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Abstract 

Large lanthanoid silicates (Ln9.33Si6O26) adopt the hexagonal apatite structure and show 

potential as solid oxide fuel cell (SODC) electrolytes due to their high oxide ion 

conductivity at intermediate temperatures (500 – 700°C). Ions migrate preferentially 

along the crystallographic c axis, and can be improved by introducing lower valent 

elements at the silicon sites. To better understand this phenomenon, single crystals of 

aluminum-doped neodymium silicate Nd9.33+x/3AlxSi6-xO26 (0 ≤ x ≤ 1) were grown using 

the floating-zone method in an inert environment at a growth rate of 5 mm/L. The 

products with x < 1.5 were homogeneous, transparent and crack-free crystals. For x  = 1.5 

the monophasic crystal contained minor cracks after cooling and for x  = 2 a two phase 

(apatite + NdAlO3) polycrystalline mass was obtained. The quality of the 0 ≤ x ≤ 1.5 

crystals were confirmed by neutron diffraction and synchrotron X-ray rocking curve 

diffraction. The incorporation of aluminum into apatite at nominal concentrations was 

independently confirmed by energy dispersive X-ray spectroscopy (EDX) and electron 

backscatter diffraction (EBSD) found the crystallographic habit showed extension along 

[001]. 
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1. Introduction 

The development of apatite electrolytes is driven by the need to reduce the high operating 

temperatures (~1000°C) of current generation solid oxide fuel cells (SOFC) and thereby 

extend their operating life. The benchmark material, yttria-stabilized zirconia (YSZ), only 

shows significant ionic conductivity (~ 0.1 Scm
-1

) from 900 – 1000°C [1, 2], which drops 

quickly as temperature is lowered (~10
-3

 Scm
-1

 at 500°C) [3]. Hexagonal lanthanoid 

silicates of the apatite structural family with ideal formula Ln9.33Si6O26 offer better 

performance at intermediate temperatures (500 – 700°C) [4]. For example, sintered 

polycrystalline La9.33Si6O26 displays ionic conductivity as high as 4.3 × 10
-3

 Scm
-1

 at 

500°C [5]. Transport is anisotropically enhanced along the hexagonal c axis, with the flux 

further improved by introducing lower valent ions at the tetrahedral SiO4 (ionic radius of 

Si
4+

 = 0.26Å), such as Mg
2+

 (0.57Å) and Al
3+

 (0.39Å) [6, 7].  Mg expands the lattice 

which facilitates oxide ion transport [8], while Al doping increases the La occupancy to 

an optimum level for conduction [9]. 

The chemical formula of Ln9.33Si6O26 can be recast as (La9.33□0.67)Si6O26, where “□” 

represents vacancies at the Ln sites. If Al
3+

 is introduced in place of Si
4+

, charge 

neutrality is maintained by decreasing Ln vacancies (assuming a fixed oxygen content): 

(Ln9.33□0.67)Si6O26 + xAl
3+

 ⟶ (Ln9.33+x/3□0.67-x/3)AlxSi6-xO26 (1) 

with integral stoichiometry achieved for x = 2 and Nd10Al2Si4O26. However, it is also 

possible that substitution of Si
4+

 by Al
3+

 leads to a decrease of oxide ion concentration: 

O
2-

 +2Si
4+

 ⟶ □
O2−

 + 2Al
3+

    (2) 

In contrast to the oxygen vacancy mechanism found for YSZ (2Zr
4+

 + O
2-
 ⟶ 2Y

3+
 + □

O2−
) 

[10], the oxide ions in apatites migrate via an interstitial pathway [11]. However, most 

studies on the conductive properties of apatite electrolytes have been performed with 

pelletised and sintered polycrystalline powders, where pores and grain boundaries 

strongly attenuate O
2-

 transport [12]. In addition, sintered pellets inevitably display 

isotropic properties, although the apatite structure is intrinsically predisposed to 

anisotropic transport. Therefore, fundamental measurements of the magnitude of oxide 
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ion conductivity as a function of temperature, and the investigation of migration 

mechanisms require large single crystals. The floating-zone method can grow appreciable 

single crystals of pure and alkaline earth doped lanthanoid silicates [13 – 15], but 

compositions containing lower valent elements at Si sites have not been demonstrated. 

Here we describe the preparation of large crystals of Al-doped neodymium silicate, 

Nd9.33+x/3AlxSi6-xO26, x = 0, 0.5, 1, 1.5, using the optical floating zone method, and find a 

solid solution limit for Al at 1.5 ≤ x ≤ 2. Neodymium was chosen over more common 

lanthanum, as the blue colour of the former better absorbed infrared radiation that 

improved heat transfer and single crystal growth. The crystals were homogeneous and 

acicular, with extension along the c axis and the narrow full-width at half-maximum 

(FWHM) peaks observed rocking curve diffraction indicate a coherent domain mosaic. 

These crystals were therefore of sufficient quality for the assessment of ionic 

conductivity and structural analysis as described elsewhere [16]. 

 

2. Experimental procedures 

2.1. Synthesis of polycrystalline Nd9.33+x/3AlxSi6-xO26 feed rods 

Nd2O3 (Alfa Aesar, 99.9%), SiO2 (Alfa Aesar, 99.9%) and Al2O3 (Fluka, 99.7%) were 

homogenised in stoichiometric ratios by hand grinding in an agate mortar and pestle. 

These mixtures were calcined (1200°C/10h/air), cooled to room temperature and re-

ground manually for 1 hour. The product was loaded in a latex balloon and isostatically 

pressed into a rod (10 mm diameter and 30-40 mm in length) with a hydraulic press (200 

MPa), before reactive sintering (1650°C/20h/air) to obtain feed rods (7-8 mm diameter 

and 30-40 mm in length). 

2.2. Synthesis of seed crystal 

In reconnaissance studies, polycrystalline rods were deployed as seeds for the growth of 

pure neodymium silicate. The tabular, as-grown crystals were facetted and inspection by 

synchrotron X-ray diffraction found the parallel surfaces contained (0 0 l), l = 2n, peaks 

only. When thin sections were viewed in [001] under crossed polarisers, complete 
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extinction confirmed the material was a single crystal. These Nd9.33Si6O26 apatite crystals 

were used to seed the growth of undoped and Al-doped neodymium silicate apatites, and 

orientated such that preferred growth was parallel to the c axis. 

2.3. Crystal growth 

An FZ-T-4000-H-VPO-VII-PC optical floating zone furnace (Crystal Systems 

Corporation, Japan) was used, with four 1.5 kW halogen lamps and corresponding 

ellipsoidal mirrors that focus the infrared irradiation to a small region. A constant flow of 

argon (2 L/min) was passed through the chamber during growth.  As the feed and seed 

rod tips start to melt, they are brought into contact to form the floating-zone; after the 

molten zone stabilises, the entire mirror stage translates upwards (5 mm/h) during crystal 

growth. The rods are counter-rotated at constant speed (40 rpm) to maintain a stable and 

well mixed molten zone.  

2.4. Methods of crystal characterisation 

A disc (5mm × 2mm) was cut from each crystal perpendicular to the hexagonal basal 

plane, embedded in epoxy resin and manually polished to a mirror finish using 0.06 µm 

colloidal silica polishing suspension (Buehler). A Zeiss UltraPlus field emission scanning 

electron microscope (FESEM) equipped with an HKL electron backscatter diffraction 

(EBSD) system further confirmed the growth direction. Given the possibility of 

compositional change during crystal growth, analytical scanning electron microscopy was 

used to validate the incorporation of aluminium. The energy-dispersive X-ray analysis 

(EDX) was carried out at 15kV using a JEOL JSM-7600F FESEM equipped with an 

Oxford Instrument XMax Silicon Drift Detector and INCA Software. 

The central portions of the single crystals (~5mm long) were cut and manually ground for 

analysis by powder X-ray diffraction (PXRD) to confirm apatite was synthesised and 

identify secondary phases. Patterns were collected on a Bruker D8 Advance 

diffractometer using Cu Kα X-rays generated at 40 kV and 40 mA.  The crushed powders 

were filled in a top-loaded trough and pressed with a glass slide to have a flat surface. 

The data were accumulated from 10 – 130° 2θ using a step size of 0.02° with a dwell 
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time of 1.2s per step. Under these conditions the intensity of the strongest reflection was 

approximately 9000 – 12500 counts. 

Neutron diffraction patterns were collected at 100K on the Koala Laue diffractometer 

beam line at the OPAL reactor operated by the Australian Nuclear Science and 

Technology Organisation (ANSTO) to establish crystal quality.  Laue diffraction 

employed polychromated thermal-neutron beam coupled with a large solid-angle (8 

steradians) cylindrical image-plate detector. The apatite crystals were broken into 

approximate 1.5 × 1.5 × 1.5 mm dimensions and mounted on an aluminium pin with 

silicon grease.  

The rocking curves of the crystals were measured with a Bruker Smart Apex II 

three-circle diffractometer using graphite monochromated Mo Kα radiation over the 

angular range 5 - 55° 2θ to find the mosaic spread of the crystals. 

 

3. Results and Discussion 

All crystals were homogeneous, transparent and violet, and approximately 5 mm in 

diameter and 20-25 mm in length (Fig. 1). The Nd9.33Si6O26, Nd9.50Al0.5Si5.5O26 and 

Nd9.67AlSi5O26 crystals were free of fractures, but the Nd9.83Al1.5Si4.5O26 crystal contained 

some cracks that formed during cooling from the crystallographic stresses induced by the 

greater amount of Al. The crystal cross-sections display clear hexagonal faceting, which 

is uncommon for crystals grown by this optical floating zone method due to the high 

thermal gradients. For “Nd10Al2Si4O26”, the melt solidified as a polycrystalline rod. 

Neutron diffraction of the bulk crystals yielded reflections without splitting, that could be 

indexed as hexagonal P63/m apatite, thus excluding lower symmetries that are sometimes 

reported for rare earth silicate apatites [6]. This also confirmed the entire volume of each 

inspected crystal consisted of a single grain. 

Rietveld analysis of powdered single crystals using P63/m yielded good fits with no 

evidence of secondary phases, while a small amount (6.44 wt%) of neodymium aluminate 

(NdAlO3) was identified from the as-grown polycrystalline “Nd10Al2Si4O26” (Fig. 2). The 
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refined data are summarised in Table 1. The unit cells dilated as the composition became 

increasingly aluminous. Vegard’s Law was not obeyed (Fig. 3) suggesting the simple 

altervalent substitution of equation (1) is augmented by the creation of oxygen vacancies 

(equation (2)) at high aluminium content. This successful displacement of Si
4+

 by Al
3+

 

was independently confirmed by analytical SEM of these crystals (Fig. 4), with the 

intensity of the Al X-rays increasing as Si decreased. In addition, for each sample, 6 – 8 

areas were inspected by EDX and quantitation gave values conforming to the nominal 

compositions within error, also confirming homogeneity. The crystallographic orientation 

of the crystal cross-sections was shown by EBSD to be within a few degrees of [001] (Fig. 

5). 

Rocking curves measurements were carried out on the (4 4 2) reflection to further study 

crystal quality. The Nd9.33Si6O26 yielded a FWHM of 0.22°, Nd9.50Al0.5Si5.5O26 and 

Nd9.83Al1.5Si4.5O26 gave 0.20°, and Nd9.67AlSi5O26 showed the narrowest FWHM of 0.18°. 

These values are comparable to those previously reported for Nd oxide single crystals 

grown [17]. 

 

4. Conclusion 

The floating zone method was used to prepare large (5 × 20 – 25 mm) crystals of 

neodymium silicate apatite and its aluminum doped analogues Nd9.33+x/3AlxSi6-xO26, x = 0, 

0.5, 1.0, 1.5, that were homogeneous, transparent, and free of macroscopic cracks except 

at the highest aluminium content (nominally Nd10Al1.5Si4.5O26.25). The solid solution limit 

may be somewhat less than the theoretical composition of x = 2. Subsequent inspection 

with neutron diffraction and EBSD confirmed their single crystal nature and established 

preferred growth along the c axis. Powder XRD showed that up to x ~ 1.5 the products 

were monophasic with unit cell parameters increasing with x, however it is noted that 

Vegard’s Law is not obeyed, suggesting that Al
3+

 displacement of Si
4+

 is accompanied by 

both the infilling of Nd vacancies and the creation of oxygen vacancies. The 

incorporation of aluminium was validated by analytical scanning electron microscopy, 

and rocking curve measurements provided further evidence of high crystal quality. The 
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crystals of Nd10Si6O27, Nd10Al0.5Si5.5O26.75, Nd10AlSi5O26.5, and Nd10Al1.5Si4.5O26.25 (the 

region without cracks) are suitable for the measurement of ionic conductivity, specifically 

as a function of crystallographic orientation, and are presently the subject of further 

investigation. 
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Table Caption(s) 

 

Table 1 Refined unit cell parameters and reliability indices for the 

pulverised single crystals obtained by Rietveld analysis. 
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Figure Caption(s) 

 

Figure 1 Crystals of (a) Nd9.33Si6O26, (b) Nd9.50Al0.5Si5.5O26, (c) 

Nd9.67AlSi5O26 and (d) Nd9.83Al1.5Si4.5O26 with extension along the 

crystallographic c axis. 

 

Figure 2 Rietveld plots of powder X-ray diffraction patterns of (a) 

Nd9.83Al1.5Si4.5O26 and (b) “Nd10Al2Si4O26” in the 20 – 40° range. 

While the pattern of Nd9.83Al1.5Si4.5O26 contains peaks from the 

P63/m apatite only, major NdAlO3 reflections, (0 1 2) at 23.70°, (1̅ 

2 0) at 33.65° and ( 1̅  1 4) at 33.87°, were identified in 

“Nd10Al2Si4O26”. 

 

Figure 3 Unit cell parameters a and c as a function of Al content. To x = 1.5, 

the crystals are single-phase apatite, beyond which NdAlO3 

appears as a secondary phase. 

 

Figure 4 The  EDX spectra of Nd28+x/3AlxSi6-xO26 crystals with x = 0, 0.5, 

1.0 and 1.5 showing the Kα peaks of Al (1.487 keV) and Si (1.740 

keV). Six to eight separate regions of each crystal were inspected 

in [001] cross-section to obtain the averaged plots shown. 

 

Figure 5 A representative EBSD pattern of Nd9.67AlSi5O26. Other 

compositions gave similar patterns of identical crystallographic 

orientation. 
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Table 1 

Refined unit cell parameters and reliability indices for the pulverised single crystals 

obtained by Rietveld analysis. 

 Nd9.33Si6O26 Nd9.50Al0.5Si5.5O26 Nd9.67AlSi5O26 Nd9.83Al1.5Si4.5O26 Nd10Al2Si4O26 

Unit cell 

parameters 

     

a (Å) 9.5727(3) 9.5738(1) 9.57724(7) 9.58457(7) 9.59159(7) 

c (Å) 7.0250(2) 7.05125(8) 7.06499(6) 7.07102(6) 7.06824(6) 

Volume (Å
3
) 557.51(4) 559.71(1) 561.21(1) 562.55(1) 563.148(9) 

Reliability 

Indices 

     

Rwp 4.66% 4.79% 4.41% 4.41% 3.69% 

Rp 3.54% 3.63% 3.39% 3.40% 2.89% 

χ
2
 1.48 1.43 1.46 1.49 1.28 

RB 1.91% 2.57% 2.10% 1.46% 1.25% 

Rexp 3.15% 3.34% 3.01% 2.96% 2.89% 
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Fig. 1. Crystals of (a) Nd9.33Si6O26, (b) Nd9.50Al0.5Si5.5O26, (c) Nd9.67AlSi5O26 and (d) 

Nd9.83Al1.5Si4.5O26 with extension along the crystallographic c axis. 
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Fig. 2. Rietveld plots of powder X-ray diffraction patterns of (a) Nd9.83Al1.5Si4.5O26 and 

(b) “Nd10Al2Si4O26” in the 20 – 40° range. While the pattern of Nd9.83Al1.5Si4.5O26 

contains peaks from the P63/m apatite only, major NdAlO3 reflections, (0 1 2) at 23.70°, 

(1̅ 2 0) at 33.65° and (1̅ 1 4) at 33.87°, were identified in “Nd10Al2Si4O26”. 
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Fig. 3. Unit cell parameters a and c as a function of Al content. To x = 1.5, the crystals 

are single-phase apatite, beyond which NdAlO3 appears as a secondary phase. 
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Fig. 4. The  EDX spectra of Nd28+x/3AlxSi6-xO26 crystals with x = 0, 0.5, 1.0 and 1.5 

showing the Kα peaks of Al (1.487 keV) and Si (1.740 keV). Six to eight separate regions 

of each crystal were inspected in [001] cross-section to obtain the averaged plots shown. 
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Fig. 5. A representative EBSD pattern of Nd9.67AlSi5O26. Other compositions gave 

similar patterns of identical crystallographic orientation. 

 

 

 

 

 


