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Abstract: GaoFen-2 (GF-2) is a civilian optical satellite self-developed by China equipped with both
multispectral and panchromatic sensors, and is the first satellite in China with a resolution below
1 m. Because the pan-sharpening methods on GF-2 imagery have not been a focus of previous
works, we propose a novel pan-sharpening method based on guided image filtering and compare the
performance to state-of-the-art methods on GF-2 images. Guided image filtering was introduced to
decompose and transfer the details and structures from the original panchromatic and multispectral
bands. Thereafter, an adaptive model that considers the local spectral relationship was designed to
properly inject spatial information back into the original spectral bands. Four pairs of GF-2 images
acquired from urban, water body, cropland, and forest areas were selected for the experiments.
Both quantitative and visual inspections were used for the assessment. The experimental results
demonstrated that for GF-2 imagery acquired over different scenes, the proposed approach
consistently achieves high spectral fidelity and enhances spatial details, thereby benefitting the
potential classification procedures.

Keywords: remote sensing; image fusion; guided filtering; GF-2 imagery

1. Introduction

Currently, numerous digital aerial cameras and optical earth observation satellites such as
QuickBird, WorldView-3, and GaoFen-2 (GF-2) exist that can simultaneously obtain multispectral
(MS) and panchromatic (Pan) images [1]. Due to physical constraints, high-resolution Pan
images lack the spectral information of MS images, while MS images often have a lower spatial
resolution. To synergistically utilize these images for various applications, such as detailed land cover
classification, change detection, and so on, it has become increasingly important to integrate the
strengths of both types [2,3].

The GF-2 satellite was launched in August 2014. It is a civilian optical remote sensing satellite
developed by China and the first satellite in China with a resolution below 1 m. This satellite is
equipped with both a panchromatic sensor and multispectral sensor that can be used simultaneously.
The GF-2 can achieve a spatial resolution of 0.8 m with a swath of 48 km in panchromatic mode; in
contrast, the satellite acquires images with a resolution of 3.2 m in 4 spectral bands in multispectral
mode. Furthermore, it is also characterized by high radiation accuracy, high positioning accuracy, and
fast attitude maneuverability, among other features. With its low cost and availability, this satellite can
benefit many possible applications in China, such as detailed land cover/use classification, change
detection, and landscape design. As a recently launched optical satellite, exploring effective sharpening
approaches to expand the application scope of the images is important.
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Many pan-sharpening methods have been proposed to achieve high-spatial and high-spectral
resolutions. These methods can be roughly classified into three categories: ratio enhancement (RE)
methods, multiresolution analysis (MRA) methods, and component substitution (CS) methods [4].
In general, RE methods [5,6] use image division to compute a synthetic ratio; then, the pan-sharpening
result is obtained by multiplying an MS image by the ratio. The MRA methods [7] utilize some
multi-scale analysis tools, such as Laplacian pyramids or wavelet transform, to divide the spatial
information of each image into many channels and then insert the high-frequency channels of the
Pan image into the corresponding MS channels, before restoring them to produce a fused image. CS
methods [8] first project the MS image into a vector space; then, one structural component of the
MS bands is replaced by a Pan image, before applying an inverse transformation. The CS methods
can be summarized into four steps [9,10], including: (a) resampling the MS image to the scale of the
Pan image; (b) computing the intensity component (e.g., acquired by weighted summation of the MS
image); (c) matching the histograms of the Pan image to the intensity component; and (d) injecting the
extracted details according to a set of weight coefficients. Some studies [11] also indicate that the MRA
methods can be formulated in the same way as the CS methods, but the main difference lies in the
method used to compute the intensity component.

CS methods are more practical and popular because of their fast calculation speeds and convenient
implementation. Representative cases of CS methods include principal component analysis (PCA),
Gram-Schmidt transformation (GS), Intensity-Hue-Saturation (IHS), and the University of New
Brunswick (UNB) method [12], among others. These typical methods are widely used and can
retain the spatial details of original Pan images well. However, spectral distortion will occasionally
occur in pan-sharpened images [13]. Yun Zhang [12] attributes this distortion to the inefficiency of
classical techniques on new sensors. Xie et al. [14] indicate that neglecting the spectral consistency
term results in fused images that are not strictly spectrally consistent. A local adaptive method, i.e.,
an adaptive GS method (GSA), is proposed in Ref. [10] that can preserve the spectral features without
diminishing the spatial quality. Xie et al. [14] reveal the implicit statistical assumptions of the CS
methods from a Bayesian data fusion framework, and demonstrate that all pixel values in different
vectors are independent and identically distributed; considering this assumption in a local sliding
window is always a better solution to spectral distortion.

Furthermore, these popular methods are also employed to fuse data of different resolution ratios.
For example, Fryskowska et al. [15] analyze the multispectral image integration abilities of Landsat
8 with data from the high spatial resolution panchromatic EROS B satellite. The authors test six
algorithms (Brovey, Multiplicative, PCA, IHS, Ehler, and HPF) and the experimental results show that
the Brovey and Multiplicative algorithms can achieve better visual effectiveness. Santurri et al. [16]
compare the pansharpened results of different methods on SPOT-HRV panchromatic and Landsat-TM
multispectral images. The IHS-based and GSA methods are reported in the literature as the more
effective techniques, whereas, other traditional methods barely achieve satisfactory results.

Recent developments in pan-sharpening approaches have also included a fast pan-sharpening
method based on nearest-neighbor diffusion (NND) [17] and deep-learning based algorithms [18,19].
The NND method assumes that each spectral value in the fused image is a linear mixture of the
spectra of its direct adjacent superpixels, and it takes each pixel spectrum as the smallest unit of
operation. The structure of a deep-learning network includes multiple artificial neural networks with
hidden layers. Such models have excellent feature learning abilities [18], and they have recently been
introduced for use in image fusion. For instance, Liu et al. [19] propose a multi-focus image fusion
method that utilizes a deep convolutional neural network trained by both high-quality image patches
and their blurred versions to encode the mapping. Many experiments have shown that both the
NND and deep learning approaches can achieve a strong fusion performance; however, the fused
results produced by the NND method may result in spectral distortion in some specific scenes of
very high-resolution images. Meanwhile, methods based on deep learning require large amounts
of training data to achieve acceptable performance, and their complex model structures often make
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explaining the results difficult. In this context, increasing numbers of emerging satellite images provide
the motivation for developing new methods to counteract these limitations.

In recent years, applications of edge-preserving filtering, such as bilateral filtering [20], mean
shift [21,22], and guided image filtering [23], have attracted a great deal of attention in the image
processing community. Among these, guided image filtering, proposed by He et al. [23] in 2010, is
quite popular due to its low computational cost and excellent edge-preserving properties.

Guided image filtering has been widely used for combining features from two different source
images, such as image matting/feathering [24], HDR compression [25], flash/no-flash de-noising [26],
haze removal [27], and so on. By transferring the main boundaries of the guidance image to the filtered
image, the original image can be smoothed; meanwhile, the gradient information of the guidance
image can also be retained. Guided image filtering provides an interesting way to fuse the features
of multi-source data sets. However, the application of guided filtering to remote sensing image
pan-sharpening tasks remains to be considered. Li et al. [28] developed an image fusion method with
guided filtering that has been tested on multi-focus or multi-exposure images of nature scenes.

In this context, a novel pan-sharpening method based on guided image filtering for fusing GF-2
images is proposed. In detail, the spectrum coverage of the Pan and MS bands is considered, and a
simulated low-resolution Pan band is simulated through a linear regression model. During the filtering
process, the resampled MS image is taken as the guiding image for the simulated Pan band. Next, the
spatial information is obtained by subtracting the filter output from the original Pan image. Finally,
the pan-sharpened image is synthesized by adaptively injecting the spatial details into each band of
the resampled MS image.

The remaining sections of this paper are organized as follows. Section 2 reviews guided image
filtering. Section 3 presents the proposed image pan-sharpening method. The experimental settings
are introduced in Section 4, and Section 5 provides the experimental results and discussion. Finally,
Section 6 provides conclusions.

2. Guided Image Filtering

Pan-sharpening can be considered as a process that combines the strengths of both panchromatic
and multispectral images. Correspondingly, guided filtering [23] combines the characteristics of an
original image and a guidance image. When the original and guidance images are properly selected,
it is feasible to integrate the characteristics of both images. In this section, we first briefly review the
guided image filtering algorithm; then, we analyze the properties of the guided image filtering with
different parameter settings.

2.1. Guided Image Filtering

The guided image filter [23] assumes that the filtering output follows a local linear model between
filter output Q and guidance image I in a local window ωk centered at pixel k.

Qi = ak Ii + bk, ∀i ∈ ωk, (1)

where ak and bk are linear coefficients considered to be constant in a small square image window ωk
with a radius of (2r + 1)× (2r + 1). The local linear model guarantees ∇Q = a∇I, that is, that filter
output Q has an edge only if the guidance image I has an edge. Here, the coefficients ak and bk are
computed by minimizing the following cost function:

E(ak, bk) = ∑
i∈ωk

[(ak Ii + bk − pi)
2 + εak

2], (2)



ISPRS Int. J. Geo-Inf. 2017, 6, 404 4 of 22

where p is the filter input, and ε is a regularization parameter assigned by users that prevents ak from
becoming too large. The linear coefficients are directly resolved by the linear ridge regression [29]
as follows:

ak =
1
|ω| ∑i∈ωk

Ii pi−µk pk

σ2
k +ε

bk = pk − akµk
pk =

1
|ω| ∑

i∈ωk

pi

, (3)

where µk and σ2
k are the mean and variance of I in ωk, |ω| is the number of pixels in ωk, and pk is

the mean of p in ωk. Because all windows that contain i will involve pixel i, different windows will
have different values of Qi. One effective method to resolve this problem is to average all the possible
values of Qi to obtain a filtered output image Q. Therefore, after calculating (ak, bk) for all windows
ωk in the image, the filter result is computed by:

Qi =
1
|ω| ∑

k:i∈ωk

(ak Ii + bk)

= ai Ii + bi,
(4)

where ai =
1
|ω|∑k∈ωi

ak and bi =
1
|ω|∑k∈ωi

bk.

2.2. Influence of Parameters

Two important parameters, the radius r of the local windows and the regularization parameter
ε, determine the filtering performance. Some guided filtering results using various parameters are
shown in Figure 1. Figure 1a is one band of the MS image, defined as the input image, and Figure 1c
is the corresponding Pan image, which serves as the guidance image; Figure 1b,d show the filtering
results of the guided filter with different parameter settings.

The edge-preserving performance is emphasized by the local rectangles. As shown, with different
extents, the structures in the guidance image are preserved in the filtering outputs. More specifically,
in Figure 1b as the filter size r increases, the edge information gradually becomes visible. This means
that an increasing amount of structural information is transferred from the guidance image to the
filtering results. Meanwhile, as the degree of smoothing ε increases, only slight changes occur in the
filtered outputs (Figure 1d).

However, as more structures of the guidance image (the Pan band) are transferred to the filtering
outputs, the spectral information inherited from the original input image (MS) is reduced. In contrast,
the greater the value of ε, the more the details of the input image are smoothed. Therefore, to consider
the trade-off between the spectral and spatial qualities, empirically, the values of r and ε cannot be
too large.
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Figure 1. (a) The input image (one band of multispectral image); (c) The guidance image (the 
panchromatic band); (b) The outputs: from left to right, the regularization parameter ε  is set to 0.12, 
and the radius r  is set to 2, 4, 6, and 8; (d) The outputs: from left to right, the radius r  is set to 4, 
and the regularization parameter ε  is set to 0.12, 0.22, 0.42, and 0.82. As the filter size r  increases, 
the edge information gradually becomes visible. As the degree of smoothing ε  increases, the 
changes in filtering outputs are slight. 
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Figure 1. (a) The input image (one band of multispectral image); (c) The guidance image (the
panchromatic band); (b) The outputs: from left to right, the regularization parameter ε is set to
0.12, and the radius r is set to 2, 4, 6, and 8; (d) The outputs: from left to right, the radius r is set to 4,
and the regularization parameter ε is set to 0.12, 0.22, 0.42, and 0.82. As the filter size r increases, the
edge information gradually becomes visible. As the degree of smoothing ε increases, the changes in
filtering outputs are slight.

3. Proposed Algorithm for GaoFen-2 (GF-2) Datasets

In this section, we formulate the problem and subsequently introduce the proposed
pan-sharpening method based on guided filtering. Then, we verify the effectiveness of the
proposed method.

3.1. Problem Formulation and Notations

The goal of the proposed algorithm is to obtain new MS images, which simultaneously possess
both high spectral and high spatial properties. In the following section, we use M and P to denote the
original MS and Pan images, respectively. After resampling all the MS bands into the same spatial
size as the Pan band, P(x, y) is the Pan band pixel value of the position (x, y), Mi and Mi(x, y) with
i ∈ {1, 2, 3, 4} are the i-th MS band and the pixel value of the i-th MS band at the position (x, y)
respectively, and the final pan-sharpened output is denoted as F.

3.2. Guided Filtering Based Pan-Sharpening

In this section, a pan-sharpening method based on guided image filtering is proposed. The flow
chart of the method shown in Figure 2 can be described as follows.

(i) The original multispectral image is registered and resampled to be the same size as the original
Pan image P.

(ii) By minimizing the residual sum of squares (Equation (5)), the weights wi (with i = 1, 2, 3, 4) can
be easily estimated.

RSS(wi) = ∑
x

∑
y

(
P(x, y)−

4

∑
i=1

wi Mi(x, y)

)2

, (5)
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Thereafter, a synthetic low-resolution panchromatic image P̃ can be obtained with Equation (6).

P̃ =
4

∑
i=1

wi Mi, (6)

where P̃ is the simulated low-resolution panchromatic image and wi is the weight for the i-th
band Mi(x, y), which is constant for the given band.

(iii) Each Mi (with i = 1, 2, 3, 4) is taken as the guidance image to guide the filtering process of the
low-resolution Pan image P̃, and the filter output M′i (with i = 1, 2, 3, 4) is obtained as follows:

M′i = GF
(

Mi, P̃
)

, i = 1, 2, 3, 4, (7)

where GF(u, v) denotes the process of guided filtering, and u and v represent the guidance and
input images, respectively.

(iv) The pan-sharpening result Fi is obtained by extracting the spatial information from the Pan image
and injecting it into the resampled MS image Mi according to the weight αi(x, y). This process
can be formulated as shown in Equations (8) and (9):

Fi(x, y) =
(

P(x, y)−M′i(x, y)
)
× αi(x, y) + Mi(x, y), i ∈ {1, 2, 3, 4}, (8)

αi(x, y) =
1√

∑
(p,q)∈w(x,y)

(Mi(p, q)− P(p, q))2
, i ∈ {1, 2, 3, 4}, (9)

where Fi(x, y) is the fusion image, P(x, y) is the original Pan image, Mi(x, y) is the resampled MS
image, M′i(x, y) is the filtering output, αi(x, y) is the weight corresponding to i-th MS band at a
position (x, y), w(x,y) denotes a local square window centered at (x, y), (p, q) expresses a pixel in
the local square window w(x,y), i is the band number of the MS image and the total number of
bands in the MS image is 4. Obviously, the greater the distance is, the smaller the weight should
be; otherwise, the weight should be large.
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In the proposed algorithm, the guided filtering involves both the resampled spectral band Mi (as
the guidance image) and the simulated Pan band P̃ (as the input band); therefore, the output band
M′i preserves the structures of both Mi and P̃. This process results in less spectral distortion when
extracting the spatial details from the Pan band.



ISPRS Int. J. Geo-Inf. 2017, 6, 404 7 of 22

Furthermore, the algorithm modulates the extracted spatial details with a position-dependent
ratio αi(x, y). More specifically, as shown in Equation (9), for each pixel located at position (x, y)
centered at a window of size (2R + 1)× (2R + 1), the Euclidean distance between each Mi(x, y) and
P(x, y) is calculated. Then, the reciprocal of the distance is defined as an indicator of the amount
of spatial details that should be injected into a specific MS band. A small distance indicates a small
spectrum difference of the corresponding pixels between the MS and Pan bands; in which case, the
weight should be large. However, the larger the distance is, the smaller the weight should be; thus, a
weak combination is assumed. In this way, the spectral distortion is further reduced.

There are three important parameters in the proposed algorithm: the radius r of local windows,
the regularization parameter ε in the guided filter, and the radius R of the local windows for calculating
the weights. A detailed discussion concerning parameter selections is provided in Section 5.1.

3.3. Effectiveness of the Proposed Method

The effectiveness of the fused results depends primarily on the detail injection models, that is, the
injection weights. A demonstration of detail enhancement and spectral preservation with different
weights is provided in Figures 3 and 4.
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A 1-D example of detail enhancement with different models is shown in Figure 3. The 1-D input
spectral signal (blue) is the spectral curve of part of the features in the first resampled multispectral
band M1. The product of the SP (spatial detail) and weight is the injected detail layer (red); among
these, SP expresses the difference between the Pan band and the filtered output. The injection weights
include αi(x, y) (Equation (9)), the equal proportion injection model, and the GS-based model [30] (the
covariance between the Pan and first resampled multispectral band). The enhanced signal (green) is
the combination of the input signal and the detail layer.

Figure 3a shows that the result obtained from the proposed method with weight αi preserves
the gradient information well, and the spatial details are obviously simultaneously enhanced. This is
because the weight αi is calculated pixel-by-pixel, and the spatial details are not lost during processing.
However, spatial details are injected in equal proportion in the model; as shown in Figure 3b, the
enhanced signal appears to have an abnormal protrusion. In Figure 3c, the result based on the GS
model has the same trend as the input signal, but the curve is smoother. Due to this global model,
some detail may be lost in the fused image.

Figure 4 shows a comparison of output images with different injection weights as mentioned
above. During processing, the radius and regularization parameter in the guided filter were set to
3 and 10−8, respectively. The zoomed-in patches indicate that the proposed method, using αi as the
injection weight, achieves better spectral preservation and detail enhancement than do other models.

4. Datasets and Experimental Settings

In this section, the data sets are introduced first; then, some state-of-the-art fusion methods are
used for comparisons, and several evaluation metrics are briefly described.

4.1. GF-2 Datasets

The characteristics of the employed datasets are shown in Table 1. The MS image consists of four
bands, including blue, green, red, and near infrared (NIR), and the spectral range of the MS bands are
exactly covered by the range of the Pan band. Four pairs of GF-2 images acquired over urban, water
body, cropland, and forest areas were employed to evaluate the effectiveness of the proposed method.
The characteristics of each image are displayed in Table 1 (the original MS images were resampled to
be the same size as the Pan images).
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Table 1. Characteristics of the employed GaoFen-2 (GF-2) datasets.

Spatial resolution MS: 3.2 m
Pan: 0.8 m

Spectral range

Blue: 450–520 nm
Green: 520–590 nm
Red: 630–690 nm
NIR: 770–890 nm
Pan: 450–900 nm

Image locations Guangzhou

Land cover types Urban, rural, water body, cropland, forest, concrete buildings, etc.

Image size

1© MS: 250 × 250
Pan: 1000 × 1000

2© MS: 1250 × 1250
Pan: 5000 × 5000

3© MS: 1250 × 1250
Pan: 5000 × 5000

4© MS: 1250 × 1250
Pan: 5000 × 5000

4.2. Methods Considered for Comparison

Five state-of-the-art pan-sharpening methods, including Gram-Schmidt transformation [30] and
NND pan-sharpening [17] from the ENVI software, the University of New Brunswick method [14]
from the PCI Geomatica software, the adaptive GS (GSA) method [12], and the GD method [31] were
selected for comparisons. These approaches are either integrated into commercial software or are
newly developed, and have all been shown to be efficient for fusing remote sensing images.

(1) Gram-Schmidt Transformation (GS) [30]: The general GS method uses the Blue, Green, Red and
NIR bands of an MS image to simulate a low-resolution Pan band according to corresponding
predefined weights. Thereafter, the GS transformation is applied to the synthetic Pan and
low-resolution MS images using the first band from the former. Finally, the high-resolution Pan
image replaces the first band of the GS transformed bands, and the inverse GS transformation
is employed to produce a fused MS image. This method has been integrated into the ENVI 5.3
software. The average of the low-resolution multispectral bands is calculated as the low-resolution
Pan band.

(2) Adaptive GS method [12]. The GSA method has the same processing procedures as the general
GS method except that the GS method uses equal weight coefficients for each MS band to obtain
an intensity image, whereas the GSA method employs the weight coefficients derived using a
regression between the MS and degraded low-resolution Pan images. Both methods enjoy the
injection gains given by Equation (10):

gi =
cov(Mi, IL)

var(IL)
, i = 1, · · · , N, (10)

where cov(Mi, IL) is the covariance of the i-th MS band and the low-resolution Pan image, var(IL)

denotes the variance of the low-resolution Pan image, and N is the total number of bands in the
MS image.

(3) Nearest-neighbor Diffusion-based Pan-Sharpening (NND) [17]: The NND method first
downsamples the high-resolution Pan image to match the size of the MS image. Then, it
calculates the spectral band contribution vector using linear regression and obtains the difference
factors from the neighboring super pixels of each pixel in the original Pan image. Finally,
this method applies a linear mixture model to acquire a fused image. Two important external
parameters, an intensity smoothness factor and a spatial smoothness factor, are set based on the
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intended application. In this study, the default values of the parameters were utilized across all
the experiments.

(4) University of New Brunswick method (UNB) [14]: The UNB pan-sharpening method first
equalizes the histogram of the MS image and Pan image. Then, the spectral bands of the MS
image, that are covered by the Pan band, are employed to produce a new synthetic image using
the least squares technique. Finally, all the equalized bands of the MS image are fused with the
synthesized image to obtain a high-resolution multispectral image. This method is currently
integrated into the PCI Geomatica software. In this study, the method was executed using the
default parameters.

(5) GD method: Zhao et al. [31] proposed a fusion method based on a guided image filter that takes
the resampled MS image as the guidance image and the original Pan image as the input image
to implement the filtering process. Next, it obtains the filtered image with the related spatial
information. Finally, the spatial details of the original Pan image are extracted and injected into
each MS band according to the weight wi defined by Equation (11) [12] to obtain the fused image.
Equation (11) calculates the optimal coefficient, which indicates the amount of spatial detail that
should be injected into the corresponding MS band:

wi =
cov(P, MSi)

var(P)
, (11)

where cov(P, MSi) is the covariance of P and the i-th MS band, and var(P) denotes the variance
of the original Pan image.

It is worth mentioning that the GD method employs a global detail-injection model in which the
weight for a given band is fixed and calculated according to Equation (11). In contrast, the proposed
pan-sharpening method employs a local-based injection model, which is adaptively determined
according to a local statistic defined by Equation (9).

4.3. Evaluation Methods

In this paper, both visual interpretations and quantitative evaluation methods were employed to
verify the effectiveness of the proposed method.

In general, the quality evaluation approaches consist of two types, a reduced-resolution and
a full-resolution assessment. In the first approach, some evaluation metrics, such as the relative
dimensionless global error in synthesis (ERGAS) [32], the Spectral Angle Mapper (SAM) [33], and
Q4 [34], require a reference image for comparison. In many previous experiments, the original Pan and
MS images are degraded by four; then, the degraded images were pan-sharpened so that the original
images could be used as references for comparison [35]. However, the scale invariance assumption
does not always hold in practice, and the accuracy is fundamentally influenced by the way that the
resolution degradation is performed [13]. Therefore, to avoid potential bias introduced from the
degradation, we directly utilized the resampled MS and original Pan images as the reference images
for quantitative assessments of the different pan-sharpening results.

Using the resampled MS images as reference images, four widely used metrics were selected
for quantitative assessment from spatial and spectral qualities, including Entropy, the correlation
coefficient (CC) [36], the universal image quality index (UIQI) [37], and the relative dimensionless
global error in synthesis (ERGAS) [32]. Furthermore, the pan-sharpened images were also classified
based only on their spectral features; therefore, the classification accuracy was employed as a metric to
indirectly verify the effectiveness of the proposed method.
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(1) Entropy is used to measure the spatial information contained in a fused image. The higher
the Entropy is, the richer the spatial information possessed by the fused image is. Entropy is
expressed as follows:

Entropy = −
255

∑
0

F(i) log2 F(i) (12)

where F(i) is the probability of pixel value i in the image.
(2) CC [36] measures the correlation between the MS image and fused image. The value of CC ranges

from 0 to 1. A higher correlation value indicates a better correspondence between the MS image
and fused image, the ideal correlation coefficient value is 1. CC is defined as follows:

CC =

m
∑

i=1

n
∑

j=1

[
M(i, j)−M

][
F(i, j)− F

]
√√√√√

[

m
∑

i=1

n
∑

j=1
M(i, j)−M

]2


[

m
∑

i=1

n
∑

j=1
F(i, j)− F

]2


(13)

where M(i, j) is the pixel value of original MS image, F(i, j) is the pixel value of the fused image,
and M and F respectively denote the mean values of original and fused images.

(3) UIQI [37] models any distortion as a combination of three different factors: loss of correlation,
luminance distortion, and contrast distortion. It is suitable for most image evaluations, and the
best value is 1. UIQI is given by:

UIQI =
σxy

σxσy
× 2xy

(x)2 + (y)2 ×
2σxσy

σx2 + σy2 (14)

where x and y are the mean values of the fused and original images, and σx and σy are the
standard deviation of the fused and original images, respectively.

(4) ERGAS [32] evaluates the overall spectral distortion of the pan-sharpened image. The lower the
ERGAS value is, the better the spectrum quality of the fused image is. The best ERGAS value is 0.
The definition of ERGAS is as follows:

ERGAS ∆
= 100

dP
dMS

√√√√ 1
K

K

∑
i=1

RMSE2(i)
MEAN2(i)

(15)

where dP/dMS is the ratio between pixel sizes of the Pan and MS images, K is the number of
bands, and MEAN(i) is the mean of the i-th band, whereas RMSE(i) is the root-mean-square
error between the i-th band of the reference image and the i-th band of the pansharpened image.

5. Results and Discussion

In this section, the influence of the three parameters is discussed first. Successively, four groups
of experimental results and some image quality assessment are presented and discussed. Finally, the
computational complexity of the proposed method is reported.

5.1. Analysis of the Influence of Parameters

5.1.1. Parameter Influences in the Guided Filter

As mentioned in Section 2.2, the parameters r and ε affect the filtering size and smoothing degree
of the guided filter, respectively. To obtain the optimal parameter settings, an image of size 500 × 500
pixels was employed to conduct a parameter analysis, and two metrics, Entropy and SAM, were used
as measures. Entropy is related to the spatial quality, while SAM [33] quantifies the spectral distortion
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by computing the angle between the corresponding pixels of the pan-sharpened and reference images.
Figures 5 and 6 show the influences of these two parameters on the pan-sharpening performance.ISPRS Int. J. Geo-Inf. 2017, 6, 404  12 of 22 
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Figure 5. Analysis of the influence of the parameter r.
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Figure 6. Analysis of the influence of the parameter ε.

In these experiments, the window size of the weight was fixed to 7× 7, and 7 groups of both r
and ε values were evaluated. When the influence of r was analyzed, ε was fixed to 10−3 and 10−6,
while r was fixed to 2 and 4 when the influence of ε was analyzed.

From Figure 5 we can see that when ε is fixed, a larger r reduces the Entropy value and increase
the SAM value. However, when r is less than 3, the changes in the Entropy and SAM values are not
obvious; and when r is greater than 3, the Entropy value gradually decreases. Therefore, considering
the trade-off between the two metrics, the value of r should not be too large or too small.

In Figure 6, when r is fixed, as the ε value decreases, the Entropy value becomes larger, while the
SAM value continues to decrease. However, an ε value greater than 10−3 has a negligible effect on
the Entropy and SAM values, an ε value less than 10−4 causes the Entropy value to decrease slowly,
whereas the SAM value decreases continuously. Therefore, the value of ε also should not be too
large or too small. Consequently, in the following experiments, we set the values of r and ε to 3 and
10−8, respectively.

5.1.2. The Influence of the Window Radius R for Calculating Weights

The window radius R of the weight during the fusion process is another important parameter.
Here, the values of r and ε were fixed at 3 and 10−8, and R was set to 1, 3, 5, 7, and 9 to analyze its
influence on the pan-sharpening performance. A quality index Q4 [34] was employed as the measure
of influence. Q4 was averaged over the whole image to produce a global evaluation index, and all
calculations were based on N × N blocks. The value of Q4 ranges from 0 to 1, and lower values reflect
the amount of spectral distortion in the fused product, while high values may indicate that a result is
closer to the reference image. In the experiments, the value of N was set to 32.



ISPRS Int. J. Geo-Inf. 2017, 6, 404 13 of 22

As shown in Figure 7, the R increases, the value of Q4 tends to rise, thus the fusion result had
better spectral preservation. However, in some of the detailed pictures of the edge of the building
displayed in Figure 8a, the greater the radius is, the more the spatial details are blurred. Meanwhile,
the spectral profile curves of these detailed pictures in the same position are shown in Figure 8b. As
shown, the smaller the R value, the sharper the edges of the corresponding curves become. Therefore,
to achieve a better overall effect, the radius R of the weight should not be too small or too large.
Considering this trade-off, R was consistently set to 3 in the experiments, that is, the window size for
weight calculation was 7× 7.
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In the above experiments, we found that, according to different metrics (i.e., Entropy, SAM, and
Q4), the optimal window sizes for the filtering and weight calculations were consistently set to 7× 7.
Therefore, it is reasonable to set the two window sizes as the same, as both are related to modeling
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the connections between the Pan and MS bands. Therefore, we assume that the two window sizes are
the same.

5.2. Comparison of Different Pan-Sharpening Approaches

In this subsection, the proposed pan-sharpening method was compared with some other
state-of-the-art approaches. Detailed information about these methods is provided in Section 4.2.
As shown in Figures 9–12, local patches with various land cover types were clipped from the fused
results and displayed in true color using the same stretching mode. Quantitative assessments of these
four sets of test data are shown in Tables 2–5. The best performance of each metric is in bold.
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Table 2. Quality evaluation of fused images: urban areas (corresponding to Figure 9).

Method Entropy UIQI CC ERGAS

MS 7.189
GS 6.877 0.848 0.878 22.504

NND 6.863 0.779 0.881 36.835
UNB 6.685 0.824 0.881 26.102
GSA 6.912 0.893 0.888 21.001
GD 6.891 0.878 0.902 25.731

Proposed 7.156 0.959 0.962 14.150

In general, all of the methods yield visually better images than the original. For the urban area
(Figure 9 and Table 2), the NND method exhibits obvious spectral distortion, and the ERGAS value of
the NND method is the largest. From the local detail images, however, the differences between the GS,
GSA, UNB, and GD methods are not obvious. Furthermore, Table 2 shows that the proposed method
achieves better spectral and spatial performance; its values for all four metrics are the best.
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Figure 10. The fused results using different methods on GF-2 images over water bodies: (a) original Pan
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ISPRS Int. J. Geo-Inf. 2017, 6, 404 16 of 22

Table 3. Quality evaluation of fused images: water bodies (corresponding to Figure 10).

Method Entropy UIQI CC ERGAS

MS 4.113
GS 3.978 0.608 0.633 31.796

NND 3.997 0.393 0.593 70.754
UNB 3.802 0.606 0.661 40.418
GSA 3.916 0.700 0.757 39.723
GD 3.805 0.538 0.598 44.323

Proposed 3.933 0.726 0.790 39.589

As shown in Figure 10, the GSA, UNB, and GD methods cannot preserve the spectral information
well for water bodies, and the color of the river is paler and not as deep blue as in the original MS
image. In Table 3, we can see that the Entropy value of the NND method is the best; however, its
values on the other metrics are the worst. This demonstrates that the NND method performs well in
enhancing detail but does not perform well on spectral preservation; this result may have occurred
because the NND method is more suitable for fusing low-resolution images.
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Figure 11. The fused results using different methods on GF-2 images over cropland: (a) original Pan
image; (b) original MS image; (c) GS; (d) NND; (e) UNB; (f) GSA; (g) GD; and (h) the proposed method.
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Table 4. Quality evaluation of fused images: cropland (corresponding to Figure 11).

Method Entropy UIQI CC ERGAS

MS 6.709
GS 6.642 0.855 0.859 14.697

NND 6.765 0.661 0.766 40.106
UNB 6.464 0.828 0.844 18.575
GSA 6.625 0.908 0.912 15.126
GD 6.658 0.777 0.841 29.136

Proposed 6.563 0.905 0.921 16.460

As seen from Figure 11, the fused images obtained by the NND and GD methods had serious
problems with spectral performance: the color of the cropland in their results is obviously quite
different from that of the original MS image. In addition, in Table 4, the NND and GD methods’ UIQI,
CC and ERGAS values were the worst, but the overall spatial information was well preserved from a
qualitative point of view. This is because the GD method employs a global detail-injection model; thus,
color distortion will occur in some specific scenes. However, the proposed method based on the local
injection model can be a good solution to spectral distortion. The GS, GSA, and proposed method
performed better than the others.
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Figure 13, the classification results obtained by the NND and UNB methods are not particularly 
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Table 5. Quality evaluation of fused images: forest area (corresponding to Figure 12).

Method Entropy UIQI CC ERGAS

MS 5.882
GS 6.749 0.663 0.732 56.697

NND 6.578 0.727 0.745 28.991
UNB 6.482 0.688 0.752 56.064
GSA 6.588 0.720 0.792 55.977
GD 6.667 0.675 0.753 59.855

Proposed 6.504 0.856 0.896 34.666

For the forest area shown in Figure 12 and Table 5, from a visual analysis, the proposed method
achieves the best spectral and spatial information performance compared to the other methods,
followed by the GSA, UNB, GS, and GD methods and finally, the NND method. In the quantitative
evaluation, the UIQI and CC values of the proposed method were the best, and its ERGAS value was
second best, which is consistent with the visual analysis results.

Many pan-sharpened images are employed not only for manual interpretation, but also for
computer-based interpretation. Therefore, classification accuracy was used as an indirect evaluation
method to verify the effectiveness of the proposed method. A better fusion method should result
in fused images with higher interclass variance and, thus, should obtain better classification results.
Therefore, in our work, the pan-sharpened images are classified based on spectral features. The overall
accuracy (OA) and Kappa are employed as the measures of classification accuracy. The higher the OA
and Kappa values are, the better the classification effect is.

In detail, a sample image with a 400× 600 pixels size was employed to conduct the pan-sharpening
process using different methods; then, a supervised classification using a Support Vector Machine
(SVM) method [38] was applied to the fused results. Figure 13 shows the classification maps, among
which, Figure 13b,c shows the test sample with 157 blocks, including 10 classes. The number of each
class in the test sample was 1/10 of the number in the training samples. As can be seen in Figure 13,
the classification results obtained by the NND and UNB methods are not particularly satisfactory.
However, the proposed fusion method achieves a more consistent classification result. Table 6 shows
the OA and Kappa precisions achieved by these different methods, corresponding to the classification
maps. Although many types of misclassifications occurred, the proposed method achieved the highest
accuracy, which means that the proposed method is more effective at spectral preservation than other
tested methods.
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In conclusion, these experimental results are sufficient to demonstrate that the proposed approach
both enhances the spatial information and effectively preserves the spectral characteristics of the
original MS images with less distortion. In addition, the produced images can improve the classification
accuracy, which is important.

5.3. Computational Complexity

In this section, the computational time of each pan-sharpening method is described to evaluate
the computational efficiency. We employed MATLAB on a laptop with 4 GB of memory and a 2.4 GHz
CPU to perform the experiments. For a 500 × 500-pixel image, the proposed method requires 11.28 s,
while the GS, NND, UNB, GSA, and GD methods require 1.84 s, 1.67 s, 1.52 s, 1.43 s, and 2.36 s,
respectively. Compared to the other algorithms, the proposed approach consumes more time; this may
be because the weight calculation during the pan-sharpening process is performed in a pixel-by-pixel
fashion, and the loop is not efficient enough. Therefore, the speed of the proposed algorithm can be
further improved by using a more efficient computational approach.

6. Conclusions

The goal of pan-sharpening methods is to simultaneously increase the spatial resolution of an
original multispectral image while retaining its spectral features. In this study, we proposed a novel
pan-sharpening method based on guided image filtering, and applied it to GF-2 images. The underlying
idea of this approach is to consider the spectral difference of each pixel between a resampled MS
image and a corresponding Pan image, and to adaptively inject the details of the Pan image into the
MS image to yield high-resolution MS images. The experimental results and quality assessments
demonstrated that, for GF-2 imagery acquired over different scenes, the proposed pan-sharpening
approach consistently achieves high spectral fidelity and enhances the spatial details, regardless of
the image content. Furthermore, it can also improve the classification accuracy, which is an important
aspect in applications of GF-2 images. Finally, adaptively selecting the window size for the weight
calculations and estimating the parameters of the guided filtering process requires further research.
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