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Spontaneous and superfluid chiral edge states in exciton-polariton condensates
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We present a scheme of interaction-induced topological band structures based on the spin anisotropy of exciton-
polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of
topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse
magnetic splitting). Under nonresonant pumping we find that an initially topologically trivial system undergoes a
topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation.
Under either nonresonant or resonant coherent pumping we find that it is also possible to engineer a topological
dispersion that is linear in wave vector—a property associated with polariton superfluidity.
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I. INTRODUCTION

The hybridization of light and matter in the form of
exciton-polaritons in microcavities has led to a new kind
of quantum fluid [1], well known for its ability to develop
coherence spontaneously as a Bose-Einstein condensate [2,3]
and flow without friction as a superfluid [4,5], even at room
temperature [6]. Furthermore, it has been shown that exciton-
polaritons can be manipulated by highly tunable optically
induced potentials [7,8]. These allow introducing a spatial
structure in an otherwise homogeneous system, which has
given access to a variety of fundamental effects, including: the
gating [9,10] and routing [11,12] of polariton flow, the trapping
of polariton superfluids [13,14], the formation of patterns [15],
the breaking of chiral symmetry [16], and the exposure of
exceptional points [17].

Taking inspiration from the field of topological photonics
[18], recent theoretical works have considered engineering
topological polariton band structures [19–22]. These are
characterized by the formation of chiral edge states, at the
boundaries between areas with different topology, which
exhibit unidirectional propagation and an absence of backscat-
tering even in the presence of defects or disorder. Due to these
properties, chiral edge states are highly relevant to the field of
polaritonics, which seeks robust mechanisms of propagating
fields between individual information processing elements
to allow for cascadable systems [23–25]. The presence of
Kerr-type interactions between polaritons would also allow
the development of a nonlinear topological photonics, where
schemes for solitons forming in the chiral edge modes have
also appeared in recent theoretical works [26–28].

Previous schemes of topological polaritons have been
based on three ingredients. First, a periodic potential is
required to introduce the band structure on which to impose
nontrivial topology. This has implicated the need for hard
engineering of the polariton potential, achieved by, e.g.,
etching micropillar arrays [29]. Second, so that edge states
propagate in only one direction, time-reversal symmetry
should be broken, which implies the application of a magnetic
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field. Third, a significant amount of spin-orbit coupling is
needed, which implies strong transverse electric-transverse
magnetic (TE-TM) splitting. While large TE-TM splitting
(on the order of tenths of milli-electronvolts) was achieved in
samples from decades ago [30], microcavities have evolved
over the years to reduce this splitting (the quality factor is
optimum when the cavity mode frequency is at the center of
the stop band, where the TE-TM splitting is smallest). Even
though the aforementioned three ingredients can be achieved
in principle, we will show that actually none of them are
essential for generating topological polaritons!

We will consider a planar microcavity (with no etching),
corresponding to an initially topologically trivial system, and
illumination by a spatially patterned optical field, strong
enough to place polaritons in a nonlinear regime. We find that
the spin anisotropy of polariton-polariton interactions induces
an effective spin-orbit coupling and breaking of time-reversal
symmetry. In contrast to the trivial time-reversal symmetry
breaking of typical dissipative systems, this form allows
the creation of nontrivial topology. Remarkably, since these
effects depend on the polariton interaction energy (blueshift),
we obtain topological gaps that exceed typical strengths of
disorder. The effect is readily observable making use of
polarization filtering to separate the injected condensate and
the topological behavior.

Aside from the interest that topological photonics brings
to polaritonics, there is also a question of whether or
not exciton-polaritons can bring anything new to the field
of topological photonics? It is well established that under
nonresonant pumping polaritons must achieve their coherence
spontaneously. Consequently the topological behavior that
arises from an initially trivial system is also developed
spontaneously, where a random choice of the system chirality
determines in which way chiral edge states will propagate.
Under either nonresonant or resonant pumping we also find
that it is possible to obtain a topological dispersion that is
linear in the wave vector (in the case of resonant pumping this
however requires an additional potential). A linear dispersion
is generally considered a sufficient condition for polariton
superfluidity [1,31,32]. As far as we know, these are unique
features that do not appear in other topological photonic
systems.
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II. THEORETICAL MODEL

We begin by defining the wave functions of polaritons in the
x and y linear in-plane polarizations as ψx and ψy , respectively.
Their evolution is determined by the polarization dependent
driven-dissipative Gross-Pitaevskii equations [32]

ih̄
∂ψx,y

∂t
=

[
Ex,y − h̄2

2m
∇2 − i�x,y

2
+ V (x) + iP (x)

+ (U0 − i�NL)(|ψx |2 + |ψy |2)

]
ψx,y

−U1
(|ψx,y |2ψx,y + ψ2

y,xψ
∗
x,y

) + Fx,y(x)e−iωpt .

(1)

Here the equations are written in a general form, allowing
for different energies (polarization splitting) of the x and y

components, Ex and Ey , respectively, and different lifetimes,
�x and �y , respectively. The effective polariton mass m and
potential V (x) are polarization independent. We account for the
potential term here for generality, being interested in both spa-
tially homogeneous and etched microcavities. The nonlinear
polariton-polariton interaction constants are related to those
in the spinor basis [33] by U0 = α1 and U1 = (α1 − α2)/2. It
is well established that typically α2 is negative, while α1 is
positive and that |α2| � |α1| [34,35]. The nonlinear loss terms
�NL are most relevant when considering nonresonant pumping
[36]. Experiments on spin bifurcations, where a polariton
condensate suddenly becomes macroscopically spin polarized
under linear polarized excitation, have been fitted assuming
that the nonlinear loss rate is polarization independent and
that �x �= �y and Ex �= Ey [37].

III. EXCITATION SCHEMES

In the following we will consider different mechanisms
of driving the system: (1) nonresonant excitation, for which
Fx,y(x) = 0 and the potential term should be supplemented
by a pump-induced shift [38], V (x) = gP (x), where g is a
dimensionless constant; and (2) resonant x-linearly polarized
excitation, for which �NL ≈ 0, P (x) = 0, Fy(x) = 0, and ωp is
the pump frequency. In either case we can expect the polariton
condensate to be polarized in the x direction. Under resonant
pumping this is obvious due to direct injection of x-polarized
polaritons. Under nonresonant pumping, polariton conden-
sates are also typically linearly polarized in microcavities
where there is a polarization splitting [39]. This is modeled
by allowing �x �= �y . If �x < �y , then the condensation
threshold belongs to an x-polarized condensate.

For simplicity, we now consider the case U0 = U1 =
α, which is consistent with experimental measurements in
Refs. [40,41]. In this limit driving of the x polarization
does not excite significantly the y polarization. Setting ψy =
0 decouples the equation for evolution of the x-polarized
component:

ih̄
∂ψx

∂t
=

(
Ex − h̄2

2m
∇2 − i�x

2
+ V (x) + iP (x)

− i�NL|ψx |2
)

ψx + Fx(x)e−iωpt . (2)

Note that the U0 and U1 dependent terms involving |ψx |2 have
been canceled.

We will take the driving fields to have a lattice type
structure, where Fx,y(x) and Px,y(x) are periodic in the x

direction with periodicity a. It is then appropriate to take a

as the natural unit of length and ε = h̄2/(2ma2) as the natural
unit of energy. With these choices, Eq. (2) can be rescaled to
take the form

i
∂ψ ′

x

∂t ′
=

(
E′

x − h̄ω′
p − ∇′2 − i�′

x

2
+ V ′(x) + iP ′(x)

− i|ψ ′
x |2

)
ψ ′

x + F ′
x(x), (3)

where ψ ′
x = √

�NL/εψx exp(−iωpt), t ′ = εt/h̄, x ′ = x/a,
y ′ = y/a, F ′

x = Fx

√
�NL/ε3/2, and all other primed param-

eters are scaled by ε (e.g., E′
x,y = Ex,y/ε). By rescaling the

equations we show that the results are reproducible over a large
parameter range.

IV. DISPERSION

While the effective mass characterizes the dispersion of
polaritons in the low-density regime, under the build-up
of significant polariton populations the dispersion becomes
renormalized [31,42–44]. Let us focus our attention on the
dispersion of y-polarized polaritons, which evolve under the
scaled evolution equation:

i
∂ψ ′

y

∂t ′
=

(
E′

y − h̄ω′
p − ∇′2 − i�′

y

2
+ V ′(x) + iP ′(x)

− i|ψ ′
x |2 + α′|ψ ′

x |2
)

ψ ′
y − α′ψ ′2

x ψ ′∗
y , (4)

where α′|ψ ′
x |2 = α|ψx |2/ε (or equivalently α′ = α/�NL) and

we continue working in the regime where the occupation of
ψy is small.

Due to the last term in Eq. (4) the dispersion of the
y-polarized polaritons should be calculated by substituting
a form ψ ′

y = Akx
(x)eiωt + Bkx

(x)e−iω∗t , where Akx
(x) and

Bkx
(x) are the wave-vector dependent Bloch envelope func-

tions accounting for the periodicity a. We note that the problem
is not PT symmetric and that the eigenvalues are complex. The
positive and negative frequency components are coupled upon
substitution into Eq. (4) and we obtain two coupled equations,
which can be written in matrix form:(

E′ −α′ψ ′2
x

α′ψ ′∗2
x −E′∗

)(
Akx

(x)
Bkx

(x)

)
= h̄ω′

(
Akx

(x)
Bkx

(x)

)
, (5)

where

E′ = −∇′2 + E′
y − E′

p − i�′
y

2
+ (α′ − i)|ψ ′

x |2

+V ′(x) + iP ′(x). (6)

Here, E′
p is the energy of the ψ ′

x polaritons either given by
the frequency of the pump (resonant case) or the chemical
potential of the ψ ′

x condensate (nonresonant case).
The complex eigenvalues h̄ω′ of Eq. (5) determine the

energy spectrum. Having written the equations for generic
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FIG. 1. A kagome lattice of Gaussian pump spots (gray) in the
nonresonant excitation scheme. We choose the lattice to be periodic
in the x direction but finite in the y direction enforced with a hard
wall potential. Tuning the width and distance between the spots we
find that a stable vortex lattice forms spontaneously with periodic
arrangement of charge ±2 (red) and ∓1 (blue) vortices. Here we set
a = 16 μm and FWHM of the spots to σ ′ = 0.31.

driving of the system, either nonresonant or resonant, we will
focus separately on these two cases in the following.

V. NONRESONANT PUMPING

For a given lattice to generate a topological dispersion
(in the opposite polarization component), we require it to
contain plaquettes of nonzero flux. We find that the kagome
lattice of vortices is the simplest lattice compatible with
both nonresonant pumping and topological dispersion. Several
experimental [45,46] and theoretical studies [36,47] have
considered the generation of vortex-antivortex lattices, their
stability [48], and the phase locking of vortices [49,50].
Here we find that nonresonant excitation with an intensity
pattern corresponding to a kagome lattice spontaneously forms
a lattice of vortices in phase (see Fig. 1 for a graphical
representation of the excitation scheme and subsequent vortex
formation). Setting �y > �x and slowly ramping the pump
intensity produces the x-polarized condensate.

In contrast to chiral pumping schemes [16], our pumping
field is nonchiral, such that the handedness of the vortices
(that is, the sign of their winding number) is spontaneously
chosen. All properties derived from the handedness of the
vortices, such as an emergent nontrivial topology, are thus
also spontaneously developed.

Given ψx , the calculation of the dispersion of the y-
polarized field follows from Eq. (5) and application of the
Bloch theory. We consider a strip geometry which is infinite
in the x direction, but with finite size in the y direction. In
Fig. 2(a) we plot the real part of the eigenvalues h̄ω′ belonging
only to stable states characterized by Im(ω) � 0 (zero or
negative Lyapunov components). We find a clear signature
of topologically protected edges states in the ψy component
separated by bulk bands (blue). Here green lines correspond
to the upper edge of the condensate and red to the lower edge.
The coloring changes continuously to blue as the localization
of the state goes away from the edges into the bulk. We point

FIG. 2. (a) Bogoliubov spectrum of the nonresonantly driven
polariton condensate in a strip geometry. The rotation of the vortex
lattice in the condensate sets the topology of different bulk bands
(blue) which are bridged by green (red) chiral edge states on the
upper (lower) edge. The coloring changes continuously to blue as the
localization of the state goes away from the edges into the bulk. (b)
Density of the condensate vortex lattice in the upper half the of strip.
(c) Phase of the condensate. Red double arrows indicate charge 2
vortices, whereas blue single arrows charge −1 vortices. (d) Change
in the band gaps from (a) as a function of deviation in spin interaction
strength (U ′

1 = α′ − 	U ′
1). Blue crosses are lower band gap and red

circles upper band gap. Black dashed and dotted lines are a guide
to the eye. Parameters were set to: a = 16 μm, m = 5 × 10−5m0,
�′

x = 22, �′
y = 33, Ex,y = 0, α′ = 8.8, g = 0.6, and P ′ ≈ 88, where

P ′ is the pump profile maximum. E′
p ≈ 83 is set by the chemical

potential of the ψx condensate.

out that it is important that the linewidth corresponding to the
imaginary part is smaller than the topological bandwidth in
the real part. Figures 2(b) and 2(c) shows the steady state in
the ψx component.

The observed topological band gap has a size on the order of
30ε. In real units, a typical polariton mass m = 5 × 10−5m0,
where m0 is the mass of a free electron, and a typical lattice
constant a = 16 μm sets an energy scale ε = 3 μeV. The
typical topological gap size is then on the order of 0.09 meV,
which exceeds the decay rate and typical strengths of disorder
in modern samples. The experimental observation of the band
gap requires α′|ψ ′

x |2 ≈ 450. Typically this would correspond
to a 1.35 meV nonlinear shift, which is routinely observed in
experiments [8–10]. Another requirement would be a polariton
linewidth smaller than the band gap size, i.e., less than 30ε =
0.09 meV. Such linewidths are also readily available in modern
microcavity samples [8–10,51], and even linewidths in the
μeV range have been reported [52]. In Fig. 2(d) we show the
dependence of the the band gaps size (Eb) from Fig. 2(a),
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FIG. 3. Another example of the Bogoliubov spectrum of the non-
resonantly driven polariton condensate in a strip geometry showing
possible superfluid edge states connecting the bands. Parameters were
set to: a = 16 μm, m = 5 × 10−5m0, �′

x = 22, �′
y = 28, E′

x = 0,
E′

y = 7, α′ = 4.8, g = 0.6, and P ′ ≈ 88, where P ′ is the pump
profile maximum. E′

p ≈ 83 is set by the chemical potential of the
ψx condensate.

measured at k′
x = 0, as a function of interaction strength U ′

1 =
α′ − 	U ′

1. The deviation 	U ′
1 is set as positive corresponding

to |α2| � |α1|. Blue crosses correspond to the lower band gap
and red circles the upper band gap. One sees that the gaps
display different behavior with the lower one closing fast and
the upper opening slowly, indicating that the topology of the
system is not necessarily lost when U0 �= U1.

The presence of a hard-wall (Dirichlet) boundary at the
edges of the strip in the y ′ direction causes a static deformation
of the x component of the condensate at the edges but
does not destabilize the lattice. In the current scheme where
ψ ′

y ∼ 0 the vortex lattice is stable over a long time scale
(t ∼ 102 ns) with zero net interactions due to the cancellation
between the U0 and U1 terms allowing us to freely play
with α when resolving the Bogoliubov dispersion. We note
that ψ ′

y ∼ 0 is only stable as long as fluctuations within it
will not grow. This can be controlled by tuning the splitting
E′

x,y and/or �′
x,y . In the case of an imbalance between U0

and U1, we have also found stable vortex-antivortex lattices,
however there are limitations to their intensity as the vortices
can become unstable with increasing pumping power [49].

In order to stress the variety of edge states possible in
the nonresonantly driven system, we show a nearly linear
edge state dispersion connecting the bulk bands (see Fig. 3).
It has been pointed out by several theoretical works in
exciton-polariton systems that, due to the Landau criterion,
a linear in k dispersion corresponds to the phenomenon of
superfluidity [1,31,32,53]. The phenomenon was reported by
several experimental works [4–6], but never in the presence of
a nontrivial topology. The traditional method of distinguishing

superfluidity in polariton systems, which is based on observing
a suppression of scattering with a defect, might not be consid-
ered sufficient in our system as the topological protection of
the chiral edge state already prevents scattering with disorder.
We expect that topological polariton superfluids should be
characterized by their linear dispersion.

VI. RESONANT PUMPING

Under resonant pumping, the phase of an incident optical
field can be imprinted onto the polariton field, giving a more
direct control. We consider a stationary polariton field in the
x polarization of the form

ψx(x) = ψ0e
−iωpt

6∑
n=1

ei(kn.x+φn), (7)

where ψ0 defines the amplitude; the wave vectors are k1,2 =
k0(±√

3/2,1/2), k3,4 = k0(0, ± 1), and k5,6 = k0(±√
3/2, −

1/2), where k0 = 4π/(
√

3a); and the phase factors are
φ1,2,3,4 = 0 and φ5,6 = ±2π/3. This form corresponds to a
kagome vortex-antivortex, with the same phenomenology as
shown in Fig. 1.

Under resonant pumping, the terms P (x) and �NL are
typically neglected in the modeling of exciton-polariton
systems since it is common to assume that there is no reservoir
of hot excitons (as excitons with energy above the pump energy
are unlikely to be excited) and consequently there is no gain
saturation or nonlinear loss [31,32]. Under such conditions, it
is straightforward to show that the field ψx(x) can be imprinted
by a specific choice of the pumping field, which is given by
substituting the form of Eq. (7) into Eq. (3) and solving for
Fx(x). In practice, the dispersion term has little effect and the
pumping field will take an analogous form to ψx(x), that is,
it will be composed primarily by six different wave vector
components [54].

The dispersion of the y component is then obtained from
application of the Bloch theory, giving the result shown in
Fig. 4. As before, we only plot the real part of the dispersion

FIG. 4. (a) Optically induced topological dispersion under reso-
nant coherent pumping. (b) Density of the condensate vortex lattice
in the upper half the of strip. (c) Phase of the condensate. Red
double arrows indicate charge 2 vortices, whereas blue single arrows
charge −1 vortices. Parameters: �′

x,y = 0.5, E′
x,y = 0, α′|ψ ′

x |2 = 160,
E′

p = 41, V ′ = 0, P (x) = 0, �NL = 0.
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FIG. 5. Optically induced topological dispersion under resonant
coherent pumping and kagome lattice potential V (x). The ψx

condensate is the same as in Figs. 4(b) and 4(c). Parameters: �′
x,y =

0.5, E′
x,y = 0, α′|ψ ′

x |2 = 96, E′
p = 0, V ′(x) = −α′|ψx |2, P (x) = 0,

�NL = 0.

corresponding to stable states. One sees a clear gap in the
dispersion, where bulk states do not appear. The gap is
topological, being bridged by a pair of chiral edge states that
are localized on opposite edges of the strip.

This scheme may appear similar to that considered in
Ref. [55], which was based on a similar equation to Eq. (5),
but the context and interpretation is very different. Indeed we
rely on interactions to introduce a form of synthetic magnetism
(artificial gauge field) [56], but we are making strong use of
the polarization dependence of the interactions, which was
not considered before in this context to our knowledge. By
exciting a field with one linear polarization (x), we find that
topological behavior appears in the opposite linear polarization
(y). It should be noted that the dispersion of y-polarized
polaritons can be distinguished from the more highly populated
x polarization using polarization filtering. In addition, since
the problem has been effectively divided into two parts, that
is, solution of the x-polarized field from Eq. (3), and the

dispersion of the y-polarized field from Eq. (5), it becomes
easier to find parameters that give a topological band gap.
In particular the dispersion shown in Fig. 4 depends on the
scaled parameter α′|ψ ′

x |2 = 160 and shows a topological gap
of typical size ∼ 5ε.

While topological behavior is obtained in the case V (x) =
0, it is still interesting to consider the case when there is
an additional potential patterning of the microcavity. For
simplicity, we assume that the potential is etched also in the
form of a kagome lattice V ′(x) = −α′|ψx |2. We find that this
allows the dispersion of the y-polarized component to not only
be topological but, again, also linear in k, as shown in Fig. 5,
and similar to the nonresonant case in Fig. 3. While a specific
potential is needed for the resonant superfluid case, we stress
that the topological behavior is compatible with different po-
tential shapes (including zero potential as illustrated in Fig. 4).

VII. CONCLUSION

We have introduced schemes of optically induced topolog-
ical polaritons, characterized by the formation of chiral edge
states, making use of the action of a condensate in one linear
polarization on the dispersion of polaritons in the other. The
scheme is compatible with unetched planar microcavities and
does not require any significant spin-orbit coupling (TE-TM
splitting) in the sample or applied magnetic field.

Under nonresonant excitation, the phase orientation of
a vortex-antivortex (kagome) lattice is spontaneously cho-
sen and responsible for the topological behavior. Exciton-
polaritons thus exhibit a unique feature among topological
photonic systems, where an initially topologically trivial state
undergoes a spontaneous topological phase transition with
spontaneously chosen chirality. Under resonant excitation,
the topological dispersion can be obtained, also with no
external potential present. Special cases for both nonresonant
and resonant excitation schemes reveal edge state dispersions
linear in k, representative of a polariton superfluid.
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