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Fermi arc plasmons in Weyl semimetals
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In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the
so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the
collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional
metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are
chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large
range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity
vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field
photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The
unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give
a window into the unusual fermiology of Weyl semimetals.
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I. INTRODUCTION

Three-dimensional (3D) Weyl semimetals (WSMs) are
prototypical topological metals, featuring one or more pairs
of protected band degeneracy points in the Brillouin zone
[1–7]. These “Weyl points” act as quantized sources and
sinks of Bloch band Berry flux [8]. The nontrivial bulk band
topology is manifested in the appearance of peculiar branches
of gapless states bound to certain exposed surfaces, featuring
open segment Fermi surfaces, i.e., “Fermi arcs” [see Fig. 1(a)]
[1–6,9]. At the single particle level, these unusual features are
responsible for a variety of intriguing transport phenomena
[10–17].

Here we show that the coupled, collective dynamics of
electrons on both the open-segment and closed WSM Fermi
surfaces sharply departs from that expected in conventional
metals. This unusual situation gives rise to “Fermi arc
plasmons” (FAPs), which are confined to certain exposed sur-
faces and are characterized by highly anisotropic dispersions
[Figs. 1(b) and 1(c)]. In conventional metals, surface plasmons
are nearly dispersionless and feature closed, elliptical constant
frequency contours. In contrast, we find that FAPs in WSMs
with broken time-reversal symmetry are hyperbolic over
a wide range of frequencies, featuring open isofrequency
contours that do not close on themselves (Fig. 2). Such
contours support a wide range of wave vectors at each
frequency, with a wave-number-independent group velocity
direction for large wave vectors. Together, these features allow
for tight focusing of collimated, nonreciprocal surface plasmon
waves, with frequency-dependent directionality.

FAPs arise from the hybridization of chiral collective
modes associated with carriers in topological “Fermi arc”
surface states [slanted plane, Fig. 1(c)], with ordinary surface
plasmon modes supported by bulk carriers close to the surface
[horizontal gray planes, Fig. 1(c)]. This hybridization and
the resulting dispersion relations are sensitive to the unusual
constitutive relations of the Weyl semimetal’s bulk and surface
carriers, in particular the bulk anomalous Hall conductivity

FIG. 1. (a) Disjoint Fermi surface of a type-I Weyl semimetal: In
addition to the bulk closed Fermi surfaces (red and blue spheres), the
WSM features open Fermi arcs (orange curve) on certain exposed
crystal surfaces. (b) The particle current density can be separated into
bulk (vb) and surface (vs) components, with vs carried by the chiral
Fermi arc states. (c) The Fermi arc plasmon dispersion has three
chiral branches, featuring hyperbolic frequency contours over a wide
bandwidth. These modes arise from the hybridization of conventional
surface plasmons, supported by bulk free carriers, and collective
modes of carriers in the topological surface states. The ordinary
surface plasmon frequency is denoted by ±ωsurf

pl , and topological
surface states are characterized by the velocity v0

s .

[18], and the chiral Fermi arc surface state velocity [1–3].
Consequently, FAPs may also provide means to dynamically
probe the peculiar carrier kinematics of Weyl semimetals at
zero field [18,19].

We expect that FAPs can be realized in WSMs that break
time-reversal symmetry (TRS), such as candidate magnetic
WSMs [1–3,20–26]. FAPs in such materials provide a novel
intrinsic realization of hyperbolic plasmons that are tradi-
tionally associated with artificially engineered metamaterials
[27]. Previous studies have revealed a number of interesting
plasmonic phenomena, including nonreciprocity [28,29] and
signatures of the chiral anomaly [10,16,29–31] associated with
the collective behavior of carriers on the (closed) bulk Fermi
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surfaces of WSMs [32–34]. Here we aim to expose the new
collective phenomena that arise due to WSM chiral Fermi
arcs. In so doing, we adopt a phenomenological approach,
concentrating on the universal features of WSMs that are not
tied to a specific microscopic model.

II. COLLECTIVE CARRIER DYNAMICS

To begin, we examine collective charge carrier dynamics
in a 3D WSM in a semi-infinite slab geometry, occupying the
region z < 0, see Fig. 1(b). For concreteness, we consider a
model dispersion with two bulk Weyl nodes at zero energy, sit-
uated at points (0,±k∗,0) in the Brillouin zone (i.e., separated
along the ky direction) [35]. For each fixed value of ky with
|ky | < k∗, the two-dimensional dispersion ε2D(kx,kz; ky) is
gapped, with upper and lower bands featuring Chern numbers
−1 and +1, respectively. At the surface z = 0, this nontrivial
topology yields a branch of gapless chiral surface states for
each |ky | < k∗. When the Fermi energy is close to zero, the
filling of the chiral surface states is characterized by an open
segment Fermi surface—the “Fermi arc” (see Fig. 1(a), and
Refs. [1–3]). As we show, these Fermi arc carriers bring
dramatic new features to WSM surface plasmons.

To describe FAPs in the slab geometry, it is useful to
partition the particle density field n and the particle current
density field v into bulk and surface contributions. For
each Fourier mode with angular frequency ω, we write the
following:

n(r,ω) = nb(r,ω)�(−z) + ns(rs ,ω)δ(z),

v(r,ω) = vb(r,ω)�(−z) + vs(rs ,ω)δ(z). (1)

Here the s and b subscripts of ns,b and vs,b denote surface
and bulk contributions, respectively, and rs = (x,y) is the
two-dimensional coordinate on the surface z = 0. The surface
densities ns and vs account both for surface charges that may
build up from the motion of bulk-free carriers [36] and for the
behavior of carriers in the unconventional topological surface
states; vs is always oriented within the plane of the two-
dimensional surface, so that vz

s = 0. We note, parenthetically,
that in addition to the current described in Eq. (1), magnetic
systems also possess magnetization currents. These currents,
however, do not contribute to transport [37,38] and cannot
affect particle density since they are inherently divergence
free; they do not affect the FAP dispersion we focus on here.

We note that in accounting for n(r,ω), we assume smooth
density inhomogeneity (characterized by small wave vector q)
as well as low doping, q,kF � k∗. As a result, the dynamics
are dominated by Fermi arc carriers with momenta far from the
Weyl cones, with wave function profiles that are exponentially
localized near the surface [1,12]; since k∗ is anO(1) fraction of
inverse lattice constant, there is a large window of applicable
q,kF .

The bulk carrier density obeys the continuity relation

iωnb + ∇ · vb = 0, evb(r,ω) = σ (r,ω)[−∇φ(r,ω)], (2)

where σ (r,ω) ∝ �(−z) is the bulk conductivity tensor, φ is
the electric potential, and e = −|e| is the electron charge.
The conductivity σ (ω) includes an intrinsic anomalous Hall
component σH = σzx = −σxz, due to the Berry flux between

the Weyl nodes [18], and a longitudinal part σxx = σyy = σzz.
At low doping, σH is dominated by regions far from the Weyl
nodes; here we estimate σH = e2(2k∗)/h [18,39].

At the surface z = 0, the continuity relation for the surface
density picks up a source term arising from bulk currents
impinging on the surface:

iωns(rs ,ω) + ∇ · vs(rs ,ω) = ẑ · vb|0− . (3)

To arrive at Eq. (3), we have used Eq. (1) and the full
continuity equation, along with ∂z�(−z) = −δ(z). Plasmons
emerge from Eqs. (2) and (3) as self-sustained collective
oscillations, with the electric potential generated internally
by density fluctuations δn(r,ω) = n(r,ω) − n0. Here n0 is the
equilibrium electron density.

As in a conventional metal, bulk carriers (denoted M)
may pile up at a surface when the system is pushed out of
equilibrium, giving a surface density contribution ns = nM

s

[40]. In equilibrium, nM
s ≡ 0. Importantly, the associated

surface particle current density, vM
s , vanishes at linear order

in the deviation from equilibrium (see Appendix [35]). In the
linear regime, Eq. (3) together with the nonretarded Coulomb
interaction yields the familiar nondispersive surface plasmon
mode of a 3D metal [41].

For the WSM, in addition to the conventional surface
density nM

s , we must also account for the dynamics of carriers
in the topological surface states (denoted F ). We thus express
the total surface density as ns(rs ,t) = nM

s (rs ,t) + nF
s (rs ,t)

[40], where nF
s (rs ,t) is the Fermi arc surface state density

distribution [see Figs. 1(a) and 1(b)]. Here nF
s includes all

electrons in the topological surface states up to the Fermi arc
and is thus sensitive to details of the dispersion far below the
Fermi surface. However, the electrodynamic response only
depends on deviations from equilibrium, i.e., deformations of
the Fermi arc.

The topological surface states carry a finite (in-plane)
surface particle current density, analogous to the persistent
currents that flow in quantum Hall edge states. For a straight
Fermi arc with ky-independent dispersion, εs(kx,ky) = v0

s kx ,
the surface particle current density is proportional to nF

s and
oriented along x̂. Here v0

s is the velocity of the chiral surface
states on the surface z = 0; it has the same sign as σH [35].
For a more general topological surface state dispersion [5,6],
nonequilibrium deformations of the Fermi arc may also lead to
currents parallel to ŷ, similar to a conventional 2D system with
a closed Fermi surface. We account for Drude-like dynamics
along ŷ using a phenomenological Drude weight D [35] and
write:

vs(rs ,t) = [
v0

s n
F
s (rs ,t)

]
x̂ +

[ D
ieω

[−∂yφ(rs ,t)]

]
ŷ. (4)

Note thatD = 0 for a system with ky-independent surface state
dispersion.

We now analyze the surface density dynamics, Eq. (3). We
focus on the collisionless limit, ω � 1/τsurf , where τsurf is a
relaxation time characterizing the scattering between F and M

species on the surface. In this limit, nF
s and nM

s obey separate
continuity equations:

ieωnM
s + σxx∇zφ

∣∣
0− = 0

ieωnF
s + σzx∇xφ + e∇ · vs = 0. (5)
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The two fluids M and F are coupled by the Coulomb
interaction, encoded in φ(r,ω). For momenta very close
to the Weyl nodes, the F and M carriers are not sharply
distinguished. However, for k∗ � kF , and in the linear regime,
vs is dominated by F carriers far from the Weyl nodes where
the distinction is clear.

Notice that the surface density dynamics is explicitly
coupled to bulk currents in Eq. (5). In particular, σxx∇zφ|0−
captures the current density of bulk free carriers impinging on
the metal surface from z < 0. Similarly, σzx∇xφ accounts for
the fact that an in-plane electric field induces changes in the
topological surface state density, via anomalous Hall currents
associated with undergap carriers at momenta far from the
Weyl nodes.

III. FERMI ARC PLASMONS IN A WEYL SEMIMETAL

FAPs arise as surface-bound plane wave solutions to the
equations of motion (1)–(5), of the form δn,φ ∼ eiωt−iq·rs .
Here q = (qx,qy). Below we algebraically eliminate the
particle density and current density fields from the equations of
motion, obtaining a compact description of the coupled motion
of surface and bulk carriers in terms of φ(r,ω).

Away from the surface at z = 0, the Fourier modes φ̃q(z)
inside (<) and outside (>) the WSM obey the Poisson equation
(in the nonretarded limit):(

q2 − ∂2
z

)
φ̃<

q (z) = 4πe

κ
ñb,q(z),

(
q2 − ∂2

z

)
φ̃>

q (z) = 0, (6)

where q = |q|, and κ is the background dielectric constant
in the WSM (the region denoted > is vacuum); the ω

dependencies of φ̃q and ñb(z) are implicit. We eliminate
ñb,q in Eq. (6) using Eq. (2) and obtain solutions φ̃<

q (z) =
αqe

qz, φ̃>
q (z) = βqe

−qz. We note that for q � k∗, φ(z) falls
off much more slowly than the Fermi arc states, justifying our
neglect of their width.

To fully determine the plasmon potential φ̃q(z), we must
specify appropriate boundary conditions at the surface z = 0.
First, φ̃q(z) must be continuous at z = 0. Second, note that
FAPs involve a dynamical modulation of the surface charge
density, ens . As a result, the electric displacement field across
the surface exhibits a jump:

∂zφ̃q|0+ − κ∂zφ̃q|0− = −4πeδñs,q. (7)

Here we use δns = δnM
s + δnF

s , with n
χ
s (rs ,ω) = n

χ,(0)
s +

δn
χ
s (rs ,ω), where χ = {M,F }. Superscript (0) denotes the

equilibrium carrier densities. Note that there is no jump in
the displacement field in equilibrium.

To obtain a closed set of equations for the potential φ̃q(z),
we must eliminate δñs,q from Eq. (7). Using Eq. (5) with Eq. (4)
for a plane wave, we relate the surface density fluctuations to
the electric potential φ̃<

q :

δñχ
s,q = Gχ φ̃<

q , GM = −qσxx

ieω
, GF = qxσzx + D

ω
q2

y

e
(
ω − v0

s qx

) . (8)

Note that the chirality of the Fermi arc carriers is exhibited in
Eq. (8) through the pole in GF , which arises for a single value
of qx for a given ω.

FIG. 2. (a) Contour plots of the FAP dispersion for branch 1
in Fig. 1(c), obtained from Eq. (9). Wave vectors are scaled by
q0 = ωsurf

pl /v0
s . Fine dashed contours are hyperbolic and do not

close on themselves at large wave vectors. In a small frequency
interval near |ω| � ωsurf

pl , elliptical contours are found (bold yellow
dashed lines). The FAP group velocity is oriented transverse to the
constant frequency contours (black arrows). Along a given hyperbolic
frequency contour, the group velocity points along a single direction
for a large range of qy values, allowing for focused propagation of
plasmon waves. (b) Line cut of FAP dispersion for qy = 0. Parameters
used: dimensionless Drude weight D̃ = 6.0, see Eq. (10), and
dimensionless Hall conductivity σ̃H = 4πσH /[(κ + 1)ωsurf

pl ] = 2.0
(see text).

Using Eq. (8) in Eq. (7), and the explicit forms for φ̃>
q (z) and

φ̃<
q (z), we seek the values of q and ω such that the boundary

conditions on φ̃q and ∂zφ̃q are satisfied. This yields the FAP
dispersion relation:

(
ω − v0

s qx

)[κ + 1

κ
− ω2

pl

ω2

]
− 4π

κ

qx

q
σH − 4πDq2

y

κωq
= 0.

(9)

Here we have used 4πσxx/κ = ω2
pl/iω, valid in the collision-

less limit; ωpl is the bulk plasmon frequency.

IV. CHARACTERISTICS OF FERMI ARC PLASMONS

The roots of Eq. (9) yield the frequencies of Fermi arc
plasmons. We find three distinct branches of solutions (labeled
1, 2, and 3), as shown in Fig. 1(c) and Fig. 2. These branches
arise from the hybridization of conventional dispersionless sur-
face plasmons with the collective excitations in the topological
surface states. The hybridization is controlled by σH and D,
which couple the bulk and surface densities [see Eqs. (4) and
(5)]. We note that branch 3 is related to branch 1 via the
transformation ω → −ω and q → −q. However, at each q
there are three distinct solutions, associated with modes with
different velocities.

We note that the qualitative features of FAPs discussed here
do not depend on the specific parameter values; rather, they
arise from the defining features of WSMs. For illustration,
in plotting Fig. 1 and Fig. 2, we have used the physically
reasonable parameters σ̃H = 2.0, and D̃ = 6.0 [5,6,20]. For a
detailed discussion of ball park parameter value estimates see
Appendix [35].

In Fig. 2(a) we show a contour plot of the dispersion relation
of the FAP branch labeled 1 in Fig. 1(c). Interestingly, most
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of these contours are open and resemble hyperbolae: at large
|q|, the open contours asymptotically approach the line θ =
θ∞(ω̃), with

sin2 θ∞
cos θ∞

= − ω̃

D̃

(
1 − 1

ω̃2

)
, D̃ = 4πD

(κ + 1)v0
s ω

surf
pl

, (10)

where q = q (cos θ, sin θ ), ω̃ = ω/ωsurf
pl , and ωsurf

pl =
ωpl

√
κ/(κ + 1). Equation (10) was obtained by taking the

large |q| limit of Eq. (9). Since sin2 θ∞/ cos θ∞ is even under
θ∞ → −θ∞, there are two asymptotes, see Fig. 2(a).

The FAP velocity on a given branch j , and at a given
wave vector q, dω(j )/dq, is directed perpendicular to the
corresponding constant frequency contour at q [Fig. 2(a), black
arrows]. Due to their hyperbolic character, large wave vector
FAPs at a given frequency in Eq. (10) all propagate along
the specific direction v̂pl = | sin θ∞| x̂ − sgn[sin θ∞] cos θ∞ ŷ,
independent of |q| (for |q| � k∗ where our treatment is valid).
Consequently, these FAPs propagate as collimated beams.
Further, as allowed by broken TRS, hyperbolic FAP modes
are nonreciprocal: As shown in Fig. 2(a), the FAP velocity is
predominantly directed towards +x̂.

The asymptotic pitch θ∞ of each hyperbolic constant fre-
quency contour, and hence the direction v̂pl of collimated FAP
propagation, is controlled by the frequency ω, see Eq. (10).
Approaching the conventional surface plasmon frequency ωsurf

pl
from above, the right-hand side of Eq. (10) approaches zero
from below and the linear asymptotes bend towards −x̂:
θ∞ → ±π . Consequently, the FAP velocity v̂pl cants towards
ŷ, the direction perpendicular to the chiral surface state velocity
v0

s x̂, see Eq. (4). This behavior for ω � ωsurf
pl results from the

resonant hybridization of intra-Fermi arc oscillations with the
conventional metallic surface plasmon mode.

A further striking signature of the coupled bulk and surface
carrier dynamics of the WSM can be found in the FAP
dispersion for qy = 0 [see Fig. 2(b)], where the Drude weight
D drops out of Eq. (9). Analyzing the limits qx → 0± in
Eq. (9), we find a discontinuity in the FAP dispersion (within
branch 1) between qx → 0+ and qx → 0−:

ω
(1)
± =

√
[2πσH/(κ + 1)]2 + [

ωsurf
pl

]2 ± 2πσH

(κ + 1)
, (11)

where ω
(1)
± = ω(1)(qx → 0±,qy = 0). A similar splitting also

arises for branch 3. However, there is no splitting for branch
2 since ω(2)(qx = 0,qy = 0) = 0. For typical parameters (see
Fig. 2 and Ref. [35]), we expect the splitting to be in the
midinfrared.

The discontinuity in Eq. (11) arises from bulk anomalous
Hall currents directed into or out of the surface. These currents
are driven by the in-plane electric field associated with FAP
waves eiωt−iqxx that propagate along +x̂ (qx > 0) or −x̂ (qx <

0), respectively [28,29,42]. We note that retardation effects
[29] and finite sample thickness will smear the discontinuity
at very small qx [Fig. 2(b), gray region]. The splitting ω

(1)
+ −

ω
(1)
− is proportional to σH and thus provides the basis for a

dynamical measurement of the anomalous Hall conductivity
in WSMs. Interestingly, for small bulk densities, the role of
these anomalous Hall currents becomes dominant, and the FAP
frequency becomes insensitive to ωpl: ω

(1)
+ → 4πσH /(κ + 1).

In addition to the hyperbolicity discussed above, FAPs
with elliptic constant frequency contours also occur in small
frequency windows near ±ωsurf

pl , see yellow dashed lines in
Fig. 2(a). Focusing on the case ω > 0 (branch 1), closed
contours exist at frequency ω if there is a finite, positive value
of q that solves Eq. (9) for qy = 0, qx < 0. This condition is
realized for ω

(1)
− < ω < ωsurf

pl . Similar considerations hold for
branch 3.

V. DISCUSSION

In this work, our aim has been to expose the unique
phenomenology of surface plasmons arising from the coupled
dynamics of bulk and topological surface state carriers in Weyl
semimetals. The hyperbolic character of FAPs can be probed,
e.g., via scanning near-field optical microscopy (SNOM)
[43,44]. On the surface of a WSM, the near-field tip may
launch a pair of collimated beams along the two directions
of v̂pl consistent with the applied excitation frequency; the
propagation is biased along the direction of the chiral velocity,
v0

s x̂. In contrast, in hyperbolic materials with TRS, collimated
plasmon beams are launched in fours [45,46], with reflection
symmetry in x and y.

Before closing, we briefly outline the material charac-
teristics that favor FAP observation. For example, plasmon
excitations with energies in the bulk interband particle-hole
continuum are damped by electron-hole pair creation. Hence
it is desirable to have a small surface plasmon frequency ωsurf

pl
(around which the FAP characteristics are most pronounced),
which is below the interband threshold. Additionally, since
ωsurf

pl is directly determined by total carrier density, whereas the
interband pair creation threshold is determined by the Fermi
energy relative to the Weyl nodes, WSMs with low carrier
densities, but with moderately high Fermi energy, are favored.
In particular, these considerations seem to favor WSMs with
only a few pairs of Weyl nodes [26].

The twin hyperbolic and chiral character of FAPs may
yield new photonic tools such as an intrinsically nonreciprocal
Purcell enhancement of spontaneous emission for emitters
placed close to a WSM surface. Along with the prospects
of using FAPs as dynamical probes of the peculiar features
of WSMs, these opportunities make the search for optimal
materials for realizing FAPs, and detailed material-specific
modeling of FAP characteristics, important directions for
future exploration.
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APPENDIX

A. Vanishing bulk metallic contribution to surface velocity

In an ordinary metal with no topological surface states,
an excess surface density nM

s (ω) may accumulate when the
metal is pushed out of equilibrium. This surface charge
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layer may host a surface current density evM
s = σM

s (−∇φ),
where σM

s is the surface conductivity associated with the
bulk metallic carriers accumulated on the surface. Taking a
simple Drude model for the longitudinal surface conductivity,
we write σM

s = nM
s e2/(miω). Here m is the effective mass

of the carriers. Writing nM
s = nM,(0)

s + δnM
s and noting that,

in equilibrium, nM,(0)
s = 0, we find σM

s ∝ δnM
s . Similarly,

because φ(r,ω) = e
∫

U (r,r′)δn(r′,ω)dr′ is generated by the
plasmon’s density inhomogeneity, it also depends directly on
δn. [Here U (r,r′) is the Coulomb kernel.] As a result, the
surface velocity vM

s supported by bulk carriers accumulated
at the surface goes as (δn)2. Hence, to linear order in δn, the
surface current vs , Eq. (4) of the main text, is supported solely
by the Fermi arc surface state carriers.

B. Velocity density of topological surface states

1. Chiral velocity sign and bulk-edge correspondence

Here we resolve the sign of the chiral velocity v0
s , Eq. (4)

of the main text, associated with the topological surface states.
Consider a potentialV that confines WSM carriers to the region
z < 0. This confining potential produces a force in the −ẑ
direction, so that e(−∂zV) ∝ −ẑ. Next we note that besides
confining the carriers, V may also give rise to an anomalous
Hall current σxz(−∂zV). Due to the bulk-edge correspondence,
the undergap anomalous Hall currents and edge currents from
topological surface states move in the same direction. As a
result, the surface velocity density satisfies

sgn
(
v0

s

) = sgn(−σxz/e
2) = sgn(σH ). (A1)

Why is there a minus sign in the middle expression? The
confining electric field points towards −(1/e)ẑ, giving an
electric current in the direction sgn(−σxz/e)x̂. Further, the
velocity and electrical current are related by another factor of
e, giving the factor of 1/e2. Hence the sign of v0

s is independent
of the sign of the carrier charge, e. In the last expression
we used σH = σzx = −σxz. Note that on the opposite surface
the confining force would point in the +ẑ direction, yielding
an opposite sign for the chiral velocity on that surface:
sgn(v0,opp

s ) = sgn(−σH ).

2. Drude model for Fermi arc ŷ-direction velocity density

The topological surface states of the WSM are characterized
by a chiral velocity, oriented in the x̂ direction (i.e., the
direction perpendicular to the k-space line connecting the
bulk Weyl nodes). Additionally, for a generic topological
surface state dispersion, a nonequilibrium Fermi arc carrier
distribution may carry a velocity density in the ŷ direction,
parallel to the line connecting the bulk Weyl nodes. The
precise features of these y currents depend on the details
of the topological surface state dispersion and the scattering
mechanisms on the surface. However, we note that the carriers
may move in both the +ŷ and −ŷ directions, and at equilibrium
(for zero electric field), the velocity density in the ŷ direction
vanishes, v(0)

s,y = 0. Hence, we use a simple phenomenological
Drude model to capture the y currents induced by in-plane
electric fields:

evs
y = σ s

yyEy = D
iω + γ

Ey, (A2)

where Ey = −∂yφ is the electric field in the ŷ direction and
γ is the transport scattering rate along the surface. In the
collisionless limit, ω � γ , the conductivity reduces to σ s

yy →
D/iω.

We note that, unlike the response to y fields described
above, the chiral surface states do not possess a Drude type
response to x-directed electric fields. While the application of
an electric field may impart momentum to the carriers along
x̂, the linear, chiral dispersion along x̂ ensures that, to leading
order (at fixed density), there is no change to the x component
of velocity density. However, as described in the main text,
an x-directed electric field causes the topological surface state
density to change due to impinging currents brought about via
the bulk Hall conductivity. Thus the velocity density vs on the
surface responds to electric fields in the x̂ and ŷ directions very
differently, as captured by Eq. (4) of the main text.

C. FAPs in WSMs with multiple Weyl node pairs

Fermi arcs also exist in WSMs with multiple bulk Weyl
node pairs, labeled by an index i = 1,2, . . . . Extending the
two-fluid model used in the main text, we can associate bulk
and surface densities nb,i and n

χ

s,i with each (where χ =
{M,F } labels the bulk free carrier and topological surface state
contributions to the surface density, respectively). In the same
limit ωτsurf � 1 considered in the main text, the fields nF

s,i

and nM
s,i obey distinct equations of motion, similar to Eq. (5).

Surface plasmons arising from the collective dynamics of these
carrier densities can be obtained in the same fashion as detailed
in the main text, with all components coupled through the
common electrical potential φ. For simplicity, throughout this
section we take κ = 1.

To illustrate this approach, we confine ourselves to a system
with two pairs of Weyl nodes, i = 1,2. We take all four Weyl
nodes to be situated in the kx-ky plane, at ±d‖

i (i.e., d‖
i · ẑ = 0).

Each pair of Weyl nodes contributes a bulk Hall conductivity
σH,i with sign (and orientation) consistent with that described
in Eq. (A1); we will assume that the longitudinal conductivity
σ̃xx is the same for all Weyl nodes. Here σ̃xx is the contribution
to the total longitudinal conductivity coming from a single
Weyl node pair, i. Finally, the associated Fermi arcs for each
pair of Weyl nodes possess a surface particle current density
given by

vs,i(rs) = [
v

(0)
s,i n

F
s,i(rs)

]̂
d⊥

i −
[D0

iω
(̂d‖

i · ∇)φ(rs)

]̂
d‖

i . (A3)

Here d̂‖
i and d̂⊥

i are unit vectors (in the x-y plane) that
describe the directions parallel and perpendicular to the vector
connecting the ith pair of Weyl nodes, respectively, with
d̂⊥

i = d̂‖
i × ẑ.D0 describes the Drude weight for a single Fermi

arc, i.
Similar to Eq. (8) of the main text, the total accumulated

surface density can be written in terms of the electric potential,
δñs = ∑

i,χ Gχ

i φ̃<, with

GM
i = −qσ̃xx

ieω
, GF

i = σH,i (̂d⊥
i · q) + D0

ω
(̂d‖

i · q)2

e
(
ω − v

(0)
s,i d̂⊥

i · q
) . (A4)

The collective modes (surface plasmons) are found by seeking
the combinations of ω and q such that the boundary conditions
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of continuous φ̃q and of the jump in the electric displacement
field can be satisfied, as described above Eq. (9) in the main
text. Thus we must solve the generalized secular equation

−2q + 4πe
∑
i,χ

Gχ

i = 0. (A5)

To derive the dispersion relation, analogous to Eq. (9), we first
write 4πσ̃xx/κ = ω2

pl/(2iω), where ωpl is the bulk plasmon
frequency of the WSM. Here, the factor of 2 in the denominator
on the right-hand side reflects the fact that, in this example, the
two Weyl node pairs each contribute half the total density of
bulk free carriers. Collecting terms with factors (ω − v

(0)
s,i d̂⊥

i ·
q) and (2 − ω2

pl/ω
2), we obtain:

2
(
ω − v

(0)
s,1d̂⊥

1 · q
) (

ω − v
(0)
s,2d̂⊥

2 · q
) [

1 −
(
ωsurf

pl

)2

ω2

]
+ M1 + M2 = 0, (A6)

where ωsurf
pl = ωpl/

√
2 (taking κ = 1), and the hybridization amplitudes are given by

M1 = (
ω − v

(0)
s,2d̂⊥

2 · q
)[−4πσH,1(q̂ · d̂⊥

1 ) − 4πD0|q|
ω

(q̂ · d̂‖
1)2

]
,

M2 = (
ω − v

(0)
s,1d̂⊥

1 · q
)[−4πσH,2(q̂ · d̂⊥

2 ) − 4πD0|q|
ω

(q̂ · d̂‖
2)2

]
. (A7)

We note that for nonvanishing M1,2, the collective oscillations in the chiral branches (ω − v
(0)
s,i d̂⊥

i · q) = 0 and the conventional
surface plasmon mode described by [1 − (ωsurf

pl )2/ω2] = 0 will hybridize, giving rise to FAPs. The structure of the resulting
plasmon bands will depend on the magnitudes of the hybridization amplitudes, as well as the positions and orientations of the
pairs of Weyl nodes (as encoded in the {di}).

Seeking hyperbolicity, we note that, at large q, the terms going as O(q2) dominate Eq. (A6). Using this large q limit, we
determine the asymptotic contours via:

2
(
v

(0)
s,1d̂⊥

1 · q
)(

v
(0)
s,2d̂⊥

2 · q
)[

1 −
(
ωsurf

pl

)2

ω2

]
= −4πD0|q|

ω

[
v

(0)
s,2d̂⊥

2 · q(q̂ · d̂‖
1)2 + v

(0)
s,1d̂⊥

1 · q(q̂ · d̂‖
2)2

]
. (A8)

As a sanity check, we note that for a WSM with two pairs
of Weyl nodes that point in the same direction, d‖

1 = d‖
2

[and v
(0)
s,1 = v

(0)
s,2 = v0], Eq. (A8) yields the same hyperbolae

as described in the main text (setting κ = 1 and recalling
D0 = D/2).

We now illustrate the contours of FAPs in a situation with
multiple (2) pairs of Weyl nodes, with d‖

1 and d‖
2 pointing

in different directions. For demonstration, we take a simple
model with d‖

1 along x̂ and d‖
2 along ŷ:

d‖
1 = x̂, d‖

2 = ŷ,

d⊥
1 = d‖

1 × ẑ = −ŷ, d⊥
2 = d‖

2 × ẑ = x̂, (A9)

and v
(0)
s,1 = v

(0)
s,2 = v. Substituting the relations in Eq. (A9)

into Eq. (A8), we find open constant frequency contours that
asymptotically approach the lines θ = θ∞(ω̃) at large q, with

cos3θ∞ − sin3θ∞
cosθ∞sinθ∞

= ω̃

D̃0

[
1 − 1

ω̃2

]
, (A10)

where ω̃ = ω/ωsurf
pl . Here D̃0 = 2πD0/(vωsurf

pl ), as in the main
text (with κ = 1). A complex pattern of asymptotic contour
lines θ = θ∞(ω̃) arises from the hybridization of ordinary
surface plasmons modes with collective oscillations in the
Fermi arc surface states and from hybridization between the
collective modes of each of the separate branches of Fermi arc
surface states (associated with the Weyl node pairs i = 1,2).

D. Parameter estimates for D̃ and σ̃H

In order to illustrate the properties of Fermi arc plasmons,
we have used parameters σ̃H = 2.0, and D̃ = 6.0 in the figures
of the main text. We emphasize that the qualitative features of
FAPs do not depend on the specific values chosen. Experiments
probing TRS breaking Weyl semimetal candidates have been
intensifying. As a result, instead of concentrating on a single
candidate compound, we have estimated physically reasonable
parameter values ranges for D̃ and σ̃H , which we discuss
below.

In arriving at these ball-park values we have used the
background dielectric constant κ ∼ 10 as reported in Ref. [20]
for the candidate Weyl semimetal Eu2Ir2O7; we note that
other Weyl semimetal candidates are also expected to have
high background dielectric constants. Next, we noted that
σH = e2(2k∗)/h (see main text) with the inter-Weyl node
separation taking values that range approximately 2k∗ ∼
0.02−0.1 A−1 [5,6]. We also adopted a simple Drude model for
D ∼ n̄e2/m to capture the response of the topological surface
state carriers to in-plane electric fields, in the general case
where the Fermi arc is curved (see Sec.B). Here n̄ is a typical
surface density between the Weyl nodes. In our subsequent
estimate we have also obtained the effective collective mass
of the electrons using m ∼ EF /v̄2, with EF the Fermi
energy.

Taking h̄ωsurf
pl ∼ 20−60 meV [20], a typical y velocity on

the surface v̄ ∼ 108 cm s−1, and EF ∼ 100 meV, we arrive at
order of magnitude estimates of σ̃H ∼ 1−10, and D̃ ∼ 5−50.
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