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Abstract—Owing to growing complexity and scale, safety-
critical real-time systems are generally designed using the concept
of mixed-criticality, wherein applications with different criticality
or importance levels are hosted on the same hardware platform.
To guarantee non-interference between these applications, the
hardware resources, in particular the processor, are statically
partitioned among them. To overcome the inefficiencies in re-
source utilization of such a static scheme, the concept of mixed-
criticality real-time scheduling has emerged as a promising
solution. Although there are several studies on such scheduling
strategies for uniprocessor platforms, the problem of efficient
scheduling for the multiprocessor case has largely remained open.
In this work, we design a fluid-model based mixed-criticality
scheduling algorithm for multiprocessors, in which multiple tasks
are allowed to execute on the same processor simultaneously.
We derive an exact schedulability test for this algorithm, and
also present an optimal strategy for assigning the fractional
execution rates to tasks. Since fluid-model based scheduling
is not implementable on real hardware, we also present a
transformation algorithm from fluid-schedule to a non-fluid one.
We also show through experimental evaluation that the designed
algorithms outperform existing scheduling algorithms in terms
of their ability to schedule a variety of task systems.

Index Terms—C.3.d Real-time and embedded systems, C.4.g
Measurement, evaluation, modeling, simulation of multiple-
processor systems

I. INTRODUCTION

Safety-critical real-time systems are becoming increasingly
complex systems with several applications of different impor-
tance or criticality. Avionics with its Design Assurance Levels
A through E (A being the most critical and E the least) [1],
and automotive with its Automotive Safety Integrity Levels A
through D (D being the most critical and A the least) [2], are
two real-world examples of such systems. Recently, there has
been a growing attention towards Mixed-Criticality (MC) real-
time systems that integrate multiple applications with different
criticality levels on a single hardware platform. Integrated
Modular Avionics (IMA) [3] is one of the prominent examples
of such an integrated system in the industry. A key challenge
in MC systems is to eliminate any unintended interference
for critical applications from the less critical ones in terms of
access to shared hardware resources.

In this paper, we focus on the sharing of a central resource,
the processor, specifically a multicore processor (multiproces-
sor) given their growing popularity in embedded platforms.
When assessing the feasibility of using a processor sharing
algorithm (scheduling algorithm), real-time systems require
assurance of deadline satisfaction even in the worst-case,
that is when interference from higher priority applications

is at its maximum. As a result, Worst-Case Execution Time
(WCET) estimates for applications are used in this assessment.
However, due to software and hardware complexities, deriving
exact WCET estimates is often difficult and hence pessimistic
upper bounds are used. The degree of pessimism depends on
the desired safety assurance level, which in turn depends on the
criticality level of the application. A more critical application
(e.g., level A in avionics or level D in automotive) generally
requires a higher safety assurance level because failure to meet
deadlines can have serious consequences. Hence, in order to
satisfy the certification authorities, it is a common practice to
use highly pessimistic WCET estimates when assessing critical
applications. However, from a system designers perspective,
this level of pessimism leads to severe under-utilization of the
processing capacity of the platform. Therefore, it is highly
desirable to minimize this WCET pessimism to improve
efficiency, while still guaranteeing the required processing
capacity for critical applications.

Several MC scheduling algorithms have been proposed
that enable the use of less pessimistic (or even optimistic)
execution estimates by operating the system in two modes
(see [4] for a detailed review). In the normal mode of op-
eration, processing capacity is reserved for application tasks
based on the less pessimistic or optimistic estimates, and all
task deadlines are guaranteed to be met. In the eventuality
that a critical application task requires additional processing
capacity, it is given preference in lieu of a less critical
application. That is, the mode of operation changes to critical,
and deadline guarantees in this mode depend on application
criticality. Thus, system efficiency is improved by using less
stringent execution requirements in the normal mode, while
the mode switch guarantees the required processing capacity
for critical applications. Although many results are published
for single processor MC scheduling including algorithms with
optimal speedup factors1, multiprocessor MC scheduling has
received much less attention.

Existing multiprocessor MC scheduling algorithms can be
broadly classified into two categories, global in which applica-
tion tasks can migrate between the processors at runtime, and
partitioned in which tasks are statically assigned to individual
processors. In this paper, we focus on global scheduling, and in
particular consider the fluid scheduling model [6]–[8]. Under
fluid scheduling, a task can execute using fractional (< 1) exe-
cution rates on a hypothetical processor, thus enabling multiple
tasks to make progress simultaneously on a single processor.

1Speedup factor of an algorithm is defined as the additional processor speed
required to schedule all feasible task sets using that algorithm [5].



This execution flexibility often leads to scheduling algorithms
with vastly improved schedulability performance, as is evident
in the domain of non mixed-criticality multiprocessor real-time
scheduling, where several optimal fluid scheduling algorithms
have been developed [7], [9]–[11]. Inspired by these results,
we develop a new fluid scheduling algorithm, called MC-
Fluid, for multiprocessor MC real-time systems in this work.
Taking into account the fact that MC systems operate in two
modes with different execution requirements, the proposed
algorithm allows two different fractional execution rates for
each task. Since fluid scheduling cannot be implemented on
a real processor, we also derive a mapping from the fluid
algorithm to a non-fluid one (execution rate exactly 1).

There have been different rate assignment algorithms for
MC-Fluid [12]–[14]. In [12], we presented the OERA (Opti-
mal Execution Rate Assignment) algorithm to determine the
optimal rates by solving a convex optimization problem in
polynomial time. Recently, Baruah et al. [13] presented a
simplified rate assignment algorithm called MCF with linear-
time complexity, and also showed that MCF has an optimal
speedup factor of 4/3 [15]. Since OERA dominates MCF
in terms of schedulability, OERA is also speedup-optimal.
In [14], we presented the MC-Slope rate assignment algorithm
with linearithmic (O(n log n)) complexity.

This paper is an extended version of our earlier work [12],
[14]. In [12], we presented an optimal rate assignment
algorithm under two rate scheduling. In this paper, we
present another optimal rate assignment algorithm, called
MC-Derivative, which is extended from MC-Slope in [14].
While OERA relies on convex optimization and has O(n2)
time complexity, MC-Derivative relies on the first derivative
principles to determine the execution rates and has O(n log n)
time complexity. MC-Derivative is motivated by the fact that
OERA has little flexibility in scalability (e.g., the extension to
multi-criticality systems). In addition, MC-Derivative with a
smaller time complexity than OERA is more suited for online
admission control wherein tasks arrive at runtime and thus
the execution rates need to be computed dynamically. The
comparison among MC-Fluid, MCF, and MC-Derivative is
summarized in Table I.

In spite of the advantages of fluid-based scheduling, it is
not directly implementable on real discrete-time platforms due
to its unrealistic assumption that one processor can execute
multiple tasks at the same time. To tackle this, we present the
MC-Discrete algorithm, which maps the MC-Fluid schedule
to a discrete-time schedule for real hardware platforms. While
the earlier MC-DP-Fair [12] constructs a non-fluid schedule
with real-number execution times and deadlines, MC-Discrete
constructs a non-fluid schedule with discrete execution times
and deadlines, which is preferred in practice. Contributions.
Our contributions are summarized as follows:

• We present a fluid model-based multiprocessor MC
scheduling algorithm, called MC-Fluid, with criticality-
dependent execution rates per task (Sec. III) and analyze
its exact schedulability (Sec. IV).

• We propose MC-Derivative rate assignment algorithm
that optimally assigns execution rates based on the
first derivative principles and has O(n log n) complexity
(Sec. VI).

• We present MC-Discrete algorithm, which constructs
a discrete-time schedule from MC-Fluid schedule

TABLE I
THE SPEEDUP-OPTIMAL RATE ASSIGNMENT ALGORITHMS

Algorithm Rate Assignment Complexity
OERA [12] optimal O(n2)

MCF [13] suboptimal O(n)

MC-Derivative (this paper) optimal O(n logn)

(Sec. VII).
• Simulation results show that MC-Fluid and MC-Discrete

outperform other existing approaches (Sec. VIII).
Related Work. Since Vestal [16] introduced a fixed-priority
scheduling algorithm with a MC task model (different WCET
estimates for each task). The MC scheduling problem has
received growing attention, in particular, on uniprocessor (see
[4] for a survey).

Unlike the uniprocessor case, the multiprocessor case has
not been studied much [17]–[22]. Anderson et al. [17] first
considered multiprocessor MC scheduling with a two-level
hierarchical scheduler. Pathan [19] proposed a global fixed
priority multiprocessor scheduling algorithm for MC task
systems. Li et al. [18] introduced a global scheduling algorithm
with a speedup factor of 1 +

√
5 (≈ 3.236). Baruah et al. [20]

presented a partitioned scheduling algorithm with a speedup
factor of 8/3 (≈ 2.666). Gu et al. [21] proposed a partitioned
scheduling approach considering task-level virtual deadline
assignment based on Ekberg and Yi [23]. Ren and Phan [22]
proposed another partitioned scheduling approach considering
multiple parameters (period and criticality-dependent utiliza-
tions), which reduces resource overbooking in MC scheduling.
However, these multiprocessor MC approaches suffers from
low schedulability.

Based on the fluid scheduling model for non-MC systems,
MC-Fluid [12]–[14] has overcome the limitation of multipro-
cessor MC scheduling and achieved high schedulability. In this
work, we extend our previous work [12], [14] with different
rate assignment and different schedule generation strategies
for non-fluid platforms.

II. PRELIMINARIES

We study the Mixed-Criticality (MC) scheduling problem on
a hard real-time system with m identical processors. In this
paper, we consider dual-criticality systems with two distinct
criticality levels: HI (high) and LO (low).
Task Model. Each MC task is either a LO-criticality task (LO-
task) or a HI-criticality task (HI-task). Each MC task τi is
characterized by (Ti, C

L
i , C

H
i , χi), where Ti ∈ N is minimum

inter-job separation time, CLi ∈ R+ is LO-criticality WCET
(LO-WCET), CHi ∈ R+ is HI-criticality WCET (HI-WCET),
and χi ∈ {HI,LO} is a task criticality level. Since HI-
WCETs are based on conservative assumptions, we assume
that 0 < CLi ≤ CHi ≤ Ti. A task τi has a relative deadline
equal to Ti. Any task can be executed on at most one processor
at any time instant.

We consider a MC sporadic task set τ = {τi}, where a task
τi represents a potentially infinite job release sequence. LO-
task set (τL) and HI-task set (τH ) are defined as τL

def
= {τi ∈

τ |χi = LO} and τH
def
= {τi ∈ τ |χi = HI}.

The Correctness of MC Systems. The system mode is a
system-wide variable representing the system criticality level



(LO or HI). In LO-mode (the system mode is LO), we assume
that no job executes for more than its LO-WCET. In HI-mode,
we assume that no job executes for more than its HI-WCET.

We consider MC-schedulability of a MC system, which
consists of both LO-mode schedulability and HI-mode schedu-
lability: LO-mode schedulability implies that jobs of all LO-
and HI-tasks can complete to execute for their LO-WCETs
before their deadlines in LO-mode; and HI-mode schedulabil-
ity implies that jobs of all HI-tasks can complete to execute
for their HI-WCETs before their deadlines in HI-mode.
The MC System Scenario. We assume the following scenario:
• The initial system mode is LO. In LO-mode, jobs of all

LO- and HI-tasks are released.
• If a job of any HI-task τi ∈ τH executes for more than

its LO-WCET (CLi ), the system mode switches from LO
to HI (called mode switch). At mode switch, the system
immediately discards all the jobs of LO-tasks.

• After mode switch, only the jobs of HI-tasks are released.
If a job of any LO-task τi ∈ τL (likewise HI-task τi ∈ τH )
executes for more than CLi in LO-mode (likewise CHi in HI-
mode), we regard that the system has a fault and do not
consider the case.

The problem to determine the time instant of switch-back
from HI-mode to LO-mode is beyond the scope of this paper
because it is irrelevant to the MC schedulability problem2.
Utilization. A task or a task set can be represented as its uti-
lization. LO- and HI-task utilizations of a task τi are defined as
uLi

def
= CLi /Ti and uHi

def
= CHi /Ti, respectively. System-level

utilizations of a task set τ are defined as ULL
def
=
∑
τi∈τL u

L
i ,

ULH
def
=
∑
τi∈τH u

L
i , and UHH

def
=
∑
τi∈τH u

H
i .

III. MC-FLUID SCHEDULING FRAMEWORK

In this section, we review the existing fluid scheduling
platform and present a new MC-Fluid scheduling algorithm
based on the fluid platform.

A. The Fluid Scheduling Platform
Consider a platform where each processor can be allocated

to one or more jobs simultaneously. Each job can be regraded
as executing on a dedicated fractional processor with a speed
smaller than or equal to one. This scheduling platform is
referred to fluid scheduling platform [6]–[8].

Definition 1 (Fluid scheduling platform [8]). The fluid
scheduling platform is a scheduling platform where a job of a
task is executed on a fractional processor at all time instants.

The fluid scheduling platform continuously executes all
tasks with their execution rates.

Definition 2 (Execution rate). A task τi is said to be executed
with execution rate θi(t1, t2) ∈ R+, s.t. 0 < θi(t1, t2) ≤ 1,
if every job of the task is executed on a fractional processor3

with a speed of θi(t1, t2) over a time interval [t1, t2], where
t1 and t2 are time instants s.t. t1 ≤ t2.

Schedulability of a fluid platform requires two conditions:
1) Task-schedulability: each task has an execution rate that

ensures to meet its deadline.
2There are available switch-back protocols [15], [24].
3Since the task cannot be executed on more than one processor, θi ≤ 1.

2) Platform feasibility: execution rates of all tasks are
feasible on the multiprocessor platform.

In non-MC multiprocessor systems, many optimal schedul-
ing algorithms [7], [9]–[11] have been proposed based on the
fluid platform. These algorithms employ a single static rate
for each job of a task τi ∈ τ from its release to its deadline:
∀k, θi(rki , dki ) = θi where rki and dki are the release time and
deadline of a job Jki (the k-th job of task τi), respectively. They
satisfy task-schedulability by assigning Ci/Ti to θi, which is
the task utilization of a non-MC task τi = (Ti, Ci) where Ci is
its WCET. They satisfy platform feasibility if

∑
τi∈τ θi ≤ m.

In Lemma 1, we present platform feasibility of fluid model,
applicable for both MC and non-MC systems. We will discuss
task-schedulability for MC systems later in Sec. IV.

Lemma 1 (Platform feasibility, from [7]). Given a task set
τ , all tasks can be executed with their execution rates iff∑
τi∈τ θi ≤ m.

B. MC-Fluid Scheduling Algorithm
The fluid scheduling algorithm with a single static execution

rate per task is inefficient in resource utilization of MC
systems. For example, we consider the worst-case reservation
approach by assigning θi := uHi for each HI-task and θi := uLi
for each LO-task. Then, the result of rate assignment is overly
pessimistic because task characteristics of MC systems are
changed at mode switch. According to a typical dual-criticality
system behaviors, the system changes task characteristic at
mode switch, from executing all LO- and HI-tasks to executing
only HI-tasks. Thus, if a scheduling algorithm is allowed to
adjust the execution rate of tasks at mode switch, it can reduce
the pessimism of the single rate assignment, considering the
dynamics of MC systems. We propose a fluid scheduling
algorithm, called MC-Fluid, with two static per-task execution
rates. Informally, MC-Fluid executes each task τi ∈ τ with θLi
in LO-mode and with θHi in HI-mode.

Definition 3 (MC-Fluid scheduling algorithm). MC-Fluid is
defined with LO- and HI-execution rates (θLi and θHi ) for each
task τi ∈ τ . For a job Jki of a task τi, MC-Fluid assigns θLi
to θi(rki ,min(tM , d

k
i )) and θHi to θi(max(tM , r

k
i ), dki ) where

rki is its release time, dki is its deadline, and tM is the time
instant of mode switch. Since all LO-tasks are dropped at mode
switch, θHi is not specified for any LO-task ∀τi ∈ τL.

The execution amount of a job indicates the processor
resources consumed by the job within a time interval.

Definition 4. For a task τi ∈ τ , the execution amount of a job
in a time interval of length t in LO- and HI-mode, denoted by
ELi (t) and EHi (t), are the total amount of processor resources
that the job has consumed during this time interval in LO- and
HI-mode, respectively: ELi (t)

def
= θLi · t and EHi (t)

def
= θHi · t.

IV. SCHEDULABILITY ANALYSIS

In this section, we analyze the schedulability of MC-Fluid.
The following theorem shows the MC-schedulability of MC-
Fluid, which consists of LO-mode schedulability and HI-mode
schedulability. In each mode, we need task-schedulability
(Eq. (1) in LO-mode and Eq. (2) in HI-mode) and platform
feasibility (Eqs. (3) and (4)).
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Fig. 1. The model of a carry-over job of a task τi ∈ τH where the system
mode is switched at wi and the job is executed with θLi before the mode
switch and with θHi after the mode switch

Theorem 1 (MC-schedulability). A task set τ , where each
task τi ∈ τ has LO- and HI-execution rates (θLi and θHi ), is
MC-schedulable under MC-Fluid iff

∀τi ∈ τ, θLi ≥ uLi , (1)

∀τi ∈ τH ,
uLi
θLi

+
uHi − uLi
θHi

≤ 1, (2)∑
τi∈τ

θLi ≤ m, (3)∑
τi∈τH

θHi ≤ m. (4)

To prove Theorem 1, we need to derive task-schedulability
condition and platform feasibility condition in each mode.
Task-schedulability. We first consider task-schedulability in
LO-mode in the following lemma.

Lemma 2. A task τi ∈ τ can meet its deadline in LO-mode
iff θLi ≥ uLi .

Proof: (⇐) Consider a job of the task which is finished
in LO-mode. We need to show that the execution amount of
the job from its release time (time 0) to its deadline (time Ti)
is greater than or equal to LO-WCET (CLi ). From θLi ≥ uLi ,

θLi · Ti ≥ uLi · Ti ⇒ ELi (Ti) ≥ CLi . (by Def. 4)

(⇒) We prove the contrapositive: if θLi < uLi , then the
task cannot meet its deadline in LO-mode. It is true because
ELi (Ti) = θLi · Ti < uLi · Ti = CLi .

Next, we consider task-schedulability in HI-mode. In HI-
mode, we only consider task-schedulability of HI-tasks be-
cause LO-tasks are dropped in HI-mode. Consider a job of a
HI-task τi as shown in Fig. 1. We define a carry-over job as
a job that is released in LO-mode and finished in HI-mode as
shown in Fig. 1. For the schedulability of HI-task, we only
need to consider the carry-over job because it includes all
possible cases (the job released in LO-mode and finished in
HI-mode and the job released in HI-mode and finished in HI-
mode). Let wi ∈ R+ be the length of a time interval from the
release time of the job to mode switch (or an executed time
of the job in LO-mode). We can express the second case by
setting wi = 0 (zero executed time in LO-mode).

To derive task-schedulability for a carry-over job of τi, we
need to know the relative time of the mode switch (wi). We
first derive task-schedulability condition with a given wi. Since
the mode switch triggers in the middle of its execution, the
job is executed with θLi before the mode switch and with θHi

after the mode switch. A cumulative execution amount of the
job from its release time to its deadline (Ti) consists of its
execution amount from its release time to mode switch with
θLi and its execution amount from mode switch to its deadline
with θHi :

ELi (wi) + EHi (Ti − wi) = θLi · wi + θHi · (Ti − wi)

by Def. 4. Task-schedulability condition with wi is that the
cumulative execution amount of the job is greater than or equal
to its HI-WCET (CHi ):

θLi · wi + θHi · (Ti − wi) ≥ CHi . (5)

Since the MC system model assumes that the time instant of
mode switch is unknown until runtime scheduling, we should
consider all possible mode switch scenarios (any valid wi).
Note that 0 ≤ wi ≤ Ti because mode switch can happen at
any time instant between release time and deadline of the job.
Therefore, task-schedulability is Eq. (5) for any wi in [0, Ti]:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi . (6)

To sum up, task-schedulability in HI-mode is Eq. (6).
Now, we will derive Eq. (6) independent of wi. Its derivation

is different depending on whether θLi > θHi or θLi ≤ θHi .
Lemma 3 considers the first case (θLi > θHi ).

Lemma 3. For a given θHi , a HI-task τi when θLi is larger than
θHi can meet its deadline in HI-mode iff it meets its deadline
in HI-mode when θLi is equal to θHi .

Proof: (⇐) Suppose that θLi is set to θHi and the task
meets its deadline in HI-mode. From Eq. (6), we have

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti ≥ CHi . (7)

Let θLi
′ be the changed value of θLi where θLi

′
> θHi . To

show that the task can meet its deadline in HI-mode with θLi
′,

we need to show that Eq. (6) holds: ∀wi,

θLi
′ · wi + θHi · (Ti − wi) > θHi · wi + θHi · (Ti − wi)

= θHi · Ti,

which is greater than or equal to CHi by Eq. (7).
(⇒) Suppose that θLi is set to a value larger than θHi and

the task can meet its deadline in HI-mode.
We claim that θHi ≥ uHi . We prove it by contradiction:

suppose that θHi < uHi . Then, Eq. (6) does not hold when
wi = 0:

θLi · 0 + θHi · (Ti − 0) = θHi · Ti,

which is smaller than CHi because θHi · Ti < uHi · Ti = CHi .
However, since we assume that the task meets its deadline in
HI-mode, Eq. (6) holds, which is a contradiction. Thus, we
proved the claim (θHi ≥ uHi ).

Let θLi
′ be the changed value of θLi where θLi

′
= θHi . Then,

it is required to show that Eq. (6) holds:

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti,

which is greater than or equal to CHi because θHi ≥ uHi .
Using the corollary below, we assume that θLi ≤ θHi for any

task τi ∈ τH in the rest of the paper.

Corollary 4. For task-schedulability of a HI-task τi in HI-
mode, we only need to consider the case where θLi ≤ θHi .



Proof: Task-schedulability of the task in HI-mode when
θLi > θHi is equivalent to the one when θLi := θHi by Lemma 3.
Thus, its task-schedulability in HI-mode is equivalent to the
one when θLi ≤ θHi .

We derive task-schedulability in HI-mode based on the
assumption that task-schedulability holds in LO-mode. The
assumption is valid because the schedulability of a task in
HI-mode is meaningless if the task is not schedulable in LO-
mode.

Lemma 5 (Task-schedulability in HI-mode). Given a HI-task
τi satisfying task-schedulability in LO-mode, the task can meet
its deadline in HI-mode iff

uLi
θLi

+
(uHi − uLi )

θHi
≤ 1. (8)

Proof: Consider a carry-over job of the task. We first
derive the range of a valid wi and derive task-schedulability
in HI-mode by using the range.

Consider the range of wi, which is [0, Ti]. We can further
reduce the range by using task-schedulability in LO-mode. The
execution amount of the job in LO-mode from its release time
to any time instant cannot exceed its LO-WCET (CLi )4. Thus,
its execution amount from its release time to mode switch also
cannot exceed CLi :

ELi (wi) ≤ CLi ⇒ θLi · wi ≤ CLi . (9)

Combining 0 ≤ wi ≤ Ti and Eq. (9), we have 0 ≤ wi ≤
min(CLi /θ

L
i , Ti). Now, we need to compare CLi /θ

L
i and Ti.

Since task-schedulability in LO-mode holds, we have θLi ≥ uLi
by Lemma 2. Then,

θLi ≥ CLi /Ti ⇒ Ti ≥ CLi /θLi . (multiplying by Ti/θLi )

Thus, the range of valid wi is 0 ≤ wi ≤ CLi /θLi .
We know that task-schedulability in HI-mode is Eq. (6),

which is rewritten to:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi
⇔ ∀wi, θHi · Ti ≥ (θHi − θLi ) · wi + CHi
⇔ θHi · Ti ≥ (θHi − θLi ) · CLi /θLi + CHi (∵ θHi − θLi ≥ 0)5

⇔ θHi · Ti ≥ CLi · θHi /θLi + CHi − CLi
⇔ 1 ≥ uLi /θLi + (uHi − uLi )/θHi . (dividing by θHi · Ti)

Thus, the task can meet its deadline in HI-mode iff Eq. (6)
holds iff Eq. (8) holds.
MC-schedulability. Since task schedulability is derived in
Lemmas 2 and 5, and platform feasibility condition is straight-
forward from Lemma 1, we can prove Theorem 1. In Exam-
ple 1, we show an application of Theorem 1.

Proof of Theorem 1: (⇐) We need to show that
the task set satisfies both task-schedulability and platform
feasibility. Since we assume Eq. (1), by Lemma 2, task-
schedulability holds in LO-mode. Since we assume Eq. (2),
by Lemma 5, task-schedulability holds in HI-mode. Since we
assume Eqs. (3) and (4), by Lemma 1, platform feasibility
holds in both LO-mode and HI-mode, respectively.

(⇒) We will prove the contrapositive: if any of the condi-
tions do not hold, then the task set is not MC-schedulable. If
Eq. (1) does not hold, by Lemmas 2, task-schedulability does

4The job triggers mode switch if the job execute for more than CL
i .

5We already assumed that θLi ≤ θHi by Corollary 4.

TABLE II
EXAMPLE TASK SET AND ITS EXECUTION RATE ASSIGNMENT.

Ti CL
i CH

i χi uLi uHi θLi θHi
τ1 10 2 8.5 HI 0.2 0.85 0.571 1
τ2 20 5 10 HI 0.25 0.5 0.472 0.531
τ3 30 4.5 9 HI 0.15 0.3 0.283 0.319
τ4 40 4 6 HI 0.1 0.15 0.15 0.15
τ5 50 10 10 LO 0.2 0.2 0.2

not hold in LO-mode. If Eq. (2) does not hold, by Lemmas 5,
task-schedulability does not hold in HI-mode. If Eq. (3) or
Eq. (4) does not hold, by Lemma 1, platform feasibility does
not hold.

Example 1. Consider a two-processor system where its task
set τ and its execution rate assignment are given as shown
in Table II. For MC-schedulablility, by Theorem 1, we need
to show that Eqs. (1), (2), (3), and (4) hold. We can easily
check Eq. (1). We show that Eq. (2): 0.2/0.571 + 0.65/1 ≤ 1
for τ1, 0.25/0.472 + 0.25/0.531 ≤ 1 for τ2, 0.15/0.283 +
0.15/0.319 ≤ 1 for τ3, and 0.1/0.15 + 0.05/0.15 ≤ 1 for
τ4. We show that

∑
τi∈τ θ

L
i = 1.676 ≤ 2 for Eq. (3) and∑

τi∈τH θ
H
i = 2.0 ≤ 2 for Eq. (4).

V. THE EXECUTION RATE ASSIGNMENT

In the previous section, we looked at schedulability analysis
of MC-Fluid when a task set and its rate assignment are given.
In this section, we seek the rate assignment and construct
an optimization problem based on MC-Fluid schedulability
conditions. We first define the optimality of a rate assignment
algorithm, in a similar way to Davis et al. [25].

Definition 5. A task set τ is called MC-Fluid-feasible if
there exists an execution rate assignment that the task set is
schedulable under MC-Fluid with. An execution rate assign-
ment algorithm A is called optimal if A can find a schedulable
assignment for all MC-Fluid-feasible task sets. For brevity, we
refer to an execution rate assignment as an “assignment” and
say that a task is feasible when the task is MC-Fluid-feasible.

Due to complexity, we cannot check all execution rates one
by one. To find an optimal assignment efficiently, we formulate
the assignment problem as an optimization problem.

We first present a lemma for an optimal assignment of θLi
(Lemma 6) and later present the optimization problem for an
optimal assignment of θHi .

Lemma 6 (An optimal assignment of θLi ). If a task set τ is
feasible, there is a schedulable assignment where (i) θLi := uLi
for a task τi ∈ τL and (ii) θLi :=

uL
i ·θ

H
i

θHi −uH
i +uL

i
for τi ∈ τH .

Proof: Since the task set is feasible, there exists a
schedulable assignment (denoted by A) satisfying Eqs. (1),
(2), (3), and (4) by Theorem 1.

(i) Consider a task τi ∈ τL and its LO-execution rate (θLi ) in
A. We will show that τ is still schedulable after reassignment
of θLi . If we reassign θLi , it only affects Eqs. (1) and (3).

Let θL∗i be the value of θLi in A. Since A is schedulable,
Eq. (1) holds with θL∗i , which is θL∗i ≥ uLi . Suppose that we
reassign θLi := uLi . Then, Eq. (1) still holds because θLi ≥ uLi .
Eq. (3) still holds because the decreased θLi (from θL∗i to uLi )
does not increase the sum of execution rates.



(ii) Consider a task τi ∈ τH and its LO-execution rate
(θLi ) in A. We will show that τ is still schedulable after
reassignment of θLi . If we reassign θLi , it only affects Eqs. (1),
(2), and (3).

Let θL∗i and θH∗i be the value of θLi and θHi in A,
respectively. Since Eq. (2) holds for θL∗i and θH∗i , we have

uHi − uLi
θH∗i

≤ 1− uLi
θL∗i

⇒ uHi − uLi
θH∗i

< 1, (10)

since uLi /θ
L∗
i > 0. Eq. (2) with θL∗i and θH∗i is rewritten to:

uLi
θL∗i
≤ θH∗i − uHi + uLi

θH∗i
⇔ uLi · θH∗i ≤ θL∗i (θH∗i − uHi + uLi ) (multiplying by θH∗i · θL∗i )

⇔ uLi · θH∗i
θH∗i − uHi + uLi

≤ θL∗i . (∵ θH∗i > uHi − uLi by Eq. (10))

Since A is schedulable, Eqs. (1), (2), and (3) hold with θL∗i .
Suppose that we reassign θLi :=

uL
i ·θ

H∗
i

θH∗
i −uH

i +uL
i

. Then, Eq. (1)
still holds because θLi ≥ uLi . Eq. (2) still holds because the
value of the reassigned θLi is the minimum value satisfying
Eq. (2). Eq. (3) still holds because the decreased θLi does not
increase the sum of execution rates.

Based on Lemma 6 and Theorem 1, we can present a
feasibility condition, from which we can find an optimal
assignment of θHi .

Theorem 2 (Feasibility). A task set τ is feasible iff there exists
an assignment of θHi for ∀τi ∈ τH satisfying

uHi ≤ θHi ≤ 1, (11)

ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi )

θHi − uHi + uLi
≤ m, (12)∑

τi∈τH

θHi ≤ m. (13)

Proof: (⇐) To show that the task set is feasible, we need
to show that there exists a schedulable assignment. Consider
an assignment where θLi := uLi for each task τi ∈ τL, θLi :=
uLi · θHi /(θHi − uHi + uLi ) for each task τi ∈ τH , and θHi for
each task τi ∈ τH satisfying Eqs. (11), (12), and (13).

We first show that θLi ≤ 1 for each τi ∈ τ and θHi ≤ 1
for each τi ∈ τH according to the definition of execution rates
(Def. 2). For τi ∈ τL, we have θLi ≤ 1 by the selection of
θLi . For τi ∈ τH , we have θHi ≤ 1 from Eq. (11). Since we
assumed θLi ≤ θHi by Corollary 4, we have θLi ≤ 1 from
Eq. (11).

To show that this assignment is schedulable by Theorem 1,
we need to show that it satisfies Eqs. (1), (2), (3), and (4). We
know that θLi for ∀τi ∈ τ satisfies Eq. (1) and θLi for ∀τi ∈ τH
satisfies Eq. (2). We can rewrite Eq. (3) to:∑
τi∈τ

θLi ≤ m⇔
∑
τi∈τL

θLi +
∑
τi∈τH

θLi ≤ m

⇔
∑
τi∈τL

uLi +
∑
τi∈τH

uLi · θHi
θHi − uHi + uLi

≤ m

⇔ ULL +
∑
τi∈τH

(
uLi +

uLi (uHi − uLi )

θHi − uHi + uLi

)
≤ m,

which is Eq. (12). Since Eq. (3) is equivalent to Eq. (12), the
equation holds. Eq. (4) holds from Eq. (13).

(⇒) Since the task set is feasible, there is a schedulable
assignment where θLi = uLi for ∀τi ∈ τL and θLi =
uLi · θHi /(θHi − uHi + uLi ) by Lemma 6. We need to show that
θHi for ∀τi ∈ τH in the assignment satisfies Eqs. (11), (12),
and (13).

Consider θHi of a task τi ∈ τH . We know θHi ≤ 1 from the
definition of execution rates (Def. 2). Since we assumed that
θLi ≤ θHi by Corollary 4, we rewrite θLi ≤ θHi to:

uLi · θHi
θHi − uHi + uLi

≤ θHi ⇒ uLi ≤ θHi − uHi + uLi ,

which is uHi ≤ θHi . Then, Eq. (11) holds.
Since the assignment is schedulable, Eqs. (3) and (4) hold

by Theorem 1. We already proved that Eq. (12) holds from
Eq. (3) in Case (⇐). Eq. (13) holds from Eq. (4).

From feasibility condition, we know that the assignment of
θHi satisfying the conditions in Theorem 2 is optimal. For
an optimal assignment of θHi , we present the optimization
problem based on Theorem 2.

Definition 6 (The assignment problem). Given a task set τ , we
define a non-negative real number Xi for each task τi ∈ τH
such that θHi := uHi +X∗i and X∗i is an optimal point of Xi

on the following optimization problem:

minimize
∑
τi∈τH

uLi (uHi − uLi )

Xi + uLi

subject to
∑
τi∈τH

Xi ≤ m− UHH , (CON1)

∀τi ∈ τH , Xi ≥ 0, (CON2)

∀τi ∈ τH , Xi ≤ 1− uHi . (CON3)

We present that the assignment of θHi by solving the
optimization problem is optimal according to Def. 5.

Lemma 7. If a rate assignment constructs a solution for the
assignment problem in Def. 6, the rate assignment is optimal.

Proof: Consider a feasible task set. Then, by Theorem 2,
some assignment satisfies Eqs. (11), (12), and (13). We claim
that the assignment satisfies CON1, CON2, and CON3. If the
assignment does not satisfy CON1, then Eq. (13) does not
hold. If the assignment does not satisfy CON2 or CON3, then
Eq. (11) does not hold.

We claim that if Eq. (12) does not hold with the assignment
by Def. 6, then Eq. (12) does not hold with any assignment
satisfying CON1, CON2, and CON3. Suppose that we have a
solution to the optimization problem in Def. 6. For τi ∈ τH , let
X∗i be the optimal value of Xi for the problem. Let OBJ∗ be
the value of the objective function with X∗i . Suppose that the
solution does not satisfy Eq. (12): OBJ∗ > m−ULL −ULH . For
any set of Xi satisfying CON1, CON2, and CON3, we have∑
τi∈τH u

L
i (uHi − uLi )/(Xi + uLi ) ≥ OBJ∗ by the definition

of the optimization problem and thus Eq. (12) does not hold:∑
τi∈τH

uL
i (uH

i −u
L
i )

Xi+uL
i
≥ OBJ∗ > m− ULL − ULH .

VI. RATE ASSIGNMENT ALGORITHM

In previous section, we constructed the optimization prob-
lem (Def. 6) for rate assignment. In this section, we assign exe-
cution rates by solving the optimization problem. In Sec. VI-A,



we present MC-Derivative, a new optimal rate assignment
algorithm using the first derivative principles. In Sec. VI-B, we
briefly outline the applicability of the MC-Derivative strategy
for a multi-criticality system.

A. MC-Derivative Algorithm
The motivation of the MC-Derivative rate assignment al-

gorithm is to address the limitation on the scalability of our
earlier rate assignment algorithm [12]. In [12], we presented
the OERA rate assignment algorithm by solving the problem
in Def. 6 using a convex optimization framework. Extending
such optimization problem for a multi-criticality system is
challenging because it may result in serious degradation in the
schedulability performance (refer Sec. VI-B). Thus, instead of
applying the existing optimization framework, we develop a
simple approach to determine the optimal execution rates. MC-
Derivative assigns execution rates by using the first derivative
principles, which has a lower complexity compared to OERA
and is easily extensible to a multi-criticality system.
Intuition. We recall the objective function of the assignment
problem mentioned in Def. 6 as f(X):

f(X) =
∑
τi∈τH

uLi (uHi − uLi )

Xi + uLi

where X (or {Xi}) denotes the vector of Xi values. The
objective function can be rewritten as separable function
f(X) =

∑
fi(Xi), where fi(Xi) =

uL
i (uH

i −u
L
i )

Xi+uL
i

. Our aim is
to minimize the objective function f(X). Since the objective
function is differentiable and convex, the first partial derivative
technique is applicable to find the optimal solution.

The first partial derivative of the objective function is
defined as f ′i(Xi) = ∂f(X)

∂Xi
, which indicates the change of

the objective function value with respect to the change in Xi.
For ease of understanding, since f ′i(Xi) is a negative function
within the range of Xi (0 ≤ Xi ≤ 1 − uHi by CON2 and
CON3 in Def. 6), we consider the absolute value of f ′i(Xi)
denoted as f̄ ′i(Xi):

f̄ ′i(Xi) =
uLi
(
uHi − uLi

)
(Xi + uLi )2

(14)

Thus, larger f̄ ′i(Xi) indicates larger decrease of f(X).
To minimize the objective function (f(X)), we utilize the

first partial derivative. We initialize Xi = 0 for all tasks, which
makes the value of f(X) the largest. Then, we increase Xi

of the task with the largest partial derivative (f̄ ′i(Xi)), which
brings the largest decrease of f(X). We repeat the above
procedure as long as CON1 holds, which minimizes f(X).
Let Γ be the value of the partial derivative when CON1 just
holds. We present the application of MC-Derivative strategy
with an example.

Example 2. Consider a sample task set in Table II. Fig. 2
plots f̄ ′i(x) of the corresponding task set for x ∈ R+. MC-
Derivative first assigns the minimum required execution rate,
Xi = 0 for each task. Then, MC-Derivative increases X1

until its f̄ ′i(Xi) is the largest among tasks, X1 becomes its
maximum value (1 − uH1 ), or Slack (the remaining system
utilization, m−

∑4
i=1(uHi +Xi) ) is zero. In the example, X1

becomes the maximum value. Next, τ2 and τ3 have the next
largest f̄ ′i(Xi). X2 or X3 is increased until its f̄ ′i(Xi) is the

Fig. 2. The plot of f̄ ′i(Xi = x) varying x ∈ R+ for the task set in Table II

largest among tasks except τ1 (X1 cannot be increased any
further). Before τ4 has the largest partial derivative (f̄ ′4(0)),
Slack becomes zero, where MC-Derivative ends.

Note that f̄ ′4(0) < Γ < f̄ ′2(0) = f̄ ′3(0) (the black dotted
line in Fig. 2). Thus, MC-Derivative assigns X1 = 1 − uH1
and X4 = 0 because Γ < f̄ ′1(1 − uH1 ) and Γ > f̄ ′4(0). For
τ2 and τ3, MC-Derivative assign Xi between 0 and 1 − uHi
because f ′i(1− uHi ) < Γ < f ′i(0). Then, we can compute the
rate assignment by techniques in Sec. V.

Algorithm Description. For a given task set with UHH ≤ m,
Algorithm 1 computes the optimal LO- and HI- execution
rates of tasks. To assign rates optimally, we need to know
Γ. In Line 1, Algorithm 2 divides all possible range of the
partial derivative into a number of ranges and checks whether
Γ belongs to one of the ranges. Let Γ′ be the largest value of
the partial derivative in all the ranges of Γ s.t. Γ′ ≥ Γ. Then,
we assign {Xi} based on Γ′ (increasing each Xi as long as
f̄ ′i(Xi) ≥ Γ′). For CON3 (the constraint of total increase of Xi

for all HI-tasks), we define Slack := m−UHH −
∑
Xi, which

indicates the remaining increase of Xi for any task. In Lines
2-4, if Slack is positive (meaning Γ′ 6= Γ), we find Γ based
on Slack and the assigned {Xi} with Γ′. Lines 5-6 compute
the LO- and HI- execution rates from {Xi} by Def. 6 and the
function computeLoRatei(θ

H
i ), which computes the optimal

assignment of θLi based on Lemma 6 in Sec. V: for a task τi,

computeLoRatei(θ
H
i ) =

{
uL
i ·θ

H
i

θHi −uH
i +uL

i
, if τi ∈ τH ,

uLi , otherwise.

Using the output of Algorithm 1, we can check the MC-
schedulability of the input task set: since the value of the
objective function in Def. 6 constructs the sum of LO-
execution rates of HI-tasks (

∑
τi∈τH θ

L
i = f(X) + ULH ) and

LO-mode platform feasibility is
∑
τi∈τ θ

L
i ≤ m, the task set

is feasible if
∑
τi∈τH θ

L
i + ULL ≤ m.

Algorithm 2 determines the range of Γ. To do this, we divide
all possible range of the partial derivative by the f̄ ′i(0) and
f̄ ′i(1−uHi ) values of each HI-task. It is because the assignment
of Xi for each task is different depending on the values: Xi is
increased to the maximum (1−uHi ) if f̄ ′i(1−uHi ) > Γ, never
increased if f̄ ′i(0) < Γ, and increased as long as f̄ ′i(Xi) ≥ Γ
otherwise. To find the range of Γ, Line 3 computes f̄ ′i(0) and
f̄ ′i(1− uHi ) of each task and adds their distinct values into F
(the size of F is at most 2 × |τH | elements). Line 4 sorts F
in the increasing order of f̄ ′i(Xi).



Algorithm 1 The MC-Derivative algorithm
Input: τ s.t. UHH ≤ m
Output: {θHi } for τH and {θLi } for τ

1: Assign {Xi} and compute Slack using Algorithm 2
2: if (Slack > 0) then
3: Modify {Xi} using Algorithm 3 with Slack
4: end if
5: for each τi ∈ τH , assign θHi := uHi +Xi

6: for each τi ∈ τ , assign θLi := computeLoRatei(θ
H
i )

Lines 5− 13 of Algorithm 2 determine whether Γ belongs
in the range (Fj , Fj+1). For a HI-task, Xi is assigned with
X4i such that f̄ ′i(X

4
i ) = Fj . Then, by Eq. (14), we have

X4i =

√
uLi (uHi − uLi )

Fj
− uLi (15)

For the {Xi} assignment (Line 7) to be feasible, the task is
assigned a maximum Xi, which is 1 − uHi and a minimum
Xi, which is 0 according to CON3 and CON2 in Def. 6
respectively. Line 8 computes Slack. If the range of Γ is
[0, F1], Slack based on F1 is positive. If the range of Γ is
(Fj−1, Fj ] s.t. j ≥ 2, Slack based on Fj−1 is a negative value
and Slack based on Fj is a positive value or zero. Since we
sort F in an increasing order, we can find the range of Γ when
Slack based on Fj is non-negative for the first time (Lines 9-
12). Since Fj is the largest value in the range of Γ, we have
Γ′ = Fj . If Slack is positive, it is possible to increase the Xi

of τREM, which are tasks that have the partial derivative such
that f̄ ′i(1 − uHi ) < Fj ≤ f̄ ′i(0) (i.e., 0 ≤ X4i < 1 − uHi ). In
Line 10, we identify which task belongs to τREM. The FOR
loop exits either when the condition in Line 9 holds (Slack is
non-negative) or Xi of all tasks is zero (in this case, Slack is
also non-negative since UHH ≤ m).

Algorithm 2 Determination of the range of Γ

Input: τH
Output: τREM, Slack, and {Xi} assigned with Γ′

1: Initialize τREM = ∅
2: for each τi, assign Xi = 0
3: Let F be the set of the value of f̄ ′i(Xi) for each τi at
Xi = 0 and Xi = 1− uHi

4: Sort F in increasing order
5: for j := 1 to |F | (the size of F ) do
6: for each τi, compute X4i s.t. f̄ ′i(X

4
i ) = Fj (by

Eq. (15))
7: for each τi, assign Xi := min(1−uHi , max(0, X4i ))
8: Let Slack = m− UHH −

∑
τi∈τH Xi

9: if
(
Slack ≥ 0

)
then

10: for each τi, add the task into τREM if 0 ≤ X4i <
1− uHi

11: Break
12: end if
13: end for

Algorithm 3 modifies {Xi} with Slack. Line 1 finds Γ based
on Slack and the assignment of {Xi} from Algorithm 2. Lines
2-4 assign {Xi} of τREM such that f̄ ′i(Xi) = Γ (formally
proven in Lemma 9).

Algorithm 3 Modification of Xi with Slack

Input: τH , τREM, Slack, and {Xi}
Output: {X+

i } (the vector of the modified Xi)
1: Compute Γ by Eq. (18) with {Xi} and Slack.
2: for each τi ∈ τREM do
3: Assign X+

i s.t. f̄ ′i(X
+
i ) = Γ (by Eq. (15))

4: end for
5: for each τi ∈ τH \ τREM, assign X+

i := Xi

Optimality. We will show that the total sum of the objective
function by MC-Derivative is always smaller than or equal
to the one by any rate assignments. Let us first determine
the possible cases for rate assignments different from MC-
Derivative. To do so, we classify the HI-tasks in a task set
based on their f̄ ′i(Xi) values in Def. 7. Then, we derive the
property of f̄ ′i(Xi) of any two tasks in these classes for a valid
rate assignment different from MC-Derivative in Lemma 8.
Finally, we prove the optimality in Theorem 3.

Definition 7 (HI-tasks Classification). Without any loss of
generality, tasks in τH are categorized into three sets (τMAX,
τMIN and τREM)6 based on their f̄ ′i(Xi) values:

τMAX
def
={τi ∈ τH | f̄ ′i(Xi = 1− uHi ) ≥ Γ},

τREM
def
={τi ∈ τH | f̄ ′i(0 < Xi < 1− uHi ) = Γ},

τMIN
def
={τi ∈ τH | f̄ ′i(Xi = 0) ≤ Γ}.

Note that τMAX, τREM, and τMIN are mutually exclusive, and
τH = τMAX ∪ τREM ∪ τMIN.

For the example task set in Table II, τMAX = {τ1}, τREM =
{τ2, τ3} and τMIN = {τ4}.

Before proving the optimality, we introduce an auxiliary
lemma. Consider an assignment algorithm A that assigns {Xi}
differently from Algorithm 1. We can regard that {Xi} in A is
constructed by the transfer7 of {Xi} in Algorithm 1. Lemma 8
shows the property of f̄ ′i(Xi) of any two tasks for a valid
transfer of Xi.

Lemma 8. For any two tasks τp and τq , assume that Xp and
Xq are assigned by Algorithm 1. If a valid transfer from Xp

to Xq is possible, then it must be f̄ ′p(Xp) ≥ f̄ ′q(Xq).

Proof: The Xi of task τi ∈ τMAX cannot be increased any
further since Xi ≤ 1 − uHi from CON3 (i.e., θHi ≤ 1). The
Xi of task τi ∈ τMIN cannot be decreased any further because
Xi ≥ 0 from CON2 (i.e., θHi ≥ uHi ). Therefore, there are only
two cases to consider for a valid rate transfer.
Case 1: The Xi of the task τp ∈ τMAX is transferable to the
one of task τq ∈ {τREM, τMIN} or the Xi of the task τp ∈ τREM
is transferable to the one of task τq ∈ τMIN.
Case 2: The Xi of the task τp ∈ τREM is transferable to the
one of another task τq ∈ τREM.

We need to show f̄ ′p(Xp) ≥ f̄ ′q(Xq) for the two cases. We
show that f̄ ′p(Xp) ≥ f̄ ′q(Xq) for Case 1 using Def. 7. Consider
τp ∈ τMAX and τq ∈ {τREM, τMIN}. If τq ∈ τREM, we have
f̄ ′p(Xp) ≥ Γ = f̄ ′q(Xq). If τq ∈ τMIN, we have f̄ ′p(Xp) ≥ Γ ≥

6By Algorithm 1, Xi of τi ∈ τMAX has the maximum value (i.e., Xi =
1− uHi ), Xi of τi ∈ τMIN has the minimum value (i.e., Xi = 0).

7For any small real number ε and two tasks, τp and τq s.t. τp 6= τq ,
the transfer from Xp to Xq is defined as Xp is decreased by ε and Xq is
increased by ε.



Fig. 3. Transfer of the execution rate from τp to τq

f̄ ′q(Xq). In the case of τp ∈ τREM and τq ∈ τMIN, we have
f̄ ′p(Xp) = Γ ≥ f̄ ′q(Xq).

Next, we will show that f̄ ′p(Xp) ≥ f̄ ′q(Xq) for Case 2. Since
τp, τq ∈ τREM, we have f̄ ′p(Xp) = f̄ ′q(Xq) = Γ by Line 3 of
Algorithm 3.

Theorem 3. MC-Derivative is an optimal rate assignment
algorithm.

Proof: We show that if the execution rates are transferred,
then the resulting sum of the objective will be greater than the
one determined: f(X#) ≥ f(X) where {X#

i } denotes the
updated {Xi} after the transfer of execution rates such that
X#
i 6= Xi.
Consider the transfer of rate from task τp to task τq as shown

in Fig. 3. The execution rates assigned by MC-Derivative to
tasks τp and τq is given by Xp and Xq respectively. Let ε
denote the amount of execution rate transferred, and X#

p and
X#
q denote the corresponding updated execution rates. Then,

X#
p := Xp− ε and X#

q := Xq + ε where ε ∈ [0,min(Xp, 1−
uHq −Xq)] since for any task τi, Xi ∈ [0, 1− uHi ].

To show that the sum of the objective is greater after
transfer, we only need to show that

fp(X
#
p ) + fq(X

#
q ) ≥ fp(Xp) + fq(Xq)

⇔ fp(X
#
p )− fp(Xp) ≥ fq(Xq)− fq(X#

q )

⇔
∫ X#

p

Xp

f̄ ′p(x)dx ≥
∫ Xq

X#
q

f̄ ′q(x)dx. (16)

For a task τi and monotonically non-increasing function f̄ ′i(x)

with X1 and X2 s.t. X1 < X2, note that
∫X1

X2
f̄ ′i(x)dx ≥

minX1≤x≤X2
f̄ ′i(x) · (X2 − X1) and

∫X1

X2
f̄ ′i(x)dx ≤

maxX1≤x≤X2
f̄ ′i(x) · (X2 −X1).

To show Eq. (16), we only need to show that

min
X#

p ≤x≤Xp

f̄ ′p(x) · (X#
p −Xp) ≥ max

Xq≤x≤X#
q

f̄ ′q(x) · (Xq −X#
q )

⇔ min
X#

p ≤x≤Xp

f̄ ′p(x) · ε ≥ max
Xq≤x≤X#

q

f̄ ′q(x) · ε

(see the shaded rectangle in Fig. 3)
⇔ min

X#
p ≤x≤Xp

f̄ ′p(x) ≥ max
Xq≤x≤X#

q

f̄ ′q(x). (17)

Note that as both f̄ ′p(Xp) and f̄ ′q(Xq) are monotonically
non-increasing functions, we have minX#

p ≤x≤Xp
f̄ ′p(x) =

f̄ ′p(Xp) and maxXq≤x≤X#
q
f̄ ′q(x) = f̄ ′q(Xq). Since we know

f̄ ′p(Xp) ≥ f̄ ′q(Xq) by Lemma 8, Eq. (17) holds.
Correctness. The MC-Derivative algorithm is correct if it
satisfies CON1, CON2, and CON3 in Def. 6. For CON2 and
CON3 in Def. 6 (i.e., 0 ≤ Xi ≤ 1 − uHi ), we identify τMAX

and τMIN in Line 7 of Algorithm 2. We only increase the Xi

of τREM with Xi ≤ 1− uH in Algorithm 3.
For CON1 (i.e.,

∑
Xi ≤ m−UHH ), we have non-zero Slack

after Algorithm 2. The following lemma computes Γ from the
assignment of {Xi} by Algorithm 2 and its positive Slack. If Γ
is known, Algorithm 3 can compute {Xi} where f̄ ′i(Xi) ≥ Γ
for each τi and Slack is zero.

Lemma 9. Given Γ′, let X#
i denote the assignment of Xi by

Algorithm 2. When Slack for Γ′ is positive, we can compute
Γ such that Slack for Γ is zero:

Γ =

( ∑
τj∈τREM

√
uLj (uHj − uLj )

Slack +
∑
τj∈τREM(X#

j + uLj )

)2

(18)

Proof: Let X+
i denote the assignment of Xi with Γ. Note

that Slack for Γ′ (Fj in F ) is positive and Slack for Fj−1 is
negative by Algorithm 2. Since τMAX and τMIN are not changed
within (Fj−1, Fj ], only tasks in τREM has a different X+

i from
X#
i . Then, we have

∑
τi∈τH\τREM

X#
i =

∑
τi∈τH\τREM

X+
i .

Since Slack +
∑
τi∈τH X

#
i =

∑
τi∈τH X

+
i by the definition

of Slack and Γ, we have

Slack +
∑

τi∈τREM

(X#
i + uLi ) =

∑
τi∈τREM

(X+
i + uLi )

⇔Slack +
∑

τi∈τREM

(X#
i + uLi ) =

∑
τi∈τREM

√
uLi (uHi − uLi )

f̄ ′i(X
+
i )(

by Eq. (15)
)

⇔Slack +
∑

τi∈τREM

(X#
i + uLi ) =

∑
τi∈τREM

√
uLi (uHi − uLi )

Γ
,(

by f̄ ′i(X
+
i ) = Γ

)
which is Eq. (18).
Complexity. MC-Derivative algorithm has a complexity of
O(n log n). Algorithm 2 has O(n log n) time complexity. Sort-
ing F in Line 4 can be done in O(n log n) time complexity.
The range of Γ (Lines 5-13) can be determined in O(n log n)
time complexity. Although the outer FOR loop (Line 5) of
Algorithm 2 takes O(n) ·T where T is the time taken in Lines
6-12, we can reduce it into O(log n) · T: selecting the least
Fj ∈ F that satisfies the condition in Line 9 of Algorithm 2
can be done using binary search. For T, computing X4i in
Line 6 and assigning Xi in Line 7 of Algorithm 2 consumes
O(n) time. Algorithm 3 has O(n) time complexity because
modifying {Xi} of the tasks with Slack such that f̄ ′i(Xi) = Γ
can be done in O(n) time. In some domains such as online
admission control, MC-Derivative is preferable due to its low
complexity (O(n log n)) while OERA has O(n2) complexity.

B. Discussion on extension to multi-criticality systems
In this section, we discuss the scalability of MC-Derivative

(in terms of schedulability performance) to 3-criticality sys-
tems, compared to OERA. Consider an example task set with



TABLE III
EXAMPLE 3-CRITICALITY TASK SET SCHEDULED ON 2 PROCESSOR

Ti CL
i CM

i CH
i χi uLi uMi uHi

τ1 10 1 5 6 HI 0.1 0.5 0.6
τ2 10 3 4 6 HI 0.3 0.4 0.6
τ3 10 1 3 5 HI 0.1 0.3 0.5
τ4 10 2 4 - ME 0.2 0.4 -
τ5 10 1.5 - - LO 0.15 - -

TABLE IV
MULTI-CRITICALITY RATE ASSIGNMENT

OERA MC-Derivative
θLi θMi θHi θLi θMi θHi

τ1 0.5274 0.6214 0.6000 0.3911 0.6925 0.6000
τ2 0.5493 0.5493 0.7359 0.6277 0.4000 0.7351
τ3 0.4293 0.4293 0.6641 0.3278 0.5075 0.6649
τ4 0.4000 0.4000 0.4000 0.4000
τ5 0.1500 0.1500∑

2.0560 2.000 2.000 1.8966 2.000 2.000

3 criticality levels (low – LO, medium – ME and high – HI)
as shown in Table III. The system operates as follows: the
system initially starts in the LO-mode; if a ME-task or a HI-
task executes more than CLi , the system switches to ME-mode;
if a HI-task executes more than CMi , the system switches to
HI-mode.

We can apply the OERA algorithm to a 3-criticality system
if we construct the rate assignment problem by the Karush-
Kuhn-Tucker (KKT) conditions [12]. Thus, we decompose it
into two sub-problems8:

1) Minimize
∑
τH
θMi subject to

∑
τH
θHi ≤ m.

2) Minimize
∑
τM∪τH θ

L
i subject to

∑
τM∪τH θ

M
i ≤ m.

We apply convex optimization for each subproblem. For the
first subproblem, we decide {θMi } by optimization techniques.
Based on the assignment of {θMi }, we decide {θLi } for the
second subproblem. As shown in Table IV, the resulting rate
assignment for the example task set is unschedulable since∑
θLi > 2.
Although the extension of OERA cannot find a schedulable

rate assignment for the example task set, the extension of
MC-Derivative can find a schedulable rate assignment. Let
f(X) be

∑
τM∪τH θ

L
i . Our strategy is to increase θMi or θHi

by partial derivative of f(X). We can partially differentiate
f(X) with respect to θMi and θHi :

f ′′i (Xi) =
∂2f(X)

∂θMi ∂θ
H
i

.

We initially assign the minimum valid rate of θMi = uMi and
θHi = uHi for all ME-tasks and HI-tasks. We increase the θMi
rate to the tasks in the order of their maximum f ′′i (Xi) deriva-
tive value as long as the ME-mode slack (m−

∑
τM∪τH θ

M
i )

is non-negative. Similarly, we increase the θHi rate to the HI-
tasks in the order of their maximum f ′′i (Xi) derivative value as
long as the HI-mode slack (m−

∑
τH
θHi ) is non-negative. As

shown in Table IV, the resulting rate assignment for the same
example task set is schedulable (

∑
θLi ≤ 2,

∑
τM∪τH θ

M
i ≤ 2,

and
∑
τH
θHi ≤ 2). Note that both OERA and MC-Derivative

8For task schedulability, each subproblem assumes that uLi ≤ θLi , uMi ≤
θMi , and uHi ≤ θHi . Also, any rate is no larger than 1 by the definition of
execution rate (Def. 2)

are sub-optimal solutions to the 3-criticality rate assignment
problem.

As shown in the above example on the 3-criticality sys-
tem, the extended MC-Derivative is more flexible than the
extended OERA. While OERA relies on the formal convex
optimization framework, MC-Derivative can be freely ex-
tended for various directions (e.g., multi-criticality and online
admission control for MC systems).

VII. CONSTRUCTING THE DISCRETE-TIME SCHEDULE
FROM THE MC-FLUID SCHEDULE

In the previous section, we presented the optimal rate
assignment of MC-Fluid and its exact schedulability analysis.
In this section, we discuss the limitation of fluid scheduling
platform and present how to overcome the limitation for MC-
Fluid.

Many fluid-based scheduling algorithms, including MC-
Fluid, rely on fractional (fluid) processor assumption, which
is not directly applicable on real (non-fluid) hardware plat-
forms. Overcoming the limitation of fluid-based algorithms,
several approaches in the non-MC domain (e.g., [7], [9]–[11])
have been introduced to construct a non-fluid schedule with
schedulability equivalent to a fluid-based schedule.

Such approaches are broadly classified into two cate-
gories: quantum-based approaches and deadline partitioning
approaches. Quantum-based approaches (e.g., [7]) identify the
minimal scheduling unit (i.e., a time quantum) in hardware
platforms. Every time quantum, they enforce the execution
of each task to satisfy that allocation error (the difference
between the execution amount of the actual schedule and fluid
schedule) is no greater than 1. On the other hand, deadline
partitioning approaches (e.g., [9]–[11], [26]) divide the entire
timeline by distinct release times and deadlines of the task
system. Every time partition, they ensure that allocation error
of each task is no greater than 1, which suffices optimality.

A. Recapitulation of Boundary Fair (BF) Algorithm
To construct a discrete-time schedule from the schedule of

MC-Fluid, we choose BF scheduling algorithm ( [11], [26])
because deadline partitioning approaches have lower numbers
of preemption than quantum-based approaches and among
them, only BF considers discrete execution units for realistic
platforms.

Before presenting BF, we present the task model for
discrete-time schedule and define the lag of a task. Each task
τi is characterized by (Ti, Ci), where Ti ∈ N is the period and
CLi ∈ N is the WCET.

Definition 8 (from [26]). The lag of task τi at time t is the
difference between the execution amount of a job of τi in
the fluid schedule and the one in the actual schedule after
transformation:

lagi(t)
def
= δi · (t− ai(t))− ALi(ai(t), t) (19)

where δi is the density (a ratio of execution time over deadline)
of task τi, ai(t) is the release time of the active job of τi at
time t, and ALi(t1, t2) is the actual resource allocation of τi
in time interval [t1, t2).

Next, we explain the granularity of schedule transformation
in BF. Boundary time is defined as a distinct release time



or deadline of any job in the system. BF transforms the
fluid schedule into an actual discrete-time schedule every
boundary time. We explain how BF allocates resources for
a time interval between two consecutive boundary times9. For
each task τi, BF allocates mandatory execution amount (a
rounded value of execution amount from the fluid schedule)
and optional execution amount (up to one) to preserve the
optimality of the fluid schedule. Mandatory execution amount
of τi (denoted as Mi) for a time interval from bk to bk + 1 is
computed as follows:

Mi(bk, bk+1) = max(0, blagi(bk) + (bk+1 − bk) · δic).

If there are idle resources after allocating the mandatory exe-
cution amount for every task, BF allocates optional execution
amount to some unfinished jobs (refer [26]). The following
lemma shows a scheduling property of BF.

Lemma 10 (from [26]). In BF, at any boundary time bk, it
holds for every task τi that lagi(bk) < 1.

If the execution time of a task is integer, by Lemma 10, the
lag at the deadline of the task is always less than zero, which
guarantees that the task meets its deadline.

The following lemma shows the schedulability condition of
BF for a given task set.

Lemma 11 (from [26]). A non-MC task set τ is schedulable
by BF iff

∑
τi∈τ δi ≤ m.

B. MC-Discrete Scheduling Algorithm
To extend BF into MC systems, we redefine our system

model in MC systems. According to the assumption under
BF, the task model is modified: a MC task τi has integer LO-
and HI-WCETs (CLi ∈ N and CHi ∈ N).

There are three challenges to extend BF to construct a
discrete-time schedule equivalent to the MC-Fluid schedule.
The first challenge is how to transform the execution rate of
MC-Fluid into BF. Since the fluid scheduling model for non-
MC systems executes a task at a constant rate, BF allocates
resources to a task statically based on its density. However,
since MC-Fluid switches the execution rate of a task at
mode switch, in our discrete-time schedule, we will allocate
resources to a task based on two densities, LO-density (LO-
criticality density) and HI-density (HI-criticality density). A
task initially receives resources based on its LO-density and
based on its HI-density after the decision of density change
(discussed later).

The second challenge is how to apply boundary times of the
BF algorithm for MC systems. If we apply boundary times
of BF, then the mode switch time instant may be delayed
because the actual resource allocation between two boundary
times could be different from the MC-Fluid schedule. Then,
even if an HI-task executes with HI-density (transformed from
HI-execution rate) after the mode switch, the task cannot meet
its deadline due to the smaller remaining time to deadline,
compared to that of the MC-Fluid schedule. To guarantee that
mode switch does not happen beyond the worst-case mode
switch time in MC-Fluid, we introduce virtual deadlines (VDs)
indicating the time instant of the worst-case mode switch in
MC-Fluid. By dividing the timeline by the VDs of tasks, the

9We will discuss how to generate a schedule avoiding intra-job parallelism
from the resource allocation at the end of this section.

scheduler enforces each task to execute its LO-WCET until
its VD. Then, the worst-case mode switch instant is no later
than the one in the MC-Fluid schedule.

The third challenge is how to determine the time when the
scheduler changes the density of a task, from LO-density to
HI-density. Although the delay of the worst-case mode switch
time is prevented, direct application of MC-Fluid (changing
the density of a task at mode switch) may lead to deadline
miss of a task because the executed time of the task until mode
switch could be smaller than the one in the fluid schedule.
Our previous work [12] based on DP-Fair [10] (allowing real-
number execution time) guarantees the equivalence of the
executed time by changing the density at the next boundary
time after the mode switch. Then, since lagi(bk) = 0 at every
boundary time, HI-tasks receive the same amount of execution
time as the fluid schedule. However, BF (allowing only
discrete execution time) does not provide such a guarantee,
i.e., lagi(bk) may be greater than 0 (Lemma 10)10. To solve
the issue, we present a new policy for the density change:
instead of globally switching the densities of all tasks at a
certain boundary time, we independently switch the density
of each task at its VD. Then, each task receives the same
amount of execution time as the fluid schedule until its VD
because lagi(bk) = 0 at the VD of task τi.

Addressing the above challenges, we present a new schedul-
ing algorithm, called MC-Discrete.

Definition 9. MC-Discrete scheduling algorithm is defined
with virtual deadlines. For each task τi, we define a VD: Vi ∈
N s.t. 0 < Vi ≤ Ti. At mode switch, MC-Discrete drops all
LO-tasks. After the mode switch, MC-Discrete changes the
density of a task at its VD: each task executes with its LO-
density until the VD of the active job of τi at mode switch and
with its HI-density after the VD of the job, according to BF.

Density Computation.
For a LO-task, we assign its LO-density to task utilization

as in the original BF: δLi
def
= CLi /Ti.

For a HI-task, we need to assign its LO-density and its
HI-density. In MC-Discrete, to execute a HI-task for its LO-
WCET until its VD, we assign LO-density as δLi

def
= CLi /Vi.

To compute HI-density (δHi ), assume that we know the
interval length from the release time of the job to the time
instant of actual density change (wi) and its executed time
(ELi (wi) where ELi (t) be the execution amount of the job for
time interval t with LO-density). Then, δHi is the remaining
execution amount over the remaining time to the deadline:

δHi
def
=
CHi − ELi (wi)

Ti − wi
. (20)

Virtual Deadline Assignment. We present the VD assignment
in Def. 10 based on the optimal rate assignment of MC-Fluid.

Definition 10 (VD assignment). We assign Vi := Ti for τi ∈
τL and Vi := bCLi /θL∗i c for τi ∈ τH where θL∗i is the optimal
value of θLi in MC-Fluid.

If task τi in MC-Fluid is executed with θL∗i , the task can
execute CLi at time CLi /θ

L∗
i . By assigning the VD in MC-

Discrete, we enforce the execution until the largest integer
time before CLi /θ

L∗
i in the discrete-time schedule. In the next

10It is also possible that lagi(bk) < 0 by Lemma 10. However, receiving
more resource than the MC-Fluid does not produce any problem.



lemma, we find an equivalent LO- and HI-execution rates to
LO- and HI-densities of MC-Discrete in order to apply the
schedulability analysis of MC-Fluid.

Lemma 12. Given a MC task set τ , if VDs are assigned by
Def. 10, then (i) δLi = uLi for τi ∈ τL and (ii) δLi = θL4i and
δHi ≤ θH4i for τi ∈ τH where θL4i = CLi /bCLi /θL∗i c and
θH4i = (uHi − uLi )/(1− uLi /θ

L4
i ).

Proof: (i) We show that δLi = uLi for τi ∈ τL: δLi =
CLi /Vi = CLi /Ti = uLi .

(ii) We show that δLi = θL4i for τi ∈ τH : δLi = CLi /Vi =
θL4i . Next, we will show that δHi ≤ θ

H4
i for τi ∈τH . From the

MC-Discrete algorithm, wi is either 0 or Vi. When wi = 0,
we have δHi = CHi /Ti ≤ θ

H4
i . When wi = Vi,

δHi =
CHi − δLi · Vi
Ti − Vi

=
CHi − CLi /Vi · Vi
Ti − CLi /θ

L4
i

=
uHi − uLi

1− uLi /θ
L4
i

,

which is θH4i by Lemma 6(ii). Thus, δHi ≤ θ
H4
i .

Schedulability Analysis. Since we allow only multiples of
the scheduling quantum (integer) in VDs, MC-Discrete has
different schedulability condition from MC-Fluid.

Theorem 4. A MC task set τ is schedulable by MC-Discrete
with the VD assignment by Def. 10 if

ULL +
∑
τi∈τH

θL4i ≤ m.

Proof: To show that the task set is schedulable, we need to
show schedulability in both LO-mode and HI-mode. Consider
LO-mode. We consider

∑
τi∈τ δ

L
i , which is ULL+

∑
τi∈τH θ

L4
i

by Lemma 12, which is less than or equal to m by the
assumption. From

∑
τi∈τ δ

L
i ≤ m, the task set is schedulable

in LO-mode by Lemma 11.
Consider HI-mode. We claim that θH4i ≤ θH∗i :

uHi − uLi
1− uLi /θ

L4
i

≤ θH∗i (by the definition of θH4i )

⇔ uHi − uLi
1− uLi /θ

L4
i

≤ uHi − uLi
1− uLi /θL∗i

, (by Lemma 6(ii))

which is true because θL4i = CLi /bCLi /θL∗i c ≥ θL∗i . Since
δHi ≤ θ

H4
i by Lemma 12, we have∑

τi∈τH

δHi ≤
∑
τi∈τH

θH4i ≤
∑
τi∈τH

θH∗i ,

which is less than or equal to m because the optimal assign-
ment satisfies CON1 in Def. 6. From

∑
τi∈τH δ

H
i ≤ m, the

task set is schedulable in HI-mode by Lemma 11.
Schedule Generation. We generate a discrete-time schedule
of tasks based on their execution allocation within a time slice
(the time interval from bk to bk+1), with the consideration of
the sequential task execution requirement that no task executes
in parallel. We can apply the schedule generation strategy of
BF [11], [26]. In BF, McNaughton’s algorithm [27] is applied:
the algorithm consecutively fills resources of a processor with
tasks one by one within a time slice; if the processor is full,
the algorithm fills resources of a new processor from the last
allocated task which has remaining execution amount.

VIII. EXPERIMENTS AND RESULTS

In this section, we evaluate the schedulability performance
of MC-Fluid framework (MC-Derivative in Sec. VI-A and
MC-Discrete in Sec. VII). We compare the framework with
other multiprocessor MC scheduling algorithms. These algo-
rithms include GLO (global scheduling approach based on
EDF-VD [18]), PAR (partitioned scheduling approach based
on EDF-VD [20]) and FP (global fixed-priority scheduling ap-
proach [19]). We first describe our random task set generation
procedure in the experimental setup section and then discuss
the performance results of the algorithms.

A. Experiment Setup
Our experiments are carried out using the MC-FairGen task

set generator [28], which methodically considers all the task
set parameters that affect the performance of MC scheduling
algorithms and generate fair task sets. The task parameters and
the task set generation procedure are described as follows:
• m ∈{2, 4, 8} denotes the total number of processors.
• umin (= 0.0001) and umax (= 0.99) denote the minimum

and maximum task utilization respectively.
• The normalized system-level utilization of HI-tasks in HI

mode is given by UHH /m ∈ [0.1, 0.2, . . . , 1.0].
• The normalized system-level utilization of HI-tasks in LO

mode is given by ULH/m ∈ [0.05, 0.15, . . . , UHH /m].
• The normalized system-level utilization of LO-tasks in

LO mode is given by ULL /m ∈ [0.05, 0.15, . . . , 1 −
(ULH/m)].

• PH ∈ [0.1, 0.2, . . . , 0.9] denotes the percentage of HI-
tasks in the system. We use the exact percentage of HI-
tasks and not the probability to be an HI-task.

• The total number of tasks in the system is lower bounded
and upper bounded by m+ 1 and 10m, respectively.

• Ti, the period of task τi is drawn uniformly from [5, 100].
• The utilization values uLi and uHi are generated using

standard techniques [28], [29].
• Execution requirements CLi and CHi are derived as uLi ·Ti

and uHi · Ti, respectively.
10, 395 different possible combinations of task parameters

were considered and 50 task sets were generated for each
combination, resulting in 519, 750 task sets in total.

B. Results
In Fig. 4, we present the overall schedulability of the

algorithms. We plot the acceptance ratios of the algorithms
i.e., fraction of schedulable task sets, versus normalized uti-
lization bound UB (UB = max(UHH , U

L
H + ULL )/m) varying

over m ∈ {2, 4, 8}. It can be observed that all the dual-
rate scheduling algorithms perform significantly better than
the existing multiprocessor MC scheduling algorithms. As m
increases, the performance of all the algorithms decreases in
general. But, the performance gap between the MC-Derivative
and the other MC algorithms increases as m increases. This
shows how well the MC-Derivative scales with m. As seen,
though MC-Discrete incurs a very small loss in schedulability
for allowing discrete mode switch instant it still performs
much better than the existing algorithms.

To evaluate the performance of the algorithms with respect
to specific individual task set parameters such as percentage of
HI-tasks and maximum individual task utilization, we plot the



(a) m = 2 (b) m = 4 (c) m = 8

Fig. 4. Overall Schedulability of Multi-Core MC Algorithms

(a) Percentage of HI-Tasks

(b) Maximum Individual Task Utilization

Fig. 5. Varying Individual Task Set Parameters

Weighted Acceptance Ratio [30] of the algorithms in Fig. 5.
The legend of Fig. 5 is the same as in Fig. 4. The weighted
acceptance ratio is computed as:

W(S)
def
=

∑
UB∈S A(UB) · UB∑

UB∈S UB

where S is the set of UB values and A(UB) is the acceptance
ratio for a specific UB value. Each data point in these plots
correspond to at least 15, 000 task sets.

In Fig. 5(a), we compare the weighted acceptance ratio
of the algorithms for varying percentage of HI-tasks (PH ).
In general, fluid scheduling algorithms (MC-Derivative and
MC-Discrete) perform better than all the other algorithms
regardless of PH . The performance of MC-Discrete decreases
as PH increases. For a large number of HI-tasks in the system

(high PH ), there are high resource overheads to compute the
integer VDs.

In Fig. 5(b), we compare the weighted acceptance ratio of
the algorithms for varying maximum individual task utilization
(umax). All the algorithms perform well when the umax values
are small, and relatively poorly when they are large. The
performance of the fluid algorithms decreases gradually as
umax increases. In the case of PAR, the performance of the
algorithm drops significantly as umax becomes greater than
0.7. This is true because the algorithm fails to schedule any
task sets with umax greater 0.75. In the case of GLO and FP,
the performance degradation is gradual as umax increases.

IX. CONCLUSION

We presented a multiprocessor mixed-criticality scheduling
algorithm, called MC-Fluid, based on the fluid scheduling
platform. Given LO- and HI-execution rates per task, we
derived an exact schedulability analysis of MC-Fluid on
the dual-criticality systems. We presented the MC-Derivative
assignment algorithm to determine the optimal execution rates
in O(n log n) time. We presented the MC-Discrete schedul-
ing algorithm, which is a variant of MC-Fluid for mapping
fluid schedules into practical discrete-time schedules. In the
simulation, we showed that MC-Derivative and MC-Discrete
outperform all the existing multiprocessor MC scheduling
algorithms. As future work, we plan to extend the MC-Fluid
framework to multi-criticality systems with MC-Derivative
strategy.
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