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An Energy-efficient Digital ReRAM-crossbar
based CNN with Bitwise Parallelism

Leibin Ni, Student Member, IEEE, Zichuan Liu, Hao Yu, Senior Member, IEEE, and Rajiv V. Joshi

Abstract—There is great attention to develop hardware ac-
celerator with better energy efficiency as well as throughput
than GPUs for convolutional neural network (CNN). The existing
solutions have relatively limited parallelism as well as large power
consumption (including leakage power). In this paper, we present
a ReRAM-accelerated CNN that can achieve significantly higher
throughput and energy efficiency when the CNN is trained with
binary constraints on both weights and activations, and is further
mapped on a digital ReRAM-crossbar. We propose an optimized
accelerator architecture tailored for bitwise convolution that fea-
tures massive parallelism with high energy efficiency. Numerical
experiment results show that the binary CNN accelerator on
a digital ReRAM-crossbar achieves a peak throughput of 792
GOPS (Giga operations per second) at the power consumption
of 4.5 mW, which is 1.61 times faster and 296 times more energy-
efficient than a high-end GPU.

Index Terms—Approximate computing, Neural network hard-
ware, Nonvolatile memory, Resistive RAM, Supervised learning

I. INTRODUCTION

Convolutional neural network (CNN) has become a promis-
ing machine learning engine for image-oriented data analytics
[1]. A GPU-based CNN accelerator is currently dominant in
use. It can achieve high throughput in convolution but with
high power consumption [1]. On the other hand, a FPGA-
based CNN accelerator has also been investigated due to its
energy efficiency benefits [2] but it has quite limited low paral-
lelism with the need of reduced numeric precision. Moreover,
for image-data oriented computing, a large amount of data
needs to be hold in memory with significant leakage power
consumption. As such, it really requires a re-examination of
both of the CNN algorithm as well the underlying hardware
platform towards high energy efficiency as well as high
throughput in convolution.

The recent advancement in binary-constrained deep learning
[3] has introduced new insight for a more efficient hardware
acceleration of the CNN. The work in [3] demonstrates the
successful use of binarized weights in CNN with training
under the binary constraints. As such, highly parallel bitwise
operation can be realized in hardware with great potential to
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out-performed GPUs. However, there is little work exploring
on the hardware accelerator architecture for binary convolu-
tional neural networks. It is noticed that the main computation
here involves intensive bitwise operations such as convolution,
batch normalization, pooling and activation functions. More-
over, the traditional CPU/GPU-based acceleration is out of
memory with arithmetic cores that have poor bandwidth and
energy efficiency, not to mention the standby power.

The recent emerging non-volatile memory (NVM) technolo-
gies have shown significantly reduced standby power and in-
creased integration density, as well as close-to DRAM/SRAM
access speed. In addition, studies in [4], [5], [6] have shown
the logic implementation based on NVM devices. The resistive
random access memory (ReRAM) devices [7] have shown a
great potential for an energy-efficient acceleration, especially
for a natural mapping of multiplier on crossbar. It can be
employed as both storage and computation element with
minimized leakage power due to its non-volatility [8]. The
traditional CPU/GPU-based acceleration is out of memory
with arithmetic cores that have poor bandwidth to access
memory, low efficiency to process data, not to mention the
huge standby power of memory. A digital ReRAM-crossbar
[9] can further support the binary matrix-vector multiplica-
tion even under strong non-uniformity with process variation
when compared to the analog ReRAM-crossbar computing
with additional ADCs [10], [11], [12]. The digital ReRAM-
crossbar implementation is also shown in [13] for single
layer feed forward network, which still has limitation on
large datasets such as CIFAR-10 [14]. Compared to the work
in [15], this paper evaluates the system on a larger-scale
benchmark CIFAR-10 instead of MNIST [16], and performs
more energy-efficiency analysis. Moreover, previous works
[9], [10], [12] only show the realization of the DOT (matrix-
vector-multiplication) operation used in convolution with only
exploration on MNIST benchmark. There is no study on
how to realize a bitwise matrix-vector multiplication, batch
normalization, pooling function, and activation function all on
the ReRAM-crossbar devices.

In this paper, based on the digital ReRAM-crossbar, we
have developed a bitwise convolutional neural network based
image-data processing using CIFAR-10 benchmark. We show
that the digital ReRAM-crossbar can be used for a bitwise
convolution, batch normalization, pooling function and acti-
vation function, all in ReRAM-crossbar devices. Moreover,
the intermediate results between steps are not required to be
written back to the memory with little standby power. The
inference accuracy is observed high under the ReRAM device
variation as well as the binary constrained results.
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Fig. 1: Computation flow comparison between (a) conventional
CNN; and (b) bitwise-parallelized CNN.

The rest of this paper is organized as follows. The bitwise
CNN (BCNN) operations are compared with conventional
CNN in Section II. The in-memory ReRAM accelerator
architecture and digital ReRAM-crossbar background is in-
troduced in Section III. The mapping between BNN and
digital ReRAM-crossbar is discussed in Section IV. Numerical
experiment results are presented in Section V with conclusion
drawn in Section VI

II. CNN WITH BITWISE PARALLELISM

The recent work in [3] suggests a CNN using binary
constraints during training. In this section, we will discuss
how to generate a CNN model with bitwise parallelism for
convolution, batch normalization, pooling function and activa-
tion function.

A. Bitwise Convolution

The convolution is the most time-consuming and
computation-intensive operation in CNN. The binary
convolution in [3] uses {—1,+1} for both input features and
weights, so that the floating-point matrix-vector-multiplication
operation is not required. However, the negative binary weights
cannot be directly realized on hardware. To avoid the negative
weights, recent work [17] uses bitwise XNOR and bit-count
operation in {0, 1} for hardware implementation. The bitwise
CNN (BCNN) can be represented as follows:
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where w? € {0, 1}wrXnxDi—1xDr jg the binary weight in k-
th block, a? | € {0,1}Wr-1xHi-1xDr—1 5 the binary input
feature map and also the output of the binary convolution,
and ® is defined as bitwise XNOR operation. Comparing to
a real-valued CNN in the single-precision data format, since
the elements of weights and feature maps can be stored in
1-bit, both of the logic and memory resources required for
binary convolutional (BinConv) layer can be greatly reduced.
Meanwhile, it can lead to a higher parallelism as well as
greater energy-efficiency improvement.

B. Bitwise Batch Normalization

Next, batch normalization is required to stabilize and accel-
erate the training process. In the inference stage, the normal-
ization is retained to match training process. The output of the
normalization can be represented by
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where € RWexHexDi and g2 ¢ RWrxHexDk gre the
expectation and variance over the mini-batch, while v € R
and 3 € RWkxHrXDk are learnable parameters [18] that scale
and shift the normalized value. In the inference stage, u, o2,
~v and [ are all fixed to normalize the convolution output.

C. Bitwise Pooling and Activation Functions

The pooling layer performs a down-sampling across a
M x M contiguous region on the feature map output by
normalization layer. Pooling is used for selecting the most
significant information from the features. It also provides
translation invariance and reduces the computation intensity.
Two kinds of pooling schemes are commonly used in CNN.
One is the max-pooling, which takes the maximum value of
the pooling region. The other is average-pooling, which takes
the mean value of the pooling region. In this paper, the binary
max-pooling is applied with the following equation:

ar(i,j) = Maz{ay(Mi+k,Mj+1)}, (k1€ (0,M)), 3)

where aj and a) are the features before and after pooling,
respectively. The activation function to process the output
of max-pooling is called binarization (Binrz), which can be
represented as
b s 0’ a;c(’L,])SO
ai. (1.J) = {1, otherwise @
To summarize pooling and binarization, we can observe that
these two steps are to find out the sign of the maximum number
in the pooling region. As such, we can do the binarization for
all the numbers in the pooling region first, and then find the
maximum among them. Since the results from binarization
become only 0 or 1, the pooling process only needs to detect
if there is any 1 in the region. An example with the exchange
of pooling and binarization for a 2 x 2 region is shown below:
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Here, the 2 x 2 real-value matrix denotes the output of batch
normalization. The first path in (5) is doing binarization first,
then max-pooling, while the second path is doing it conversely.
It is clear that exchanging the max-pooling and binarization
will not affect the final output in the inference stage.

D. Bitwise CNN Model Overview

The overall working flow of a bitwise-parallelized CNN
model is shown in Figure 1(b). Each BinConv layer takes
the binary feature map generated from the previous layer
as input and conducts a bitwise convolution between binary
feature maps and binary filter weights. The convolution output
is further processed by the normalization layer before down-
sampling by a the max-pooling layer. The down-sampled fea-
ture maps are subsequently fed into Binrz layer that produces
binary non-linear activations according to the input sign.

The key difference between the developed bitwise CNN
and the direct-truncated CNN using less precision bit [19] is
illustrated as follows. The direct-truncated CNN is obtained by
reducing the numerical precision in post-training phase while
the bitwise CNN developed here is obtained by training with
binary constraints [3]. As such, the direct-truncated CNN that
suffers from accuracy loss in general, but the bitwise CNN
retains most of the accuracy with lowest precision. In the
inference stage, only the binarized weights w? will be retained
for much smaller storage, faster inference, higher parallelism
as well as higher energy-efficiency. The BNN algorithm is
detailed in supplementary file.

III. DIGITAL RERAM FOR IN-MEMORY COMPUTING

In this section, basics of ReRAM device and digital
ReRAM-crossbar are reviewed to support an in-memory com-
puting architecture, which will be used to map the bitwise
CNN discussed in Section II.

A. ReRAM Device

The emerging resistive random access memory (ReRAM)
[20], [21] is a two-terminal device for memory storage with 2
non-volatile states: high resistance state (HRS) R,r¢ and low
resistance state (LRS) R,,. Besides working as memory stor-
age, a ReRAM-crossbar can be applied to perform logic opera-
tions. In one ReRAM-crossbar, given the input probing voltage
Vw, on each write-line (WL), the current /g, on each bit-
line (BL) becomes the natural multiplication-accumulation of
current through each ReRAM device. Therefore, the ReRAM-
crossbar array can intrinsically perform the analog matrix-
vector-multiplication [12] by
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where c¢; ; is configurable conductance of the ReRAM resis-
tance R; ;, which can represent real number of weights. Com-
pared to the traditional CMOS implementation, the ReRAM-
crossbar achieves higher level of parallelism and consumes
less power, including standby power.
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Fig. 2: Digital ReRAM-crossbar with 1-bit voltage comparator
configured with ladder-like threshold voltage.

B. Digital ReRAM-crossbar

Previous mapping of CNN are mainly based on the tradi-
tional analog ReRAM-crossbar [10], [12]. The main limitation
is that there exists a huge non-uniform analog resistance for
undetermined states in the analog computation, which can
result in convolution error [22]. In addition, a large overhead
is required in ADC conversions.

As shown in Figure 2, the recent work in [9] introduces a
digital ReRAM-crossbar for roust digital matrix-vector mul-
tiplication. In the digital ReRAM-crossbar, only 0 or V, is
applied on the input world-line (WL), and only RHS or LRS
is configured for each ReRAM device. To overcome the sneak-
path problem, half voltage operating scheme [23] is applied.
For the output bit-line (BL), a sense amplifier (SA) is applied
to identify whether the output is O or 1. Note that the key
difference here is the threshold V;; of SA in each BL can be
configured in a ladder-like voltages. As such, the sensed analog
output can be encoded in binary to produce the multiplied
result [9]. Such a binary matrix-vector multiplication can still
be used in applications such as [24].

Compared to the traditional analog ReRAM-crossbar [10],
[12], the digital ReRAM-crossbar has advantages in the fol-
lowing perspectives:

« It has better programming accuracy of the ReRAM device
under process variation with no additional ADC conver-
sation as well.

e Since only LRS and HRS are configured in digital
ReRAM-crossbar, it does not require high HRS/LRS ratio
so that low-power (high LRS) device [21] can be applied.
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Fig. 3: In-memory computing architecture based on digital
ReRAM-crossbar.




In addition, the wire resistance affects little on IR-drop
when using the low-power ReRAM device.

o The binary input voltage has a better robustness on the
IR-drop in large-size crossbar.

Moreover, there is no work exploring on how to map all the
CNN operations such as normalization, pooling and activation
functions on the ReRAM devices. This paper will show details
in Section IV on how to map all bitwise CNN operations on
the digital ReRAM devices.

C. In-memory Computing Architecture

Based on the digital ReRAM-crossbar, one can develop
an in-memory computing architecture with both memory and
logic implemented by the ReRAM-crossbar as shown in Fig-
ure 3. In this architecture, data-logic pairs are located in a
distributed fashion, where data transmission among data block,
logic block and external scheduler are maintained by a control
bus. As such, logic block can read data locally and write back
to the same data block after the logic computation is done
[9]. As a result, the huge I/O communication load between
memory and general processor can be relieved because most
of the data transmission is done inside data-logic pairs. Based
on this in-memory computing architecture using the digital
ReRAM-crossbar, we will introduce the main contribution of
this paper in next section: how to map all of the bitwise CNN
operations?

IV. BITWISE CNN ON DIGITAL RERAM-CROSSBAR

In this section, we will focus on the mapping of all the
bitwise CNN operations on the digital ReRAM-crossbar such
as convolution, batch normalization, pooling and activation
functions.

A. Mapping Bitwise Convolution

According to (1), the bitwise convolution can be split
into several XNOR and bit-count results of two vectors. To
implement (1), we can use two AND operations for a’
and wz as well as their complements. Therefore, the bitwise
convolution on ReRAM-crossbar can be shown as follows:

N

N
b oo b b b e
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The mapping of the bitwise convolution is shown in Figure
4(a). It requires a 2N x N ReRAM-crossbar, where N is the
number of element in the vector. All columns are configured
with the same elements that correspond to one column in
binary weight w,’; of the neural network, and the WL voltages
are determined by the binary input az_l. Due to the large
ratio between R,¢s and R,,, the current through the BL is
approximately equal to %;}RS, where s, is the inner-product
result in (1). Since the current of all BLs is identical, the

ladder-like threshold voltages V;j, ; are set as follows:

(25 + 1)V,. Ry

Vth,j = 2R

) ®)

TABLE I: Binary format stored in ReRAM-crossbar

BinConv Bat'ch . Floating binary format
output normalization
0 -0.5 10111111000000000000000000000000
1 -0.3 10111110100110011001100110011010
7 0.9 00111111011001100110011001100110

where Vy, ; is the threshold voltage for the ji, column. If
we use s’ to denote the output array, and s'(;) to denote the
output of column j in ReRAM-crossbar, we can have

. 17 j< Sk
sk(7) = {O P> ©)

In this case, the inner-product results s, can be recognized
that the first (N — s;) output bits are 0 and the rest s bits
are 1. The relation between s, and s; can be expressed as
st = g(sk)-

As described in (1), each binary weight vector wy, performs
bitwise convolution with several input features. As a result,
each logic block in Figure 3 stores a binary vector wy, while
the control bus transmits the input feature sequentially. In
this case, bitwise convolution can be performed in parallel
in separated logic blocks.

B. Mapping Bitwise Batch Normalization

Bitwise batch normalization requires two digital ReRAM-
crossbars in the implementation. In the first ReRAM-crossbar,
it performs the XOR operation on adjacent bits of the output
of bitwise convolution. It can be expressed as

1, .7 = Sk
sp(j) =
H) {o, j # s
After that, the second ReRAM-crossbar builds a look-up-

table (LUT). Since p, 02, v and f3 are all fixed in the inference
stage, (2) can be rewritten as

ak = f(sk), (1)

where f(-) represents the LUT. As a result, the LUT is stored
in the second ReRAM-crossbar according to the parameters
1L o2, ~ and B. As described in (10), only the sg-th row of
the LUT is selected, so the batch normalization result can be
directly readout. The threshold voltage of both two ReRAM-
crossbars are

(10)

12)

To have a better illustration, Figure 4(b) shows the detailed
mapping and Table I shows the values to store in the second
ReRAM-crossbar when = 2.5, 02 =5, y=1and 3 =0
referred to the IEEE-754 standard.

C. Mapping Bitwise Pooling and Binarization

According to (5), we will do the binarization first and then
perform max-pooling. The bitwise activation in (4) can be
achieved by selecting the sign-bit of the binary format output
of Figure 4(b). In max-pooling, the output is 0 only when
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Fig. 4: Digital ReRAM-crossbar mapping for (a) bitwise convolution, (b) bitwise batch normalization, (c) bitwise max-pooling.

all the numbers in the pooling region are negative. As a
result, we can add all the complementary of sign-bit in the
pooling region. If the result is not 0, it indicates that at least
one positive number is in the pooling region, resulting in the
pooling result 1. In summary, the max-pooling in (3) can be
re-written as

0L ) = 1,ifz Sign{ar(Mi+k,Mj+1)} >0
0, otherwise

(13)

As a result, both of the bitwise max-pooling and binarization
can be implemented by the addition operation performed on
the digital ReRAM-crossbar with 1 column, as shown in
Figure 4(c).

D. Summary of Mapping Bitwise CNN

As a summary, the four operations of the bitwise CNN in
Figure 1(b) can be fully mapped onto the digital ReRAM-
crossbar. All the threshold voltages are fixed even if the
parameters of bitwise CNN are changed. Although these op-
erations are implemented in different ReRAM-crossbar array,
the input/output formats of them are compatible so that one
can directly connect them as shown in the logic block in Figure
3 with pipeline used. The pipeline design is based on Table
II, so that each stage implements a layer. CONV-2, CONV-4
and CONV-6 are the stages which require the most ReRAM
cells and computation time. As a result, more logic blocks
are assigned to these steps to relieve the critical path. In our
simulation, half of the digital ReRAM crossbars are used to
perform these three layers. Moreover, since the output feature
from Figure 4(c) is binary, the area overhead and energy
consumption of the data storage can be significantly reduced.
In addition, because layers in Table II are implemented in
different data-logic pairs, the volume of data transmitted is
also decreased.

V. NUMERICAL RESULT
A. Simulation Settings

1) Baselines: In the simulation, we have implemented
different baselines for comparison using both MNIST and

CIFAR-10 benchmarks.
below:

CPU: The BNN simulation is run in Matconvnet [25] on a
computer server with 3.46GHz core and 64.0GB RAM. The
BNN network is referred to Table II.

Our design of Digital-ReRAM: The ReRAM device model
for BNN is based on [21], [26], [27] with the resistance of
ReRAM set as 0.5M and 5M as on-state and off-state respec-
tively with working frequency of 200MHz. Sense amplifier is
based on the design of [28]. The BNN network is also referred
to Table II.

Others: GPU-based [3] Bitwise CNN implementations
and FPGA-based [2], CMOS-ASIC based [29] and Analog-
ReRAM based [12] conventional CNN implementations are
selected for performance comparisons as well.

2) Network: The overall network architecture of the bitwise
CNN (called BNN) is shown in Table II. It has six binary con-
volutional layers (BinConv), three max-pooling layers (MP)
and three fully-connected layers (FC). It takes a 32 x 32 RGB
image as the input of the first layer. We use 128 sets of binary
filters, and each set contains 3 binary filters to process the
data from R, G, B channels, receptively. The width and height
of each BinConv layer is fixed to 3 x 3 with stride of 1 and
zero padding of 1. The BinConv layer performs the bitwise
convolution between input feature maps and weights followed
by the bitwise batch normalization and the binary activation.

The detail of each baseline is listed

TABLE II: Bitwise CNN configuration of CIFAR-10 dataset

Name Filter/weight Output Size
CONV-1 3 X 3x3x128 128 x 32 x 32
CONV-2 3 x3x 128 x 128 128 x 32 x 32

MP-2 2 x 2 128 x 16 x 16
CONV-3 3 x3x 128 x256 256 x 16 x 16
CONV-4 3 x 3 x256 X256 256 x 16 x 16

MP-4 2x2 256 x 8 X 8
CONV-5 3 x 3 x 256 x 512 512 x 8 X 8
CONV-6 3 x 3 x 512 x 512 512 x 8 X 8

MP-6 2x2 512 x 4 x4

FC-1 8192 x 1024 1024

FC-2 1024 x 1024 1024

FC-3 1024 x 10 10
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Fig. 5: (a) ReRAM configuration with voltage amplitude variation following Gaussian distribution (b) accuracy comparison
with analog ReRAM under device variation (c) accuracy comparison with truncated CNN with approximation.

Note that the computation for FC layers can be treated as a
convolution with stride of 0 and zero padding of 0. Thus, we
refer the matrix multiplication in FC layers to convolution as
well. As shown in Table II, two cascaded convolutional layers
form a convolutional block with equivalent 5 X 5 convolution
window. This configuration provides more powerful represen-
tation capacity with less amount of weights compared with
the direct 5 X 5 implementation. Meanwhile, binary batch-
normalization is applied after the convolution to accelerate
and stabilize the training. We adopt the binary activation to
each BinConv layer and FC layer with the exception for
the last FC layer. The output of the last FC layer is fed
into the softmax layer [30] without binarization to generate
a probabilistic distribution of 10 classes.

B. Accuracy Comparison

We first show accuracy comparison between the analog-
ReRAM and the digital-ReRAM under device variation. We
then show accuracy comparison between the conventional
CNN with direct-truncated prevision and the proposed bitwise
CNN. Various benchmarks such as CIFAR-10 [14] and MNIST
[16] are used here.

1) Error under Device Variation: In the previous discus-
sion, the digital ReRAM-crossbar has better programming
accuracy than the analog ReRAM-crossbar. Figure 5(a) shows
a 200-time Monte-Carlo simulation of a single ReRAM device
programing process with different write voltage V,,, where the
voltage amplitude is under Gaussian distribution on the(30 =
3%V.), and each column denotes a region of 5k€. It is clear
that the digital ReRAM-crossbar (only 500k€2 and 5M€Q)
can achieve a better uniformity than the analog ReRAM-
crossbar. The accuracy comparison against device variation
on ReRAM is shown in Figure 5(b). Monte-Carlo is applied
in the generation of device variation. In CIFAR-10, one can

TABLE III: Bitwise CNN configuration of MNIST dataset

Name Filter/weight Output Size
CONV-1 5xH5x1x20 20 x 28 x 28
MP-1 2X2 20 x 14 x 14
CONV-2 5x5x20x50 50x 14 x 14
MP-2 2 %2 50X 7T X7
FC-1 2450 x 500 500
FC-2 500 x 10 10

observe that when the device variation (ReRAM resistance
value) is more than 8%, there is a large output current error
reported. For example, when the device variation reaches 29%,
the digital ReRAM can have an accuracy of 87.4% with
only 4% decreased compared to no variations, better than the
analog one with an accuracy of 84.8% with 7.6% decreased.
In MNIST, the digital ReRAM is always better even when the
device variation is larger than 27%.

2) Error under Approximation: For a precision-bit direct-
truncated CNN, we use the conventional approach to train
the full-precision (32-bit) CNN first, and then decrease the
precision of all the weights in the network. The numerical
experiment results of weights with different bit width is
shown in Figure 5(c). Here the weights in the bitwise CNN
is 1 bit, whose accuracy of is not changed. In CIFAR-10,
although the accuracy of the full precision (32-bit) can reach
92.4% in the direct-truncated CNN, the bit-width influences
the accuracy a lot especially when the bit-width is smaller
than 10. For example, when the precision decreases to 6-bit,
the accuracy drops down to only about 11.8%. In MNIST,
the accuracy of the direct-truncated CNN drops significantly
when the bit-width is smaller than 6-bit. The results show that
the proposed bitwise CNN can perform much better than the
direct-truncated CNN.

C. Scalability Study

To achieve a better energy-efficiency of BNN, we do the
scalability study to find out the BNN parameters for both good
testing accuracy and energy-efficiency. We use a 4-layer BNN
on MNIST benchmark as a baseline (100% energy-efficiency,
as shown in Table III), and change the number of output maps
of layer 2 (CONV-2, 50) and hidden nodes of layer 3 (FC-
1, 500), as shown in Figure 6(a) and 6(b). For each energy-
efficiency configuration, we do a 20-epoch training to make a
fair comparison. When the number of hidden nodes or output
maps decreases, the energy-efficiency is better but it will cause
higher testing error rate. To summarize the scalability study,
Figure 6(c) shows that the hidden nodes of layer 2 is more
sensitive to testing accuracy. As a result, increasing the hidden
nodes of layer 2 is better for higher accuracy while decreasing
the hidden nodes of layer 3 is better for energy-efficiency.
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Fig. 6: Scalability study of testing error rate under different energy consumption with (a) layer 2 output maps, and (b) layer
3 hidden nodes; (c) comparison with layer 2 output maps and layer 3 hidden nodes.

D. Performance Comparison

In this section, 1,000 images with 32 x 32 resolution in
CIFAR-10 are selected to evaluate the performance among
all implementations. Parameters including binary weights, and
LUT for batch normalization have been configured by the
training process. The detailed comparison is shown in Table
IV with numerical results including area, system throughput,
computation time and energy consumption. In the numerical
experiment, every batch comprises of 10 images and the results
are calculated in parallel. The detailed result figure is included
in supplementary file. The black square represents to the class
that each image belongs.

1) Power: The overall power comparison among all the
implementations are shown in Table IV under the similar
accuracy of 91.4% in CIFAR-10. Compared to CPU-based and
GPU-based bitwise CNN, the proposed digital-ReRAM based
implementation can achieve up to four-magnitude smaller
power. Moreover, compared to FPGA-based and CMOS-ASIC
based conventional CNN, the digital-ReRAM based imple-
mentation is 4, 155 times and 62 times smaller power.

In addition, we analyze the detailed power characteristics
of the proposed digital-ReRAM design in Figure 7. Firstly,
we analyze the power distribution on convolution, batch nor-
malization, pooling and activation, respectively. Figure 7(a)
shows that 89.05% of power is consumed by convolution,
while 9.17% of power is for batch normalization, and the rest
only takes 1.78%. Secondly, we analyse the power distribution
on different bitwise CNN layers in Table II. Results in Figure
7(b) show that CONV-6 consumes the most power 25.92%,
while CONV-4 and CONV-2 also consume more than 23%
of the total power. In general, there is over 98% of power

1.78%

017% _uifarsn,

BinConv
\ ,//
89.05%

(a)

(b)
Fig. 7: Power consumption of bitwise CNN (a) for different
operations (b) for different layers.

consumed by CONV-2 to CONV-6 layers.

2) Throughput and Efficiency: For the throughput perfor-
mance, we use GOPS (Giga operations per second) to evaluate
all the implementations. The proposed digital-ReRAM can
achieve 792 GOPS, which is 535 times and 1.61 times better
than CPU-based and GPU-based implementations, respec-
tively. It is also 12.78 times and 18.86 times better than FPGA-
based and CMOS-ASIC. For energy-efficiency, the digital-
ReRAM achieves 176 TOPS/W, three-magnitude better than
the CMOS-ASIC based CNN. In area-efficiency comparison,
the digital-ReRAM is 296 times better than CMOS-ASIC. The
digital-ReRAM is the best among all the implementations on
both throughput and efficiency.

The design exploration of CIFAR-10 is shown in Figure 8.
We change the number of CONV-4 output maps to find out
the optimized parameter. The normalized energy consumption
is referred to the configuration in Table IV. The result shows
that the accuracy will not increase when the number is larger
than 256. When it is lower than 256, the accuracy drops down
even though it has better energy consumption and throughput.
As a result, the parameters in Table II are optimal with
specifications in Table IV.

VI. CONCLUSION

In this paper, we propose a digital ReRAM-crossbar based
in-memory accelerator for bitwise convolutional neural net-
work. The bitwise CNN is obtained by training with binary
constraints so that operations including convolution, batch
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Fig. 8: Performance with different number of CONV-4 output
maps in CIFAR-10.



TABLE IV: Performance comparison under different software and hardware implementations

Implementation CPU (Matconvnet) GPU [3] FPGA [2] CMOS-ASIC [29]  Analog ReRAM [12] Digital ReRAM
Network category Bitwise CNN Bitwise CNN CNN CNN CNN Bitwise CNN
Frequency 3.46GHz 1.05GHz 100MHz 250MHz - 100MHz
Area 240mm? 601mm? - 12.25mm? - 0.78mm?
Average power 130W 170W 18.7TW 278mW - 4.5mW
System throughput (GOPS) 1.48 493 62 42 - 792
Frame per second (FPS) 1.2 400 46 35 - 643
Energy-efficiency 0.011GOP/J 2.9GOP/J 3.32GOP/J 151GOP/J 2TOP/J 176TOP/J
Area-efficiency 0.006GOP/s/mm?  0.82GOP/s/mm? - 3.43GOP/s/mm? - 1015GOP/s/mm?

- refers to the data not reported.

normalization, pooling and activation can be implemented
with bitwise parallelism. The bitwise CNN can be further
effectively mapped to the digital ReRAM-crossbar with sig-
nificant speed-up and energy-efficiency improvement. Numer-
ical results using the benchmark CIFAR-10 show that the
developed bitwise CNN accelerator on the digital ReRAM-
crossbar achieves a peak throughput of 792 GOPS at the power
consumption of 4.5 mW, which is 1.61 times faster and 296
times more energy-efficient than existing state-of-arts.

[1]

[2]

[3]

[4

=

[5]

[6]

[7]
[8

=

[10]

(11]

[12]

[13]

REFERENCES

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161-170.

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, 2015, pp. 3123—
3131.

Y. Wang, L. Ni, C.-H. Chang, and H. Yu, “Dw-aes: A domain-
wall nanowire-based aes for high throughput and energy-efficient data
encryption in non-volatile memory,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 11, pp. 2426-2440, 2016.

A. Sharma, T. Jackson, M. Schulaker, C. Kuo, C. Augustine, J. Bain,
H.-S. Wong, S. Mitra, L. Pileggi, and J. Weldon, “High performance,
integrated 1tlr oxide-based oscillator: Stack engineering for low-power
operation in neural network applications,” in VLSI Technology (VLSI
Technology), 2015 Symposium on. 1EEE, 2015, pp. T186-T187.
S.-C. Chang, N. Kani, S. Manipatruni, D. E. Nikonov, I. A. Young, and
A. Naeemi, “Scaling limits on all-spin logic,” IEEE Transactions on
Magnetics, vol. 52, no. 7, pp. 1-4, 2016.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80-83, 2008.
Y. Wang, H. Yu, L. Ni, G.-B. Huang, M. Yan, C. Weng, W. Yang,
and J. Zhao, “An energy-efficient nonvolatile in-memory computing
architecture for extreme learning machine by domain-wall nanowire
devices,” Nanotechnology, IEEE Transactions on, vol. PP, no. 99, pp.
1-1, 2015.

L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu, “Distributed in-
memory computing on binary rram crossbar,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 13, no. 3, p. 36, 2017.
M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: programming 1tlm crossbar to accelerate
matrix-vector multiplication,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 19.

Y. Wang, H. Yu, and W. Zhang, “Nonvolatile cbram-crossbar-based 3-
d-integrated hybrid memory for data retention,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 957-970,
2014.

L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and
H. Yang, “Switched by input: power efficient structure for rram-based
convolutional neural network,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 125.

L. Ni, H. Huang, and H. Yu, “On-line machine learning accelerator
on digital rram-crossbar,” in Circuits and Systems (ISCAS), 2016 IEEE
International Symposium on. 1EEE, 2016, pp. 113-116.

(14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” 2014.
S. Yu, Z. Li, P-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian,
“Binary neural network with 16 mb rram macro chip for classification
and online training,” in Electron Devices Meeting (IEDM), 2016 IEEE
International. 1EEE, 2016, pp. 16-2.

Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten
digit database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2010.

Z. Liu, Y. Li, F. Ren, and H. Yu, “A binary convolutional encoder-
decoder network for real-time natural scene text processing,” arXiv
preprint arXiv:1612.03630, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26-35.

K. H. Kim, S. Gaba, D. Wheeler, J. M. Cruz Albrecht, T. Hussain,
N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-
array/CMOS system for data storage and neuromorphic applications,”
Nano letters, vol. 12, no. 1, pp. 389-395, 2011.

B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini,
I. Radu, L. Goux, S. Clima, R. Degraeve et al., “10 X 10nm? hf/hfo x
crossbar resistive ram with excellent performance, reliability and low-
energy operation,” in Electron Devices Meeting (IEDM), 2011 IEEE
International. 1EEE, 2011, pp. 31-6.

P-Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula,
J.-s. Seo, Y. Cao, and S. Yu, “Technology-design co-optimization of
resistive cross-point array for accelerating learning algorithms on chip,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015. 1EEE, 2015, pp. 854-859.

C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on. 1EEE, 2015, pp. 476—488.
Y. Wang, X. Li, K. Xu, F. Ren, and H. Yu, “Data-driven sampling matrix
boolean optimization for energy-efficient biomedical signal acquisition
by compressive sensing,” IEEE Transactions on Biomedical Circuits and
Systems, 2016.

A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proceedings of the 23rd ACM international conference
on Multimedia. ACM, 2015, pp. 689-692.

Y. Shang, W. Fei, and H. Yu, “Analysis and modeling of internal state
variables for dynamic effects of nonvolatile memory devices,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 9,
pp. 1906-1918, 2012.

W. Fei, H. Yu, W. Zhang, and K. S. Yeo, “Design exploration of hybrid
cmos and memristor circuit by new modified nodal analysis,” IEEE
Transactions on very large scale integration (VLSI) systems, vol. 20,
no. 6, pp. 1012-1025, 2012.

B. Goll and H. Zimmermann, “A 65nm cmos comparator with modified
latch to achieve 7ghz/1.3 mw at 1.2v and 700mhz/47uw at 0.6v,” in 2009
IEEE International Solid-State Circuits Conference (ISSCC). 1EEE,
2009, pp. 328-329.

Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2016, pp. 262-263.

G. E. Hinton and R. R. Salakhutdinov, “Replicated softmax: an undi-
rected topic model,” in Advances in neural information processing
systems, 2009, pp. 1607-1614.



