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Abstract 

We hypothesized an association between auditory stimulus structure and activity in the brain that underlies 

infant auditory preference. In a within-infant design, we assessed brain activity to female and male infant 

directed relative to adult directed speech in 4-month-old infants using fNIRS. Results are compatible with the 

hypothesis that enhanced frontal brain activation, specifically in prefrontal cortex that is involved in emotion 

and reward, is evoked selectively by infant directed speech produced by female voices and may serve as a 

neuronal substrate for attention to and preference for “motherese” displayed by infants.  

 

Keywords: fNIRS; IDS; ADS; female voice; male voice 
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1. Introduction 

 Infants do not command adequate skills to fully comprehend speech, but infants still respond to 

speech directed to them. Indeed, adults commonly speak to infants in a special register called “Infant 

Directed Speech” (IDS; also known as “baby talk”) that is distinguished from Adult Directed Speech (ADS). 

IDS has unique vocal and acoustic characteristics and is thought to promote attention, cognition, and social 

interaction. In this fNIRS study, we examined and compared brain responses in infants’ left and right frontal 

cortical hemispheres to female versus male voices speaking in IDS and ADS. In the next sections, we briefly 

review studies that describe differences between IDS and ADS, motherese versus fatherese,  infant 

preferences for IDS,  fNIRS, and hemispheric development in infancy. 

1.1 IDS-ADS 

Compared to ADS, IDS has higher pitch (ƒ0), a larger pitch range (ƒ0 range), slower tempo (longer 

phoneme duration), and more rhythm (Fernald et al., 1989; Kaplan et al., 1995; Soderstrom, 2007; Song et 

al., 2010). IDS can be found in a wide variety of languages, such as English, German, Italian, Japanese, 

Korean, Sri Lankan Tamil, Tagalog, and Thai (Inoue et al., 2011; Narayan & McDermott, 2016; Sulpizio et 

al., 2017), even if cross-language comparisons show IDS is subject to some cross-linguistic adaptations 

(Fernald et al., 1989). The exaggerated acoustics of IDS are thought to make it more attractive to infant 

listeners than ADS (Fernald & Kuhl, 1987; Kitamura & Lam, 2009; Papoušek et al., 1991; Trainor et al., 

2000): Young infants, even newborns, prefer listening to IDS over ADS (Cooper & Aslin, 1990; Fernald, 

1985; Werker & Mcleod, 1989; Pegg et al., 1992). IDS is also believed to aid infant language learning by 

facilitating speech segmentation (Thiessen et al., 2005) and amplifying lexical and grammatical structure 

(Fernald & Mazzie, 1991; Nelson et al., 1989). Infants whose mothers use such exaggerations in speech 

show correspondingly better speech discrimination (Liu et al., 2003). Finally, IDS emerges in the vocal 

expression of emotion and is a likely pathway to emotional bonding (Saint-Georges et al., 2013; Trainor et 

al., 2000). Infants use IDS as a cue to select appropriate social partners, attending preferentially to an 

interlocutor who uses IDS (Schachner & Hannon, 2011). Thus, IDS stands at the core of the infant's 

perceptual, linguistic, emotional, and social development.  

1.2. Motherese versus Fatherese 

Two principal vocal properties are intensity (loudness) and frequency (pitch). The larynx (voice box 

which holds the vocal folds) is more descended in males, so when the vocal folds generate a sound wave 

(via vibration), the wavelength is longer (because it has further to travel along the vocal tract), generating 

lower pitch. In general, male voices (MV) fall at an octave lower than female voices (FV). In consequence, 

mothers speaking in IDS (“motherese”) and fathers speaking in IDS (“fatherese”) share several features, 



4 
 

 

albeit with some differences. Gergely, Faragó, and Topál (2017) noted that mothers exaggerate vowels more 

than do fathers when speaking to infants, and the pitch characteristics of motherese are stable across infant 

development (see also Amano et al., 2006). Additionally, reading and conversing in fatherese involves 

different patterns of prosodic modification from motherese (Shute & Wheldall, 1989). Others have reported 

that motherese also utilizes a wider pitch (f0) range than fatherese (Fernald et al., 1989; but see Warren-

Leubecker & Bohannon,1984).  

Mothers and fathers also vary in caregiving behaviors (Murry et al., 2013; Pleck, 2010). Because 

mothers’ and fathers’ parenting separately predict children’s language and cognitive skills (Tamis-LeMonda 

et al., 2004), motherese and fatherese could have independent effects on child development. However, 

mothers are more frequently the primary caregiver and principal socializer of infants (Bornstein, 2015; 

Greenfield et al., 2006). Moreover, Johnson, Caskey, Rand, Tucker, & Vohr (2014) found that female adults 

respond to infant vocalizations more than do male adults. Differences between female-infant and male-infant 

interactions underscore that females may provide vocal cues, sociality, and language input different from 

males.  

For their part, infants respond to IDS differently depending on the gender of the speaker. Niwano & 

Sugai (2003) reported that infants respond at a greater rate to motherese than fatherese. Infants become 

familiar with their mother’s voice while in utero and hear vocalizations from their mothers most frequently. 

Not surprisingly, infants prefer their own mothers’ IDS (Fernald, 1985; Grieser & Kuhl, 1988), and newborns 

prefer female voices (their mothers and strangers) over male voices (their fathers and strangers), suggesting 

that prenatal experience might also influence voice preferences (Brazelton, 1978; DeCasper & Prescott, 

1984). Furthermore, infants show advantages in matching female faces to voices in contrast to matching 

male faces to voices (Richoz et al., 2017). Thus, the infant brain may respond differently to IDS vocalized by 

females and males. 

1.3 Infant Preferences 

What is the basis of infants’ preference for IDS, especially when produced by a female voice? The 

present study attempts to answer the question why infant attention to IDS exceeds infant attention to ADS. 

One hypothesis suggests that attention in infants is mediated by the amount of excitation of neural tissue in 

the brain (Bornstein, 1978; Haith, 1980).  It has long been recognized that neurons, and neuronal network 

aggregations, respond preferentially to different specific types of stimulation (Hubel & Wiesel, 1962). When 

the appropriate stimulus or “trigger feature” for a given neuron or network is presented in its receptive field, 

the rate of neural electrical activity increases. Stimuli that deviate from the neuron’s preferred feature 
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structure produce lower rates of neural firing or may even inhibit neuronal excitation from its spontaneous 

level. This relation between specific stimulation and central nervous system activity is today unchallenged.  

 

1.4. fNIRS 

 Advances in behavioral testing techniques have permitted strong inferences about infant perception 

(Bornstein et al., 2014). However, the neural underpinnings of infants’ developing capacities have remained 

elusive, in large measure because of limited methods available to study brain development in human infants. 

Functional near-infrared spectroscopy (fNIRS) is a viable tool for measuring brain activation in awake, 

engaged infants (Jobsis, 1977). fNIRS is noninvasive and nonionizing and so is safe to use with infants 

repeatedly and for extended periods of time. fNIRS also has good temporal resolution: Brain signals can be 

routinely observed with a temporal sampling resolution up to 0.01 s. Furthermore, behavioral measures of 

infant looking time and head turning may show similar responses to different stimuli, whereas neuroimaging 

data may reveal different patterns of cortical responses to those same stimuli, suggesting that stimuli are 

actually perceived or processed differently, such as with mobile objects and checkerboard patterns in infants 

as young as 3 months old (Watanabe et al., 2008). fNIRS neuroimaging technology can also localize 

function in the brain. A longitudinal fNIRS study revealed that localized patterns of activation in the temporal 

and frontal cortex to visual and auditory social stimuli arise across the first 2 years of life (Lloyd-Fox et al., 

2016).  

In fNIRS, near-infrared light is projected through the scalp and the skull into the brain, and the intensity 

of the light that is diffusely refracted is recorded. Neural activation in response to a stimulus results in 

increased blood flow to the area activated. Change in blood flow leads to an increase in blood volume and 

can be assessed by measuring local concentrations of oxyhemoglobin (Oxy-Hb) and deoxyhemoglobin 

(DeOxy-Hb). Typically, during cortical activation, local concentrations of Oxy-Hb increase and those of 

DeOxy-Hb decrease (Chance et al., 1993; Hoshi & Tamura, 1993; Kato et al., 1993; Villringer et al., 1993). 

The low tissue absorption of near-infrared light between 650 and 950 nm is utilized to capitalize on the 

changes in local concentrations of the two (Boas et al., 2004; Sato, et al., 2004; Strangman et al., 2003). 

Light intensity modulation during stimulus presentation (here IDS) is compared with that during a baseline in 

which no stimulus or a control stimulus (here ADS) is presented. Change in brain activation relative to the 

baseline or control provides information about the hemodynamic response to the stimulus. A linear relation 

obtains between hemodynamics and neural activity (Gratton et al., 2001). 

Although behavioral responses of infants to IDS have been assessed, much less is known about 

whether IDS produced by females versus males prompts different patterns of activation in the infant brain. 
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fNIRS allows us to expand our understanding of IDS and early development of neural areas associated with 

language and emotion by tracking the changes in infant cerebral blood flow in response to different auditory 

and visual stimuli (Lloyd-Fox et al., 2010). Using fNIRS, Saito et al. (2007) found that infants demonstrate 

greater increases in oxygenated blood flow to the frontal area when presented with IDS than ADS produced 

by female voices, suggesting that IDS and ADS produce different levels of activation in frontal brain. Their 

study also supports the ideas that infants can differentiate between the two types of speech registers and 

might prefer IDS over ADS. However, to date and to our knowledge, there has been no study that answers 

the question of whether there are differences in hemodynamic activity elicited by IDS relative to ADS spoken 

by female versus male speakers. 

1.4. Hemispheric Development and Functionality in Infants 

 Speech-based computation of linguistic processing is generally lateralized to left (temporal, parietal, 

and frontal) cortices in adults (Binder et al., 2000; Hickok & Poeppel, 2000; Boatman, 2004; Indefrey & 

Levelt, 2004; Scott & Wise, 2004). Some evidence suggests that neural specialization in left temporal areas 

for language processing is also present early or develops quickly over the first years of life. Speech played to 

newborns tends to elicit greater left-hemisphere than right-hemisphere activation (Dehaene-Lambertz et al., 

2006); newborns also hemodynamically respond differently to repetitive syllabic sequences (/gamama/) 

compared to non-repetitive ones (/gamada/), suggesting their preparedness to respond differently to sounds 

with higher probabilities of occurrence, and left temporal and frontal areas appear to govern this sensitivity 

(Gervain et al., 2008).   However, a collection of neuroimaging studies has reported significant right frontal 

activity in the brain when participants were tasked with detecting emotional prosody in audio recordings 

(Buchanan et al., 2000; George et al., 1996; Imaizumi et al., 1997). The right hemisphere, specifically the 

right prefrontal cortex, has a role in judging variations in pitch of speech in adults (Zatorre et al., 1992) and 

the tempoparietal region of the right hemisphere in infants as young as 3 months (Homae, Watanabe, 

Nakano, Asakawa, & Taga, 2006). None of these studies focused on IDS.  However, voice-sensitive 

activation in 3- to 7-month-olds in a right-hemisphere location that is similar to that described in the adult 

brain suggests that the infant temporal cortex shows some right-hemispheric functional specialization which 

is congruent with right hemisphere voice sensitivity in adulthood (Blasi et al., 2011).  Because IDS has a 

different pitch and pitch range from ADS, we were interested in determining if there would be a difference in 

hemispheric sensitivity to female and male IDS in the infant brain. 

1.5 Study Goal 

 The primary aim of the current study was to analyze hemodynamic activity in the frontal lobes of 

young infants in response to hearing female and male IDS relative to ADS. We sought to determine if infants 
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selectively prefer motherese or fatherese via hemodynamic activity in the brain. To achieve our objectives, 

we presented awake infants of 4-5 months with audio recordings of female and male strangers reading the 

same story in IDS and ADS. We chose to study hemodynamic responses of the frontal area, specifically the 

lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2), as these regions are implicated in 

emotions, social cognition, and affective processing in young children (Brink et al., 2011) and adults (Bludau 

et al., 2014). In a mature brain, the frontopolar area is connected to the superior temporal sulcus and gyrus 

which are associated with the interpretation of social signals, including emotions of others (Boschin et al., 

2015; Wicker, Perrett, Baron-Cohen, & Decety, 2003).  Moreover, the oribitofrontal cortex has extensive 

connections with the limbic system, including the amygdala, giving the frontal area a vital role in emotion 

regulation (Banks et al., 2007; Rempel-Clower, 2007). Saito et al. (2007) proposed that hemodynamic 

activation of the frontal area by IDS reflects that IDS is a source of emotional stimulation for infants. 

Therefore, we sought to examine if the infant brain utilizes the same areas as more developed brains in 

processing social stimuli that may hold emotional value.  

We predicted that a relatively greater increase in Oxy-Hb would be seen in response to IDS relative 

to ADS produced by female speakers in comparison to IDS relative to ADS produced by male speakers. 

Because lateralization is an ongoing process in infancy, we assessed but made no predictions about 

hemispheric differences. 

 

2. Materials and methods 

2.1 Participants 

A total of 16 normally developing 4-5 month infants participated. Seven infants were excluded from 

the analysis following refusal to wear the NIRS probe or failure to obtain more than one useable block of 

trials due to excessive motion artifacts. This attrition rate is within the normal range for published NIRS 

studies with awake infants (e.g., Lloyd-Fox et al., 2011; Naoi et al., 2012); on average, about 40% of infants 

tested in NIRS are excluded from data analysis because of failure to accommodate to the apparatus or meet 

processing criteria (Lloyd-Fox et al., 2010). The final sample included 9 infants, aged 4 months (range = 122-

154 days), a sample size effectively used in previously published fully within-subjects NIRS experiments with 

infants (e.g., Kusaka et al., 2004; Minagawa-Kawai et al., 2011). All parents provided written informed 

consent prior to the study, which was approved by the Ethics Committee at the Course of Medical and 

Dental Sciences in Nagasaki University, Japan.  

2.2 Stimuli 
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The voices of two female and two male parents provided stimuli. The voices were extracted from the 

voice database of the Department of Neurobiology and Behavior, Nagasaki University, which contains 

recordings of mothers and fathers reading stories either to their baby (IDS sample) or to an adult (ADS 

sample). The stimuli involved the first sentences of Iiokao, a Japanese story for infants. The two female and 

two male voices were selected to maximize contrast in acoustic features in IDS and ADS (Fernald et al. 

1989). Acoustic measures were calculated using PRAAT (Boersma & Weenik, 2012). Mean pitch (Hz) for 

female voices (~223 Hz) was ~116 Hz greater than for male voices (~106 Hz) in IDS and ~219 Hz vs. ~141 

Hz or a difference of ~78 Hz for ADS. The pitch range (Hz) for female voices (~200 Hz) was ~112 Hz greater 

than for male voices (~88 Hz) in IDS and ~406 Hz vs. ~391 Hz for a difference of ~15 Hz for ADS. Mean 

intensity of stimuli was equalized between 66 and 69dB by adjusting the energies of the sounds, and 

speaking rates did not differ by more than .04 words/sec. 

2.3 Procedure 

The experiment took place in the baby lab of the Department of Neurobiology and Behavior, 

Nagasaki University. Infants were tested while seated in their mother's lap. After the placement of NIRS 

probes on the infant's frontal sites, infants participated in two sessions: female voice (FV) and male voice 

(MV). Stimuli were presented through speakers 1 m front of the infant. Each infant listened to only one FV 

and one MV. In the FV session, 15 s of female ADS were presented as the baseline and 20 s of IDS were 

presented as the target (for the use of ADS as baseline, see Naoi et al., 2012). With trial lengths of 20 s, 

most infants can successfully complete 6-10 trials, which is consistent with that reported by other 

researchers (Lloyd-Fox et al., 2010). MV sessions were identical to FV sessions. The two sessions were 

repeated 4 times in counterbalanced order across infants. All experiments were videorecorded to assess the 

infant movements. 

2.4 fNIRS measurement and analysis. Changes in Oxy-Hb and Deoxy-Hb hemogloblin 

concentrations for blood in the frontal sites of the brain were measured using a 2-ch NIRS system (NIRO-

200, Hamamatsu Photonics, Japan). The sampling rate was 6 Hz. The NIRS probes, consisting of 2 sets of 

one detector and one emitter (distanced ~4 cm from one other) with the emission probe emitting near-

infrared light with wavelengths of approximately 735 nm and 850 nm. The probes were attached at FP1 and 

FP2, respectively, according to the international 10–20 EEG electrode system; these sites cover left and 

right sites of the frontal lobes.  
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 First, trials with large motion artifacts were excluded. Infants averaged 3.2 (SD = 0.9) and 3.3 (SD = 

0.7) blocks in the FV and MV sessions, respectively (Wilcoxon test, W = 39.5, p >.9). Thus, analyses were 

perfomed on a total of 59 observations (out of a maximum of 72; i.e., 9 participants x 2 sessions (FV, MV) x 

4 blocks).  Across infants, we collected a total of 30 and 29 blocks for FV and MV, respectively. The Oxy-Hb 

and DeOxy-Hb concentrations of each block were averaged and smoothed with a 5-s moving average (Naoi 

et al., 2012) that was calculated for each session and for each channel. A baseline correction was performed 

by subtracting activation in the baseline (ADS) block from that in the target (IDS) block. That is, we obtained 

an IDS relative to ADS measure by calculating the difference in Oxy-Hb to IDS relative to ADS for FV and 

MV sessions; after correction, we compared infants' brain activation to IDS produced in the FV session with 

IDS produced in the MV session. We focused on changes in the Oxy-Hb concentration because it is the 

more sensitive parameter of the hemodynamic response (e.g., Strangman et al., 2003). Deoxy-Hb was also 

analyzed. We interpret a hemodynamic change relative to the control (Lloyd-Fox et al., 2009). The 

advantage of this approach is that patterns of relative activation are directly assessed. The disadvantage is 

loss of information about patterns of activation that are common to the two events. Finally, corrected data 

belonging to the same condition were averaged. 

3. Results 

Changes in Oxy-Hb and Deoxy-HB were analyzed by means of two-way ANOVAs, with voice type 

(FV vs. MV) and hemisphere (right vs. left) as within-infant factors. The ANOVA on the Oxy-HB change 

showed a main effect of voice type, F (1, 8) = 5.61, p = .04, η2 = .11: Infants exhibited a significantly larger 

response to FVs than to MVs. This result is illustrated in Figure 1. Neither the main effect of hemisphere, nor 

the Voice type by Hemisphere interaction was significant (both Fs < 1). No effects emerged in the ANOVA of 

Deoxy-Hb changes (voice type: F <1; Figure 1; hemisphere: F <1; Hemisphere x Voice type: F (1, 8) = 3.62, 

p >.09). 

< Figure 1 About here> 
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4. Discussion 

 We found that frontal areas of young infants’ brains show an increase in Oxy-Hb (but not in Deoxy-

Hb) for IDS relative to ADS when produced by female voices relative to male voices. Female voiced IDS 

relative to ADS activated brains of infants more than male voiced IDS relative to ADS and did so equally in 

the two hemispheres. 

Our results suggest that gender-specific characteristics of speech contribute to the hemodynamic 

response in infants listening to speech. Prior to birth, fetuses hear their mother’s voice most frequently. 

Considering that most infants spend the majority of their time with their mothers or other female figures (e.g., 

babysitter, nanny, grandmother, nurse), they are regularly exposed to more female IDS. As a result, infants 

are often more familiar with female gendered voices and behaviors, which may facilitate social interactions 

more than male voices. Infants also respond with greater Oxy-Hb changes in the frontal cortex when 

listening to IDS relative to ADS of their mothers than female strangers (Hepper et al., 1992; Naoi et al., 

2012).  It is important to note that infants prefer female strangers’ IDS behaviorally over female strangers’ 

ADS (Cooper & Aslin, 1990; Fernald, 1985). Therefore, our results suggest that, in general, female IDS 

relative to ADS evokes more powerful neural responses than male IDS, although the hemodynamic 

response to IDS vocalized by an unfamiliar female may be less powerful than that evoked by IDS vocalized 

by their mother.   

Soderstrom (2007) hypothesized that, because infants are exposed to their father’s (male) voice less 

than to their mother’s (female) voice, preference for the male voice may develop more slowly than for the 

female voice. Even postnatal exposure to male voices may not be enough to evoke similar female-male 

levels of hemodynamic change in infants. DeCasper and Fifer (1980) reported that newborns prefer their 

mother’s voice over an unfamiliar female’s voice, and DeCasper and Prescott (1984) found that newborns 

with significant postnatal experience to their father’s voice did not prefer their father’s voice when they 

listened to recordings of their father and an unfamiliar male reading a story, even though they were able to 

differentiate the two.  

Intrauterine auditory experiences, as well as prenatal and postnatal bonding between mother and child, 

may contribute to infants’ relatively heightened sensitivity to the female voice in the frontal lobe. Unique 

mother-child interactions offer infant consistent, warm, and rewarding socioemotional experiences, which 

provide input to the orbitofrontal cortex, our recording site. Schore (1997) emphasized that affective 

experiences during the first 2 years of life between infant and caregiver influence neurodevelopment of the 
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prefrontal cortex, including the orbitofrontal area. As such, our results further support Saito et al. (2007) in 

that female IDS may offer positive socioemotional stimulation to infants.  

We observed no difference in hemispheric sensitivity. It is possible that cerebral lateralization has not 

yet progressed far in 4-month-old infants. In parallel, early electrophysiological work identified waveforms 

associated with language comprehension present in children with relatively high levels of word 

comprehension, but absent in children with relatively little evidence of word comprehension (Mills et al., 

1993, 1997); the topological distribution of this component changed with development from a bilateral 

distribution to a distribution that was more prominent over the left frontal cortex. ERP studies confirm that the 

bias toward left-hemisphere processing for language develops over infancy (Cheour-Luhtanen et al., 1995; 

Kuhl, 1998; Molfese et al., 1991), and there is a greater left than right hemispheric response over frontal and 

temporal cortex (to known words) in infants aged 19 to 22 months (Conboy & Mills, 2006).  

4.1 Limitations and Future Directions 

fNIRS is unsuitable for investigation of neural activation in structures deeper than about 1 cm below 

the surface of the brain. As fNIRS measures only from surface cortical areas, we do not have information 

about activation in subcortical areas that might be part of a processing circuit. Moreover, our study used a 

small sample with associated limitations on power to detect small effects (Yu, Cheah, Hart, & Yang, 2018), 

yet we found an effect of female relative to male IDS relative to ADS. Additionally, our audiorecordings of 

IDS derived from a voice database, rather than from each infant’s actual mother and father. Naoi et al. 

(2012) reported greater activation of the frontal area using fNIRS when infants were presented with IDS of 

their own mothers than IDS of female strangers. It is possible that greater hemodynamic responses could 

have resulted had we used recordings of each infant’s actual parents. Future research directions might also 

include administering female and male IDS relative to ADS at various points across the first year of infancy 

to determine when hemispheric sensitivity to language appears in the frontal area or lateralizes. IDS has 

unique prosodic characteristics that could involve and engage the prefrontal cortex in unique ways. 

4.2 Conclusions 

 fNIRS has been implemented in a variety of ways to analyze changes in Oxy-Hb and Deoxy-Hb in 

response to auditory and visual stimuli in infants. fNIRS produces imaging results consistent with other 

imaging techniques (i.e., fMRI and PET) used simultaneously (Huppert et al., 2006; Kleinschmidt et al., 

1996; Strangman et al., 2002; Villringer & Chance, 1997), providing evidence that fNIRS offers a reliable and 

valid measure of brain activity. The use of fNIRS in infant studies allows us to delve more deeply into the 
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functioning and organization of the developing brain. For example, fNIRS has allowed investigators to 

pinpoint cortical responses in the temporal lobe within the first half year of life that may be associated with 

the later development of autism (Lloyd-Fox et al., 2017). Here, we used fNIRS to ascertain if infants show 

differential hemodynamic responses or levels of activation when presented with female and male IDS 

relative to ADS. We focused on the prefrontal cortex, specifically the orbitofrontal cortex, for its associations 

with emotion regulation and affective experiences. In accord with our hypothesis, we found that IDS relative 

to ADS of female voices evokes a greater change in Oxy-Hb concentration than IDS relative to ADS of male 

voices in the frontal brain area of infants, but no difference in hemispheric sensitivity to female or male 

voices at 4 months.  
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Figure 1.  Mean relative values of oxygenated (a) and deoxygenated (b) hemoglobin (averaged for channels) 
for IDS relative to ADS produced by female and male voices. Error bars indicate standard errors. *p < .05. 
 
 
 

 
 
 
 
 
 
 
 


