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Abstract

Due to the high car ownership cost or car ownership restrictions in many ma-

jor cities, household travels, which include multiple trips for all the household

members, become very common. One typical household travel can be observed

as the consecutive school trip and work trip, which sends the traveler’s children

to school first and then drive to their workplaces. In this paper, we analyse

the departure time choice of the household travels and the equilibrium trip

scheduling, i.e., extending the standard Vickrey’s bottleneck model from work

commute with one single preferred arrival time (work start time) to household

commute with two consecutive preferred arrival times (school start time and

work start time). Then, we investigate one step toll in peak hour window to

best manage the morning commute of household travels and analyse the im-

pact of the school-work start time difference on individual cost, social cost and

traffic managements, so that we can optimally set the school-work start time

difference to minimize the total travel cost. In addition, an alternative tradable

credit scheme is designed to manage the morning commute as a replacement of

the road toll scheme.
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1. Introduction

Traffic congestion in the morning peak hours has been one of the most chal-

lenging urban problems faced by many major cities in the world. It is imperative

for the urban traffic management agencies to understand the travelers’ choice

behavior and equilibrium travel patterns so that efficient management measures

(e.g., pricing, tradable credit) can be devised to reduce the congestion in morn-

ing commute traffic. The analysis of morning commute can be originated from

the seminal work of Vickrey (1969). After that, a large body of literature has

emerged working on this problem (Hendrickson & Kocur 1981; Smith 1984; Da-

ganzo 1985; Arnott et al. 1990b; Nie & Yin 2013; Liu & Nie 2011; Liu & Nie

2011; Liu et al. 2015; Liu et al. 2012; Xiao et al. 2010; Qian & Zhang 2011; Qian

et al. 2011; Qian & Rajagopal 2013; Qian & Rajagopal 2014). Most of these

studies are based on the assumption that travelers choose the departure time to

minimize individual travel cost, which includes both travel time and scheduling

delay. Analytical approaches are employed to obtain the travelers’ equilibrium

trip scheduling in the morning peak hours.

Most of the previous studies in the literature analyzed the morning com-

mute for individual travelers. However, in many Asian cities, a large amount of

morning commute trips are indeed household travels, i.e., multiple trips made

for the household members, rather than only one person. For example, in Sin-

gapore, due to the high car ownership cost (certificate of entitlement), most of

households have only one private car, which is used to make household travels

in the morning. Indeed, many Singaporean families decide to buy a car mainly

because they want to use the car to send their children or pick up their children

to and from the school. It is very common in Singapore that the drivers firstly

make school trips to send the children to the school and then they drive to

their own workplaces. The fact that one can often observe congested traffic in

the bottleneck transport facilities before schools in Singapore even if most of

Singaporean public schools set very early school time (7:30am) necessitates the
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study on how traffic management measures should be proposed to contain traffic

congestion for these household travels. The departure time choice for household

travels is certainly different from that for only individual trip, as multiple house-

hold members are involved in the joint decision, i.e., the members’ preference of

arrival times and intra-household interaction have to be considered in a group

decision-making manner. In this study, it is assumed that morning household

travel is comprised of multiple household member trips, and the departure time

choice is made to ensure the total household travel cost, i.e., the travel time

cost and scheduling delay cost for all the household members, is minimized. It

is necessary for the traffic managers to understand the travelers’ choice behavior

for household travels and thus the equilibrium trip scheduling of the morning

commute traffic with household travels, so that efficient traffic management

measures can be designed to reduce the traffic congestion for morning commute

traffic.

Despite that there is a large body of literature studying the morning com-

mute traffic equilibrium for individual traveling, the research works on house-

hold are much less. Zhang et al. (2009) developed a household-based discrete

choice model by integrating different types of household choice models based on

latent class modeling approach and the approach of random utility maximiza-

tion was applied. Li et al. (2014) proposed day-long activity-travel scheduling

model to simultaneously determine the departure times for both morning and

evening commutes, along with allocations of time spent on travel and activities

at home or at the workplace. One can find that the obvious different depar-

ture time choice behavior for the household travels, in which the travel costs

of all the household members must be considered and balanced, will affect the

equilibrium scheduling of the morning commute significantly. In this study, we

will firstly analyze the equilibrium trip scheduling of household travels in the

morning commute and determine the equilibrium travel pattern by applying the

bottleneck model approach. Then, based on the equilibrium travel pattern, we

seek to propose optimal management measures to contain the traffic congestion.

To alleviate the congestion in morning commute, many management mea-
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sures have been proposed. Vickrey’s analysis shows how individuals’ choice of

departure time might shape traffic congestion and reveals the promise of policy

interventions in managing this type of traffic congestion. Among these policies,

the Vickrey’s time-varying toll is the one that is most studied, which could

completely eliminate the travel congestion delay induced by the bottleneck.

However , in principle, the Vickrey’s toll is the Pigouvian toll and thus shares

its limitations. Moreover, the time-varying feature of the Vickrey’s toll is indeed

impractical, as a continuously changing toll may emit more pricing signals than

what commuters could effectively recognized and respond to ( Bonsall et al.

2007). Many studies in the literature then proposed some alternatives to the

Vickreys toll. One typical example is the so-called step toll, which keeps toll

rates constant in one or more predefined discrete time windows (Arnott et al.

1990b; Arnott et al. 1993; Laih 1994; Laih 2004; Lindsey et al. 2010). Nie (2013)

proposes a new tradable credit scheme (TCS), which is a simple alternative to

the toll scheme. Under this scheme, the managers set a peak time window, the

individuals who pass the bottleneck during this window will be charged some

credits; individuals who pass the bottleneck out of this window will be rewarded

with some credits. And there is a market for users to buy or sell the credits.

The advantage of this scheme are as follows: firstly, managers do not need to

allocate the credits to the individuals initially (compared to Nie 2012; Xiao et al.

2013; Yang & Wang 2011); secondly, the scheme does not rely on the trading

market to alleviate the congestion; lastly, the scheme is easy to be implemented

and more likely to be accepted by the public.

In this study, we consider a typical household travel consisting of two trips,

i.e., firstly send the children to school and then go to workplaces through a single

road. It is assumed that there exists a single bottleneck located before the school

destination. We analyse the departure time choice of the household travels and

the resultant equilibrium trip scheduling of household travelers. We investigate

how to design traffic management measures to best manage the morning com-

mute traffic with household travels. In this paper, we only use one step toll

scheme to manage the congestion, wherein traffic management designs a peak
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time window to charge individual household travelers who enter the bottleneck

in this peak time window. We further analyse the impact of the school-work

start time difference on individual cost, social cost and traffic management tolls,

so that we can optimally set the school-work start time difference to minimize

the total travel cost. Besides, we also analyze how to design an alternative trad-

able credit scheme to replace the toll scheme to manage the household travel

morning commute traffic.

In summary, this study contributes to the literature of morning commute

management in the following aspects: Firstly, this study extends the standard

Vickrey’s bottleneck model from work commute with one single preferred arrival

time (work start time) to household commute with two consecutive preferred

arrival times (school start time and work start time). Secondly, this study

explicitly investigates the impact of the school-work start time difference on

individual cost, social cost and traffic management tools, so that the optimal

school-work start time difference can be designed. Thirdly, under the optimal

setting of school-work start time difference, the optimal traffic managements,

including the one step toll scheme and an alternative tradable credit scheme,

are determined.

The remainder of this paper is organized as follows. Section 2 presents the

departure time choice behavior of the household travels to obtain the resultant

equilibrium travel pattern for a typical household travel with school and work

trips. Based on the setting of school-work start time difference, two different

situations are discussed. In section 3, we first present a single step toll model for

one situation. Under the toll model, we deduce the optimal toll rate for different

time intervals between two desired arrival times; Then, we discuss the impact

of the desired time interval to the total travel time cost, which is essential

for designing the optimal time interval between two desired arrival times; In

section 4, we conduct the similar analysis as in section 3 for the other situation.

Section 5 gives some policy implications to the traffic management agencies

on the optimal setting of the interval between the two desired arrival times ,

i.e., the optimal setting of school-work start time difference, and the optimal
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toll to achieve minimum total system travel cost. In addition, we develop a

tradable credit scheme to replace the optimal toll model under the optimal

setting of school-work start time difference. Section 6 presents a numerical

example. Finally, we give some conclusion in section 7.

2. Equilibrium trip scheduling with single bottleneck before both trip

destinations

School Workplace

Bottleneck

Home

Figure 1: A network with a single bottleneck before both trip destinations

In this section, we assume there is a bottleneck located before both trip

destinations, i.e., school and workplace. The network is schematically depicted

in Figure 1. Suppose a fixed number of N household travels depart from home

to their children’s school firstly and then to their workplaces every morning.

We assume that the school/workplace desired arrival time is t∗1/t∗2, and early

and/or late arrival penalty will be imposed. The bottleneck model is applied to

analyze the equilibrium scheduling of the household travel. We assume that the

capacity of the whole road is s, that is s cars can pass the road per unit time.

If the arrival rate at the bottleneck exceeds s, a queue is formed. It is assumed

that the queue discipline is first-come, first-served (FIFO). As the capacity of

the road is limited, individual household has to choose their departure time to

make a trade-off among all the household members’ travel time cost relating

to queue length at the bottleneck and schedule delay cost of arriving early or

later at school and workplaces. A Wardrop (1952) equilibrium is attained if

no household could further reduce their cost by changing the departure time

unilaterally. As was in Arnott et al. (1990a), the total travel time cost of

individual household, who depart at time t is defined as follows:

c(t) = α · T (t) + β ·max{0, t∗1 − t− T1(t)}+ γ ·max{0, t+ T1(t)− t∗1}
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+ β ·max{0, t∗2 − t− T (t)}+ γ ·max{0, t+ T (t)− t∗2}. (1)

This cost includes the travel time cost and the schedule delay cost, where T (t)

is the total household travel time for departure time t, i.e., the total travel

time from home to the workplace. T1(t) is the travel time for departure time

t when they arrive at school; as t∗1 represents the preferred school arrival time,

the second and third term in (1) calculate the school early and late arrival

delays respectively; Similarly, t∗2 is the preferred work arrival time, and the

fourth and fifth term in (1) determine the work early arrival and late arrival

delays. Indeed, the total household travel cost defined in (1) encapsulates the

household travel time and the schedule delays for all the household members.

Therefore, the household travelers make departure time decision to minimize the

household travel cost in a group-decision manner, rather than only considering

one household member. Hereby α is the shadow cost of travel time, β is the

schedule penalty for a unit time of early arrival, and γ is that for a unit time of

late arrival. We assumed that γ > α > 2β. The travel time T (t) and T1(t) are

defined as follows:

T (t) = T f + T v(t),

T1(t) = T f1 + T v(t),

where t is the departure time from home; T f is the fixed travel time from home

to workplace and T f1 is the fixed travel time from home to school; T v(t) is

the variable travel delay time to pass the bottleneck. We only consider the

situation of t∗2 − t∗1 ≥ T f − T f1 , in which case, individual household who send

their children to school on time will be able to arrive at their workplace on time

or early, otherwise they must arrive late at their workplace no matter whether

there is congestion or not before the bottleneck. Without affecting the results,

we set T f = 0, T f1 = 0. So we have t∗2 − t∗1 ≥ 0 correspondingly.

Let D(t) be the queue length (the number of the cars at the bottleneck at

time t). Then an individual household’s queuing time equals to the queue length

at the time the household enter the queue divided by the bottleneck capacity,
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i.e.,

T v(t) = D(t)/s. (2)

Let t̂ denote the most recent time at which there was no queue and let r(t)

denote the departure rate. Then the queue length at time t can be written as

D(t) =

∫ t

t̂

r(u)du− s(t− t̂). (3)

Each individual household needs to decide a departure time from home to min-

imize the total travel cost of the entire household. In doing so, he/she trade off

household members’ travel time cost and schedule delay cost. Equilibrium is

achieved when no individual household can reduce their travel cost by altering

the departure time, taking all other commuters’ departure time as fixed. This

is indeed a Nash equilibrium with departure time as the strategy variables.

For convenience of discussion below, we set tq to be the beginning of the

rush hour and tq′ be the end, let t̃1 be the departure time for the exact on-time

school arrival, i.e., t̃1 + T v(t̃1) = t∗1, and let t̃2 be the departure time for the

exact on-time workplace arrival, i.e., t̃2 + T v(t̃2) = t∗2.

At equilibrium, all the households will have equal travel cost. To calculate

the total travel costs, we classify the departure time into three periods. Here

we present the detailed analysis of the departure rate at equilibrium.

Period 1: For the household travel with school early arrival and workplace

early arrival, i.e., t ∈ [tq, t̃1), the travel cost is denoted as:

c1(t) = α · T v(t) + β · [t∗1 − t− T v(t)] + β · [t∗2 − t− T v(t)]. (4)

Differentiation of (4) yields

dT v(t)

dt
=

2β

α− 2β
. (5)

From (3), we have
dD(t)

dt
= r(t)− s. (6)

Combining (2), (6) and (5), we have the departure rate of the individual house-

hold who depart home during [tq, t̃1) is

r1(t) =
αs

α− 2β
(> s). (7)
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Period 2: For the household travel with school late arrival and workplace early

arrival, i.e., t ∈ [t̃1, t̃2) the travel cost is denoted as:

c2(t) = α · T v(t) + γ · [t+ T v(t)− t∗1] + β · [t∗2 − t− T v(t)]. (8)

Differentiation of (8) yields

dT v(t)

dt
=

β − γ
α+ γ − β . (9)

Combining (2), (6) and (9), we have the departure rate of the individual house-

hold who depart home during [t̃1, t̃2) is

r2(t) =
αs

α+ γ − β (< s). (10)

Period 3: For the household travel with school late arrival and workplace late

arrival, i.e., t ∈ [t̃2, tq′ ] the travel cost is denoted as:

c3(t) = α · T v(t) + γ · [t+ T v(t)− t∗1] + γ · [t+ T v(t)− t∗2]. (11)

Differentiation of (11) yields

dT v(t)

dt
=
−2γ

2γ + α
. (12)

Combining (2), (6) and (12), we have the departure rate of the individual house-

hold who depart home during [t̃2, tq′ ] is

r3(t) =
αs

α+ 2γ
(< s). (13)

Next, we will consider the practical situations that may occur in reality when

travel equilibrium is achieved. Obviously, there will be some households arrive

earlier than the desired school time at equilibrium, otherwise it will contradict

to the equilibrium conditions. Specifically, if all households depart from their

home in Period 2 and/or Period 3 at equilibrium, by observing the equations

(10) and (13), one can find the flow in the road will not exceed s. All households

travel delay time T v(t) will be 0, and one household can change his departure

time to make him arrive earlier than the desired school time, meanwhile his total

travel cost will be reduced due to the assumption γ > α > 2β, which contradicts
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to the Wardrop equilibrium conditions. On the other hand, there will be some

households who will arrive later than the desired school time at equilibrium,

otherwise all households will be earlier than the desired school time, which is

also contrary to the Wardrop equilibrium conditions. By observing the equation

(7), we find that the flow of the road will always exceed s if all the households

travel starts in Period 1. One household can change his depart time just at t∗1,

he will not bear the travel delay time because all other household have arrived

school in this situation, and his total travel cost will be reduced due to the

assumption γ > α > 2β, which is contrary to the Wardrop equilibrium. In all,

based on the above analysis, there are only two possible situations that may

occur in this model:

Small school-work difference situation: If the difference between the two

desired arrival times (i.e., the school-work difference) is smaller than the specific

value 2β
β+γ

N
s , i.e., t∗2 − t∗1 < 2β

β+γ
N
s (the derivation of this value will be detailed

in the following analysis), there will be some individual households who arrive

later than the desired work time in the equilibrium, i.e., households may depart

from home from Period 1, 2 and 3.

Large school-work difference situation: If the difference between the two

desired arrival times (i.e., the school-work difference) is greater than the specific

value 2β
β+γ

N
s , i.e., t∗2−t∗1 ≥ 2β

β+γ
N
s (the derivation of this value will be detailed in

the following analysis), all individual households arrive earlier than the desired

work time in the equilibrium, i.e., households may depart from home only in

Period 1 and 2.

2.1. Model result for Small school-work difference situation:

Thus, the queue length evolves over the rush hour such that the equal travel

cost condition is satisfied for all the households. The individual households who

depart at the beginning and end of the rush hour incur only schedule delay cost,

which must equal in equilibrium. Since arrivals are continuous over the rush

hour, the length of the rush hour is N/s. The individual household who depart

at time t̃1 only incur the queue time and the early arrival penalty at workplace,
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and the individual who depart at time t̃2 only incur the queue time and the late

arrival penalty at school, whose travel time must be equal in equilibrium. Here

we give the total travel time cost at some special departure time tq, t̃1, t̃2, tq′

respectively:

c1 = β(t∗1 − tq) + β(t∗2 − tq),

c2 = α
D1

s
+ β(t∗2 − t̃1 −

D1

s
),

c3 = α
D1 +D2

s
+ γ(t̃2 +

D1 +D2

s
− t∗1),

c4 = γ(tq′ − t∗1) + γ(tq′ − t∗2),

where D1 =
∫ t̃1
tq
r1(t)−sdt, D2 =

∫ t̃2
t̃1
r2(t)−sdt, and tq′−tq = N

s . These results

together imply that

tq =
t∗1 + t∗2

2
− γ

β + γ

N

s
,

t̃1 = (1− β

α
)t∗1 +

β

α
t∗2 − 2

Nδ

αs
,

t̃2 = (1 +
γ

α
)t∗2 −

γ

α
t∗1 − 2

Nδ

αs
,

tq′ =
t∗1 + t∗2

2
+

β

β + γ

N

s
,

where δ = βγ
β+γ , and we make this notation for illustration purpose. Indeed, the

inequalities t̃2 < t∗2 < tq′ and tq < t̃1 < t∗1 must be satisfied in this situation.

Using the equations above, we deduce the following inequalities must be satisfied

in this situation: t∗2−t∗1 < 1
β

2Nδ
s and t∗2−t∗1 < 1

γ
2Nδ
s . Because γ > β is satisfied,

these two inequalities can be simplified as

t∗2 − t∗1 <
1

γ

2Nδ

s
. (14)

However, we can not determine the relationship between t∗1 and t̃2 yet. Using

the expression of t̃2 above, we deduce that, when t∗2 − t∗1 ≤ 1
α+γ

2Nδ
s , t̃2 is no

bigger than t∗1, i.e., t̃2 ≤ t∗1; when 1
α+γ

2Nδ
s < t∗2 − t∗1 < 1

γ
2Nδ
s , t̃2 is greater

than t∗1, i.e., t̃2 > t∗1. The relationship of all these time points in two cases are

illustrated in Figure 2.

The solution of the equilibrium departure rate is depicted in Figure 2. It is

easy to deduce that the equilibrium travel cost is identical for all households,
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Figure 2: The departure rate in the equilibrium for small school-work difference situation,

i.e., t∗2 − t∗1 < 1
γ

2Nδ
s

, when there is a single bottleneck before both trip destinations. Figure

(a) is the case: t̃2 is earlier than t∗1; Figure (b) is the case: t̃2 is later than t∗1.

which is given by

c̄ = 2
Nδ

s
, (15)

and the total system cost at UE is

TC = 2
N2δ

s
. (16)

One can observe an interesting finding from the above analysis that the equi-

librium individual cost and total system cost are both independent of t∗2 − t∗1.

Besides, one can find that these results are similar to those in standard Vick-

rey’s bottleneck model in which work commute with one single preferred arrival

time (work start time) is considered. Referring to Nie (2013), the equilibrium

individual travel cost in the standard Vickrey’s model is c̄ = Nδ
s , and the to-

tal system cost at equilibrium is TC = N2δ
s . In our model, travel cost for one

household is indeed total travel cost for both household members. Therefore,

when t∗2 − t∗1 is very small, more specifically, less than 1
γ

2Nδ
s , despite that the

equilibrium travel pattern as illustrated in Figure 2 is obviously different from

that for standard Vickey’s model, the average equilibrium travel cost for one

traveler is the same with that in standard Vickery’s model. However, when

t∗2 − t∗1 is greater than 1
γ

2Nδ
s , the model result will be far different from that in

standard Vickery’s model, as is demonstrated in next sub-section.
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2.2. Model result for Large school-work difference situation:

Following the same logic with the analysis in previous subsection, the queue

length evolves over the rush hour and eventually the equal travel cost condition

must be satisfied. The individual household who depart at the beginning and

end of the rush hour incur only schedule delay cost, and the individual household

who depart at time t̃1 incurs the queue time and the early arrival penalty at

workplace, all of these three costs must be equal in equilibrium.

Here we give the total travel time cost at some special departure time tq, t̃1,

tq′ respectively:

c1 = β(t∗1 − tq) + β(t∗2 − tq),

c2 = α
D1

s
+ β(t∗2 − t̃1 −

D1

s
),

c4 = γ(tq′ − t∗1) + β(t∗2 − tq′),

where D1 =
∫ t̃1
tq
r1(t)− sdt, tq′ − tq = N

s . These results together imply that

tq = t∗1 −
γ − β
β + γ

N

s
,

t̃1 = t∗1 −
2β(γ − β)

α(γ + β)

N

s
,

tq′ = t∗1 +
2Nδ

sγ
,

where δ = βγ
β+γ , as is defined identically in the last subsection. Actually, the

inequalities tq′ ≤ t∗2 and tq < t̃1 < t∗1 must be satisfied in this situation. Using

the equations above, we deduce the following inequality must be satisfied in this

situation:

t∗2 − t∗1 ≥
1

γ

2Nδ

s
. (17)

The solution of the departure rate is depicted in Figure 3. It is easy to

deduce that the equilibrium travel time cost is identical for all users, which is

given by

c̄ =
2Nδ

s

γ − β
γ

+ β(t∗2 − t∗1) ≥ 2Nδ

s
. (18)
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Figure 3: The departure rate in the equilibrium for large school-work difference situation, i.e.,

t∗2 − t∗1 ≥ 1
γ

2Nδ
s

, when there is a single bottleneck before both trip destinations.

The inequality is true because of t∗2 − t∗1 ≥ 1
γ

2Nδ
s , and the equality holds only

when t∗2 − t∗1 = 1
γ

2Nδ
s . So the total system cost at UE is

TC = c̄ ·N ≥ 2N2δ

s
. (19)

In large school-work difference situation, only when t∗2 − t∗1 = 1
γ

2Nδ
s , both the

equilibrium travel time cost c̄ and the total system cost TC at UE can be the

same as those two costs in small school-work difference situation, otherwise both

costs will be larger than the costs in small school-work difference situation.

3. The optimal toll model for small school-work difference situation

To reduce the traffic congestion, the road toll charging is one management

measure that is most studied. Vickrey’s time-varying toll scheme could com-

pletely eliminate the travel congestion delay induced by the bottleneck, however,

is too complicated to gain public acceptance. Therefore, in this study, we insti-

gate how a one-step toll scheme should be designed, in which there is a constant

toll ρ only charged over an interval [t+, t−] ∈ [tq, tq′ ], to manage the traffic con-

gestion in morning commute traffic with household travels. Here, only the traffic

management for normal vehicles is considered, while the extension of manage-

ment for electric vehicles (Riemann et al. 2015; Kumar et al. 2014) could be
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addressed in future study. The most important issue in analyzing single step

toll is on how to deal with discontinuity at the boundary of the peak-time win-

dow. Users, who leave the bottleneck at the boundary, have different travel

time costs, depending on whether or not they need to pay the toll. Arnott et al.

(1990b) argued that, because the first person who pays the toll must have a

lower travel time cost compared to his/her immediate predecessor who escapes

the toll, he/she arrives at the bottleneck later by ρ/α, which implies that there

will be a period of time during which the arrival rate at the bottleneck is zero

(see Figure 4 and Figure 5). The discontinuity between the last person who

pays the toll and his/her immediate successor leads to the following behavioral

assumption:

Separated waiting (SW) assumption (Laih 1994; Laih 2004): commuters

who arrive at the same time can use different waiting facilities, hence are allowed

to have different travel delays.

It should be noted that other assumptions such as Mass Arrival (MA) ( Arnott

et al. 1990b) can also be applied to handle the discontinuity between the last toll-

payer and her immediate successor. In this study, we apply SW assumption for

illustration, while there is no theoretical obstacle in applying other assumptions

into the model, which could be addressed in future study.
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Figure 4: Equilibrium solutions for one-step toll model in small school-work difference situa-

tion, when the peak time window [t+, t−] contains [t∗1, t
∗
2].
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Figure 5: Equilibrium solutions for one-step toll model in small school-work difference situa-

tion, when the peak time window [t+, t−] is before t∗2.

The equilibrium solution with the behavioral assumption above is summa-

rized in Figure 4 and Figure 5. The difference between these two figures is

whether the peak time window with toll charging [t+, t−] contains t∗2 or not. In

the following, we will investigate how the toll model works in our problem under

these two types of peak time windows respectively.

3.1. The peak time window for Case t− ≥ t∗2 (see Figure 4)

In this case, the peak time window contains [t∗1, t
∗
2]. When a toll ρ is imposed,

the difference between the total travel time costs of the individual household

who depart from home at tq and the individual household who is the first one

entering the tolling window will be ρ, so we have the following equation:

c1 = β(t∗1 − tq) + β(t∗2 − tq) = ρ+ β(t∗1 − t+) + β(t∗2 − t+),

which further deduces:

t+ − tq = ρ/2β.

Similarly, the difference between the total travel time costs of the individuals

who depart from home at tq′ and those who are the last ones in the tolling

16



window will be ρ, so we have the following equation:

c4 = γ(tq′ − t∗1) + γ(tq′ − t∗2) = ρ+ γ(t− − t∗1) + γ(t− − t∗2),

which leads to:

tq′ − t− = ρ/2γ.

Then the tolling peak time window can be given as follows:

t+ = tq + ρ/2β, t− = tq′ − ρ/2γ.

Therefore, we can represent the number of the individual household who need

to pay the toll is

Nt = (t− − t+)s = N − ρs

2δ
, (20)

and the total system travel time cost excluding the toll is

TC1 = (2
Nδ

s
) · ρs

2δ
+ (2δ

N − ρs
2δ

s
) · (N − ρs

2δ
)

=
3

2

N2δ

s
+

s

2δ
(ρ− Nδ

s
)2. (21)

We note that the equilibrium travel cost with toll for all the households can be

given by

c̃ = 2
Nδ

s
= c̄. (22)

3.1.1. The analysis of the optimal system travel time cost under toll model

In this case, the peak time window contains [t∗1, t
∗
2], so the length of the CF,

as shown in Figure 4, must be larger than the value of ρ/α, i.e., CF ≥ ρ/α; and

the length of the BE must be strictly larger than the value of ρ/α, i.e., BE > ρ/α

(due to the rate of departure and arrival of the individual household). Here we

have

CF = t∗2 − t̃2 =
2Nδ

sα
− γ

α
(t∗2 − t∗1),

BE = t∗1 − t̃1 =
2Nδ

sα
− β

α
(t∗2 − t∗1).
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From the observation of the equation (21), we need to divide the discussion

in two cases:

In the case when 0 ≤ t∗2 − t∗1 ≤ 1
γ
Nδ
s :

If 0 ≤ t∗2 − t∗1 ≤ 1
γ
Nδ
s , which is equivalent with the following inequality

CF ≥ Nδ

αs
, (23)

we find that when we set

ρ∗ =
Nδ

s
(< α ·BE), (24)

TC can attain the minimum

TC1 =
3

2

N2δ

s
. (25)

Accordingly, the optimal tolling peak time window can be given as follows:

t+ =
t∗1 + t∗2

2
− Nδ

2βs
, t− =

t∗1 + t∗2
2

+
Nδ

2γs
.

In the case when 1
γ
Nδ
s < t∗2 − t∗1 < 2

γ
Nδ
s :

If 1
γ
Nδ
s < t∗2 − t∗1 < 2

γ
Nδ
s , which is equivalent with the inequality

CF <
Nδ

αs
,

we find that when we set

ρ∗ = α · CF =
2Nδ

s
− γ(t∗2 − t∗1) (< α ·BE),

TC can attain the minimum

TC1 =
3

2

N2δ

s
+
γ2s

2δ
[(t∗2 − t∗1)− 1

γ

Nδ

s
]2.

Considering the range of t∗2 − t∗1, we find that

3

2

N2δ

s
< TC1 < 2

N2δ

s
.

And the value of TC1 will increase with t∗2 − t∗1, in the range 1
γ
Nδ
s < t∗2 − t∗1 <

2
γ
Nδ
s .

Accordingly, the optimal tolling peak time window can be given as follows:

t+ =
t∗1 + t∗2

2
− γ(t∗2 − t∗1)

2β
, t− = t∗2.
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Remark: Based on the above analysis, if we want to obtain the minimum total

system time cost 3
2
N2δ
s under this type of peak time window, we should set

t∗2 − t∗1 ≤ 1
γ
Nδ
s and the toll rate should be ρ∗ = Nδ

s .

3.2. The peak time window for Case t− ≤ t∗2 (see Figure 5)

In this case, the beginning of the peak time window is before t∗1 and the end

of the peak time window is between t∗1 and t∗2, so the inequality t∗2 − t∗1 > 0

must be satisfied. Similar to the analysis above, we will discuss the optimal

one-step toll scheme in this case. For a given toll ρ, the difference between the

total travel time cost of the individual household who depart from home at tq

and the individual household who is the first one to enter the tolling window is

ρ, which can be described by the following equation:

c1 = β(t∗1 − tq) + β(t∗2 − tq) = ρ+ β(t∗1 − t+) + β(t∗2 − t+),

and the difference between the total travel time cost of the person who depart

from home at tq′ and the person who is the last one to be charged in the tolling

window is ρ, and we have the following equation:

c4 = γ(tq′ − t∗1) + γ(tq′ − t∗2) = ρ+ γ(t− − t∗1) + β(t∗2 − t−).

Then the tolling window is given as follows:

t+ = tq + ρ/2β, t− =
2γtq′ − (β + γ)t∗2 − ρ

γ − β .

So we can represent the number of the individual households who are in the

peak and off-peak time window respectively

Nt = (t− − t+)s, (26)

Nu = N −Nt =
ρ

2β
s+

(γ + β)(t∗2 − tq′) + ρ

γ − β s. (27)

The total system travel time cost excluding the toll is

TC2 = (2
Nδ

s
)Nu + (2

Nδ

s
− ρ)Nt

= 2
N2δ

s
− s(β + γ)

2β(γ − β)
(
Nδ

s
− β(t∗2 − t∗1)

2
)2

+
s(β + γ)

2β(γ − β)
[ρ− (

Nδ

s
− β(t∗2 − t∗1)

2
)]2.
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We note that the equilibrium travel cost can be still given by

c̃ = 2
Nδ

s
= c̄. (28)

3.2.1. The analysis of the optimal system travel time cost under toll model

Under this type of peak time window, the length of the CF (as illustrated in

Figure 5) must be smaller than the value of ρ/α, i.e., CF ≤ ρ/α; and the length

of the BE must be strictly larger than the value of ρ/α, i.e., BE > ρ/α (due to

the departure rate and the arrival rate of the individual household). Therefore,

we have

CF = t∗2 − t̃2 =
2Nδ

sα
− γ

α
(t∗2 − t∗1),

BE = t∗1 − t̃1 =
2Nδ

sα
− β

α
(t∗2 − t∗1).

Based on the observation of the equation of TC2 above, we need to further

extend the discussion in two cases:

In the case when 2
2γ−β

Nδ
s ≤ t∗2 − t∗1 < 2

γ
Nδ
s :

If 2
2γ−β

Nδ
s ≤ t∗2 − t∗1 < 2

γ
Nδ
s , the following inequality is fulfilled:

CF ≤ Nδ

sα
− β(t∗2 − t∗1)

2α
.

It is obvious that when we set

ρ∗ =
Nδ

s
− β(t∗2 − t∗1)

2
(< α ·BE),

TC can achieve the minimum

TC2 = 2
N2δ

s
− s(β + γ)

2β(γ − β)
(
Nδ

s
− β(t∗2 − t∗1)

2
)2,

which is dependent on the value of t∗2 − t∗1. Considering the range of t∗2 − t∗1, we

find that

3

2

N2δ

s
<

3

2

N2δ

s
+

β2

2(2γ − β)2
N2δ

s
≤ TC2 ≤

3

2

N2δ

s
+

β

2γ

N2δ

s
< 2

N2δ

s
,
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where the inequality can be verified by inequality γ > β. And the value of TC2

is increasing with respect to t∗2 − t∗1, in the range of 2
2γ−β

Nδ
s ≤ t∗2 − t∗1 < 2

γ
Nδ
s .

Accordingly, the optimal tolling peak time window can be given as follows:

t+ =
t∗1 + t∗2

2
− t∗2 − t∗1

4
− Nδ

2βs
, t− =

t∗1 + t∗2
2

− γ(t∗2 − t∗1)

2(γ − β)
+

Nδ

(γ − β)s
.

In the case when 0 < t∗2 − t∗1 < 2
2γ−β

Nδ
s :

If 0 < t∗2 − t∗1 < 2
2γ−β

Nδ
s , then we have the following inequality

CF >
Nδ

sα
− β(t∗2 − t∗1)

2α
.

Meanwhile, we find that when we set

ρ∗ = α · CF =
2Nδ

s
− γ(t∗2 − t∗1) (< α ·BE), (29)

TC will achieve the minimum at

TC2 =
3

2

N2δ

s
+
γ2s

2δ
[(t∗2 − t∗1)− 1

γ

Nδ

s
]2,

which depends on the value of t∗2−t∗1, and TC2 is a convex function with respect

to t∗2 − t∗1. Due to the inequality γ > β, we know that 0 < 1
γ
Nδ
s < 2

2γ−β
Nδ
s . So

in the range 0 < t∗2− t∗1 < 2
2γ−β

Nδ
s , TC2 will be minimized, if we set the interval

of the two desired time as

t∗2 − t∗1 =
1

γ

Nδ

s
, (30)

and the minimum is achieved as

TC2 =
3

2

N2δ

s
. (31)

And the range of TC2 is

3

2

N2δ

s
≤ TC2 < 2

N2δ

s
.

Accordingly, the optimal tolling peak time window can be given as follows:

t+ =
t∗1 + t∗2

2
− γ(t∗2 − t∗1)

2β
, t− = t∗2.
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Remark: Therefore, if we want to obtain the total system time cost 3
2
N2δ
s

under this peak time window scheme, we should set t∗2− t∗1 = 1
γ
Nδ
s , and through

(29) we can deduce the optimal toll

ρ∗ =
Nδ

s
. (32)

In section 5, we will design a tradable credit scheme to replace the toll scheme

while this optimal situation can still be achieved. Indeed, a special case of the

peak time window as in case t− ≥ t∗2, as in this solution the end point of the

peak time window t− is simply at t∗2, i.e., t− = t∗2.

4. The optimal toll model for large school-work difference situation

As was done in previous section, the equilibrium trip scheduling solution

with toll scheme can be summarized in Figure 6. The endpoint of the peak

time window t− must be ahead of t∗2. Next, we will consider how the toll model

works in this situation.
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Figure 6: Equilibrium solutions for one-step toll model in large school-work difference situa-

tion.

4.1. The peak time window

For a given toll ρ, the difference between the total travel time cost of the

individual who depart from home at tq and the individual household who is the
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first to enter the tolling window is ρ, then we have the following equation:

β(t∗1 − tq) + β(t∗2 − tq) = ρ+ β(t∗1 − t+) + β(t∗2 − t+),

Similarly, the difference between the total travel time cost of the person who

depart from home at tq′ and the person who is the last one that will be charged

in the tolling window is ρ, and we have the following equation:

γ(tq′ − t∗1) + β(t∗2 − tq′) = ρ+ γ(t− − t∗1) + β(t∗2 − t−),

Then the tolling window can be determined as follows:

t+ = tq + ρ/2β, t− = tq′ −
ρ

γ − β .

Thus, we can represent the number of the individual household who pay the toll

is

Nt = (t− − t+)s = s(tq′ − tq −
ρ

2β
− ρ

γ − β ), (33)

and the total system travel time cost excluding the toll is

TC = [
2Nδ

s

γ − β
γ

+ β(t∗2 − t∗1)] · (N −Nt) + [
2Nδ

s

γ − β
γ

+ β(t∗2 − t∗1)− ρ] ·Nt

= [
2Nδ

s

γ − β
γ

+ β(t∗2 − t∗1)] ·N +
β + γ

2β(γ − β)
s[ρ− N

s

β(γ − β)

β + γ
]2

− β + γ

2β(γ − β)
s · [N

s

β(γ − β)

β + γ
]2.

We note that the total travel cost at equilibrium with road toll in this situation

will be:

c̃ =
2Nδ

s

γ − β
γ

+ β(t∗2 − t∗1) ≥ 2
Nδ

s
. (34)

4.2. The analysis of the optimal system travel time cost under toll model

In this case, as we set the endpoint of the peak time window t− before t∗2, the

value of the t∗1− t̃1 must be larger than the value of ρ/α, i.e., t∗1− t̃1 ≥ ρ/α (due

to the rate of departure and arrival of the individual household). Therefore, we

have

t∗1 − t̃1 =
2N

αs

β(γ − β)

β + γ
.
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So the optimal road toll rate would be

ρ∗ =
N

s

β(γ − β)

β + γ
(≤ α(t∗1 − t̃1)), (35)

so that TC can attain the minimum

TC =
3

2

N2δ

s
− 3β

2γ

N2δ

s
+Nβ(t∗2 − t∗1)

≥ 3

2

N2δ

s
+

β

2γ

N2δ

s
>

3

2

N2δ

s
. (36)

Accordingly, the optimal tolling peak time window can be given as follows:

t+ = t∗1, t− = t∗1 +
Nδ

sγ
.

Remark: Under the peak time window tolling scheme, we achieve the minimum

total system time cost TC in large school-work difference situation if we set the

toll to be ρ∗ = N
s
β(γ−β)
β+γ . Obviously, the minimum total system travel time in

large school-work difference situation is not better than that in small school-

work difference situation, as the value of TC in large school-work difference

situation is larger than 3
2
N2δ
s , no matter how we adjust the value of the toll

rate.

In order to clearly show and discuss how the results derived in Section 3 and

Section 4 change with t∗2 − t∗1, we summarize some (untolled and tolled) results

in Table 1. From Table 1 one can easily observe that the minimum total travel

cost in large school-work difference situation is higher than that in small school-

work difference situation, and the minimum total cost that can be achieved is

3
2
N2δ
s .
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Table 1: The summary of the (untolled and tolled) results

Situation t∗2 − t∗1 (t+, t−, ρ) Total Cost

No Toll [0, 2
γ
Nδ
s

) N.A. 2N
2δ
s

[0, 1
γ
Nδ
s

] (
t∗1+t

∗
2

2
− Nδ

2βs
, 3

2
N2δ
s

Case
t∗1+t

∗
2

2
+ Nδ

2γs
, Nδ
s

)

t∗2 − t∗1 ∈ t− ≥ t∗2 ( 1
γ
Nδ
s
, 2
γ
Nδ
s

) (
t∗1+t

∗
2

2
− γ(t∗2−t

∗
1)

2β
, t∗2, ( 3

2
N2δ
s
, 2N

2δ
s

)

(0, 2Nδ
γs

) 2Nδ
s
− γ(t∗2 − t∗1))

(
t∗1+t

∗
2

2
− t∗2−t

∗
1

4
− Nδ

2βs
,

[ 2
2γ−β

Nδ
s
, 2
γ
Nδ
s

)
t∗1+t

∗
2

2
− γ(t∗2−t

∗
1)

2(γ−β) ( 3
2
N2δ
s
, 2N

2δ
s

)

Case + Nδ
(γ−β)s ,

Nδ
s
− β(t∗2−t

∗
1)

2
)

t− ≤ t∗2 (0, 2
2γ−β

Nδ
s

) (
t∗1+t

∗
2

2
− γ(t∗2−t

∗
1)

2β
, t∗2, [ 3

2
N2δ
s
, 2N

2δ
s

)

2Nδ
s
− γ(t∗2 − t∗1))

t∗2 − t∗1 ∈ No Toll [ 2
γ
Nδ
s
,+∞) N.A. (2N

2δ
s
,+∞)

[ 2Nδ
γs
,+∞) t− ≤ t∗2 [ 2

γ
Nδ
s
,+∞) (t∗1, t

∗
1 + Nδ

sγ
, N
s
β(γ−β)
β+γ

) ( 3
2
N2δ
s
,+∞)

5. The optimal setting of the desired arrival time and the alternative

tradable credit scheme

In the previous two sections, we investigate optimal design of one step toll in

peak hour window to best manage the morning commute of household travels,

and analyse the impact of the time interval between desired arrival times (i.e.,

school-work start time difference) on travel cost by assuming given time interval.

If we relax the assumption that time interval between the desired or preferred

arrival times is given and fixed, we may want to ask the question that what is

the optimal setting of this time interval so that the minimum total system travel

cost can be achieved. Indeed, we have made some preliminary analysis on this

issue in the remarks of previous two sections. Next, we will compare these two

situations in details and try to derive some policy indications that are useful for

traffic management agencies about the optimal setting of the interval between

two desired arrival time (i.e., t∗2 − t∗1) and the choice of the peak time window.

We have discussed in section 4 that large school-work difference situation is not

better than small school-work difference situation if total system travel time
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cost is to be minimized or we can see this result through Table 1 directly.

Therefore, the management agencies should set this time interval between the

two desired arrival times so that small school-work difference situation would

occur in practice. Next we will make some comparisons between the two kinds

of peak time windows as discussed in the small school-work difference situation.

5.1. Comparison of the two peak time windows in small school-work difference

situation

From Table 1, we find that in small school-work difference situation if we

set the peak time window as case t− ≥ t∗2, the optimal total travel time cost

TC1 ≥ 3
2
N2δ
s , with varying values of the interval of two desired time. To attain

the minimum value of 3
2
N2δ
s , the interval between these two desired time needs

to satisfy:

0 ≤ t∗2 − t∗1 ≤
1

γ

Nδ

s
, (37)

and the optimal total travel time cost is not dependent on the specific value of

t∗2 − t∗1, as long as it satisfies (37), and the toll rate is set as ρ∗ = Nδ
s at the

same time.

From Table 1, if we set the peak time window as case t− ≤ t∗2, the optimal

total travel time cost TC2 ≥ 3
2
N2δ
s . To obtain the minimum 3

2
N2δ
s under this

type of peak time window, the interval between two desired time must fulfill the

following condition:

t∗2 − t∗1 =
1

γ

Nδ

s
. (38)

and the toll should be set as ρ∗ = Nδ
s , which is obviously a special case under

the peak time window of case t− ≥ t∗2. As in this case, the end point of the

peak time window t− is just at t∗2, i.e., t− = t∗2.

Remark: It should be noted that, if the time interval between the desired

arrival time is set to satisfy (37), and the peak time window is designed as

specified in section 3.1, the total travel time cost of travel demands will attain

minimum 3
2
N2δ
s under the toll model, in which the toll rate is set to fulfill (24).
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5.2. The tradable credit scheme for the optimal situation

As is well known, road pricing is susceptible to public objection and hard to

be practically implemented. Many researchers have been promoting the tradable

credit scheme as the travel demand management measure (Yang & Wang 2011;

Wang et al. 2012; Wang et al. 2013a;Wang & Yang 2012;Wang et al. 2013b; Nie

2012; Tian et al. 2013; Xiao et al. 2013; Nie & Yin 2013; Nie 2013). In this

section, we will present how to use the tradable credit scheme to replace the

the optimal toll scheme (24) under the optimal time interval arrangement as in

(37), and the peak time window is designed for case t− ≥ t∗2.

As is in the TCS proposed by Nie (2013), the authority sets a peak-time

window [t+, t−], and requires the person who departs from his home within

that window to either pay κ units of credits, or a much higher toll ρg (in the

monetary form). On the other hands, the authority rewards r units of credits to

those travellers who depart their home during the off-peak periods [tq, t+] and

[t−, tq′ ]. A market is created so that the users can trade the mobility credits

with each other. Based on the assumption of credit conservation, i.e., the total

number of credits earned by the off-peak users equal to the number of credits

used by the peak-time users, we have:

(N −Nt)r = Ntκ.

We deduce that
Nt
N

=
r

κ+ r
=

1

2
, (39)

where the second equality is obtained by replacing Nt with (20), while the

optimal step toll is given in (24). As the difference between the total cost of

each person in off-peak and peak-time in the TCS must be equal to the toll

charged in the one-step toll scheme, we have

ρ∗ = P (κ+ r),

where P is the market clearing price of the credit, which can be derived from the

above equation as long as r is given. To ensure that the user has an incentive
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to earn and trade credits, the authority must set the alternative toll ρg much

higher than what one must pay for a credit, i.e., ρg > P .

So the optimal situation is attained when TCS is given as follows:

κ = r, P =
Nδ

(κ+ r)s
. (40)

For the peak and off-peak time users, their travel time cost (including travel

delay and schedule delay costs) under TCS are c̄−ρ∗ = 1
2 c̄ and c̄, and the profit

from the credit trading is −κP and rP , respectively. Thus the equilibrium cost

under the optimal TCS is

c∗ =
1

2
c̄+ κP = c̄− rP =

3

4
c̄. (41)

This cost is 25% lower than the equilibrium cost (22) under the optimal one-step

toll scheme. The reason is straightforward, and one can easily observe that in

TCS (40), the benefits are indeed redistributed to the commuters directly. But

in the one-step toll scheme, the same amount of benefits will be collected by

the transport authorities as toll revenues, and thus the members of individual

household will not benefit until these revenues are redistributed. The optimal

total system travel time cost is

TC1 =
3

2

N2δ

s
. (42)

5.3. The design of the interval between two desired times

In the model analysis presented in previous sections, we set T f = 0, T f1 = 0

for convenience ( i.e., an individual household arrives at the bottleneck as soon as

she leaves home, and arrives at school and workplace immediately upon leaving

the bottleneck ). However, in practice, the equation t∗2 − t∗1 = 0 means that the

actual interval between two desired time is exactly t̃∗2 − t̃∗1 = T f − T f1 , which is

just the travel time we need to go from school to workplace with no congestion,

and the rest equation about t∗2 − t∗1 can be understood in the same manner.

So we suggest the managers setting the peak time window like case t− ≥ t∗2,

the tradable credit scheme like (40), and the value of t∗2−t∗1 satisfied (37), which
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means the actual interval between two desired time satisfies

T f − T f1 ≤ t̃∗2 − t̃∗1 ≤ T f − T f1 +
1

γ

Nδ

s
. (43)

so that we can attain the optimal total system travel time cost 3
2
N2δ
s .

6. Numerical example

In this section, we conduct a numerical example to illustrate the imple-

mentation of the model analysis results. In the morning, we assume there is

a bottleneck located before both trip destinations of household travels, i.e.,

school and workplace, which is depicted in Figure 1. Suppose a fixed number of

N = 8000 household travels depart from home to their children’s school firstly

and then to their workplaces every morning. The capacity of the whole road

is s = 200, i.e., 200 cars can pass the road per minute. Here we set the the

shadow cost of travel time α = 0.3, the schedule penalty for one minute of early

arrival β = 0.1 and the schedule penalty for one minute of late arrival γ = 0.4,

which is reasonable in practice. In this example, we assume the fixed travel

time from home to school is T f1 = 10min and the fixed travel time from home

to workplace is T f = 30min, so the actual school-work start time difference

t̃∗2 − t̃∗1 = (t∗2 − t∗1) + (T f − T f1 ) should be no less than T f − T f1 = 20min. Here

we set t∗1 = t̃∗1 = 7 : 30 am and t∗2 = t̃∗2 − (T f − T f1 ) = t̃∗2 − 20min in the

model we analyse above. We will give the equilibrium trip scheduling of the

household travels first. Then, the optimal school-work start time difference and

toll window to manage the bottleneck in the morning will be determined. At

last, we give a tradable credit scheme to replace the toll scheme to manage the

household travel morning commute traffic.

According to Section 2, when t∗2 − t∗1 < 1
γ

2Nδ
s = 16min, the departure rate

is depicted as Figure 2; when t∗2 − t∗1 ≥ 1
γ

2Nδ
s = 16min, the departure rate is

depicted as Figure 3. From Section 3, Section 4 and Table 1, we find that if we

set the school-work start time difference in the following interval

t∗2 − t∗1 ∈ [0,
1

γ

Nδ

s
] = [0, 8]min, (44)
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and the toll scheme

(t+, t−, ρ) = (
t∗1 + t∗2

2
− Nδ

2βs
,
t∗1 + t∗2

2
+
Nδ

2γs
,
Nδ

s
)

= (
t∗1 + t∗2

2
− 16min,

t∗1 + t∗2
2

+ 4min, 3.2), (45)

the total travel time cost will be minimized to TC = 3
2
N2δ
s = 38400 (the fixed

travel time cost on the road, which is T f for all household travels, is excluded

here), while the total travel time cost will be TC = 2N
2δ
s = 51200 if no toll

scheme is implemented. The equilibrium travel cost with toll for each household

will be c̃ = 2Nδs = 6.4, which is the equal to the equilibrium travel cost for each

household in the untolled scheme c̄ = 2Nδs = 6.4.

Therefore, traffic management can set the t∗2−t∗1 be any value between [0, 8],

here we just take t∗2 − t∗1 = 4min for illustration. Accordingly, the optimal toll

scheme is (t+, t−, ρ) = (7 : 16 am, 7 : 36 am, 3.2). The first one who enter

the bottleneck is tq = 7 : 00 am, and the last one who enter the bottleneck is

tq′ = 7 : 40 am. Considering T f1 = 10min, every one should spend 10min on

the road before arriving the bottleneck, so t̃q and t̃q′ will be ten minutes earlier

than tq and tq′ respectively. As T f equals to 30min, we need to set the actual

school-work start time as t̃∗1 = 7 : 30 am and t̃∗2 = 7 : 54 am.

At last the optimal tradable credit scheme can be given as follows according

to Section 5 to replace the toll scheme mentioned above. Instead of paying

ρ = 3.2 in the toll window, the household need to pay κ units of credits, and

the household who enter the bottleneck between [tq, t+] and [t−, tq′ ] will be

rewarded κ units of credits. Here we just set κ = 1, and the market clearing

price of the credit is P = Nδ
2s = 1.6. In this scheme, the total travel time cost will

be TC = 3
2
N2δ
s = 38400, while the equilibrium travel cost for each household

will be c∗ = 3
4 c̃ = 4.8. In Table 2, we summarize the total travel time cost TC

and the equilibrium travel cost for each household under different schemes.
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Table 2: The travel cost under different schemes

Schemes Total Travel Time Cost Equilibrium Travel Cost

Untolled Scheme TC = 2N
2δ
s

= 51200 c̄ = 2Nδ
s

= 6.4

Toll Scheme TC = 3
2
N2δ
s

= 38400 c̃ = 2Nδ
s

= 6.4

Tradable Credit Scheme TC = 3
2
N2δ
s

= 38400 c∗ = 3
4
Nδ
s

= 4.8

7. Conclusion

In this study, we consider the equilibrium trip scheduling and the traffic

managements for household travels in the morning commute. Different from

individual travels, household travels meet the travel demands for all household

members. As multiple household members are involved in the joint decision, the

members’ preference of arrival times and intra-household interaction have to be

considered in a group decision-making manner. In this study, we firstly present

the equilibrium trip scheduling for household travels, i.e., extending the stan-

dard Vickrey’s bottleneck model from work commute with one single preferred

arrival time to household commute with two consecutive preferred arrival time.

Then we use one-step toll scheme to reduce the traffic congestion and analyse

the impact of the school-work start time difference on individual cost, social cost

and traffic management tolls, so that we can optimally set the school-work start

time difference for the household members to make the total travel cost mini-

mized. A tradable credit scheme is then devised to replace the optimal tolling

scheme. This study seeks to fill in the research gap in the morning commute

traffic management by investigating the management for the household trav-

els. In this study, we assume that the preferred arrival times are specific time

points rather than a preferred arrival time interval. To relax this assumption

and consider the case with preferred arrival time window will be addressed in

the future study. Besides, in the future study, we would also study on how to

best manage the morning commute traffic with mixed individual and household

travels to consider a more general and realistic scenario of traffic management.
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