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Noncollinear magnetic ordering in the Shastry-Sutherland Kondo lattice model:
Insulating regime and the role of Dzyaloshinskii-Moriya interaction
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We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in
a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and
their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including
a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions.
Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these
novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the
minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity
of such structures can be tuned continually by applying an external magnetic field. This is the first part in a
series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on
the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are
crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated
magnets with separate spin and charge degrees of freedom.
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I. INTRODUCTION

The study of strongly interacting quantum many-body sys-
tems with independent spin and charge degrees of freedom on
frustrated lattices has attracted heightened interest in the recent
past. The interplay between geometric frustration and strong
interaction between itinerant electrons and localized moments
in these systems results in novel quantum phases and phenom-
ena that are not observed in their nonfrustrated counterparts
[1–8]. These competing interactions, together with crystal
electric fields and coupling to the itinerant electrons, often sta-
bilize noncoplanar ordering of these moments [1,9–12]. When
an electron moves through such background spin textures, it
picks up a Berry phase which underlies several novel transport
phenomena such as the topological (or geometric) Hall effect
and unconventional magnetoresistive properties [13–16]. The
interest in these systems is driven by the desire both to under-
stand the underlying mechanism driving the novel phenomena
and to control their emergence by external tuning fields in
order to harness their unique functionalities for practical
applications.

In this paper, we study the Kondo lattice model (KLM)
on the geometrically frustrated Shastry-Sutherland lattice
(SSL) with classical spins where the standard (antiferromag-
netic) Heisenberg interaction between the local moments is
supplemented by an additional Dzyaloshinskii-Moriya (DM)
interaction. The SSL is a paradigmatic geometry to study the
effects of competing interactions in the presence of frustration
[17]. The Shastry-Sutherland Kondo lattice model (SS-KLM)
has previously been studied with S = 1/2 local moments
[18–21], where quantum fluctuations of the local moments
play a crucial role in determining the character of the ground
state. In the present study, we revisit this model, but with
the local moments treated as classical spins. This is not
simply of academic interest. There exists a complete family
of rare-earth tetraborides (RB4, R=Tm, Er, Ho, Dy), quasi-
two-dimensional metallic magnets in which the magnetic-

moment-carrying rare-earth ions are arranged in a SSL in
the layers. Due to strong spin-orbit coupling, the rare-earth
ions in these compounds carry large magnetic moments and,
consequently, can be treated as classical spins. They act as
effective local fields that interact strongly with the electron spin
[22–29]. In this study our goal is to construct a minimal model
where topologically nontrivial chiral magnetic phases can be
realized from physically relevant interactions and investigate
their evolution in an external magnetic field. In particular, we
explore the role of different components of the DM interaction
in stabilizing different aspects of the local-moment configura-
tions. What are the minimal DM vectors required to stabilize a
tunable noncoplanar spin configuration? How does an applied
field affect the noncoplanarity of the spin configuration? Does
the nature of the chiral spin state change in the presence of
an external field? These are some of the questions we address
in this work. Our results reveal that multiple noncoplanar spin
arrangements (characterized by different values of the scalar
spin chirality) with long-range magnetic order are stabilized
over an extended range of parameters. Not surprisingly, we
find that DM interactions play a crucial role in stabilizing
chiral spin configurations. Furthermore, we are able to tune
the noncoplanarity (equivalently, the topological character) of
the spin textures, changing and suppressing the net chirality,
by applying an external magnetic field. This is in contrast to
most previous studies in which the noncoplanar textures of
the local moments were imposed by extraneous factors (e.g.,
crystal electric field in pyrochlores) and as such cannot be
changed easily. In an accompanying paper [30], we follow this
up by studying the role of thermal fluctuations, frustration,
and magnetic field in stabilizing the noncollinear magnetic
states and phase transitions at one-quarter and three-quarter
filling of itinerant electrons, for which the ground state is
metallic. Moreover, we found out that unlike the insulating
case (discussed in this paper), the noncollinear textures emerge
for metallic densities without a DM interaction between the
local moments.

2469-9950/2017/96(22)/224401(7) 224401-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.224401


MUNIR SHAHZAD AND PINAKI SENGUPTA PHYSICAL REVIEW B 96, 224401 (2017)

II. MODEL

The Hamiltonian describing the SS-KLM with additional
DM interactions is given by

Ĥ = Ĥe + Ĥc, (1)

where Ĥe represents the electronic Hamiltonian,

Ĥe = −
∑

〈i,j〉,σ
tij (c†iσ cjσ + H.c.) − JK

∑
i

Si · si . (2)

The first term is the kinetic energy of the itinerant electrons;
〈i,j 〉 represents the Shastry-Sutherland bonds (viz., first
neighbors along the principal axes and the second neighbors
along the alternate diagonals), and tij are the transfer integrals
for these bonds. The second term is the on-site Kondo-like
interaction between the spin of the itinerant electrons si and
localized moments Si . The conduction electron spin is defined
as si = c

†
i,ασ αβci,β , where σ αβ is the vector element of the usual

Pauli matrices. As mentioned in the Introduction, we treat the
localized spins as classical vectors with unit length (|Si | = 1).
In this limit, the sign of JK (ferromagnetic or antiferromag-
netic) is irrelevant since eigenstates that correspond to different
signs are related by a global gauge transformation. The states
of the localized spins are specified by the angular components
as Si = (sin θi cos φi, sin θi sin φi, cos θi). The second part of
the Hamiltonian (1) represents the classical localized spin part:

Ĥc = Ĥex + ĤDM + ĤH , (3)

where Ĥex expresses the classical Heisenberg interaction
between the localized spins, Ĥex = ∑

〈i,j〉 Jij Si · Sj . ĤDM

describes the DM interaction, ĤDM = ∑
〈i,j〉 Dij · (Si × Sj ),

where Dij is the DM vector which is determined by the crystal
symmetry of the lattice. The precise values (directions and
magnitude) of DM vectors will depend on the details of the
crystal symmetry of each compound. In this study, we choose a
generic set of DM vectors and identify the minimal interactions
that are necessary for stabilizing noncoplanar spin textures.

FIG. 1. DM interaction defined on the unit cell of SSL where the
direction of the arrow from site i to site j indicates the direction
of cross product Si × Sj . The red arrows represent the parallel
components of D, while � and ⊗ represent the out-of-plane and
into-plane components of D. Blue arrows indicate the components of
D′ on the diagonal bonds. The directions of x, y, and z axes are also
indicated.

The explicit form of the DM vectors on the different bonds is
given in the caption of Fig. 1. The last term in the Hamiltonian
(3) is the Zeeman term for the localized spins due to an external
(longitudinal) magnetic field, ĤH = −hz

∑
i S

z
i . A Zeeman

term for the itinerant electrons is not included explicitly
since the instantaneous spin orientation of the electrons is
determined completely by the local moments in the large JK

limit that we consider in this study. Hereafter, the parameters
with primes represent the interactions on diagonal bonds, while
the unprimed ones refer to the axial bonds.

III. METHOD AND OBSERVABLES

To investigate the above model, we use an unbiased Monte
Carlo (MC) method that has been used previously in the
study of similar models [5,31–33]. A brief review of this
method is presented here closely following Refs. [34,35].
The dynamics of large localized moments of the rare-earth
ions is slow compared to itinerant electrons, and accordingly,
we can decouple their dynamics from that of the itinerant
electrons. While studying the latter, we treat the local moments
as static classical fields at each site. The electronic part of
the Hamiltonian is bilinear in fermionic operators. Using the
single-electron basis, Ĥe can be represented as a 2N × 2N
matrix for a fixed configuration of classical localized spins,
where N is the number of sites.

In order to explore the thermodynamic properties, we write
the partition function for the whole system by taking two
traces,

Z = TrSTrI exp{−β[Ĥe({xr}) − μn̂e]} exp[−β(Ĥc)],

(4)

where TrS and TrI represent the traces over the classical
localized spins denoted by {xr} and the itinerant-electron
degrees of freedom, respectively. The trace over itinerant-
electron degrees of freedom can easily be calculated by the
numerical diagonalization of Hamiltonian matrix Ĥe for a
fixed configuration of localized spins {xr},

TrI exp{−β[Ĥe({xr}) − μn̂e]}
=

∏
ν

(1 + exp{−β[εν({xr}) − μ]}), (5)

where μ is the chemical potential, β = 1/kBT is the inverse
temperature, and n̂e = 1

2N

∑
iσ c

†
iσ ciσ is the number density

operator for conduction electrons. The partition function for
the whole system then takes the form

Z = TrS exp[−Seff({xr}) − β(Ĥc)]. (6)

The corresponding effective action is Seff({xr}) = ∑
ν F(y),

where F(y) = − ln[1 + exp{−β(y − μ)}]. The grand-
canonical trace over localized spin degrees of freedom is
evaluated by sampling the spin configuration space using
a MC method. The probability distribution for a particular
configuration of localized spins {xr} can be written as

P({xr}) ∝ exp[−Seff({xr}) − β(Ĥc)]. (7)

The thermodynamic quantities that depend on localized
spins are calculated by the thermal averages of spin configu-
rations, while the quantities that are associated with itinerant
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electrons are calculated from the eigenvalues and eigenfunc-
tions of Ĥe({xr}). We start the simulations with a random
configuration of localized spins {xr} and calculate Boltzmann
action Seff({xr}) for this configuration. The spin configuration
is updated via the Metropolis algorithm based on the change
in the effective actions of the configurations resulting from
random updates, 	Seff = Seff({x ′

r}) − Seff({xr}). To identify
magnetic orderings we calculate the magnetization per unit
site as well as the spin structure factor, which is the Fourier
transform of the spin-spin correlation function,

S(q) = 1

N

∑
i,j

〈Si · Sj 〉 exp[iq · rij ], (8)

where rij is the position vector from the ith to jth site and
〈·〉 represents the thermal average over the grand-canonical
ensemble. In order to describe the evolution of the ground
state under the influence of an external magnetic field, we
calculate the magnetization per site, defined as

m =
√√√√〈(∑

i Si

N

)2
〉
. (9)

To elucidate the difference between topological trivial and
nontrivial states we evaluate the local scalar spin chirality. On
a triangle the chirality is defined as

χ� = Si · (Sj × Sk). (10)

We use the total static spin chirality χ = 1
Nu

∑
� χ� (where

the sum is over all the triangles formed on the plaquettes with
diagonal bonds and Nu is the number of unit cells of SSL) as a
quantitative measure of chiral order. This quantity is zero for
collinear or coplanar magnetic states such as ferromagnetic
(FM), antiferromagnetic (AFM), and pure flux states, whereas
it is nonzero for noncoplanar configurations, e.g., all-out and
three-in–one-out states observed in pyrochlores. Finally, as
an additional characterization of the chiral nature of the spin
configurations, we measure the circulation of the in-plane
components around each square plaquette as fm = ∑

� Si ·
rij , where Si is the spin at site i and rij are the vectors
connecting sites i and j around the square plaquette in a
counterclockwise direction. A nonzero circulation identifies
a flux configuration of the local moments.

IV. RESULTS

Simulations of the Hamiltonian (1) are performed in
lattices of dimension L × L, with L = 8–16, over a wide
range of parameters. For smaller lattices, we use the exact-
diagonalization Monte Carlo (ED-MC) method where the full
Hamiltonian is diagonalized to calculate the effective action
for each MC step. For the larger lattices, we use the traveling
cluster approximation (TCA) method [36–39]: a 6 × 6 cluster
of SSL is used to calculate the effective action for one MC
sweep. Once the system is equilibrated, the thermal averages
are evaluated by diagonalizing the full Hamiltonian matrix. To
avoid the severe freezing of the localized spins that happens
at low temperature and to speed up the equilibration, we use
simulated annealing. For this, we start the simulations at a
relatively high temperature T = 0.1 with a random localized

spin configuration and run the system for equilibration and
then use the final configuration at this temperature to perform
the equilibration at T = 0.08. We repeat this process with
a step of temperature 	T = 0.02, finally calculating the
thermal averages of the observables at temperature T = 0.02.
For the lattice sizes studied, the thermal gap to the lowest
excitation is greater than the finite-size gap at T = 0.02. In
other words, T = 0.02 is sufficiently small that ground-state
estimates of the measured observables can be reliably obtained.
Measurements are done for 50 000 MC steps after 60 000 steps
discarded in total for thermalization.

With its multidimensional parameter space, the Hamilto-
nian (1) is expected to support a rich array of ground-state
phases over different ranges of the parameters.

In the present work, we restrict our attention to the magnetic
behavior at an electronic filling factor 〈ne〉 = 1/2, for which
the system is in an insulating state. The choice for the rest of the
Hamiltonian parameters is guided by experimental observation
in real materials. The electronic hopping matrix elements along
the axial bonds are chosen as t = 1.0; this sets the energy
scale for the problem. The diagonal hopping is set to t ′ =
1.2, and the values of the exchange interactions along the
axial and diagonal bonds are set at J = 0.1 and J ′ = 0.12.
This choice is motivated by the experimental observation of
approximately equal bond lengths in the rare-earth tetraboride
family of compounds. In most materials of relevance to the
present model, strong DM interactions exist. While the exact
nature of DM interaction depends on the crystal symmetries,
we have chosen a generic form of DM interaction for our study.
Indeed, investigating the role of DM interaction in stabilizing
noncoplanar spin configurations is a central goal of the present
study. Finally, following the experimental observation in other
frustrated metallic magnets such as pyrochlores, the strength
of the Kondo coupling is chosen to be the strongest energy
scale in the problem, JK = 8.0.

A. Effect of DM interaction

In the first part of the study, a systematic variation of
the different components of the DM vectors is performed to
identify the minimal set of vectors necessary for noncoplanar
configurations of the local moments. We study the effects of
the DM vectors normal to the plane of the lattice D⊥ and two
in-plane components, D‖ and D′ (Fig. 1). It is found that while
D⊥ is essential for the emergence of noncollinearity, D′ and
D‖ stabilize the noncoplanarity of the ground state.

1. Role of D⊥

We start our discussion by analyzing the nature of the
magnetic ground state at zero field. The evolution of the
ground state as D⊥ is varied is shown in Fig. 2(a), where
we have plotted the magnitude of the peaks in the spin
structure factor at q = (π,π ) and (π,0). At D⊥ = 0, the
ground state has predominantly longitudinal AFM order as
the magnitude of the peak at (π,π ) is almost 1 and the
value of the magnetization is almost zero. With increasing
the value of D⊥, the ground state remains in the same phase
up to a critical value Dc

⊥ ≈ 0.07, beyond which there is a
discontinuous transition to a state characterized by a large
magnitude of the peak at (π,0). The static spin structure
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FIG. 2. (a) Evolution of the magnitude of the peaks in the static
structure factor at q = (π,π ) and (π,0) as a function of D⊥ for 8 × 8,
12 × 12, and 16 × 16 lattice sizes. (b) Snapshot of the real-space
localized spin configuration for the 8 × 8 lattice at D⊥ = 0.11,
illustrating a flux state with a vanishingly small chirality. The results
are obtained at T = 0.02 while keeping t = 1.0, t ′ = 1.2, J = 0.1,
J ′ = 0.12, JK = 8.0, D‖ = 0.0, D′ = 0.0, and hz = 0.0.

factor exhibits two sharp and equal-magnitude peaks at (π,0)
and (0,π ). Nominally, such features in the structure factor
point towards a canted AFM state. However, the strong
Kondo-like interaction precludes such ordering in the double-
exchange model, as described in Ref. [40]. The true nature of
the ground state is illustrated by a snapshot of the real-space
(periodic) equilibrium spin configuration obtained from the
simulations and shown schematically in Fig. 2(b). The in-plane
components of the local moments are arranged in a near-ideal
flux pattern along vanishingly small chirality; that is, the
magnetic ground state is a noncollinear flux state. The net
magnetization and the chirality remain vanishingly small
across the range of D⊥ studied, further confirming the coplanar
character of the flux state. Such complex spin textures are
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FIG. 3. (a) Chirality per unit cell and (b) magnetization per unit
site as a function of D′ for 8 × 8, 12 × 12, and 16 × 16 lattice sizes.
The MC results are obtained at T = 0.02, t = 1.0, t ′ = 1.2, J = 0.1,
J ′ = 0.12, JK = 8.0, D‖ = 0.0, D⊥ = 0.11, and hz = 0.0.

essential ingredients for the observation of unusual transport
and electronic phenomena as noncollinear and noncoplanar
magnetic ordering of localized spins behave like emergent
electromagnetic fields.

2. Role of D′

After finding the minimum value of D⊥ that causes the
phase transition to a noncollinear state, we discuss the effect
of D′ on stabilizing the noncoplanarity of the ground state.
The results for chirality and magnetization per unit site as
a function of D′ are shown in Figs. 3(a) and 3(b). For
weak D′(|D′| � 0.03), the chirality [Fig. 3(a)] decreases
systematically with increasing system size. This suggests that
the chirality scales to zero in the thermodynamic limit, but
a careful finite-size scaling is needed to ascertain that. For
stronger D′, the data are converged with system size and
convincingly indicate a nonzero chirality for the magnetic
ground state. A strong value of D′ results in an enlarged out-
of-plane component of the localized spins making the ground
state more canted. With increasing D′ the noncoplanarity
of the magnetic ordered state increases monotonically [see
Fig. 3(a)]. The same effect is observed in the behavior
of the magnetization per unit site: m/ms decreases with
increasing system sizes at weak D′ but is finite (and nonzero)
for |D′| � 0.03 and increases monotonically with D′. The
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enlarged out-of-plane component of the spins contributes to
an increase in zero-field magnetization [shown in Fig. 3(b)].
The static spin structure factor S(q) at D′ = −0.10 (not shown
here) exhibits a subdominant peak at q = (0,0), consistent with
the finite net magnetization. Similarly, a real-space snapshot of
the ground state (not shown here) shows that canting of spins
increases with the introduction of D′; we call this a canted flux
state. It is worth mentioning that D′ cannot induce a phase
transition to a noncollinear flux state on its own; one always
needs a nonzero value of D⊥ for that. In contrast to pyrochlores
in which the tetrahedral ordering of the local moments is
fixed by the crystal-field effects, the canted flux state in our
study arises dynamically from competing interactions in the
presence of geometric frustration. This enables us to control
these complex magnetic orderings continually via an external
magnetic field.

3. Role of D‖(hz = 0)

The other in-plane component of the DM vector D‖ simply
reinforces noncoplanar configurations driven by D⊥ (increased
χ ) and increases the uniform magnetization by enhancing the
canting of the local moments out-of-xy plane.

B. Effects of an external magnetic field

One of the most intriguing features of the canonical (purely
magnetic) Shastry-Sutherland model is the appearance of
magnetization plateaus in an applied magnetic field. DM
interactions are expected to strongly modify the plateau
structure. Our results show that magnetization plateaus are
completely suppressed in the range of simultaneous DM
and Kondo-like interactions studied in this work. For D⊥ �
0.08 (which is necessary to stabilize the noncoplanar spin
textures that we are interested in) and in the absence of
D‖, the magnetization increases monotonically all the way
to saturation. The ground state is in a canted flux state at zero
magnetic field. The peak at (π,0) in the static structure factor,
S(π,0)/N , decreases continuously to zero at a saturation field
strength of hz

s ≈ 1.5. With increasing field, the canting of the
local moments (which is nonzero but small at zero field due
to the DM interaction) increases continuously until the local
moments are fully polarized. Interestingly, the approach to
saturation is distinct from that of a standard two-dimensional
Heisenberg AFM in the absence of an increased slope in the
magnetization curve, further underscoring the difference of the
canted flux state from a conventional canted AFM state. For
nonzero D‖, there is a sharp increase in magnetization upon
the application of a small longitudinal field (hz � 0.1) to a
state with a finite m/ms that depends on the strength of D‖.
Whether or not this happens via a discontinuous transition at
hz = 0 is not clear from our results. Upon further increasing the
longitudinal field, the magnetization increases monotonically
up to saturation, with the saturation field increasing with
increasing D‖. The nature of the magnetic ground state remains
a canted flux state throughout the field range. It remains to be
seen if magnetization plateaus can be stabilized for any range
of DM interaction and coupling between the local moments
and the itinerant electrons.
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1.0
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χ
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FIG. 4. (a) Magnetization per unit site and (b) chirality per unit
cell as a function of external magnetic field for different values of
D‖. The results are obtained for the 12 × 12 lattice at T = 0.02,
t = 1.0, t ′ = 1.2, J = 0.1, J ′ = 0.12, JK = 8.0, D⊥ = 0.11, and
D′ = −0.05.

Finally, we discuss the topological nature of the magnetic
ground state as it is tuned by an external field. Figure 4(b)
shows the evolution of the net static spin chirality with
increasing magnetic field for a representative set of DM
vectors where the zero-field ground state is a canted flux
state. With the increase of D‖ the canting of the localized
spins increases even at zero field. The ground-state spin
texture remains noncoplanar in nature over the entire range of
applied field strength up to saturation. The chirality increases
monotonically up to an intermediate value of the applied
field and then decreases continuously to zero at saturation.
The change in chirality is simply driven by the increasing
canting of the spins along the direction of the applied field
(and a subsequent decrease in the magnitude of the in-plane
component of the local moments). Once again, a snapshot
of local spin configurations elucidates the true nature of the
magnetic ground state in an applied field [Figs. 5(a) and 5(b)].
The in-plane components of the local moments are arranged in
a flux pattern on alternating plaquettes, whereas there is a net
canting of the longitudinal component parallel to the applied
field. The transition to saturation is marked by the complete
breaking of the flux pattern driven by the polarization of all the
spins in the direction of magnetic field. The qualitative features
of Figs. 5(a) and 5(b) can be quantified partially in terms of
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FIG. 5. The real-space configurations of the localized spins for the 8 × 8 lattice shown at different values of magnetic field, (a) hz = 0.8
and (b) hz = 1.6, when local spins become almost polarized to the direction of magnetic field. The color bars beside the top plots indicate
the out-of-plane component of the spin vector Sz

i . (c) and (d) Snapshots depicting the circulation of flux, clockwise or counterclockwise, on
each plaquette for the same values of magnetic field. The MC simulations are performed at T = 0.02, t = 1.0, t ′ = 1.2, J = 0.1, J ′ = 0.12,
JK = 8.0, D‖ = 0.0, D⊥ = 0.11, and D′ = −0.05.

the circulation of the in-plane components around each square
plaquette, fm = ∑

� Si · rij . A nonzero circulation identifies
a flux configuration of the local moments. Figures 5(c) and
5(d) present plots of the local circulation for the same sets
of parameters as in Figs. 5(a) and 5(b). For hz = 0.8 the
circulation is equal in magnitude and opposite in sign for
the plaquettes with diagonal bonds, whereas it is vanishingly
small in the other plaquettes. In other words, the in-plane
components form a flux pattern. The complete breaking of the
flux pattern at hc ≈ 1.6 is reflected in the vanishingly small
magnitude of the circulation not only for the plaquettes without
diagonal bonds but also for the plaquettes with diagonal bonds
[Fig. 5(d)], thus complementing the information inferred from
Figs. 5(a) and 5(b).

V. SUMMARY

To summarize, we have studied the Kondo lattice model
with additional DM interaction on the Shastry-Sutherland
lattice. Our results show that complex, noncoplanar spin
configurations can be generated dynamically from purely short

range interactions and coupling to itinerant electrons. We
conclude that DM interactions are necessary for the emergence
of chiral spin configurations when the electronic spectrum
is gapped; that is, the system is in an insulating state. We
have carefully identified the minimal DM vectors necessary
for the stabilization of noncoplanar configurations of the local
moments. Furthermore, such noncoplanar structures can be
tuned continually by applying an external magnetic field.
These results provide insight into the origin and nature of
topologically nontrivial magnetic phases in metallic magnets.
They will also be crucial in understanding the magnetic and
electronic properties of the rare-earth tetraboride family of
frustrated magnets.
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