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Accurate prediction of taxi-out time is significant precondition for improving the operationality of the departure process at an
airport, as well as reducing the long taxi-out time, congestion, and excessive emission of greenhouse gases. Unfortunately, several
of the traditional methods of predicting taxi-out time perform unsatisfactorily at congested airports. This paper describes and
tests three of those conventional methods which include Generalized Linear Model, Softmax Regression Model, and Artificial
Neural Network method and two improved Support Vector Regression (SVR) approaches based on swarm intelligence algorithm
optimization, which include Particle Swarm Optimization (PSO) and Firefly Algorithm. In order to improve the global searching
ability of Firefly Algorithm, adaptive step factor and Lévy flight are implemented simultaneously when updating the location
function. Six factors are analysed, of which delay is identified as one significant factor in congested airports. Through a series
of specific dynamic analyses, a case study of Beijing International Airport (PEK) is tested with historical data. The performance
measures show that the proposed two SVR approaches, especially the Improved Firefly Algorithm (IFA) optimization-based SVR
method, not only perform as the best modelling measures and accuracy rate compared with the representative forecast models, but
also can achieve a better predictive performance when dealing with abnormal taxi-out time states.

1. Introduction

The size of fleets at airports is becoming ever larger because
of the continuous increase in the past few decades in the
demand for transportation by air. Consequently, efficiency
levels are dropping as managers face more operational even-
tualities, and airlines have to accommodate higher fuel costs
and mounting numbers of customer complaint. In 2016, the
passenger traffic volume reached 487.96 million, an increase
of 10.7% since the previous year. The current average on-
time rate of flights in China is 76.76%, and average delay
time is 16 minutes, which is 5 minutes less than in 2015. The
total number of complaints received (all recorded by airlines
and airports) in 2016 showed an increase of 84% on the
2015 total [1]. In China, an aircraft is considered to be “on-
time” if it take-off (lands) within 15 minutes before and after
the schedule departure (landing) time. The delay time here

refers to the departure flights and is defined as the difference
between actual departure time and plan departure time.

Flight delays have a dramatic impact on the movement of
taxiing aircraft between gates and runways. Taxi-out time is
defined as the time between the actual pushback and wheels-
off. Taxi-out time is difficult to predict in hub airports at
peak hours. Consequently very long taxiing times and airport
surface congestion would be suffered. The long-time taxiing
aircraft may cause a blunder when dealing with the pushback
and take-off slots, which not only destroys the balance of the
arrival and departure process, but also increases fuel con-
sumption and emissions. Moreover, the increasing workload
of controllers is unfortunate. The delay is cumulative, but it
is both stochastic and controllable in the taxi process. The
stochastic characteristic is reflected in uncertainty events,
such as shifts in the weather environment, the interaction
of the departure/arrival aircraft surface movement, and the
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human factor. Controllable behaviours such as delays can be
adjusted by alternating routes and taxiing speed and even by
holding at gate [2].

Better prediction of taxi-out time allows all stakeholders
to arrange the future activities in airport operation. Efficient
taxi-out prediction methods are effective approaches when
the aim is to eliminate delays and improve the utilization
of resources. Once taxi-out time is predicted in advance,
operators gain a flexibility that allows them to adjust the
schedule, gates assignment, and pushback plan.This achieves
the smoother operation of an airport and reduces its surface
congestion and fuel-burn costs. The aim of this research is
to develop the approaches that are more accurate predictors
of the taxi-out time of departing aircraft. In this paper, we
introduce two methods of predicting taxi-out time, both
of which arose from an analysis of the factors extracted
from the Aviation System Performance (ASP) data of Beijing
International Airport.Theproposedmodels are developed on
the soft-computing approaches to predicting taxi-out time:
Particle Swarm Optimization algorithm based and Improved
Firefly Algorithm based Support Vector Regression. These
two intelligent algorithms can search the optimal parameters
for SVR to predict the taxi-out time effectively.

The organization of this paper is as follows: A brief
overview is offered of previous attempts to analyse taxi-out-
time behaviours in the airport departure process, and of
the several prediction methods discussed in the Literature
Review. This is followed by a description of the research
methodology, which includes three traditional prediction
methods and two newly proposed, improved swarm intel-
ligence algorithm-based approaches to predicting taxi-out
time. The layout data of PEK airport is illustrated, along with
historical data, and both are validated for analysing airport
dynamics and traffic situations in the taxiing process. Results
obtained from the PEK data and findings are then discussed.
The conclusion summarizes the benefits that accrue from
these findings, and their implications.

2. Literature Review

Several efforts have been made to address the prediction
of taxi-out times. Those efforts have included both historic
data-based predictions and the queuing-based approaches
that regard causal factors. Shumsky deemed aircraft flow and
departure demand to be casual factors and used dynamic
linear models to predict taxi-out time. He compared static
and dynamic linear models and found the dynamic linear
model better for predicting taxi-out time in a short-time
window [3]. Pujet modelled the departure system as queuing
servers and derived a stochastic distribution for the taxi-out
time. His model captured the details of the departure process
to estimate taxi-out time [4]. Idris et al. analysed a number of
factors that affect taxi-out time by using the Airline Service
Quality Performance (ASQP) data.These factors included the
runway configuration, the airline/terminal, the downstream
restrictions, and the take-off queue size [5–7].

These researchers developed the queuing model for pre-
dicting taxi-out time and drew the conclusion that take-off
queue size correlates best with taxi-out time, especially when

the queue that each aircraft experiences is measured as the
number of take-offs between its pushback time and its take-
off time. Carr et al. proposed a simulation-based research
of queuing dynamics and traffic rules. They predicted taxi-
out time by considering aggregate metrics such as airport
throughput and departure congestion [8]. Simaiakis and
Balakrishnan proposed a taxi-out time predictionmodel with
an analytical model of the aircraft departure process, which
included an estimate of the distributions of unimpeded taxi-
out time, and the development of a queuing model of the
departure runway system [9, 10].

Several statistical approaches and machine-learning
methods were applied to the prediction of aircraft taxiing
time. Srivastava used high-resolution position updates from
the ASDE-X surveillance system of JFK to develop a taxi-
out prediction model based on the existing surface traffic
conditions and short-term traffic trends [11]. Hebert and
Dietz developed a multistage Markov process model of the
departure process at LaGuardia airport, based on five days of
data, to predict taxi-out time [12]. Balakrishna et al. proposed
the reinforcement learning algorithms, which could adapt
to the stochastic nature of departure operations, to predict
average airport taxi-out time trends approximately 30–60
minutes in advance of the given time of day [2, 13]. Ravizza et
al. built a combined statistical and ground movement model
and used multiple linear regression to find the function that
would predict taxiing times more accurately [14]. Also, they
used the same explanatory variables for different approaches,
which included multiple linear regression, least median
squared linear regression, Support Vector Regression, M5
model trees, Mamdani fuzzy rule-based systems, and TSK
fuzzy rule-based systems, to predict taxi-out times and
then compared these approaches [15]. Lee et al. used both
fast-time simulation and machine-learning techniques to
predict taxi-out time and found the prediction method
of Support Vector Regression to be better than the linear
regression method and the Dead Reckoning method [16].

Unfortunately, the state-of-the-art methods are tested at
airports that do not give the findings much universalizability.
These airports have exceptional facilitating taxiing condi-
tions, and their response to clearance and delays is quick.
For airports that are large in every respect, these methods
are slightly inadequate, or they do not take some necessary
factors into consideration.

3. Taxi-Out Time Prediction Techniques

There are several predictive approaches such as Artificial
Neural Networks (ANN) [17], Kalman Filtering models [18],
SoftmaxRegression (SR) [19], and the Support Vector Regres-
sion (SVR) [20]. Therefore, methods with reasonable accu-
racy are essential for estimating taxi-out time at departure.

3.1. Generalized LinearModel. TheGeneralized LinearModel
(GLM), formulated byNelder andWedderburn [21], is a flexi-
ble generalization of ordinary linear regression that allows for
response variables with error-distribution models other than
the normal distribution. GLM relates the linear model to the
response variables through a link function and by allowing
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the magnitude of the variance of each measurement to be
a function of its predicted value. The relationship between
predicted value 𝑌 and independent variable𝑋 is defined in

𝜂 = 𝑔 (𝐸 (𝑌)) = 𝑋𝑖𝛽𝑖 𝑌 ∼ 𝐹, (1)

where 𝜂 is the dependent variable, 𝑔 is the link function,𝑋𝑖 is a set of independent variables, 𝛽𝑖 represents the slope
coefficients, and 𝐹 is the distribution of 𝑌. The procedures of
GLM for predicting taxi-out time are as follows.

Step 1. Input the training dataset of historical taxi-out time
and the corresponding factors; check the distribution of 𝑌.
Step 2. Choose the link function 𝑔 according to the distribu-
tion of 𝑌.
Step 3. Build the regression model between 𝑌 and 𝑋, cal-
culate the estimated value of regression parameters 𝛽𝑖, and
implement the significance test.

Step 4. Predict the taxi-out time by using the factors in test
dataset.

3.2. Softmax Regression Model. The Softmax Regression (SR)
is a generalization of logistic regression capable of handling
multiclass problems, that is, admitting more than two possi-
ble discrete outcomes [19]. The algorithm includes a training
phase for estimating the regressors and a testing phase for
abstracting the appropriate probability of each feature vector
from which the class labels are inferred. Afterwards, the SR
selects the value of classified members by calculating the
probabilities of

ℎ𝜃 (𝑥) =
[[[[[[[

Pr (𝑦 = 1 | 𝑥; 𝜃)
Pr (𝑦 = 2 | 𝑥; 𝜃)...
Pr (𝑦 = 𝐾 | 𝑥; 𝜃)

]]]]]]]

= 1∑𝐾1 exp (𝜃(𝑗)𝑇𝑥)
[[[[[[[[

exp (𝜃(1)𝑇𝑥)
exp (𝜃(2)𝑇𝑥)...
exp (𝜃(𝐾)𝑇𝑥)

]]]]]]]]
,

(2)

and themodel parameters 𝜃were trained tominimize the cost
function:

𝐽 (𝜃)
= − 1𝑚 [[

𝑚∑
𝑖=1

𝐾∑
𝑗=1

𝐼 {𝑦(𝑖) = 𝑗} log exp (𝜃𝑇𝑗 𝑥(𝑖))∑𝐾𝑛=1 exp (𝜃𝑇𝑛 𝑥(𝑖))]] , (3)

where 𝐾 is the number of classes, 𝜃(1), 𝜃(2), . . . , 𝜃(𝐾) ∈ 𝑅𝑛 are
the parameters of SRmodel, 𝜃 is an 𝑛-by-𝐾matrix, and 𝐼{⋅} is
an indicator function. SR predicts the taxi-out time with the
following procedures.

Step 1. Input the training dataset of historical taxi-out time
and the corresponding factors; recognize the number 𝐾 of
classification of taxi-out times.

Step 2. Build the exponential distribution family by running a
set of independent binary regressions according to the factors
vectors of each taxi-out time class; obtain the maximum
likelihood function ℎ𝜃(𝑥).
Step 3. Establish andminimize the cost function to obtain the
optimal parameter 𝜃 by using gradient descent method.

Step 4. Update the likelihood function ℎ𝜃(𝑥) with optimal 𝜃,
and predict the taxi-out time of test set by using ℎ𝜃(𝑥).
3.3. Artificial Neural Network. Artificial Neural Network
(ANN) is a machine-learning method based on a large
collection of connected simple units called artificial neurons.
The Back-Propagation Neural Network (BPNN), a multilayer
feedforward network trained by error back-propagation algo-
rithm, is one of the most widely used neural networkmodels.
Its topology includes input layer, hidden layer, and output
layer. In output layer, the activation of a neuron is determined
by

net𝑖 = ∑𝑤𝑖𝑗𝑜𝑗,
𝑦𝑖 = 𝑓 (net𝑖) ,

𝑓 (net𝑖) = 11 + 𝑒−net𝑖 ,
(4)

where net𝑖 is the activation of the 𝑖th neuron, 𝑗 is the neurons
set in the preceding layer, 𝑤𝑖𝑗 is the weight of the connection
between neuron 𝑖 and 𝑗, 𝑜𝑗 is the output of neuron 𝑗, and 𝑦𝑖
is the sigmoid function. The BPNN model can learn from
the parameters set of taxi-out time and calculate the actual
output when implementing the predicting process. If the
error between the actual output and expected output did
not meet the accuracy requirements, the learning rule of the
BPNN would optimize variance by adjusting weights and
thresholds until satisfying the accuracy requirements. The
learning process of BPNN approach can be summarized in
the following steps.

Step 1. Initialize the neural network; define the minimum
MSE error (𝐸min) and maximum number of iteration.

Step 2. Input training set; initialize the weight matrixW.

Step 3. Compute the layer response output and the calculated
MSE.

Step 4. Compare the calculated MSE and 𝐸min; if calculated
MSE > 𝐸min, continue; else go to Step 6.

Step 5. Calculate change in weights and update weights; go to
Step 3.

Step 6. Finish training and predict the taxi-out time by using
ANN with test set.
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3.4. Improved Swarm Intelligence Algorithm Based
Prediction Approaches

3.4.1. Support Vector Regression. The Support Vector Regres-
sion technique is a nonlinear regression forecasting method.
The basic idea is mapping the input variables into a high-
dimensional linear feature space (Hilbert space), commonly
through a kernel function. The Gaussian Radial Basis Func-
tion (RBF) kernel 𝑘(𝑥, 𝑥) = exp(−𝛾‖𝑥 − 𝑥‖2) is a commonly
used kernel function, where 𝛾 is the parameter to be opti-
mized. In this higher dimensional space, the training data
can be approximated to a linear function. Then, the global
optimal solution is obtained by training of the finite sample.
The regression function for SVR is

𝑓 (𝑥) = ⟨𝜔 ⋅ 𝜙 (𝑥)⟩ + 𝑏, (5)

where 𝜔 is the weight vector and 𝜙(𝑥) can be replaced by
kernel function 𝑘(𝑥, 𝑥). In 𝜀-SVR, the objective of 𝑓(𝑥)
is estimating the deviations of output variables less than
or equal to 𝜀 from training data. The 𝜀-value controls the
complexity of the approximating functions where small
values tend to penalize large portion of the training data,
leading to tight approximating models, and large values tend
to free data frompenalization, leading to loose approximating
models. Therefore, the proper choice of 𝜀-value is critical
for the generalization of regression models [22]. The optimal
regression function is determined from the estimation of 𝜔
and 𝑏 by solving the following optimization problem:

minimize 12 ‖𝜔‖2 + 𝐶 𝑛∑
𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 ) ,
Subject to 𝑦𝑖 − 𝜔𝜙 (𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝜔𝜙 (𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉∗𝑖
𝜉𝑖, 𝜉∗𝑖 ≥ 0,

(6)

where 𝜉𝑖, 𝜉∗𝑖 are the variables that are introduced to penalizing
complex fitting functions and the constant 𝐶 allows for the
penalizing of the error by determining the tradeoff between
the training error and the model complexity. And the dual
function is maximizing:

𝑊(𝛼, 𝛼∗)
= −12

𝑁∑
𝑖,𝑘=1

(𝛼𝑖 − 𝛼∗𝑖 ) (𝛼𝑘 − 𝛼∗𝑘 ) (𝜙 (𝑥𝑖) ⋅ 𝜙 (𝑥𝑗))
+ 𝑁∑
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 ) 𝑦𝑖 − 𝑁∑
𝑖=1

(𝛼𝑖 + 𝛼∗𝑖 ) 𝜀.
(7)

The nonlinear regression function is

𝑓 (𝑥) = 𝑁∑
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 ) (𝜙 (𝑥𝑖) ⋅ 𝜙 (𝑥𝑗)) + 𝑏. (8)

To avoid the complex dot product through the kernel
function 𝑘(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖) ⋅ 𝜑(𝑥𝑗), the input variables are

mapped into a high-dimensional linear feature space. Thus,
(7) can be written as

𝑊(𝛼, 𝛼∗)
= −12

𝑁∑
𝑖,𝑘=1

(𝛼𝑖 − 𝛼∗𝑖 ) (𝛼𝑘 − 𝛼∗𝑘 ) 𝑘 (𝑥𝑖, 𝑥𝑗)
+ 𝑁∑
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 ) 𝑦𝑖 − 𝑁∑
𝑖=1

(𝛼𝑖 + 𝛼∗𝑖 ) 𝜀
Subject to

𝑁∑
𝑖=1

(𝛼𝑖 − 𝛼∗𝑖 ) = 0,
0 ≤ 𝛼𝑖, 𝛼∗𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑁.

(9)

3.4.2. Particle Swarm Optimization. The Particle Swarm
Optimization is a swarm intelligence algorithm developed in
recent years. It is a metaheuristic global optimizationmethod
based on a social-behaviour analogy, such as birds flocking
and fish schooling. The PSO method solves an optimiza-
tion problem by moving the particles (namely, candidate
solutions) over those particles’ velocities and positions
according to simple mathematical formulae. The position of
each particle is updated towards the better-known position
driven by its neighbours’, and the global, best performance.
Thus in searching for the optimal solution of the problem,
the update velocity and position of particle are based on the
following equation of motion:

𝑉𝑖 (𝑡 + 1) = 𝜔𝑉𝑖 (𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖 (𝑡) − 𝑝𝑖 (𝑡))
+ 𝑐2𝑟2 (𝑝𝑔𝑏𝑒𝑠𝑡 (𝑡) − 𝑝𝑖 (𝑡)) ,

𝑝𝑖 (𝑡 + 1) = 𝑝𝑖 (𝑡) + 𝑉𝑖 (𝑡) ,
(10)

where𝑉𝑖(𝑡+1) is the updated velocity for the 𝑖th particle, 𝜔 is
the inertia weight, 𝑐1 and 𝑐2 are the weighting coefficients for
the personal best and global best positions, respectively, 𝑝𝑖(𝑡)
is the 𝑖th particle’s position at time 𝑡, 𝑝𝑏𝑒𝑠𝑡𝑖 is the 𝑖th particle’s
best known position, 𝑝𝑔𝑏𝑒𝑠𝑡 is the best position known to the
swarm, and 𝑟1 and 𝑟2 are the uniformly random variables ∈[0, 1]. Variants on this update equation consider best posi-
tions within a particle’s local neighbourhood at time 𝑡.
3.4.3. Improved Firefly Algorithm Optimization. The Firefly
Algorithm (FA), as a new group bionic optimization algo-
rithm, has high efficiency in solving numerous optimization
problems and can outperform conventional algorithms, such
as GA. In this algorithm, the fireflies are attracted to each
other depending on the two elements: their own brightness
and attraction. The brightness depends on the location and
the target value, and the higher the brightness, the better the
location. Fireflies with higher brightness at the same time
have a higher degree of attraction. Low-brightness fireflies
in the field of vision are attracted by high-brightness fireflies.
Fireflies wouldmove randomly if they had similar fluorescent
brightness.
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Regarding the brightness as objective function, the opti-
mization problem can be seen as a maximization problem.
The attractiveness of the fireflies is proportional to the
fluorescence intensity of the nearby fireflies and is inversely
proportional to the distance. Define the relative fluorescence
brightness of the fireflies as 𝐼 = 𝐼0𝑒−𝛾𝑟2𝑖𝑗 and the attractiveness
as 𝛽 = 𝛽0𝑒−𝛾𝑟2𝑖𝑗 . Distance between fireflies 𝑖 and 𝑗 is 𝑟𝑖𝑗 =‖𝑥𝑖−𝑥𝑗‖. Firefly 𝑖 is attracted by firefly 𝑗 to update the location;
the location update equation is

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟2𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) + 𝛼 (rand − 0.5) , (11)

where 𝛾 is the absorption coefficient, 𝛾 ∈ [0.1, 10], 𝛽0 is
the attractiveness when 𝑟𝑖𝑗 = 0, 𝛼 is the step factor for
determining random fireflymovement, and rand is a random
number drawn from a Gaussian distribution, rand ∈ [0, 1].
Adaptive Step Factor. The value of the step factor affects the
global and local optimal detection ability of the algorithm.
In order to improve the convergence efficiency of the opti-
mization algorithm, the large step factor can benefit the global
optimal solution search efficiency. With the increasing of
number of iterations, gradually reducing the step factor is
more conducive to the algorithm in the search space for fine
tuning. Thus a monotonically decreasing function is chosen
as the step factors, which is written as𝛼 = 𝛼0𝜏𝑡, (12)
where𝛼0 is the initial attractive coefficient, 𝜏 is the controlling
parameter, empirically selected as 0.9, and 𝑡 is the number of
iterations.

Lévy Flight. The conventional FA optimization uses regular
random movement method in stochastic optimization. This
often leads to premature converging without the global
optimal solution when dealing with a large number of local
optimal solutions. In order to reduce the probability that
the optimal process falls into the local optimal solution,
this paper adopts Lévy flight when updating the distance of
fireflies. Lévy flight is a random walk that the step length
obeys Lévy distribution, which is a distribution of a sum of𝑁
identically and independently distributed random variables.
The Fourier transform is 𝐹𝑁(𝑘) = exp(−𝑁|𝑘|𝜁). The step
lengths follow Lévy distribution 𝐿(𝑠) ∼ |𝑠|−𝜁, where 1 <𝜁 ≤ 3 is an index and 𝑠 follows a power-law distribution. The
distribution has an infinite variance following

𝜎2 (𝑡) ∼
{{{{{{{{{{{{{

𝑡2 1 < 𝜁 < 2𝑡2
ln 𝑡 𝜁 = 2
𝑡3−𝜁 2 < 𝜁 < 3𝑡 𝜁 ≥ 3.

(13)

Thus by replacing the original step factor and random
walk with adaptive step factor and Lévy flight, respectively,
the new update equation of IFA is written as

𝑥𝑖 = 𝑥𝑖 + 𝛽𝑒−𝛾𝑟2𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) + 𝛼0𝜏𝑡 (rand − 0.5) ⊗ Lévy, (14)

where symbol ⊗ is entry-wise multiplication.

3.4.4. PSO/IFABased SupportVector Regression. In this study,
identifying the optimal parameters of the SVR model is an
optimization problem.Therefore, this study combined swarm
intelligence algorithm and SVR in prediction methods to
reduce prediction errors. Considering that the number of
samples of the learning data ismuch larger than that of feature
dimensions, the input variables are mapped into Hilbert
space through the RBF kernel, which is more promising,
compared with other kernels. In order to solve the problem
of predicting departure taxi-out time more accurately, the
establishment of SVRmodels requires the determining of the
penalty factor 𝐶, RBF kernel parameter 𝛾, and the 𝜀-value in
advance, by using PSO and IFA optimization, respectively,
since the inapposite 𝐶 would affect the training error and
model complexity, inapposite 𝛾 would define the nonlinear
mapping from the input space to Hilbert space and induce
overfitting or fewer learning phenomena, and the 𝜀-value
controls the complexity of the approximating functions. The
flowchart of PSO/IFA based on the SVR prediction model is
shown in Figure 1.

In Figure 1, the optimized SVR predictionmodel includes
three parts: data classification, PSO/IFA optimization, and
SVR prediction model. Historical data would be classified
as training set, validating set, and test set. The training
set is used to adjust weights and biases. The validating set
is used to evaluate the performance of the trained SVR
model. And the test set is used to confirm the predicting
accuracy.The optimization process optimizes the parameters
of the SVR and SVR models, trains and validates the models,
and then passes the feedback to the optimization process
after evaluating the fitness values to continue searching the
optimal parameters until meeting the accuracy. In short, the
SVR implements regression parts, whereas the PSO and IFA
are applied to determine the optimal SVR parameters.

The parameters of SVR predictionmodels were evaluated
with PSO and IFA, respectively, in order to get the optimum
fitness. All prediction processes were performed inMATLAB
2012a. In the parameters’ optimization with both PSO and
IFA methods, we initialized the maximum population size as
20 and the maximum number of iterations as 100, and each
particle 𝑘𝑖 is a vector that comprises the SVR parameters;
namely, 𝑘𝑖 = (𝐶𝑖, 𝛾𝑖, 𝜀𝑖). The search space of the SVR param-
eters is [10−1, 102] × [0, 102] × [10−10, 1]. The termination
criteria are fulfilled if there is no improvement in fitness
function and the maximum number of iterations is obtained.

3.5. Performance Measures. This research aims to compare
the swarm intelligence algorithm based SVR methods and
other prediction methods, to evaluate performance by using
the prediction accuracy measures in statistics as presented in
(15) to (18):

(1) Root mean square error (RMSE):

RMSE = √ 1𝑁
𝑁∑
𝑖=1

(𝑦 − 𝑦)2, (15)

where 𝑦 is the actual value, 𝑦 is predictive value, and𝑁 is the
number of data samples.
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Figure 1: Flowchart of the SVR model optimized by PSO/IFA.

(2) Mean absolute percentage error (MAPE):

MAPE = 1𝑁
𝑁∑
𝑖=1

𝑦 − 𝑦𝑦
 . (16)

(3) Squared correlation coefficient (𝑟2):
𝑟2
= (𝑁∑𝑁𝑖=1 𝑦𝑦 − ∑𝑁𝑖=1 𝑦∑𝑁𝑖=1 𝑦)2(𝑁∑𝑁𝑖=1 𝑦2 − (∑𝑁𝑖=1 𝑦)2) (𝑁∑𝑁𝑖=1 𝑦2 − (∑𝑁𝑖=1 𝑦)2) .

(17)

(4) Prediction accuracy (PA): the last set of performance
measures is the percentage of prediction accuracy within a
specific-error absolute value. This percentage indicates the
percentage of the aircraft in the dataset predicted within 2,
3, and 5 minutes, as presented in (14):

PA = # of 𝑦 − 𝑦 ≤ 𝑙𝑁 × 100%. (18)

4. Data Analysis and Observation

4.1. Data Source. Thedatasets in this study are from the Avia-
tion System Performance of PEK, the second busiest airport
in the world, with a huge traffic volume, as well as severe
delay time. PEK airport comprises three parallel runways,
with Runway 36L/18R being used for combined arrival and
departure operations, Runway 36R/18L mainly dedicated to
departures, and Runway 01/19 used only for arrivals, with all
three runways serving both departures and arrivals at traffic
rush hour (Civil Aviation Administration of China, 2013)
[23].

The days from Oct. 17 to Oct. 30 were used for training,
and the days betweenNov. 13 andNov. 15were used for testing
the prediction. ASP data record the following information:
schedule take-off time and schedule landing time, applied
pushback time, actual take-off time, and actual landing time
of arrival flights. Using the historical data is important to
ensure that the results are realistic, and can be compared with
the status quo at a specific airport simultaneously, in order to
estimate the potential situation at other similar airports.

4.2. Data Analysis. In recent years, researchers have found
that departure taxi-out time is related to numerous factors,
including the number of departing aircraft in the runway
queue, the number of arriving aircraft taxiing, the time of day
[2, 13], airlines, and taxiing route distance [14, 15]. Departure
delay is also a significant factor in some specific airports
such as PEK. These elements complicate the development
of a methodology for predicting departure taxi-out time. In
this research, the various prediction models were used for
predicting the taxi-out time of each flight. In order to train the
state of flights, several factors were taken into consideration.
The state variable set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} for the
prediction was determined by analysing the performance
data. The configuration of three parallel runways at PEK
airport reduces influence among the different runways. For
a specific flight waiting for departure, the current departure
queue length on taxiway (𝑥1), the potential number of
landing aircraft during taxi-out course (𝑥2), and the distance
of taxi-out route from each gate to runway (𝑥3) are the
significant factors affecting taxi-out time. The recorded data
include considerable delay information due to a great deal
of traffic flow. Especially at PEK airport, the second busiest
airport of the world, numerous traffic flows induce enormous
delays. Delay violates the fluency of the departure and arrival
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processes and influences taxi-out time. Therefore, delay (𝑥4)
has become a very important indicator. However, available
delay is determined as the mean delay time at a previous
hour-bracket, because real-time delay could not be got before
flights’ take-off. In addition, taxi-out time changes over
the schedule. Thus, the plan take-off time (𝑥5) and actual
pushback time (𝑥6) are also included as pertinent factors.

For the lack of certain variability details in our dataset,
some potential explanations are not listed. The different
taxiing behaviours of airlines and pilots cannot be explained
from the character of data. The taxi-out time of raw PEK
performance data is recorded asminutes rather than seconds,
while the models we used, except the SRmodel, have a search
precision of 10−4.

4.3. Observations

4.3.1. Dynamics of Training Days. To cultivate an under-
standing of the dynamics of PEK airport, a discussion of
the actually observed departure behaviour at the airport is
presented first. Table 1 shows the statistical values for each
variable obtained from the training data. The response is
taxi-out time, and the variables of the predictors are other
attributes. Hereinto, the actual pushback time actual means
the “Time Point” rather than the “Time Period”; thus the plan
take-off time and the actual pushback time are transferred
into a minute format of a day (e.g., a whole day has 1,440
minutes; the 0:00 records as 0 and the 6:01 records as 361).
To avoid numerical difficulties and abnormal errors, some
absurd data points, such as a very extended delay time,
have been eliminated from datasets, and all data samples are
normalized within a range of 0 to 1 for modelling.

Figure 2 shows the observed dynamics on a training day at
PEK airport. It includes actual average taxi-out time per quar-
ter (15min) (Figure 2(a)), departure demandper quarter (Fig-
ure 2(b)), and arrival demand per quarter (Figure 2(b)). The
average taxi-out time and departure demand have two peak-
hour durations: at 7:00 AM–9:00 AM and 4:00 PM–6:00
PM, respectively. The peak-hour duration of the arrival
process happens from about 4:00 PM to 7:00 PM. These two
overlapping durations contribute the longer taxi-out time.

Figure 3 describes the scatterplot of a training dataset,
showing the linear fit between taxi-out time and delay. In
general, the delay has a positive impact on taxi-out time, and𝑟2 is 0.5374. This is the reason for the delay being one of the
factors in busy airport.

4.3.2. Dynamics of Testing Days. The testing days are from
Nov. 13 to Nov. 15 in 2013. A set of details performance is
shown in Table 2.

Table 2 displays the details of testing days that include two
normal days (13th and 14th) and a day with excessive delay
(15th). In order to validate the different gap between normal
and abnormal days, a nonparametrical statistical test, named
Wilcoxon-Mann-Whitney test, is implemented. Two null
hypotheses of “the taxi-out time distribution is same between
two days” on the 13th-14th and 13th-15th, respectively, are
tested. 𝑝 value of the 13th-14th is 0.081 > 0.05 and the null
hypothesis can be accepted, while 𝑝 value of the 13th-15th is
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Figure 2: Observed dynamic at PEK airport. (a) Average taxi-out
time per quarter; (b) departure and arrival demand.
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Figure 3: Scatterplot and linear fit between taxi-out time and delay.

10−5 < 0.05 and the null hypothesis is rejected. The test set
and results of statistical test can be seen in Appendix 1. Thus
we can safely conclude that it is statistically different between
normal and abnormal days.

5. Numerical Results

Through prediction of test data, performances of each pre-
dictive method could be compared. For PSO-SVR, global
optimal parameters (𝐶, 𝛾, 𝜀) in this research are (16.885, 1.401,
0.028) and (36.221, 0.917, 0.020) for IFA-SVR. A visualized
comparison is made between the mean actual taxi-out time
per quarter and the mean predicted taxi-out time per quarter
(i.e., on the predicted days). The illumination below just
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Table 1: Statistical parameters of training data for each predictive model.

Parameter Variable Min Mean Median Max
# of departure queue Input 1 5.35 3 22
# of landing Input 0 6.27 4 27
Distance of taxi-out route (m) Input 551.18 2,873.63 2,883.10 5,029.14
Delay (min) Input 0 21.27 19 60
Plan take-off time () Input 365 811.84 810 1,320
Actual pushback time () Input 361 815.79 803 1,320
Taxi-out time (min) Output 3 15.28 13 57

Actual taxi-out time
GLM predicted taxi-out time
SR predicted taxi-out time
ANN predicted taxi-out time
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Figure 4: Plot of actual taxi-out time versus predicted taxi-out time. (a) GLM, SR, and ANN predicted taxi-out time to actual taxi-out time;
(b) PSO-SVR and IFA-SVR predicted taxi-out time to actual taxi-out time.

Table 2: Actual statistic performance of testing data.

Actual performance Date (Nov. 2013)
13th 14th 15th

Mean taxi-out time (min) 15.40 14.01 19.01
Median taxi-out time (min) 14 13 17
Std. dev. taxi-out time (min) 8.32 6.37 9.36
Mean delay (min) 20.58 20.08 27.41

shows the actual and predicted taxi-out time curves on the
14th, which was shown in Figure 4.

We can intuitively see in Figure 4 that PSO and IFA
based SVR models have higher compatibility than other
approaches, especially GLM and SR, which are obviously
underfitting and sometimes wrong-fitting, whereas the ANN
method also has a very good fit effect.

Table 3 shows the first three performance measures for
predicted datasets, and bold numbers highlight the best
performance measures (closest to actual values) for each
predictive method across three testing days. The introduced
IFA-SVR outperforms other approaches in terms of mean
taxi-out time and standard deviance, while IFA-SVR is
superior on median taxi-out time. These results are closer
to the actual performance of testing data. As data on the
15th presents very long taxi-out time on the whole, all mean

predicted taxi-out times are less than actual values. The
output results of SR are integers, since SR is based on the
integral classification of training taxi-out time, which can be
seen from the form of median taxi-out time. However, the
standard deviance of predicted taxi-out times of GLR reveals
the worst distinct sensitivity with different parameters, and
this also can be observed from the underfitting phenomenon
in Figure 4. Compared with the results in [2] at Tampa
International Airport, these swarm intelligence algorithm
based prediction methods show better fault-tolerance ability
for handling mean taxi-out time predictions, especially in
excessive traffic or abnormal patterns.

The comparison results of modelling performance for
each predictive method can be found in Table 4 and the
best performance is also highlighted with bold numbers.
Table 4 shows that the highlighted performance measures
of IFA-SVR are slightly better than the results of PSO-SVR
and significantly outperform other approaches. Both the
newly introduced PSO-SVR and IFA-SVR have the squared
correlation coefficient 𝑟2 exceeding 90% on both the 13th
and 14th, while they drop on the 15th for the large numbers
of underestimated taxi-out times on the 15th, which will be
shown in Figure 5. Figure 5 indicates a comparison of taxi-out
time prediction accuracy for each predictor on the 14th and
15th, respectively, of which the 𝑥-axis represents the aircraft,
sorted from underestimated to overestimated taxi-out times,
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Table 3: A comparison of performance measures for each predictive method at PEK airport.

Performance measure Date GLR SR ANN PSO-SVR IFA-SVR

Mean predicted taxi-out time (min)
13th 16.59 14.83 15.21 15.76 15.17
14th 13.37 13.94 13.49 14.31 14.16
15th 18.57 17.80 18.41 18.16 18.11

Median predicted taxi-out time (min)
13th 13.49 14.00 12.96 14.06 13.38
14th 13.73 12.00 13.00 13.29 13.29
15th 18.47 17.00 16.13 17.56 17.52

Std. dev. predicted taxi-out time (min)
13th 1.91 6.73 7.41 8.05 8.2
14th 1.72 4.82 5.59 6.09 6.29
15th 4.78 8.32 8.51 9.07 9.12

Table 4: A comparison of modelling performance for each predictive method at PEK airport.

Performance measure Date GLR SR ANN PSO-SVR IFA-SVR

RMSE (min)
13th 5.90 4.90 3.47 2.59 2.29
14th 6.14 6.00 2.51 2.3 2.25
15th 8.35 8.19 4.20 3.46 3.4

MAPE (%)
13th 29.98 28.25 20.11 17.88 14.69
14th 47 34.53 17.76 15.09 14.56
15th 53.10 46.23 18.32 13.6 13.2

𝑟2 (%)
13th 46.66 58.42 87.66 91.94 92.34
14th 37.72 53.01 84.49 90.26 91.58
15th 27.40 50.93 82.70 85.54 86.84

Table 5: A comparison of prediction accuracy for individual flights at PEK airport.

Accuracy of prediction Date GLR SR ANN PSO-SVR IFA-SVR

% of flights with RMSE within 2min
13th 40.22 40.43 46.23 77.96 79.39
14th 23.31 30.28 67.49 77.21 78.67
15th 13.12 33.55 54.30 70.4 72.65

% of flights with RMSE within 3min
13th 53.98 51.40 66.19 82.26 84.52
14th 35.51 45.32 79.71 83.71 85.21
15th 20.00 45.16 72.47 79.02 79.63

% of flights with RMSE within 5min
13th 76.77 79.35 86.97 93.48 95.52
14th 69.91 72.54 92.00 95.63 95.42
15th 42.27 53.55 89.48 94.09 94.5

and the 𝑦-axis is the error between predicted and actual-
predicted taxi-out time, namely, predicted taxi-out time –
actual taxi-out time.

The vertical dash line divides the sorted aircraft into (i)
underestimated taxi-out time region and (ii) overestimated
taxi-out time region. The distance between the dots on
each line and the 0-baseline represents the absolute error
of predicted taxi-out time for each aircraft. The number of
underestimated taxi-out times in Figure 5(a) is almost in
balance with the number of overestimated taxi-out time,
while being larger than it is in Figure 5(b). We can also find
the notable predictive ability of newly introduced predictors
for excessive traffic or abnormal patterns from Figure 5(b). In
addition, the reason for all performancemeasures on the 13th
and 14th of PSO-SVR and IFA-SVR being better than that on

the 15th (except MAPE) is in that the actual mean taxi-out
time on the 15th is greater than on other days.

Table 5 shows the performance measures of prediction
accuracy within 2, 3, and 5min by measuring absolute error.
IFA-SVR still comes out on top among the testing methods.
In terms of accuracy within 2 and 5minutes, the performance
of IFA-SVR is inferior to capability in [15] (79.39% to 86.81%
and 95.52% to 99.08%) for Stockholm Arlanda Airport. That
is caused by the different traffic condition samples between
different airports. Notice that the accuracymeasures in [15] of
linear regression are 85.3% and 99.16%, respectively, while the
best performance of TSK model improves the rates by 1.78%
and−0.08%, respectively. In this research, the performance of
IFA-SVR improves the rates of GLR by 97.49% and 24.42%,
respectively.
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Figure 5: Taxi-out time prediction accuracy at PEK airport. (a) Taxi-out time prediction accuracy on the 14th; (b) taxi-out time prediction
accuracy on the 15th.

6. Conclusions

When the objective is to improve on-time performance,
enhance the utilization of handling-personnel and other
resources, and reduce delay, congestion, and emissions, an
improved taxi-out time prediction method is significant
when it can contribute to each decision-support system at
departure operations. This paper collected several classical
regression and machine-learning methods (including gen-
eralized linear regression, Softmax Regression, and Artifi-
cial Neural Network) and proposed two improved swarm
intelligence algorithm based SVR prediction approaches to
test predictive ability. Several potentially significant factors
were observed and analysed in the historical data of PEK
airport. And queue length, potential landing number, and
the distance of taxiing route were identified and were shown
to be significant, as was delay time in the previous hour,
which was also important in some specific airports and taken
into consideration there. Compared with the traditional
predicting methods, the proposed two approaches, especially
IFA-SVRmethod, achieved accuracy rate up to 95.52%within
5 minutes and showed a tremendous improvement on pre-
dictive accuracy. Moreover, the proposed approaches showed
commendable ability in dealingwith deviant situations.These
results could motivate managers to arrange tighter flight
schedules and pushback slots.

Although the proposed predictivemethods seem to accu-
rately predict taxi-out time, they have to be improved for the
combined statistical factors because of the lost information
about take-off direction for a whole day and about the
different taxiing speeds of aircraft type. Future work will
focus upon considering the different taxiing speeds of aircraft
types and upon collecting precise taxi-out routes to improve

prediction accuracy. In addition, study of other hub airports
is also an ongoing research interest.
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