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Abstract

In this study, a traffic management measure is presented by combining the
route guidance of Advanced Traveler Information System (ATIS) and the con-
tinuous network design (CNDP) to alleviate increasing traffic congestion. The
route guidance recommends the travelers to choose the shortest path based on
marginal travel cost and user constraints. The problem is formulated into a
bi-level programming problem. The most distinct property of this problem for-
mulation is that the feasible path set of its lower-level problem is determined
by the decision variable of upper-level problem, while in conventional trans-
portation network design problems the feasible path set for lower-level traffic
assignment problem is fixed to be all the viable paths between each specific
origin-destination pair. The simulated annealing algorithm is improved to solve
this bi-level problem. A path-based traffic algorithm is developed to calculate
the lower-level traffic assignment problem under the route guidance. Compared
to the results of conventional CNDP, the measure presented in this study can
better improve the transportation network performance.

Keywords: continuous network design, route guidance, system optimal, traffic
demand management

1. Introduction

In presence of rapid economic development, urbanization and population
growth, almost all large cities worldwide in the world are facing the serious prob-
lem of traffic congestion. Traffic congestion has induced not only huge economic
loss, but environmental not only. Based on the report of Texas Transportation
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Institute, the congestion bill in the United States alone was $67.5 billion in the
year 2000, comprised of 3.6 billion hours of delay and 5.7 billion gallons of gas
(Schrank, 2002). International Energy Agency said that 23% of global energy
related carbon emission in 2004 are related to transportation (IEA, 2006). It is
reasonable to believe that the world will soon have to confront high levels of air
pollution and congestion problems caused principally by the unrestricted use of
private cars, and have to deploy practical instruments to achieve transportation
sustainability efficiently, effectively and in a politically feasible manner (Yang
and Wang, 2011).

There are generally two ways to alleviate traffic congestion: increasing traffic
supply (capacity) and reducing traffic demand (Yang and Wang, 2011). The
former way is usually called network design problem (NDP) in transportation
network, which determines the enhancement of existing link capacity or the
addition of network candidate links. Generally, NDP can be classified into three
classes: CNDP (determining the optimal capacity enhancement for a subset
of the existing links and its deterministic variables are continuous), discrete
network design problem (DNDP) (Wang et al., 2015; Riemann et al., 2015)
(dealing with the optimal location of new links addition from a set of candidate
links and its deterministic variables often are expressed by 0-1 integer), and
mixed network design problem (MNDP) (mixture of the CNDP and DNDP)
(Luathep et al., 2011).

However, disparate evidence indicates that the enhancement of road capacity
induces a greater volume of traffic (Goodwin, 1996; Hansen and Huang, 1997).
Besides, the limitation of land resources in cities cannot support the unlimited
increase of link capacity to solve traffic congestion. Basically, more sustainability
issues should be considered in NDP (Szeto et al., 2013). The other measure to
reduce traffic congestion is demand-oriented strategies or demand management.
Historically, congestion pricing as a demand management instrument has been
paid much attention both theoretically and practically. However congestion
pricing is perceived as a flat tax since it requires the travelers to pay more for
using public urban infrastructure. Meanwhile, there are equity debates of the
congestion pricing. So congestion pricing causes the general political resistance
and is only applied on urban road in a few cities worldwide (Yang and Wang,
2011). Other than congestion pricing, some quantity controls methods to reduce
traffic demand are also applied in practice. For example, rationing policies on
vehicle usage are used in Mexico City (Davis, 2008), Beijing and Guangzhou,
China (Hao et al., 2011). Under short-term ration of vehicle usage, observable
congestion reduction and air quality improvement have been reported. But
it may lose its effectiveness over time as car ownership increases(e.g., there is
evidence that driving restrictions in Mexico City led to an increase in the total
number of vehicles (Davis, 2008)).

Some researchers also study the combination of NDP and traffic demand
management. For example, Wang et al. (2014) considered the combination of
CNDP and a tradable credit scheme and proved its effectiveness to improve
traffic congestion by numerical examples. In this paper, we will study the com-
bination of CNDP and route guidance.
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With the development of Intelligent Transport System and advanced tech-
niques of information in the past decades, the advanced traveler information
system (ATIS) can easily provide travel information or give travel recommen-
dations. It is widely believed that route guidance information to the travelers
is able to efficiently reduce traffic congestion and enhance the performance of
traffic networks (Yang, 1998). Nowadays a large portion of the private cars have
been equipped with ATIS devices. While the prices of those deices keep going
down, many more travelers are likely to use them and rely on route guidance to
achieve trips in the near future. Therefore, it is imperative for the transporta-
tion authority to understand how to incorporate the route guidance into the
transportation network design so that the network performance is optimized.
Traditional network design problems in the literature have not considered the
route guidance, assuming that travelers follows user equilibrium (UE) principle
to minimize their individual travel costs. In this study, we assume that when
transport planners decide to improve the road network, they have to consider
that route guidance information would be provided to the travelers and there-
fore the resultant network traffic flow pattern is different from the UE traffic
assignment. Besides, noting that the simple and naive system-optimal based
route guidance is subject to unfairness issue, we assume that route guidance
strategy with certain user constraints is applied to reduce the unfairness. In-
deed, the network traffic flow pattern achieved with this route guidance strategy
is constrained system optimal (CSO). The problem studied in this paper, i.e.,
the combined continuous network design and route guidance, is then formu-
lated into a bi-level programming. A modified simulated annealing algorithms
is proposed to solve the problem. To summarize, the main contribution of this
research work is to fill in the research gap in transportation network design
problems by considering the route guidances of the traveler information system.

The paper is organized as follows: Section 2 presents a bi-level programming
problem to model the combination of CNDP and route guidance. The algorithm
to solve the bi-level programming problem is given in Section 3. Section 4 gives
the numerical test and the conclusions of the study is presented in Section 5.

2. Problem formulation

In NDP, the traffic authorities make a decision on the link capacity enhance-
ment or the addition of new link to optimize a specific network index (e.g. total
travel time or generalized cost). Meanwhile, the route choice of travelers is
considered in NDP. Therefore, NDP is naturally described by bi-level program.
Abdulaal and LeBlanc (1979) is the first one who describe CNDP by bi-level
programming, in which the lower-level is the user equilibrium (UE) assignment
problem. In this study, the general CNDP is called UE-CNDP. There is also
NDP in which the lower-level problem is a stochastic user equilibrium (Liu and
Wang, 2015). In the following, we will present the notations used in our paper.
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2.1. Notations

In this study, G = (N,A) denotes a direct connected traffic network of a
node set N , a link set A. W is the set of origin-destination (OD) pairs, Rw is
denoted as the set of paths between OD pair w, and all paths in this network
are denoted by R, R =

⋃
w∈W Rw. xa and ca respectively denote the traffic

flow and the capacity on link a. ta(xa) is the travel cost of link a and increases
with xa. x is the link flow vector. fw

r , cwr are the flow and travel cost of path r,
r ∈ Rw, ∀w ∈ W ,

cwr =
∑
a∈A

taδ
w
ar, r ∈ Rw, w ∈ W (1)

where δwar = 1, if link a is used by path r, and δwar = 0 otherwise. qw denotes the
traffic demand between OD pair w. ya is the capacity enhancements in CNDP
and y is the vector of ya. Ga(ya) is the cost function of incremental capacity on
link a, ∀a ∈ A. The lower and upper bounds of allowed capacity enhancement
for link a ∈ A are respectively denoted by la and ua. τr is the normal length of
path r ∈ Rw, its definition is given in Section 2.3. Tw is the minimum normal
length for all paths between OD pair w and ϕ is a parameter. Pw is the feasible
path set under route guidance between OD pair w. Based on the notations, the
UE-CNDP model is given in Section 2.2.

2.2. UE-CNDP Model

The upper-level of UE-CNDP Model:

min z(x, y) =
∑
a∈A

ta(xa, ya)xa(y) + α
∑
a∈A

G(ya) (2)

s.t. la ≤ ya ≤ ua, ∀a ∈ A (3)

where, the parameter α is a scaling coefficient which converts cost of increase
link capacity into the travel cost. xa is the solution of the lower UE assignment
problem:

min
∑
a

∫ xa

0

ta(ω)dω (4)

s.t.
∑
r

fw
r = qw, ∀r ∈ Rw, ∀w ∈ W (5)

fw
r ≥ 0, ∀r ∈ Rw, ∀w ∈ W (6)

xa =
∑
w

∑
r

fw
r δwar, ∀a ∈ A (7)
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2.3. Travel pattern under Route Guidance

Roughgarden and Tardos (2002) have showed that the user optimal route
guidance generally cannot improve the performance of traffic network. However,
from the traffic authority’s perspective, it is certainly desirable to explicitly
minimize the total travel time. To alleviate traffic congestion, it is imperative to
develop route guidance based on system optimal principle. However, in system
optimal, despite that the total system travel time is minimized, some travelers
are routed on unacceptably long paths so that shorter paths can be used for
many other travelers (Jahn et al., 2005). So, directly implemented, the route
guidance based on system optimal may be not accepted by travelers. Jahn et al.
(2005) developed a route guidance method which recommends the shortest path
based on the marginal travel cost to travelers at current traffic flow. And the
recommended paths all satisfy user constraints. With this route guidance, traffic
system will attain constrained system optimal (CSO). The user constraints are
described by the normal length of path and the parameter ϕ. Specifically, for
the path r ∈ Rw, its normal length is τr. Let Tw := minr∈Rwτr , if τk ≤ ϕTw,
path k belongs to the feasible path set Pw between OD w; otherwise, it is not in
the Pw. It is to say that the user constraints is the feasible path set determined
by the normal length and ϕ under route guidance. The normal length of a path
can be its traversal time in the uncongested network, its traversal time in user
equilibrium, its geographic distance, or any other appropriate measure. The
only condition of the normal length of a path is that it may not depend on the
actual flow on the path (Jahn et al., 2005).

Schulz and Stier-Moses (2006) have verified that the resulting traffic assign-
ment is provably efficient and close to fair when the normal length is defined
as the travel time in user equilibrium. In this study, we use the route guidance
method developed by Jahn et al. (2005) and choose the travel time at UE to
be the normal length. The traffic state caused by this route guidance can be
described by the following CSO problem:

min
∑
a

ta(xa)xa (8)

s.t.
∑
r

fw
r = qw, ∀r ∈ Pw, ∀w ∈ W (9)

fw
r ≥ 0, ∀r ∈ Pw, ∀w ∈ W (10)

xa =
∑
w

∑
r∈Pw

fw
r δwar, ∀a ∈ A (11)

2.4. CSO-CNDP Model

Replacing the lower-level problem in UE-CNDP with CSO, the combination
of route guidance and CNDP can be descried as follows:
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upper-level:

min z(x, y) =
∑
a∈A

ta(xa, ya)xa(y) + α
∑
a∈A

G(ya) (12)

s.t. la ≤ ya ≤ ua, ∀a ∈ A (13)

lower-level:
min

∑
a

ta(xa)xa (14)

s.t.
∑
r

fw
r = qw, ∀r ∈ Pw, ∀w ∈ W (15)

fw
r ≥ 0, ∀r ∈ Pw, ∀w ∈ W (16)

xa =
∑
w

∑
r∈Pw

fw
r δwar, ∀a ∈ A (17)

In this paper, the combination of route guidance and CNDP is called as CSO-
CNDP. It should be noted that, in the constraint (16) of the lower-level problem,
the feasible path set, i.e., the paths that would be recommended to the trav-
elers in the route guidance information, is constrained to the the set Pw. To
determine this constrained set Pw, we follow the research work in Schulz and
Stier-Moses (2006): firstly, we solve the user equilibrium traffic flow pattern
achieved on this network and set the normal length as the travel time between
one specific OD pair at this user equilibrium state; then, we select parameter ϕ
to determine the constrained path set by eliminating some paths with too long
travel time. One can easily find that, the major difference between our model
formulation with conventional NDP is on this constrained feasible path set. In-
deed, this makes the model solution in this study more difficult and many exact
solution methods developed for solving conventional network design problem
in the literature are not applicable in this study, which motivates us to apply
the simulated annealing algorithm to solve this problem, as is specified in next
section.

3. Algorithm

In CSO-CNDP, the feasible path set Pw between OD pair w (∀w ∈ W ) is de-
termined by the normal length of the paths and tolerance factor ϕ. The normal
length τr of path r is its travel time at UE in this paper, which is determined
by the link capacity enhancement y for a given transportation network design.
Therefore the decision variable y of upper-level problem of CSO-CNDP dictates
the constraints of the lower-level problem of CSO-CNDP. It is to say that the
feasible domain of the lower-level problem of CSO-CNDP varies with the link
capacity enhancement plan y. Some existing efficient deterministic methods to
solve UE-CNDP are no longer proper to solve CSO-CNDP. For example, based
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on the concepts of gap function and penalty, the global optimization algorithm
to solve UE-CNDP developed by Li et al. (2012) transfer UE-CDNP into a
sequence of single level concave programs, which is amenable to a global solu-
tion. It is to say that the feasible domain of the single level concave programs
is convex. But CSO-CNDP cannot guarantee the convexity. Wang and Lo
(2010) formulated the UE-CDNP as a single level optimization problem with
equilibrium constraints, and they transform the equilibrium constraints into a
set of mixed integer constraints and linearize the travel time function. The
mixed integer constraints of the equilibrium constraints of UE-CNDP cannot
consider the variability of feasible path set with link capacity enhancement. So
the method cannot be used to solve CSO-CNDP. In the algorithm of Meng et al.
(2001), the link flow and capacity enhancement are both updated at the same
time in the convex combination method to solve the sub problem. It assumed
that the feasible domain is not variable with the decision variable of upper-level
problem. Although there are also some existing deterministic methods that can
be used to solve CSO-CNDP, most of them are not tested by large size example
(e.g., Gao et al. (2007)), or their results are not better than Simulated annealing
algorithm (e.g., Chiou (2005)).

Other than Simulated annealing algorithm (Friesz et al., 1992), there are
some heuristic or nondeterministic algorithms to solve UE-CNDP. These heuris-
tic algorithms include Hook-Jeeves heuristic algorithm (Abdulaal and LeBlanc,
1979), Iterative optimization-assignment algorithm (Allsop, 1974), the equilib-
rium decomposed optimization algorithm (Suwansirikul et al., 1987), Sensitivity
analysis-based algorithm (Yang and Yagar, 1995), and the three nondetermin-
istic and derivative-free global optimization methods for the CNDP of Hellman
(2010): NFFM (a filled function method), EGO (a surrogate model method)
and DIRECT (dividing the search space into rectangles and evaluating the mid-
points of them). From the results of these nondeterministic algorithms to solve
UE-CNDP presented in Tab.8-Tab.12, it can be found that the objective value is
better than other nondeterministic algorithms except DIRECT in Tab.8, mean-
while the code of simulated annealing algorithm is very simple. Therefore, this
study chooses simulated annealing algorithm to solve CSO-CNDP.

In this study, we improve the simulated annealing algorithm developed by
Friesz et al. (1992) and use it to deal with CSO-CNDP. In the simulated anneal-
ing algorithm (Friesz et al., 1992), any new solution may be not accepted when
temperature is lower, the matrix that controls the step size distribution cannot
be gained in this situation. Our improvement aims to handle this issue. As the
route guidance system recommends paths to travelers, a path-based algorithm
for CSO is developed based on the study of Jayakrishnan et al. (1994) to solve
the lower-level CSO traffic pattern. In the following, we present that the specific
process of the improved simulated annealing algorithm and path-based traffic
assignment algorithm.

3.1. Path-based Traffic Assignment Algorithm for CSO

The only difference between the path-based traffic assignment algorithm de-
veloped by Jayakrishnan et al. (1994) and our algorithm is the constrained
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shortest paths rather than regular shortest paths in direction finding subprob-
lems. To find the constrained shortest paths, we implement the label-correcting
algorithm presented by Aneja et al. (1983). The specific description of our traffic
assignment algorithm for lower-level CSO is as follows:

step 1: Initialization. Using the label-correcting algorithm of Aneja et al. (1983),
find constrained shortest path based on marginal travel cost t′a for
xa = 0, ∀a ∈ A and implement all-or-nothing assignments. This re-
sults in path flow fw

r,1 ∀w ∈ W, r ∈ Rw and link flow x1
a ∀a ∈ A. Set

iteration counter n = 1. Initialize path set Kw with constrained shortest
path for each OD pair w.

step 2: Update. Update the marginal travel cost t′a and path r cost cwr,n using
corresponding link marginal travel cost, ∀r ∈ Rw, w ∈ W .

step 3: Direction finding. Find the constrained shortest path k̄nw between OD
pair w ∈ W based on marginal travel cost. If the k̄nw doesn’t exist in the
path set Kw (just compare path cost), add it to Kw and record ck̄n

w
. If

not, tag the constrained shortest path in Kw as ck̄n
w
.

step 4: Move. Set the new path flows.

fw
r,n+1 = max{0, fw

r,n − αn

snk
(cwr,n − ck̄n

w
)}, ∀w ∈ W, r ∈ Kw, r �= k̄nw

where

snr =
∑
a∗

∂t
′
a∗(xn

a)

∂xn
a∗

a∗ denotes link that are on either r or k̄nw, but not on both, and αn is a
scalar step-size modifier which is valued 0.01 in this study.

fn+1
k̄n
w

= qw −
∑
r

fn+1
k

The path flow fn+1
r then generate the link flow xn+1

a .

step 5: Convergence test. If the criterion of convergence is satisfied, stop. Oth-
erwise, set n = n+ 1 and go to step 1.

3.2. Improved Simulated annealing algorithm

Simulated annealing algorithm is motivated by the analogy with the physical
annealing process to find low energy states of a solid in heat bath (Metropo-
lis et al., 1953). It is a stochastic algorithm which has the ability to avoid
getting stuck in a local, non-global optimum, when searching for a global op-
timum(Meng and Yang, 2002). Simulated annealing can be readily applied to
any arbitrary combinatorial optimization problem. Application of the approach
to minimization of continuous optimization problem is also stated in many re-
searches (Vanderbilt and Louie, 1984; Dekkers and Aarts, 1991; Romeijn and
Smith, 1994). Friesz et al. (1992) applied the simulated annealing method pro-
posed by Vanderbilt and Louie (1984) to the UE-CNDP.

8



In their method, a candidate optimal solution can be generated by the fol-
lowing formulation:

ynew = yold +Δy (18)

where Δy = Qu. The Q is the step size control matrix. Vector u is random and
its entry ui is randomly and independently chosen from the normalized interval
[−√

3,
√
3]. To efficiently implement simulated annealing algorithm, Friesz et al.

(1992) used the a self-regulating mechanism suggested by Vanderbilt and Louie
(1984) for the step size determination. By the mechanism, step size can be
efficiently chosen. The step size control matrix Q is obtained by solving the
following equation via matrix decomposition (e.g. Choleski decomposition):

s = Q ·QT (19)

where s is a covariance matrix. At temperature l + 1, the covariance matrix
sl+1 can be solved as follows:

A
(l)
i =

1

M

M∑
m=1

ym;l
i ∀i (20)

S
(l)
ij =

1

M

M∑
i=1

[y
(m;l)
i −A

(l)
i ][y(m;l)

aj
−A

(l)
j ] (21)

sl+1 =
χs

βM
S(l) (22)

where y(m;l) is the value of y on the mth step at the l temperature stage and

M is the iteration number at each temperature stage. A
(l)
i is the average of the

capacity enhancement y
(l)
i on link i at the temperature stage l. Matrix S(l) has

an entry S
(l)
ij which is the covariance between y

(l)
i and y

(l)
j . Parameter χ ≥ 1

is the growth factor. β is equal to 0.11 as suggested by Vanderbilt and Louie
(1984).

In Eq.19, covariance matrix s should be positive definite for the requirement
of Choleski decomposition. However, it is possible that no new solution is
accepted at lower temperature stage l so that s(l+1) is not positive definite.
Indeed, this situation did occur in our numerical test of Sioux Falls network for
CSO-CNDP. To avoid this case, we set s(l+1) = s(l) when s(l+1) is not positive
definite. Except for this improvement, the simulated annealing algorithm used
in this study is the same as the one of Friesz et al. (1992).

By implementing the improved simulated annealing algorithm and the path-
based traffic assignment for CSO, we would present the results of numerical
experiments of CSO-CNDP in the next section.

4. Numerical Experiments

In this paper, we use two examples to test the effect of CSO-CNDP to
alleviate traffic congestion. These two examples are commonly used in UE-
CNDP’s numerical experiments. The first example is a small traffic network,
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Figure 1: The first tested example

which has 6 nodes, 16 links and 2 OD pairs in Fig.1. The parameters of the
example network are presented in Tab.1. The second example traffic network
in this study is the aggregated network of the city Sioux Falls, South Dakota,
which is shown in Fig.2. It has 24 nodes and 76 links. The link capacity
enhancement are considered on the link 16, 17, 19, 20, 25, 26, 29, 39, 48, 74. It
was first applied to NDP by Abdulaal and LeBlanc (1979). In this example, link
travel time cost is described by BPR function (Bureau of Public Roads, BPR).
The values of parameters of Sioux Falls network can be referred to the work
of Suwansirikul et al. (1987). To illustrate improved transportation network
performance of CSO-CNDP, we will present the results of UE-CNDP solved by
some existing algorithms. Those algorithms are given in Tab.2. Meanwhile, it
is well-known that the total travel cost or/and time of DUE is higher than that
of SO. So the optimal value of the DUE-CNDP can be considered as an upper
bound of the optimal value of CSO-CNDP of this study. Results of UE-CNDP
can also be used to test the performance of our algorithm.

Table 1: The parameters of the first tested example

ta(xa, ya) = Aa + Ba[xa/(ca + ya)]
4

Z(x, y) =
∑

a∈A[ta(xa, ya)xa + daya]

link Aa Ba ca da

1 1 10 3 2
2 2 5 10 3
3 3 3 9 5
4 4 20 4 4
5 5 50 3 9
6 2 20 2 1
7 1 10 1 4
8 1 1 10 3
9 2 8 45 2
10 3 3 3 5
11 9 2 2 6
12 4 10 6 8
13 4 25 44 5
14 2 33 20 3
15 5 5 1 6
16 6 1 4.5 1
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Figure 2: Sioux Falls network
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Table 2: Abbreviations of algorithms to UE-CNDP

Abbreviation Name of the algorithm Sourse

IOA Iterative optimization-assignment algorithm Allsop (1974)
HJ Hooke-Jeeves algorithm Abdulaal and LeBlanc (1979)
EDO Equilibrium decomposed optimization Suwansirikul et al. (1987)
MINOS Modular in-core nonlinear system Suwansirikul et al. (1987)
NFFN Filled Function Method Hellman (2010)
SA Simulated annealing algorithm Friesz et al. (1992)
SAB Sensitivity analysis-based algorithm Yang and Yagar (1995)
AL Augmented lagrangian algorithm Meng et al. (2001)
DIRECT Dividing Rectangles Hellman (2010)
EGO Efficient Global Optimization Hellman (2010)
GP Gradient projection method Chiou (2005)
CG Conjugate gradient projection method Chiou (2005)
QNEW Quasi-Newton projection method Chiou (2005)
PT PARTAN version of gradient projection method Chiou (2005)
PMILP Path based mixed-integer linear program Wang and Lo (2010)
LMILP Link based mixed-integer linear program Luathep et al. (2011)
PMC Penalty with multicutting plane method Li et al. (2012)

Table 3: The traffic demand of different cases for the first tested example

Case traffic demand (1,6) traffic demand (6,1) total demand

I 5 10 15
II 10 20 30

4.1. Comparison to the results of UE-CNDP

The traffic demand of the first example has two cases shown in Tab.3. We
use the same values of parameters of simulated annealing as those of Friesz et al.
(1992) (Tab.4). In all numerical tests, the temperature of next stage is set to
be 0.8 times of that at the current stage.

In demand case I of the first example, the results of CSO-CNDP with ϕ ∈
[1.01, 4.00] and those of UE-CNDP obtained by some existing algorithms in
Tab.2 are demonstrated in Tab.5 and Tab.6. In Tab.5 and Tab.6, TB is the
total cost of the link capacity expansion, TT is total travel time and Z is the
value of upper-level problem objective function.

It can be found from Tab.5 and Tab.6 that the value of objective function of
CSO-CNDP and the total travel time are both better than those of UE-CNDP
solved by algorithms in Tab.2. It is also found that the results of CSO-CNDP
are all invariant with ϕ ∈ [1.01, 4.00]. These can be inferred from Tab.7, which

Table 4: The parameters of Simulated Annealing algorithm in different cases of first tested
example

Parameter Case I Case II

χs:growth factor 3 9
Ti:initial temperature 500 500
Tf :final temperature 200 100
M : iterations at each temperature 300 300
upper bound on ya: 10 20
lower bound on ya: 0 0
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shows the total travel time and path set at UE and SO before implementing
CSO-CNDP. In Tab.7, the path set of UE is equal with that of SO in the first
example for case I. As the normal length of our CSO is assumed to be the travel
time at UE state, the increase of ϕ cannot change the feasible path recommended
to travelers from the route guidance system and CSO is identical with SO in
this case. For this reason, the results of CSO-CNDP with different ϕ are all
the same, and the value of TT and the Z of CSO-CNDP are less than those of
UE-CNDP. But, the cost of link capacity expansion is more than the results of
Luathep et al. (2011) and Wang and Lo (2010). They respectively developed
a global optimization algorithm for UE-CNDP. It can be concluded from this
result that the cost of UE-CNDP based on user optimal rule may be less than
that with route guidance, but the social welfare of CSO-CNDP is better.

In case I of example 1, the less traffic demand leads to the constrained path
set that is exactly the same with the solution of UE. Therefore, we further
make comparison between the results of CSO-CNDP and UE-CNDP for case
II of example 1. In case II, ϕ ∈ [1.01, 2.00] is set for CSO-CNDP. The results
are given in Tab.8, Tab.9 and Tab.10. It should be noted that the total travel
time for case II is 5756.5917 at UE state before CSO-CNDP. It can be found
that CSO-CNDP can more efficiently alleviate traffic congestion than that of
UE-CNDP and its value of Z is less than all of known results of UE-CNDP. In
those known results of UE-CNDP, Li et al. (2012) claimed that their result for
case II of example 1 is the real global optimal one. From the result in Tab.10,
it can be observed that the members of feasible path set increase as ϕ goes
up, and the difference between CSO and SO become smaller. One can envisage
that when ϕ goes to infinity, the CSO will reduce to SO. So, the value of Z will
decrease with increasing ϕ. Because the feasible path set for ϕ ∈ [1.01, 1.13] are
all same, the results of CSO-CNDP do not change. This situation also occurs
for ϕ ∈ [1.14, 1.16] and ϕ ∈ [1.17, 2]. The interval of ϕ ∈ [1.01, 2] is grounded
into three parts in Tab.10.

The similar conclusions of case II of the first example can also be found in
the numerical test for Sioux Falls network, as results is shown in Tab.11 and
Tab.12.

4.2. The unfairness of CSO-CNDP
From the results in Section 4.1, one can observe that CSO-CNDP can effi-

ciently improve the performance of transportation system as compared to the
traditional UE-CNDP. However, the issue of unfairness for CSO-CNDP still re-
mains, i.e., the route guidance system may recommend some individual travelers
to choose a path that is not exactly the shortest path on this network. In this
section, we would use two indices of unfairness to study the unfair problem of
travelers suffering from CSO-CNDP. The two indices of unfairness are loaded
unfairness and UE unfairness both presented by Jahn et al. (2005). The specific
definitions of loaded unfairness and UE unfairness can be described as follows:

(i) Loaded unfairness is the ratio of the traveler experienced travel time to
the experienced travel time of the fastest traveler between the same OD
pair.
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Table 5: The comparison of results for example 1 in Case I, Part-I

y IOA HJ EDO MINOS SA SAB AL GP CG

y3 1.2 0.13 0.0062
y6 6.95 3 6.26 6.58 3.1639 5.8352 5.2631 5.8302 6.1989
y7 0.0032
y12 0.0064
y15 5.66 3 0.13 7.01 0.9739 0.7171 0.87 0.0849
y16 1.79 2.8 6.26 0.22 6.724 6.1762 6.7561 6.109 7.5888

TB 42.7 29.8 13.95 48.86 9.8879 17.8548 16.4168 17.1592 14.2971

TT 171.634 188.408 187.24 162.388 191.4401 186.3562 186.5862 186.6158 185.9309

Z 214.334 218.208 201.19 211.248 201.328 204.211 203.003 203.775 200.228

Table 6: The comparison of results for example 1 in Case I, Part-II

y QNEW PT PMILP LMILP ϕ =
1.01

ϕ =
2.00

ϕ =
3.00

ϕ =
4.00

SO

y3
y6 6.0021 5.9502 5.19 5.19 5.9536 5.9536 5.9536 5.9536 5.9536
y7
y12
y15 0.1846 0.5798 0.002
y16 7.5438 7.1064 7.5 7.585 7.7459 7.7459 7.7459 7.7459 7.7459

TB 14.6535 16.5354 12.69 12.837 13.6995 13.6995 13.6995 13.6995 13.6995

TT 185.9505 185.8846 186.94 186.785 179.273 179.273 179.273 179.273 179.273

Z 200.604 202.42 199.63 199.622 192.9725 192.9725 192.9725 192.9725 192.9725

Table 7: The path and system travel time of the first test example with case I at SO and UE

paths at SO path cost total travel
time at SO

paths at UE path cost total travel
time at UE

1→3→5→6 5.5039 334.60 1→3→5→6 5.5039 336.57
6→2→1 27.5668 6→4→2→1 30.9052
6→5→3→1 29.1668 6→5→3→1 30.9052
6→5→3→2→1 30.7668 6→5→3→2→1 30.9052
6→5→4→2→1 31.5668 6→5→4→2→1 30.9052

Table 8: The comparison of results of first tested example in case II Part-I

y IOA HJ EDO MINOS NFFN SA SAB AL DIRECT

y1 0.0189
y2 4.55 5.40 4.88 4.61 0.3536 2.2246 4.6153 4.6228
y3 10.65 8.18 8.59 9.86 9.8808 10.1740 9.3394 9.8804 9.8720
y6 6.43 8.10 7.48 7.71 7.4937 5.7769 9.0466 7.5995 7.4120
y7 0.26 0.0016
y8 0.59 0.90 0.85 0.59 0.6173 0.0175 0.6001 0.5898
y9 0.0010
y12 0.0816 0.1130
y14 1.32 3.90 1.54 1.32 1.3212 0.0198 1.3184 1.3123
y15 19.36 8.10 0.26 19.14 2.1429 2.7265
y16 0.78 8.40 12.52 0.85 20.0000 17.2786 18.9835 17.5774 19.9954

TB 196 136.6 87.36 191.41 83.774 73.9255 95.0608 111.4517 96.3421

TT 360.61 420.62 453.38 365.73 446.0389 454.5715 441.0232 421.2583 426.4987

Z 556.61 557.22 540.74 557.14 529.8129 528.497 536.084 532.710 522.8408
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Table 9: The comparison of results of first tested example in case II Part-II

y EGO GP CG QNEW PT PMILP LMILP PMC

y1 0.1013 0.1022 0.0916 0.101
y2 4.3743 2.1818 2.1796 2.1521 2.1801 4.41 2.722 4.6905
y3 7.3736 9.3423 9.3425 9.1408 9.3339 10 9.246 9.9778
y6 17.0593 9.0443 9.0441 8.8503 9.0361 7.42 8.538 7.5554
y7
y8 0.008 0.0074 0.0114 0.0079 0.54 0.6333
y9
y12 2.8928 0.0375 0.0358 0.0377
y14 0.4315 0.0089 0.0083 0.0129 0.0089 1.18 1.7664
y15 16.1513 1.9433 1.9483 1.9706 1.9429
y16 11.2042 18.9859 18.986 18.575 18.9687 19.5 20 19.6737

TB 199.8017 93.502 93.4879 73.4107 92.9224 95.31 82.934 98.3887

TT 371.8179 440.515 440.6211 460.6693 441.0976 428.317 443.554 424.3593

Z 571.6196 534.017 534.109 534.08 534.02 523.627 526.488 522.748

Table 10: The comparison of results of first tested example in case II Part-III

y ϕ ∈ [1.01 1, 13] ϕ ∈ [1.14, 1.16] ϕ ∈ [1.17, 2] SO

y1
y2 2.7251 2.8896 2.9553 2.9553
y3 10.0929 9.7580 8.4978 8.4978
y6 7.5363 8.2976 10.7248 10.7248
y7
y8 0.5469 0.5467
y9 0.0001
y12
y14 1.3248 1.2420
y15 0.0012
y16 20.0000 19.9993 20.0000 20.0000

TB 91.7914 91.129 82.0797 82.0797

TT 422.5464 423.1515 426.9082 426.9082

Z 514.3378 514.2805 508.9879 508.9879

Table 11: The comparison of results of second test example part Part-I

Y IOA HJ EDO SA SAB AL GP CG QNEW PT

y16 4.6875 4.8 4.59 5.38 5.7392 5.5728 5.4277 4.7691 5.3052 5.0237
y17 3.9063 1.2 1.52 2.26 5.7182 1.6343 5.3235 4.8605 5.0541 5.2158
y19 1.2695 4.8 5.45 5.5 4.9591 5.6228 1.6825 3.0706 2.4415 1.8298
y20 1.6599 0.8 2.33 2.01 4.9612 1.6443 1.6761 2.6836 2.5442 1.5747
y25 2.3331 2 1.27 2.64 5.5066 3.1437 2.8361 2.8397 3.9328 2.7947
y26 2.3438 2.6 2.33 2.47 5.5199 3.2837 2.7288 2.9754 4.0927 2.639
y29 5.5651 4.8 0.41 4.54 5.8024 7.6519 5.7501 5.6823 4.3454 6.1879
y39 4.6862 4.4 4.59 4.45 5.5902 3.8035 4.9992 4.2726 5.2427 4.9624
y48 5.4688 4.8 2.71 4.21 5.8439 7.382 4.4308 4.4026 4.7686 4.0674
y74 6.25 4.4 2.71 4.67 5.8662 3.6935 4.3081 5.5183 4.0239 3.9199

TT 77.516 76.324 80.068 75.632 73.401 74.623 77.536 76.051 76.534 77.748

TB 6.604 5.079 3.132 5.487 10.796 8.743 6.483 6.629 6.456 6.295

Z 84.121 81.402 83.2 81.119 84.197 83.366 84.019 82.679 82.99 84.043
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Table 12: The comparison of results of second test example part II

y SO LMILP ϕ = 1.02 ϕ = 1.03 ϕ = 1.04 ϕ = 1.05 ϕ = 1.06

y16 4.9274 5.362 4.5349 5.2426 5.2415 5.3402 5.3316
y17 5.0358 2.057 3.7646 2.6534 2.0729 2.1932 2.2950
y19 2.6211 5.486 4.1521 4.7184 5.0467 5.4438 5.3290
y20 1.9953 1.895 3.7536 2.6549 2.4117 2.4539 2.2899
y25 3.4475 2.556 2.7186 2.3985 2.3840 2.4151 2.7086
y26 3.1620 2.618 2.8957 2.3428 2.1979 2.5277 3.0817
y29 8.1272 3.741 4.0447 4.3767 4.1909 3.6010 3.7972
y39 6.7257 4.551 5.0055 4.0009 4.2731 4.5704 4.7062
y48 4.2947 3.741 4.4592 4.0776 3.9351 3.9871 4.1511
y74 5.0114 4.489 4.1783 4.1223 4.2126 4.4223 4.3687

TT 68.783 75.973 74.7467 74.1958 73.8781 73.4632 73.1839

TB 8.98 4.91 5.6930 4.9776 4.8544 5.0114 5.2398

Z 77.763 80.883 80.4396 79.1734 78.7325 78.4746 78.4238

(ii) UE unfairness is the ratio of the traveler experienced travel time to the
travel time of a UE state between the same OD pair.

In the two unfairness definitions, the ‘experienced travel time’ means the travel
time measured on condition of the current congestion level. For a traveler
between OD pair w, he/she chooses path r to make trip. Let Tr be his/her
experienced travel time, Tmin be the minimal travel time between his/her OD
pair, and TUE be his/her travel time at UE state. Then his/her loaded unfairness
and UE unfairness can be formulated as follows:

loaded unfairness =
Tr

Tmin
(23)

UE unfairness =
Tr

TUE
(24)

In case I of example 1, the path set used by travelers in UE is same as that in
SO. Therefore, the constrained path set of CSO include that of SO as a subset,
which is to say, the solution of CSO is indeed the SO solution. The unfairness
experienced by travelers is unfairness of SO in case I of example 1. From Tab.7,
one can observe that there is only one path used by travelers between OD
pair (1,6), therefore, the loaded unfairness is equal to 1.00. The UE unfairness
between OD pair (1,6) is also 1.00 as travelers’ travel cost at CSO is exactly the
same the travel cost at UE. The specific distributions of loaded unfairness and
UE unfairness between OD pair (6,1) in case I are shown in Fig.3. It should
be noted that the distribution of loaded unfairness or UE unfairness is given to
measure how many portions of travelers experience a loaded unfairness or UE
unfairness less than a specific value.

From Fig.3, about 7% travelers between OD (6,1) choose the shortest path,
and 33% travelers suffer from a loaded unfairness of 1.14. The largest loaded
unfairness is 1.33 and 60% travelers experience it. Compared to the travel time
in UE, 60% travelers have a UE unfairness of 1.03. Others’ UE fairness are all
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Figure 3: The unfairness distribution between OD (6,1) of the first test example in case I

Table 13: The results of CSO-CNDP when γ = 0.8, 0.1

OD
ϕ

1.01-1.13 1.14-1.16 1.17-2.00

(1,6)
1→3→5→6 1→3→5→6 1→3→5→6
1→2→3→5→6 1→2→3→5→6 1→2→4→6

1→2→3→5→6

(6,1)

6→4→2→1 6→4→2→1 6→4→2→1
6→5→3→1 6→5→3→1 6→5→3→1
6→5→4→2→3→1 6→5→4→2→ 1 6→5→4→2→3→1

6→5→4→2→1 6→5→4→2→1

less than 1.00. Here the UE state is obtained based on the new link capacity
after solving CSO-CNDP.

The distributions of loaded unfairness and UE unfairness for case II of ex-
ample 1 are respectively presented in Fig.4 and Fig.5. Fig.4(a) and Fig.5(a)
show the results of OD pair (1,6), while Fig.4(b) and Fig.5(b) are for OD pair
(6,1). As mentioned in Section 4.2, ϕ ∈ [1.01, 2.00] can be grouped into three
parts based on the path set used in CSO-CNDP. The specific paths of every
sub-interval of ϕ are given in Tab.13.

In Fig.4, it can be found that, between the same OD pair, the largest loaded
unfairness increases as ϕ goes up. For ϕ ∈ [1.01, 1.13], between OD pair (1,6),
about 13% travelers suffer the largest loaded unfairness 1.30, and the other
about 87% travelers use the shortest path. Travelers between OD pair (6,1),
76% travelers have the largest loaded unfairness at 1.30, only 4% travelers use
the shortest path, while travelers loaded unfairness of other 20% travelers is
1.12.

When ϕ ∈ [1.14, 1.16], 11% traveler experience the largest loaded unfairness
1.30 between OD pair (1,6), and other 89% travelers are on the shortest path.
The largest loaded unfairness of travelers between OD (6,1) is 1.50, and about
1% travelers experience it. 3% travelers use the shortest path. 75% travelers
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(a) OD (1,6)

(b) OD (6,1)

Figure 4: The UE unfairness of first tested example for case II’s CSO-CNDP with different ϕ
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(a) OD (1,6)

(b) OD (6,1)

Figure 5: The UE unfairness of first tested example for case II’s CSO-CNDP with different ϕ

have the loaded unfairness 1.30, 20% travelers’ loaded unfairness is 1.12.
For ϕ ∈ [1.17, 2.00], between OD pair (1,6), the largest loaded unfairness is

2.00. About 1% travelers suffer the largest loaded unfairness, and 1% travelers
have the loaded unfairness 1.30. Other 87% travelers are on the shortest path.
The largest loaded unfairness of travelers between OD pair (6,1) is 1.50, and
about 6% travelers experience it. 70% travelers have loaded unfairness at the
value of 1.30, and 20% travelers bear loaded unfairness 1.12. Only 4% travelers
use the shortest path.

In Fig.5, the largest UE unfairness between the same OD pair also increases
with the increase of ϕ. For ϕ ∈ [1.01, 1.13], between OD pair (1,6), the largest
UE fairness is 1.17, about 13% travelers suffer this UE fairness. The travel time
of other 87% travelers is less than their experienced travel time at UE state.
Between OD pair (6,1), about 76% travelers suffer the largest UE fairness at
1.02. Other 24% travelers’ travel time is less than that at UE.

When ϕ ∈ [1.14, 1.16], between OD pair (1,6), about 12% travelers suffer the
largest UE unfairness which is 1.19. 88% travelers’ travel time is less than that
at UE state. Between OD pair (6,1), 1% travelers’ UE fairness is 1.16. 75%
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Table 14: The results of CSO-CNDP when γ = 0.8, 0.1

y γ = 0.8 γ = 0.1

y2 2.9742 3.1401
y3 8.5068 7.9819
y6 10.8408 12.1705
y16 19.9926 19.9968

TB 82.2907 81.4980

TT 426.8441 434.1245

Z 509.1347 515.6225

travelers experience the UE unfairness 1.016. Other 24% travelers’ travel time
is less than that at UE.

For ϕ ∈ [1.17, 2.00], between OD pair (1,6), about 10% travelers have the
largest UE unfairness 1.60, and 1% travelers suffer the UE unfairness 1.06.
Other 89% travelers’ travel time is less than that at UE. Between OD pair
(6,1), the largest UE unfairness is 1.14, and about 6% travelers suffer it. Other
94% travelers’ travel time is smaller than that at UE.

4.3. Results for partial travelers following the route guidance

One can note that the loaded unfairness and UE unfairness can be improved
by the choice of parameter ϕ based on the results in Section 4.2. However,
there are still some travelers whose travel time is more than that experienced in
UE. So, some travelers may not accept the route guidance due to the unfairness
problem. To study this issue, let χ ∈ [0, 1] denote the percent of travelers
accepting the route guidance, and other travelers follow user optimal rule to
choose paths.

Tab.14 shows the results of case II of example 1 when χ = 0.8, 0.1. It can
be found that the objective values of CSO-CNDP are better than the global
optimal value of UE-CNDP given by Li et al. (2012), even only part of travelers
following the route guidance based on CSO.

4.4. Performance of the modified simulated algorithm

The modification of simulated annealing algorithm of Friesz et al. (1992)
only takes effect at stage when the temperature at stage is very low so that
there is no new solution accepted. This means that, at stage , the probability to
accept a solution of bad objective value is very small. Therefore, the algorithm
can be terminated at stage . In this case, implementing our modification on
the simulated annealing algorithm of Friesz et al. (1992) at stage with a lower
temperature than that at stage , if a new solution is accepted, then it is more
likely to obtain a better solution than that acquired at stage . Therefore, the
modification on the algorithm in this paper can improve the performance of the
simulated annealing algorithm of Friesz et al. (1992). To this end, we contend
that our modification does not change the probability of the algorithm to con-
verge to the optimal solution, if not better than the algorithm in Friesz et al.
(1992).
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To our best knowledge, there is no comparison between simulated annealing
algorithm and genetic algorithm to solve the two tested examples presented in
our study. Here, we choose the genetic algorithm to solve CSO-CNDP and
compare its results with the modified simulated annealing algorithm of this
study. The values of parameters of genetic algorithm are given by Xu et al.
(2009) which is shown as follows:

• Population size is 10.

• Probability of reproduction is 0.2.

• Probability of crossover probability is 0.2.

• Probability of mutation probability is 0.2.

• Step in mutation operation is 0.5.

To compare the computational speed of the two algorithms, the number of lower-
level problems solved should be the same. So, we set the maximal number of
generation as follows:

• the maximal number of generation is 270 for the case II of the first example.

• the maximal number of generation is 720 for the Sioux Falls network.

It is well known that simulated annealing and genetic algorithms are both
stochastic method. So, the optimal solution may be not obtained by only im-
plementing them once. To compare simulated annealing algorithm and genetic
algorithm, for the case II of first tested example, we respectively implement both
algorithms 100 times; and the two algorithms are respectively implemented 10
times for Sioux Falls network. We choose the solution with minimal objective
value to be the best solution. We also analyze the mean objective value and
the mean variation of the objective value of two algorithms. The mean time
to obtain a solution of two algorithms is also compared. In the experiments, a
personal laptop computer with Intel Core 2 Duo 2.53 GHz CPU, 6 GB RAM,
and Windows 7 64bit operating system was used for all tests. The compari-
son between the algorithm proposed in this study and the genetic algorithm is
shown in Tab.15, 16, 17 and 18:

From Tab.15, 16, one can find that, although the solution of simulated an-
nealing algorithm has longer mean time to obtain a solution than those of genetic
algorithm, simulated annealing algorithm has better mean objective value than
that of genetic algorithm with the same value of ϕ . Meanwhile, it can also be
observed from Tab.17 and 18 that the best solution of the simulated annealing
algorithm has better objective value than that of genetic algorithm.

5. Conclusion

In this study, we present model formulation to combine a route guidance and
CNDP to alleviate traffic congestion. The route guidance recommends shortest
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Table 15: The comparison between genetic algorithm and simulated annealing algorithm for
the case II of the first example part I

Genetic algorithm Simulated Annealing algorithm

ϕ ∈
[1.01 1, 13]

ϕ ∈
[1.14, 1.16]

ϕ ∈
[1.17, 2]

ϕ ∈
[1.01 1, 13]

ϕ ∈
[1.14, 1.16]

ϕ ∈
[1.17, 2]

mean objective value

533.15 533.18 533.79 518.46 516.86 514.39

mean variation of objective value

7.4227 8.4221 8.2348 44.3848 28.9599 64.3579

mean time (min)

5.4118 5.3488 5.3259 17.1137 19.4689 19.3818

Table 16: The comparison between genetic algorithm and simulated annealing algorithm for
the second example part I

Genetic algorithm Simulated Annealing algorithm

ϕ =
1.02

ϕ =
1.03

ϕ =
1.04

ϕ =
1.05

ϕ =
1.06

ϕ =
1.02

ϕ =
1.03

ϕ =
1.04

ϕ =
1.05

ϕ =
1.06

mean objective value

82.8522 80.9372 79.4546 78.8875 78.8757 81.5276 79.5681 78.8103 78.5624 78.5042

mean variation of objective value

0.1926 0.0098 0.0160 0.0070 0.0100 0.3174 0.0158 0.0121 0.0054 0.0055

mean time (min)

867.82 942.07 914.71 995.52 1092.66 1247.59 1327.54 1426.41 1405.00 1612.72

Table 17: The comparison between genetic algorithm and simulated annealing algorithm for
the case II of the first example part II

Genetic algorithm Simulated annealing algorithm

y ϕ ∈
[1.01 1, 13]

ϕ ∈
[1.14, 1.16]

ϕ ∈
[1.17, 2]

ϕ ∈
[1.01 1, 13]

ϕ ∈
[1.14, 1.16]

ϕ ∈
[1.17, 2]

y1 0.4266 0.1551
y2 3.9694 1.6152 2.3397 2.7251 2.8896 2.9553
y3 8.4223 10.1963 10.0711 10.0929 9.7580 8.4978
y4 0.0554
y6 8.9572 6.8979 8.7017 7.5363 8.2976 10.7248
y7
y8 0.4927 0.3624 0.5469 0.5467
y9 0.2078 0.0001
y10 0.0098
y13 0.1595
y14 1.6343 0.5649 1.8720 1.3248 1.2420
y15 2.7138 3.5981 0.6280 0.0012
y16 13.2753 14.6842 16.6834 20.0000 19.9993 20.0000

TT 420.3146 415.0387 423.6571 91.7914 91.129 82.0797

TB 101.2334 101.8859 94.0281 422.5464 423.1515 426.9082

Z 520.5480 516.9246 517.6852 514.3378 514.2805 508.9879
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Table 18: The comparison between genetic algorithm and simulated annealing algorithm for
the second example part II

Genetic algorithm Simulated annealing algorithm

y ϕ =
1.02

ϕ =
1.03

ϕ =
1.04

ϕ =
1.05

ϕ =
1.06

ϕ =
1.02

ϕ =
1.03

ϕ =
1.04

ϕ =
1.05

ϕ = 1.06

y16 4.4107 5.1475 4.8594 5.7379 5.4878 4.5349 5.2426 5.2415 5.3402 5.3316
y17 2.6753 2.5522 2.9169 2.0644 2.3627 3.7646 2.6534 2.0729 2.1932 2.2950
y19 4.9066 4.4087 4.5476 5.1892 5.1731 4.1521 4.7184 5.0467 5.4438 5.3290
y20 2.3422 2.8603 2.5190 2.4433 2.6198 3.7536 2.6549 2.4117 2.4539 2.2899
y25 2.9141 2.6502 2.3287 2.2359 2.5724 2.7186 2.3985 2.3840 2.4151 2.7086
y26 2.2228 1.9172 1.8715 1.8586 2.0972 2.8957 2.3428 2.1979 2.5277 3.0817
y29 3.5090 4.4740 3.2419 4.2019 3.2611 4.0447 4.3767 4.1909 3.6010 3.7972
y39 2.4046 3.4971 4.0957 4.1193 4.4156 5.0055 4.0009 4.2731 4.5704 4.7062
y48 2.3617 4.2079 4.1415 4.1349 3.8448 4.4592 4.0776 3.9351 3.9871 4.1511
y74 2.3291 3.9911 3.5269 4.3836 4.7761 4.1783 4.1223 4.2126 4.4223 4.3687

TT 78.689176.022475.004273.689873.6214 74.746774.195873.878173.4632 73.1839

TB 3.5363 4.8176 4.2899 5.0752 4.9105 5.6930 4.9776 4.8544 5.0114 5.2398

Z 82.225480.840079.294278.765078.5319 80.439679.173478.732578.4746 78.4238

paths to travelers. These shortest paths are calculated by the marginal travel
cost and satisfy the user constraints. Compared to known results of UE-CNDP,
CSO-CNDP can significantly improve the performance of traffic network and
reduce congestion. The conclusion is also verified when only part of travelers
follow the route guidance due to the unfairness issue. In future study, we want to
study the value parameter ϕ to simultaneously improve the unfairness problem
of CSO and the how to set the traffic network performance.
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