 0.04) in terms of
predictive accuracy. As a conclusion, it is indiscernible in accuracy to disable system
bias, though setting a small value (0.04) may result in slightly better performance. As
explained in Section 4.2, the value 0.04 is obtained by using only the rating consistency
to compute evidence weights. However, since a good combination usually requires the
consideration of other evidence factors as demonstrated in previous subsection, it may
lead to a more limited or ignorable system bias.

5.5. Performance Comparison on All Users
The baseline approaches for comparison are PCC, COS, MSD [Shardanand and Maes
1995], inverse user frequency-based COS (denoted by iufCOS) and case amplification-
based PCC (denoted by caPCC) [Breese et al. 1998].11 Breese et al. [1998] empirically

11Other variants of PCC exist in the literature, but we will not compare all of them in this work.
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Fig. 5. The effects of disabling chance correlation or system bias

suggest that the best value of the case amplification parameter for caPCC is ρ = 2.5.
We go further and adopt a grid search for each of our data sets in the value set {0.5, 1,
2, 2.5, 3, 5, 10} to find out the optimal ρ values across all testing views. Experimental
results show that the setting of ρ = 0.5 consistently achieves the best performance
across all the test cases. Besides these five methods, we also compare with recent ap-
proaches, namely PIP [Ahn 2008] and SM [Bobadilla et al. 2012] which show better
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Fig. 6. The predictive accuracy of comparative approaches on all users

performance than a number of baselines, as described in Section 2. The performance
of these approaches is shown in Figure 6 in terms of MAE and RMSE.

The results show that BS outperforms traditional measures (i.e., PCC and COS, also
MSD) consistently in all the data sets. Of the traditional measures, the performance
of MSD is always between that of PCC and COS. PCC works better than COS on some
data sets including FilmTrust, MovieLens 100K and 1M data sets and worse in the
others. One explanation is that PCC only removes local bias (the average of ratings
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on co-rated items) rather than global bias (the average of all the ratings); hence it
is not a standard data standardization. With an optimized case amplification value
(i.e., ρ = 0.5), caPCC slightly beats PCC consistently across all the data sets. On the
other hand, with a discount of inverse user frequency, iufCOS works very closely to (or
slightly worse than) COS, indicating the uselessness of weighting schemes for COS as
reported by Said et al. [2012]. Of the newer methods, SM generally works better than
PIP except on MovieLens 100K. Interestingly, PIP and SM outperform the traditional
methods only on the two MovieLens data sets. This underscores the necessity of com-
paring performance on several different data sets. Adomavicius and Zhang [2012] also
show that the accuracy of CF recommendations is highly influenced by the structural
characteristics of data sets. In line with this conclusion, we observe that the perfor-
mance of PIP varies on different data sets relative to other baselines. This may be
explained by the grid formulation of the PIP method. For example, the factor of prox-
imity [Ahn 2008] is set in such a way that the distance between two ratings will be
doubled if they disagree with each other. Such a kind of setting may or may not work
for some data sets, since it depends in part on the rating scale used in the data set.
By contrast, our method performs better than both PIP and SM on all the data sets
except Epinions, and exhibits greater improvements (with respect to the traditional
approaches). On Epinions, BS and SM have very close performance and outperform
the other methods.

In addition to the above experiments, we conduct a series of paired two sample t-
tests on all the data sets to study the significance of accuracy improvement that our
method achieves in comparison with the best of other methods (confidence level 0.95).
The results are shown in Table V, where the alternative hypotheses are: the MAE
(RMSE) of BS is significantly less than that of the best of other methods. The resultant
p values indicate that our method significantly outperforms all others on five out of
the six data sets. Only on Epinions is BS slightly outperformed by another method
(SM). However, this performance difference on Epinions between BS and SM is quite
small: 0.00047 in MAE and 0.00162 in RMSE on average. A further significance test is
adopted to compare our method with the second (or third) best of other methods, i.e.,
COS in MAE (or MSD in RMSE), on Epinions. The results, also in Table V, show that
BS achieves significantly better performance than the second/third best other method.
Hence, looking across the range of data sets, we conclude that our method has the most
robust performance of all the methods considered.

5.6. Performance Comparison on Cold Users
The performance on cold users is illustrated in Figure 7, and the corresponding signif-
icance tests are presented in Table VI with respect to the best of other methods. Since
users in the two MovieLens data sets rated at least 20 items, these data sets are not
suitable for the experiments by the definition of testing view of Cold Users.

A number of observations can be drawn from the experimental results. Firstly, in
contrast with the performance on all users, the differences between PCC and caPCC is
negligible on cold users. In other words, the weighting scheme for PCC on cold users
is not helpful. By contrast, although the curves of COS and iufCOS are still highly
overlapped, the difference is that iufCOS works better than COS when K is small.
Generally, PCC works better than COS on FilmTrust and BookCrossing but worse on
Flixster and Epinions.

Secondly and surprisingly, PIP achieves poor performance (and even worse than
MSD) in general. This result seems to be in conflict with the conclusion reported
by Ahn [2008]. One possible explanation is that the experimental settings in Ahn
[2008] count the number of ratings used to calculate user similarity, whereas we fo-
cus on the number of ratings issued by the users. In this regard, our setting is more
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Table VI. Significance test results on the view of cold users in terms of MAE and RMSE. The
last test is between our method with the second best method in FilmTrust. The p-values are
denoted by the significance symbols: < 0.05 with ∗, < 0.01 with ∗∗, < 0.001 with ∗∗∗.

Data Set (MAE) df t value p value Best of Other Methods
FilmTrust 9 -13.0566 1.870e-7∗∗∗ PCC
Flixster 9 -2.9292 8.389e-3∗∗ SM
Epinions 9 -51.2374 1.032e-12∗∗∗ SM
BookCrossing 9 -1680.479 <2.2e-16∗∗∗ PCC
Data Set (RMSE) df t value p value Best of Other Methods
FilmTrust 9 19.2953 1.0 PCC
Flixster 9 -15.3618 4.585e-8∗∗∗ SM
Epinions 9 -4.3494 9.259e-4∗∗∗ SM
BookCrossing 9 -1495.982 <2.2e-16∗∗∗ PCC
FilmTrust 9 -12.9557 1.999e-7∗∗∗ iufCOS

realistic (for selecting cold users) since one interaction with other users does not mean
that the user only rated one item; rather many items could have been rated. In con-
trast, SM works relatively better than the other baselines on all the data sets.

Lastly and most importantly, our approach BS in general works significantly better
(see Table VI) than the others across all the data sets, except FilmTrust, in terms of
RMSE. Specifically, as shown in the table regarding the performance in FilmTrust,
our approach BS works better than the best of other methods in MAE, but worse than
PCC in RMSE. The lower MAE value indicates that the rating predictions by BS are
generally closer to the ground truth than PCC (see Figure 7a), while the higher RMSE
value means that BS produces greater errors than PCC12 (see Figure 7b). In other
words, the rating predictions by BS tend to be either greatly approximated (mostly
due to small MAE) or deviated (few due to relatively high RMSE) in FilmTrust. This
can be attributed to the accuracy of computed factors. For example, in the case that a
user has only a few ratings, the average of her ratings may vary more than the case
where many ratings are available. This may lead to incorrect estimation of the factors
such as impact (see Equation 9), popularity (see Equation 10), Gaussian singularity
(see Equation 5), etc. Another explanation for the variance between MAE and RMSE
is due to the small size of FilmTrust, which makes the performance more sensitive to
a few number of high predictive errors. Nevertheless, from the last test presented in
Table VI, the performance of our approach BS still performs significantly better than
the second best of other methods.

5.7. Performance Comparison on Niche Items
The performance of all methods on niche items is shown in Figure 8. By definition,
niche items are those which received less than 5 ratings. Hence, there is no need to
tune the number K of nearest neighbours for a specific user since the maximum num-
ber will be less than 5. Overall, the performance on niche items is similar to that on all
users. Specifically, PCC is inferior to caPCC, while COS is similar to iufCOS in terms
of predictive accuracy. PIP shows no better results than the other baselines, but dif-
ferently SM tends to act similarly as the others including MSD, COS and iufCOS. It is
noted that our approach consistently outperforms all the others across different data
sets except Flixster and Epinions where BS performs close to or only slightly worse
than the best of other methods.

5.8. Summary and Discussion
In summary, the empirical results show that our approach, BS, works better than the
others in terms of both MAE and RMSE across a number of real-world data sets. Even

12By definition, RMSE gives relatively high weights on large predictive errors.
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Fig. 7. The predictive accuracy of comparative approaches on cold users

in certain cases where our approach does not significantly outperform all the other
methods, the performance by BS is often equivalent to or only slightly worse than
the best of the other methods. Although not specialized for cold users or niche items,
our approach demonstrates its generality and good performance across all the testing
views. Further studying the performance on other samples of users or items would be
an interesting part of future work. Note that the generality of our approach is based
on the consistent performance gains obgtained across the six data sets we used in the
experiments. It is possible that our approach may not outperform the other measures
on some other data sets we have not tested yet.

Nevertheless, it is worth noting that the user-based K-NN method used for our
comparison of similarity measures is generally not competitive with advanced model-
based approaches, such as matrix factorization models13, in terms of predictive accu-

13However, we also notice that on FilmTrust our approach, i.e., Bayesian similarity-based KNN is able to
achieve competitive performance (K = 30, see Figure 6(a)) with BiasedMF [Koren 2010] the performance of
which is reported at http://librec.net/example.html on the same data set.
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Fig. 8. The predictive accuracy of comparative approaches on niche items

racy14 [Koren 2010]. However, the user-based K-NN method is suitable for the present
work because our main objective is to investigate the effectiveness of the Bayesian sim-
ilarity measure (in comparison with others), rather than to justify that a user-based
K-NN with Bayesian similarity can surpass all the other recommendation methods.

14A detailed comparison between UserKNN and matrix factorization methods is reported at: librec.net/
example.html
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We would like to stress again that similarity measures can also be used in model-
based approaches such as those of Ma et al. [2011] and Shi et al. [2013]. Furthermore,
the research line of recommendation models for implicit feedback [Pan et al. 2015b,a]
is also beyond the discussion of this article.

The main idea of our Bayesian similarity is to take into account the importance
of a number of evidence weighting factors in measuring user similarity. In principle,
the same basic idea can be applied to measure item similarity by reformulating the
weighting factors from the perspective of items rather than users. For example, the
rating consistency can be modelled based on reliable users rather than reliable items,
and the system bias is also applicable to item similarity. Designing a proper item sim-
ilarity measure is an interesting topic and itself can be a separate line of research.

6. CONCLUSION AND FUTURE WORK
This article proposed a novel Bayesian similarity measure for recommender systems
based on the Dirichlet distribution, taking into account both the direction and length
of rating vectors. We stressed the importance of evidence weights for the similarity
computation and introduced three different evidence factors. We showed that an effec-
tive combination of these factors can achieve the best predictive accuracy. In addition,
we found that removing chance correlation can significantly improve the computed
user similarity, and that only a very limited or ignorable system bias may be caused
by our method. Using typical examples, we exemplified that our Bayesian measure
was capable of addressing the four issues of traditional similarity measures (i.e., the
Pearson correlation coefficient and cosine similarity). More generally, we empirically
analyzed the trends of these measures, and found that our method can generate more
realistic and distinguishable similarity measurements. Finally, the experimental re-
sults based on six real-world data sets further demonstrated the robust effectiveness
of our method in comparison with traditional and contemporary measures in terms of
predictive accuracy.

The present work stresses the importance of factors to investigate evidence weights
in order to better model user similarity. However, a number of parameters need to be
configured according to the characteristics of data sets, e.g., c in Equation 4. We would
like to further study how to better determine the values of these parameters.

Our approach only relies on numerical ratings to model user correlation and hence
it can be applied into many other domains, such as biochemistry [Luo et al. 2015],
image processing [Huang et al. 2015], information retrieval [Wang et al. 2015] and
social media [Anderson et al. 2012]. We plan to integrate more information about user
ratings, such as the time when ratings were issued, in order to consider the dynamics of
user interest [Li et al. 2011]. In addition, it would be also beneficial to study the effects
of different similarity measures on the other samples of users and items. Lastly, we
would like to further validate our approach in the case of other recommendation tasks,
such as top-N item recommendation.
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