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Abstract

Background: Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical
implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect
beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of
family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing
technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of
diabetes for mutations in disease-associated genes.

Methods: We utilized a targeted sequencing approach using the lllumina HiSeq to perform a case-control
sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346
individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants
identified from the sequence data and compared the frequencies of pathogenic variants

(protein-truncating variants and missense variants) between the cases and controls.

Results: A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group)
were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCCS, and INS genes. In addition,
heterozygous protein truncating mutations were detected in the GCK, HNFI1A, and HNF1B genes in seven individuals
with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with
diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was
homozygous for a rare pathogenic missense variant in the WFST gene but did not have the additional phenotypes
associated with Wolfram syndrome.

Conclusion: Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in
individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests
that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed,
particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing
of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a
specific diagnosis, inform disease prognosis and may help to better stratify treatment plans.

Keywords: High-throughput sequencing, Monogenic diabetes, Pathogenic variants, Type 2 diabetes, MODY,
DNA pooling, Targeted sequencing
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Background

Diabetes mellitus is a heterogeneous disorder character-
ized by high fasting blood glucose levels or hypergly-
cemia that results from a combination of both genetic
and environmental risk factors. Most individuals with
diabetes are classified into type 1 (T1D) and type 2 dia-
betes (T2D). Compared to T1D, which presents early in
life and is primarily an auto-immune disorder, T2D rep-
resents approximately 90% of all diabetes and typically
manifests later in life. T2D is a complex polygenic dis-
ease caused by interactions between multiple genetic
and environmental factors. Significant progress has been
made in understanding the genetic architecture of T2D
over the past 10 years [1]. A number of genome-wide as-
sociation studies in diverse human populations have
identified more than 60 common variants and loci asso-
ciated with risk for T2D [2]. These studies have also
revealed a significant overlap between traits and pheno-
types of monogenic diabetes with related “common”
T2D as a prototypic complex disease [3-6].

In contrast to T1D and T2D, monogenic diabetes repre-
sents a form of non-autoimmune, early onset diabetes that
is primarily genetic. Maturity onset diabetes of the young
(MODY), first reported in 1974 [7], is an autosomal dom-
inant form of non-insulin dependent diabetes that is typic-
ally diagnosed before the age of 25. Using linkage analysis
in families with a high prevalence of diabetes, mutations
in more than 10 different genes have been shown to cause
multiple types of monogenic diabetes, each with different
clinical presentation [8, 9]. MODY is estimated to repre-
sent 1-2% of diabetes [10]. In addition, mutations in sev-
eral genes are known to cause neonatal diabetes and rare
syndromes such as Wolfram syndrome (WS) [11], which
includes diabetes among other phenotypes. Common vari-
ants in the monogenic diabetes genes HNF4A [12] and
WFS1 [13], and a low-frequency variant in the HNFIA
gene [14] have also been associated with risk for T2D,
highlighting the genetic overlap between monogenic dia-
betes and T2D.

Subjects suspected of having monogenic diabetes
based on age of onset, family history, and additional
phenotypes are referred for genetic screening. However,
not all individuals with monogenic diabetes fulfill the
classical criteria of MODY (7, 9, 10]. In addition, indi-
viduals without any family history of diabetes are likely
to be misdiagnosed as having T1D or T2D [15, 16]. Fur-
ther, many rare forms of diabetes share clinical features
with T2D and are sometimes misdiagnosed as T2D due
to a lack of genetic information and atypical clinical
presentation. An accurate molecular diagnosis of mono-
genic forms of diabetes is important for determining the
right treatment as well as genetic counseling for their
families [17, 18]. For MODY, genetic diagnosis has im-
portant therapeutic implications [9]. Diabetic individuals
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with mutations in the glucokinase gene (MODY?2) often
require no treatment and have low prevalence of compli-
cations such as retinopathy and neuropathy despite life-
long hypergylcemia [19, 20]. On the other hand,
individuals with a mutation in the ABCC8 or KCNJ11
genes can be successfully treated with sulfonylureas
rather than with insulin therapy [9].

Screening of monogenic diabetes genes in a large co-
hort with a clinical diagnosis of T2D has the potential to
identify subjects with misdiagnosed monogenic diabetes,
in particular in subjects with early onset of the disease.
In recent years, advances in high-throughput sequencing
technologies have made it possible to sequence selected
regions of the human genome in large numbers of indi-
viduals. These targeted sequencing approaches have
been utilized to sequence genes associated with diabetes
and obesity [21-23]. In this study, we utilized the
[lumina high-throughput sequencing technology to se-
quence 225 diabetes associated genes, including genes
implicated in monogenic forms of diabetes and genes
near variants identified in genome-wide association
studies for T2D. A total of 4016 individuals diagnosed
with T2D, including 1346 individuals with diabetes diag-
nosed before the age of 40 years, and 2872 controls were
sequenced in our study. In this paper, we focus on the
analysis of variants in 22 genes (Additional file 1: Table
S1) that have been associated with monogenic forms of
diabetes. These include the 13 MODY genes (GCK,
HNFIA, HNF4A, HNF1B, INS, NEURODI1, PDX1, PAX4,
ABCCS8, KCNJ11, KLF11, CEL, and BLK), 6 genes associ-
ated with recessive diseases that include diabetes as a
phenotype (WFS1, NEUROG3, EIF2AK3, GLIS3, RFX6,
and SLCI19A2), and 3 genes in which heterozygous mu-
tations have been shown to cause diabetes mellitus
(PAX6, GATA6, and PPARG). Our primary objectives
were to (1) identify subjects with potentially undiag-
nosed monogenic diabetes, (2) compare and contrast the
frequency of deleterious mutations in monogenic dia-
betes genes between individuals with early-onset dia-
betes or adult-onset diabetes and population controls,
and (3) assess the relationship between deleterious mu-
tations in less frequently mutated monogenic diabetes
genes and risk for early onset diabetes.

Methods

Cohorts

All samples were obtained through the Centre of Excel-
lence for Metabolic Disorders, Division of Endocrinology
and Diabetes, Ulm University Medical Centre. Diabetes
was defined as fasting plasma glucose > 125 mg/dL or 2
hour glucose > 200 mg/dL after an oral glucose tolerance
test. Furthermore, individuals with a history of diabetes
or undergoing treatment with oral anti-diabetic drugs
(primarily metformin and sulfonylureas) or insulin were
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considered as cases. All subjects studied were of
Northern European ancestry. In addition, all diabetes
subjects and the controls were tested for the presence of
serum autoantibodies, including islet cell autoantibodies,
glutamic acid decarboxylase, and islet antigen 2 anti-
bodies, as previously described [24]. Positivity for islet-
cell autoantibodies, insulin requirement, and evidence of
ketosis at the time of diagnosis were criteria for exclu-
sion. Exclusion criteria were also pregnancy and the
presence of any other severe disease. Each study subject
was interviewed regarding their family history; history
taken included basic clinical information, namely age at
diagnosis, sex, treatment (including time to insulin treat-
ment), body mass index, current glycated hemoglobin
(HbAlc), current age, and the presence or absence of a
parent with diabetes [25]. No interview or biochemical
test was performed in any of the relatives. All subjects
diagnosed before 25 years of age did not have the
MODY phenotype based on classical diagnostic criteria,
namely no treatment with insulin for at least 2 years
after diagnosis and multi-generational inheritance of
diabetes [7]. All individuals with early onset diabetes
were also screened for apparent WS based on pheno-
types such as optic atrophy, diabetes insipidus, and deaf-
ness. Controls had normal fasting glucose (confirmed by
HbA1c < 6%) and had no evidence of islet autoimmunity.

The first set of sequenced samples included 1880 indi-
viduals with T2D and 1840 controls. The mean age at
diagnosis of diabetes in cases was 43.4 years, with 734
individuals classified as having early onset diabetes (age
at diagnosis < 40 years). The second group of sequenced
samples included 2136 individuals with T2D (612 indi-
viduals with age at diagnosis < 40 years) and 1032 popu-
lation controls (age > 65 years) from the southern part of
Germany. For a subset of individuals, additional pheno-
type information about the presence of diabetic compli-
cations (nephropathy, neuropathy, and retinopathy) was
also available. Clinical characteristics and phenotype data
(age at diagnosis, body mass index, and HbAlc or fast-
ing blood glucose) from the case and control popula-
tions are reported in Additional file 1: Table S4.

Selection of genes for sequencing

Although high throughput sequencing technologies
make it possible to sequence human genomes, it is still
costly to sequence the entire human genomes of thou-
sands of individuals. However, targeted sequencing of
specific regions (e.g., exons of genes of interest) is feas-
ible in thousands of individuals using the same sequen-
cing throughput. We performed targeted sequencing of
the exons and the 5 and 3’ un-translated regions of
genes that (1) are associated with monogenic or rare
forms of diabetes, (2) are located near common variants
associated with risk for T2D [6], (3) have been linked to
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diabetes in model organisms, or (4) have relevance for
drugs used to treat diabetes. In total, a total of 225 genes
were selected for sequencing based on these criteria
(Additional file 1: Table S2).

Target enrichment and pooled sequencing

For enrichment of the targeted regions, we utilized the
Agilent SureSelect solution hybridization method [26].
For each gene, exon coordinates were obtained from the
RefSeq database to identify the coding and untranslated
regions. Subsequently, baits were designed (120 bp length,
2x tiling) targeting the DNA sequence of the selected re-
gions. Although targeted sequencing dramatically in-
creases the cost-efficiency of sequencing, there is a
significant cost associated with preparing DNA sequen-
cing libraries for each individual sample. Therefore, to re-
duce the cost of sequencing per sample, DNA from
multiple individuals was pooled prior to library prepar-
ation and hybridization. We have previously demonstrated
that both rare (even singleton mutations present in mod-
erate sized pools) and common mutations can be detected
with high sensitivity and specificity from pooled sequence
data [27, 28]. A number of studies have utilized pooled se-
quencing to search for disease risk variants in selected re-
gions of the human genome for a number of diseases,
including T1D [29], inflammatory bowel disease [30, 31],
Crohn’s disease [32], anorexia nervosa [33], and breast
cancer [34]. Similar to previous studies, the number of in-
dividuals in a pool was chosen to be small (20-24) since
this significantly reduces the cost of library preparation
per individual (8—10 times more individuals can be se-
quenced for the same cost [27, 28]) but still allows for the
accurate detection of variants.

Study design

Sequencing of the DNA samples was performed in three
stages (Fig. 1). In the first stage, selected regions of 136
genes were sequenced in 1880 individuals with T2D and
1840 controls using a pooled sequencing design
(Additional file 1: Figure S2). All pools contained DNA
from 20 individuals each and were designed to be homo-
geneous with respect to the presence or absence of T2D
as well as additional phenotypes such as the age of onset
(for cases) or current age (for controls) and diabetic
complications. Subsequently, in Stage 2, an independent
set of 2136 cases and 1032 controls was sequenced using
pools of size 24. The pool size was increased to enable
the sequencing of additional samples. Finally, to validate
deleterious variants identified in Stages 1 and 2 and to
identify the carriers of rare coding variants, we per-
formed pooled sequencing of DNA from 2014 individ-
uals with diabetes (1268 early-onset and 746 late-onset)
that were also sequenced in Stage 1 and 2. Pools from
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POOLED SEQUENCING (discovery)

pools with 20 samples, 17 genes
655 coding variants

Pools with 24 samples, 22 genes
1044 coding variants

POOLED SEQUENCING (carrier detection)

Pools with 20-32 samples, 22 genes
1032 coding variants

Rare variant carriers identified through
analysis of data from Stage 1, 2 and 3

monogenic diabetes genes between the case and control groups

N[

A

Fig. 1 Overview of the sequencing study. A total of 2872 controls and 4016 cases (1346 individuals with age of onset < 40 years) for type 2
diabetes were sequenced using pools of 20 (Stage 1) and 24 (Stage 2) individuals. To validate rare functional variants and to identify the carriers
of rare coding variants, 2014 cases selected from Stage 1 and 2 were sequenced again in Stage 3. The resulting variant data was analyzed to
perform gene-level burden tests and compare the frequency of protein truncating variants and known pathogenic missense variants in

ASSOCIATION ANALYSIS

Protein truncating variants

2. Gene-level burden tests for missense
variants

3. Carrier frequency for pathogenic
missense variants

4. Rare homozygous variants

Stage 1 and 2 with deleterious variants (e.g., missense
mutations in GCK) were prioritized for sequencing in
Stage 3. The pools in Stage 3 were designed to be or-
thogonal to pools in Stages 1 and 2 such that a pool
from the first two stages of sequencing and a pool from
the third stage shared at most 1-2 individuals
(Additional file 1: Figure S2).

Library preparation and sequencing

For each individual, DNA was quantified in duplicate
(or triplicate if necessary) using PicoGreen. Subse-
quently, samples were pooled in equimolar concentra-
tions to form pools with DNA from the selected
number of individuals. The pools were then carried
through the standard Illumina library preparation
process using Adaptive Focused Acoustics for shearing
(Covaris), end-repair, A-tailing, and ligation. Agilent
SureSelect in-solution hybridization was performed on
the pooled samples using the recommended protocol
for a single genomic DNA sample as previously de-
scribed [28]. Captured DNA was then sequenced using
a 100 bp paired-end multiplexed read protocol on an
[llumina HiSeq instrument.

Read alignment and variant calling

The paired-end reads for each pool were aligned to the
human genome reference sequence (hgl9) using the
Novoalign alignment program [35] (with soft-clipping
(v3.0) to generate a BAM file. The BAM file was sorted
and PCR duplicates were removed using the Picard [36]
MarkDuplicates command. Subsequently, the bam files

for the pools were processed using the CRISP variant
calling program [27] to identify variants (details in
Additional file2: Supplementary Methods). Variants
were identified for pooled sequence data for each stage
separately but jointly across all pools. Variant calls were
restricted to the targeted regions and the 100 base pairs
flanking the targeted regions.

Variant annotation

All identified variants were annotated using the Annovar
annotation program using the RefSeq transcript database
[37]. We focused primarily on coding variants that are
predicted to impact the protein sequence, namely (1)
missense variants (including non-frameshift insertions or
deletions (indels)) and (2) protein truncating variants
(nonsense, splice-site and frameshift indels). Missense
variants were further annotated using the in silico pre-
diction tools PolyPhen2 [38], SIFT [39], MutationTaster
[40], and CADD [41]. Alignments for protein truncating
variants were inspected visually and variants with weak
read support were removed. We utilized variant calls
and allele frequency data from the National Heart, Lung,
and Blood Institute Exome Sequencing Project [42] and
the Exome Aggregation Consortium (ExAC) database
[43] to estimate the allele frequencies of the variants.
Information about missense mutations that have been
reported to be associated with early onset diabetes and
MODY was obtained from published papers and the
Human Gene Mutation Database [44]. Variants that
have been shown to not impact gene function or with a
high allele frequency in controls were not considered as
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pathogenic. Rare variants were further classified using a
five-tier classification system as per the American
College of Medical Genetics (ACMG) guidelines [45].
Each variant was classified as ‘Benign’ (class 1), ‘Likely
benign’ (class 2), ‘Unknown significance’ (class 3), ‘Likely
pathogenic’ (class 4), and ‘Pathogenic’ (class 5) using the
bioinformatics tool InterVar [46], ClinVar [47] and
clinical, functional and genotype-phenotype data from
the literature.

Results
Description of variants identified and data quality
In the first stage, targeted sequencing was performed
on 1880 individuals with diabetes and 1840 controls
using 186 pools. Analysis of the read depth across the
coding sequence of the sequenced genes showed that
the median coverage per pool varied from 600x to
970x per base. The fraction of the targeted bases with a
read depth of 200x or greater (10x per individual in a
pool with 20 individuals) varied between 0.79 and 0.87
across the pools and was slightly higher in the control
pools (0.84 + 0.02) compared to cases (0.834 + 0.02) (see
Additional file 1: Figure S3 for a distribution of cover-
age across pools). A small number of targeted exons
had a low read depth across all sequenced pools in
Stage 1 as well in Stage 2 (Additional file 1: Table S8);
5/7 of these exons also had low sequence coverage
(<10x median coverage) in large-scale exome se-
quence datasets and 3 of these exons correspond to GC-
rich regions (GC% =70%, Additional file1: Table S8).
Excluding these 7 exons with low read depth, 88.7% of the
targeted bases were well covered at a threshold of 200x.
Further, using a stringent coverage criteria (>90% pools
with > 200x coverage at each base), 79% of the targeted
bases in the 17 monogenic diabetes genes (~25 kilobases
of DNA sequence) were well covered. For two genes,
PDX1 and INS, less than 40% of the bases were well cov-
ered. Both of these genes also had low sequence coverage
in Stage 2 pools (Additional file 1, Table S1) and were diffi-
cult to sequence using target capture-based methods [22].
Analysis of the sequence data for the 186 pools using a
pooled variant calling method, CRISP [27], identified
655 coding variants in 17 monogenic diabetes genes that
included 253 (38.6%) synonymous single nucleotide vari-
ants (SNVs), 379 missense SNVs, 3 stop-gain mutations,
and 18 indel variants (Additional file 1: Table S3). Most
of the detected variants were very rare, with 54% of the
variants having an estimated allele count of 1 (also
known as singletons) and 81% of the variants estimated
to have an allele frequency of 0.001 or lower (Additional
file 1: Figure S1). To assess the sensitivity and specificity
of variant detection from pooled sequencing, we se-
quenced 20 samples from one pool individually using
the same target capture and library preparation
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protocols. Overall, 47 variants were identified from the
analysis of individual-level sequence data of the 20 sam-
ples, while 45 variants were detected from the pooled
data, 44 variants overlapped, and 2/3 variants unique to
the individual sequence data had low coverage in the
pooled data (2-3x per individual). From this data, we
estimated a low rate of false positive variants per pool
(<3%) and a low false negative rate (<7%) primarily due
to low sequence coverage.

To assess the accuracy of the variants identified from
the pooled sequence data, we compared the variants and
their allele frequencies with exome sequence data from
the National Heart, Lung, and Blood Institute Exome
Sequencing Project [42]. This comparison demonstrated
a high sensitivity for the detection of even low frequency
variants (minor allele frequency >0.001) and high con-
cordance of variant allele frequencies (+*=0.998 for all
SNVs, Additional file 2: Supplementary Methods). Fur-
thermore, using Sequenom genotyping of 23 SNVs in
240 individuals, the allele counts at individual variant
sites estimated from the pooled sequence data were ob-
served to be highly accurate (*=0.998, see Additional
file 2 for details).

In the second stage of the study, targeted sequencing
was performed on DNA from 3168 individuals using 132
pools (43 control pools and 89 case pools with 24 indi-
viduals per pool). Of the 1044 variants detected, 602
(56.7%) were missense variants and 18 were insertion/
deletion variants. The fraction of missense variants was
very similar to the fraction of missense variants (0.6) in
the first stage of the sequencing. The number of variants
detected was greater than in Stage 1 since five additional
monogenic diabetes genes (CEL, EIF2AK3, ABCCS, BLK,
and KLF11) were sequenced (Additional file 1: Table S1).
Overall, 88.9 +1.3% of the targeted bases across the 22
genes (38 kilobases of DNA sequence) had a median
read depth of > 240x (10x per individual in pools of size
24). The coverage was slightly higher in the control
pools compared to the case pools (Additional file 1:
Figure S3). The allele frequency distribution of rare vari-
ants (Additional file 1: Figure S1) and the proportion of
singleton variants was similar to that observed in the
first stage of sequencing.

In Stage 3, 1011 coding variants were identified from
the sequencing of 2014 individuals with diabetes. These
variants included 585 missense SNVs and 21 indel vari-
ants (Additional file 1: Table S3). Through joint analysis
of pools sequenced in Stage 3 and the corresponding
pools in Stages 1 and 2 as well as information about the
overlap between pools, we identified the carrier(s) of
each rare variant using a parsimonious approach
(Additional file 2: Supplementary Methods). There was
strong agreement between the observed number of
carriers of the variant allele in Stage 3 data and the
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expected number of carriers from Stage 1 and 2 data. In
the GCK, HNFI1A, and HNF4A genes, 51 rare missense
and protein truncating variants (allele counts<5) were
observed in pools from Stage 3. For 48 of the 51 vari-
ants, the expected and observed allele counts were per-
fectly consistent with data from Stages 1 and 2 and
carriers could be identified with little or no ambiguity.
Low sequence coverage in Stage 1 and 2 data explained
the discrepancy for the three variants. Overall, less than
7% of rare coding variants in the 17 monogenic diabetes
genes that were sequenced in all three stages had dis-
crepancy between variant-positive pools, and these were
primarily due to sites with low sequence coverage in
Stage 1 data compared to Stage 3. The orthogonal
pooled sequencing provided independent validation of
the sequence variants detected in Stage 1 and 2 data
since each individual with the variant allele was se-
quenced twice in two different pools and library prepar-
ation was also performed independently. For variants
with multiple variant-positive pools in Stage 3 as well as
in Stages 1 or 2, there was some ambiguity in identifying
variant carriers. Nevertheless, even in such cases, the
orthogonal pooled sequencing enabled partial carrier
identification and provided useful information about the
age of diagnosis of the individual(s) with the variant.
Information about variants identified in Stage 3 pools
was not used for comparison of variants between cases
and controls but only to validate rare variants and iden-
tify the carriers (and age of onset) of rare deleterious
variants.

Analysis of protein-truncating variants

Genetic variants that result in a premature stop codon
in the transcript are commonly referred to as protein
truncating or loss-of-function variants and typically re-
sult in a severe impact on gene function. Seven such
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mutations were observed in MODY genes in which het-
erozygous loss-of-function variants are known to be
pathogenic for diabetes — three each in the GCK and
HNFIA genes and one in the HNFIB gene (Table 1). All
seven variants were singletons and each of the seven in-
dividuals with these mutations had diabetes (mean age
at diagnosis =27.5 years). The individual with the
protein truncating variant (PTV) in the HNFIB gene
was diagnosed at 14 years of age and likely has MODY?5.
Although the cases were screened for classical MODY
phenotypes, some subjects with MODY can only be
identified via genetic analysis. A recent study showed
that the majority of individuals with early onset diabetes
that were found to carry MODY mutations using genetic
testing were clinically misdiagnosed [48].

Compared to GCK, HNF1A, HNF4A, and HNFIB, pro-
tein truncating mutations in the other MODY genes are
less frequent causes of MODY [49]. For some of these
genes, only a few mutations linked to early onset dia-
betes have been reported. In the PDXI gene, a frameshift
insertion was detected in a diabetic individual diagnosed
at the age of 48 years. Recently, a study from Iceland
[50] identified a rare frameshift variant in PDXI to be
associated with an increased risk of T2D (odds ratio
(OR), 2.47). Similarly, the individual with the PAX4 PTV
had adult onset diabetes (age at diagnosis 56 years). In
the KLFI1 gene, two PTVs (one in an early onset dia-
betic patient and the second in a control individual)
were detected (Additional file 1: Table S5). No such vari-
ants were detected in the INS, BLK, NEURODI, and
KCNJ11 genes.

The CEL gene was sequenced in a subset of the sam-
ples and four frame-shift mutations were observed (four
carriers in 2136 cases and one carrier in 1032 controls;
OR, 1.94; Additional file 1: Table S5). Only one of the
four mutation carriers was from the sub-group with

Table 1 List of protein truncating variants identified in monogenic diabetes genes in which heterozygous protein truncating
variants are known to be pathogenic for diabetes. None of the variants were present in the ExAC database

Counts
Gene DNA change AA change Cases Early onset Controls dbSNP 144 ACMG class®
GCK c871A>T p.K291* 1 1 0 rs193922335 5
GCK €.1340_1368del p.R447fs 1 1 0 — 4
GCK c863+1G>T p.? 1 0 0 — 4
HNF1A €994delG p.E332fs 1 1 0 — 4
HNFTA c955+1G>T p.? 1 1 0 — 4
HNF1A ¢.1730_1733dupACCT p.Q57%s 1 0 0 — 4
HNF18B €.1005dupC p.H336fs 1 1 0 — 4
PPARG c465delC p.H155fs 1 0 0 — 4

Reference sequences: GCK, NM_000162; HNF1A, NM_000545; HNF1B, NM_000458; PPARG, NM_005037
#ACMG classification: 5 = pathogenic, 4 = likely pathogenic, and 3 = uncertain significance
AA amino acid, ACMG American College of Medical Genetics, dbSNP Single Nucleotide Polymorphism Database
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early onset diabetes, indicating that, unlike classical
MODY genes, heterozygous protein truncating muta-
tions that affect the CEL gene are unlikely to be a strong
risk factor for early onset diabetes. This is not very sur-
prising since both of the two single base deletions that
have been reported to cause CEL-MODY impact a
VNTR sequence located at the C-terminal of the gene
[51] and result in a protein sequence that is unlikely to
be affected by non-sense mediated decay [52].

In non-MODY genes with an autosomal dominant
disease inheritance, we identified one protein truncat-
ing mutation in PPARG in an individual diagnosed
with diabetes at 41 years of age. The frameshift
mutation (deletion of a C) is located in exon 5
(transcript NM_138711) and is predicted to introduce
48 novel amino acids before ending in a premature
stop codon. Protein-truncating mutations in PPARG
are rare but have been described previously in indi-
viduals with T2D and partial lipodystrophy [53-55].
In addition, 19 rare PTVs were identified in five re-
cessive monogenic diabetes genes (all carriers were
heterozygous) but were not more frequent in individ-
uals with diabetes (0.35% of cases and 0.31% of
controls; Additional file 1: Table S5).

Gene-level association analysis for rare coding variants

To identify associations for rare coding variants with dia-
betes, we performed gene-level association tests using
coding variants (missense and in-frame indel variants with
minor allele frequency <0.2%) detected in each gene
(Additional file 2: Supplementary Methods). Association
analysis was performed on sequence data from Stages 1
and 2 independently. The GCK gene showed a nominal
association between rare coding variants and early onset
diabetes (P =0.0174 for early onset cases versus controls
in Stage 1 and P =0.0013 in Stage 2). Jointly across Stage
1 and 2 data, missense variants in GCK (including one in-
frame deletion) were detected in 0.5% of cases and 0.035%
of controls. Although seven individuals with a GCK muta-
tion had early onset diabetes (Table 2), only four of these
were diagnosed before 25 years of age. A large number of
heterozygous missense mutations that cause GCK-MODY
have been identified over the years and are distributed
across the gene (> 600 mutations were tabulated by Osbak
et al. [56]). Comparison to these known mutations re-
vealed that 14 of the 20 missense variants in our cohort
have previously been reported in at least one individual
with MODY (Table 2). GCK has two protein isoforms that
differ in the first 15 amino acids and two of the missense
mutations were located at positions 10 and 12 in this re-
gion. The one missense variant (p.K12R) detected in an
individual without diabetes was predicted to be a benign
variant in the pancreas-specific splice isoform (Table 2).
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Frequency of missense variants in MODY genes

We did not detect a significant association between
missense mutations in genes such as HNFIA and
HNF4A, which are frequently mutated in early onset
diabetes, likely due to the fact that not all missense
mutations in these genes are pathogenic. Previously
reported missense mutations in individuals with
MODY or early onset diabetes have a strong prior
likelihood of being pathogenic. To analyze the fre-
quencies of the carriers of such mutations in our co-
hort, we analyzed genes (HNFIA, HNF4A, HNFI1B,
INS, ABCC8, and KCNJI11) in which a significant
number of missense mutations have previously been
reported in MODY, neonatal diabetes mellitus, or
early onset diabetes [57]. We excluded the remaining
MODY genes (CEL, PDXI, PAX4, BLK, KLF1lI,
NEURODI) from this analysis since either very few
missense mutations in these genes have been associ-
ated with early onset diabetes or the genetic evidence
for association is limited. Previously reported muta-
tions that have been shown to be benign using func-
tional assays or have high frequency in controls were
also excluded (see Methods).

We identified 23 missense mutations in these six
genes that have previously been reported in MODY or
early onset diabetes and are likely pathogenic — 14 in
HNFIA, 3 in HNF4A, 5 in ABCCS8, and 1 in the INS
gene (Table 3). Overall, 26 of the 29 individuals with
these missense mutations had diabetes (OR, 6.24 for
cases versus controls; 95% confidence interval 1.9-
20.6; Fisher’s exact test P = 0.0004), demonstrating that
previously reported pathogenic missense mutations in
these genes are significantly over-represented in indi-
viduals diagnosed with diabetes compared to controls,
particularly in the sub-group of individuals with early
onset diabetes (OR, 1.99 for early onset versus late on-
set sub-group). Nevertheless, 50% of mutation carriers
with diabetes were diagnosed at 40 years or later, indi-
cating that not all mutations previously reported in in-
dividuals with a diagnosis of MODY or early-onset
diabetes are fully penetrant. One such mutation, the
p-R136W variant (also reported as p.R114W in literature,
Table 3), is the most frequently reported HNF4A mutation
and was detected in two pools consisting of individuals
with late onset diabetes (age at diagnosis >46 years).
Recent analysis of this specific mutation has shown that
this mutation causes MODY-like diabetes but has lower
penetrance in comparison to classical MODY muta-
tions [58]. Mutations that are pathogenic for early onset
diabetes are expected to be very rare in the population.
Indeed, analysis of the population allele frequencies
showed that all variants were very rare and the minor
allele frequency for 22 of the 23 variants was less than
0.0005 (Table 3).
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Table 2 List of missense (and in-frame indels) mutations detected in the GCK gene. All mutations (except p.A11T) were observed in

a single individual in our dataset

DNA change AA change  Poly-Phen2® SIFT® MutationTaster® CADDY Age at diagnosis, Previously observed ExAC AF® dbSNP144  ACMG class’
years in MODY
c484G>A  pG162S PrD tol  del 26.5 13 1 family — — 3
c952G > A p.G318R Pos.D del  del 272 14 4 families — — 4
c617C>T p.T206M PrD del  del 33 19 13 families — — 4
c238G> A p.G80S PrD del  del 32 24 2 families — 5193922317 4
c1349C>T  p.A450V Pr.D del  del 29.7 27 — — 3
cONMT>C p.L304P Pr.D tol del 246 28 3 families — — 4
559G >T p.D187Y Pr.D del  del 33 28 3 families — — 4
c214G> A p.G72R Pr.D del  del 34 29 18 families — rs193922289 5
c118G> A p.E40K Pr.D del  del 33 30 5 families — — 4
562G > A p.A188T PrD del  del 35 30 22 families 0.0001 15751279776 4
c640T > G p.Y214D PrD del  del 272 33 — — 3
c131G>A p.G44D PrD del  del 29 34 4 families — 15193922279 4
c572G> A p.R191Q PrD del  del 35 37 9 families — — 4
c.787_801del p.263_267del — - — — 39 — — 4
544G > A p.V182M Pr.D del  del 34 41 12 families — rs587780345 5
c.706G > A p.E236K Pos.D del  del 33 42 2 families — 15587780347 4
394G > A p.D132N benign tol del 23 56 1 family 0.000015 — 3
c757G>A  pV253I benign tol  del 184 61 0.00006  rs748964205 3
c31G>A p AT benign tol  poly 128 32,45 0.024 rs116093166 2
c35A>G p.K12R benign tol  poly 16.8 NA 0.000015 15777958777 3

Reference sequence for GCK: NM_000162

@PolyPhen2 predictions are probably damaging (Pr.D), possibly damaging (Pos.D) and benign

BSIFT predictions are deleterious (del) and tolerated (tol)

“MutationTaster predictions are disease causing (del) and polymorphism (poly)
4CADD scaled C-scores range from 0 to 30. Higher CADD scores correspond to more deleterious variants; a CADD score of 20 (30) corresponds

to the top 1% (0.1%) of deleterious substitutions in the human genome

°ExAC allele frequency is the maximum allele frequency of the variant allele among the different populations
fACMG classification: 5 = pathogenic, 4 = likely pathogenic and 3 = uncertain significance (see Methods)
AA amino acid, ACMG American College of Medical Genetics, AF allele frequency, dbSNP Single Nucleotide Polymorphism Database,

EXAC Exome Aggregation Consortium, NA not available

Combined with the 14 missense mutations in the GCK
gene, the overall frequency of previously reported patho-
genic missense mutations was 1.8% in early onset dia-
betes (24/1346), 0.6% in late onset cases (16/2670), and
0.1% in controls (Additional file 1: Table S7). Overall,
analysis of rare missense mutations in these genes indi-
cated that previously reported pathogenic missense muta-
tions were significantly over-represented in individuals
with diabetes compared to controls (OR, 9.3; P=5 x 1077).
Analysis of rare missense variants classified as likely
pathogenic or pathogenic (class 4 or 5) using the ACMG
guidelines [45] showed a similar trend, wherein 1.5% of in-
dividuals in the early onset diabetes sub-group, 0.4% of in-
dividuals in the late onset sub-group, and none of the
controls carried such mutations in the GCK, HNFIA,
HNF4A, ABCCS, and INS genes (Tables 2 and 3).

The detection of a significant number of individuals
with previously reported pathogenic missense variants
indicated that additional, previously unreported

pathogenic mutations could also be present in the
data. Therefore, we analyzed missense mutations that
are predicted to be deleterious by the two leading in
silico annotation tools (Polyphen2 and SIFT) and have
low population allele frequency (minor allele
frequency < 0.0005). All of these missense variants were
also classified as deleterious by MutationTaster and
CADD (C-scores > 20); 18 such missense mutations were
observed in the sequence data with 18 carriers in cases
and 6 in controls (OR, 2.15; Additional file 1: Table S6), in-
dicating that additional pathogenic mutations likely exist
in the sequenced data but are difficult to pinpoint without
functional or genetic data.

Variants in recessive monogenic diabetes genes

Next, using information about the carriers of rare vari-
ants identified from Stage 3 sequence data, we searched
for individuals who were homozygous for rare coding
mutations in six recessive monogenic diabetes genes.
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Table 3 List of missense mutations in the HNF1A, HNF4A, HNF1B, INS, and ABCC8 genes that have previously been reported
in individuals or families with MODY or early onset diabetes. The ABCC8 gene was sequenced in a subset of individuals

(2132 cases and 1024 controls)

Counts
Gene  CDNA AA Cases Early Controls PolyPhen2® SIFT® MutationTaster® CADD® Previously observed ExAC  dbSNP 144 ACMG
change change onset in MODY/diabetes®  AFf class?
HNFIA c391C>T  pRI3TW 1 1 0 PrD del  del 31 29 families — rs137853244 5
HNF1A c608G>A pR203H 2 1 0 Pos.D del  del 29 19 individuals — rs587780357 4
HNFIA c812G>A pR271Q 1 1 0 PrD del  del 34 13 individuals 0.00007 15779184183 4
HNFIA c779C>T  pT260M 1 1 0 PrD del  del 33 13 families — — 4
HNFTIA c1340C>T pP447L 1 1 0 PrD del  del 34 11 studies — 1s137853236 5
HNFT1A c1135C>G pP379A 1 1 0 PrD del  del 25 10 studies 0.0006 15754729248 4
HNFIA c815G>A pR272H 1 0 0 PrD del  del 34 20 families — rs137853238 5
HNFIA c1061C>T pT354M 2 1 0 benign tol poly 23 3 individuals 0.00006 5757068809 3
HNFTA c1513C>A pH505N 1 0 0 Pos.D tol del 26.1 3 individuals 0.00017  rs577078110 4
from one study
HNFIA c1400C>T pP467L 1 0 0 benign del  del 20.8 3 individuals 0.000015 — 3
HNFIA c481G>A  pA16lT 0 0 1 Pos.D del  del 31 1 individual 0.00024  rs201095611 3
HNF1A c503G>A  pR168H 0 0 2 Pos.D del  del 32 1 individual 0.00006  rs377110124 3
HNFIA c403G>A pDI35N 1 1 0 Pos.D del  del 32 1 individual — — 3
HNFIA c1699G >A pV5671 1 0 0 benign tol poly 18.8 1 individual 0.0001 — 3
HNF4A c400C>T  pR134W 1 1 0 Pos.D del  del 35 5 families — r1s370239205 4
HNF4A c406C>T  pRI136W 2 0 0 Pos.D del  del 34 36 families 0.0001 rs137853336 5
HNF4A c929G>A pR310Q 2 0 0 PrD tol del 24.7 1 family/ 0.00003  rs371124358 4
co-segregation
with diabetes [80]
ABCC8 c886G>A pG296R 1 1 0 benign del  del 27.1 Individual with 0.00006  rs148529020 3
diabetes at
7 months [82]
ABCC8 c1067A>G p.Y356C 1 0 0 PrD del  del 26.1 Early onset 0.00005  rs59852838 4
diabetes family [78]
ABCC8 ¢c2473C>T pR82SW 2 1 0 PrD del  del 35 Multiple individuals  0.00001  rs779736828 4
with NDM [83]
ABCC8 c4136G>A pRI379H 1 1 0 PrD del  del 34 One individual with  — — 3
transient NDM [81]
ABCC8 c4516G>A pE1506K 1 1 0 Pr.D del  del 35 Finnish family [77]  — 1s137852671 5
INS c16C>T p.R6C 1 0 0 — del  del 22.7 Three-generation 0.00006  rs121908278 5

MODY family [76]

Reference sequences: HNF1A, NM_000545; HNF4A, NM_000457; ABCC8, NM_000352; INS, NM_001185098
@PolyPhen predictions are probably damaging (Pr.D), possibly damaging (Pos.D) and benign

PSIFT predictions are deleterious (del) and tolerated (tol)

“MutationTaster predictions are disease causing (del) and polymorphism (poly)
dCADD scaled C-scores range from 0-30. Higher CADD scores correspond to more deleterious variants; a CADD score of 20 (30) corresponds to the top

1% (0.1%) of deleterious substitutions in the human genome

®Information about previously observed MODY mutations in the HNF1A and HNF4A genes was obtained from Colclough et al. [79]

fEXAC allele frequency is the maximum allele frequency of the variant allele among the different populations reported in the database

9IACMG classification: 5 = pathogenic, 4 = likely pathogenic, and 3 = uncertain significance

AA amino acid, ACMG American College of Medical Genetics, AF allele frequency, dbSNP Single Nucleotide Polymorphism Database, EXAC Exome

Aggregation Consortium, NA not available, NDM neonatal diabetes mellitus

We identified an individual who is likely homozygous
for a rare missense variant (NM_001145853; exon 8;
c.1672C > T; p.R558C) in the WFSI gene. Homozygous
or compound heterozygous mutations in WFSI cause
WS, which is characterized by a lack of insulin secretion
leading to diabetes mellitus, optic atrophy, and several
other phenotypes [11]. This individual was diagnosed

with diabetes at the age of 14 years but does not have
additional symptoms typically associated with WS such
as diabetes insipidus, deafness, optic atrophy, or renal
and neurological problems. This same variant has previ-
ously been reported in two individuals with WS, namely
in an individual with an atypical presentation of the dis-
ease who was identified to be a homozygous carrier for
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this variant [59] and in another individual who carried
this variant in combination with a coding deletion vari-
ant [60]. The second individual had a mild phenotype
with diabetes and optic atrophy without other pheno-
types of WS. The p.R558C variant is a rare variant with
an allele frequency of 0.0008 in individuals of European
ancestry from the ExAC database [43] and even lower in
other populations. In our dataset, the frequency of this
variant was 0.0007, similar to that observed in the ExXAC
database.

Discussion

In this study, we sequenced and analyzed mutations in
monogenic diabetes genes in a large cohort of individuals
with diabetes (1 =4016) and controls (z = 2872) from the
southern part of Germany. Among individuals with young
onset and adult onset diabetes, 40 individuals (1.8% of
subjects with early onset diabetes and 0.6% with late on-
set) were carriers of known pathogenic missense muta-
tions in the GCK, HNFI1A, HNF4A, HNFIB, ABCCS8, and
INS genes. Additionally, protein truncating mutations in
these genes were identified in seven individuals with dia-
betes. The diabetes phenotype of these individuals is likely
“dominated by perturbation in a small number of
processes” related to islet-cell function and hence their
diagnosis and treatment can benefit from this knowledge
[61]. Although pathogenic missense and PTVs in these
genes were strongly enriched in individuals with early
onset diabetes, none of these participants fulfilled classical
Tattersall criteria of monogenic diabetes mellitus. To
enable clinicians to discriminate between T2D and
MODY, guidelines for selecting individuals for genetic
testing based on clinical criteria have been established
[25]. Our population study was not designed to include
family members and to genotype or phenotype family
members, which may have potentially limited the ability
to identify individuals with MODY. Nevertheless, several
studies have shown that clinical criteria alone are not
sufficient to diagnose MODY and genetic testing is needed
for a definitive diagnosis [49].

The most commonly mutated genes in MODY are
HNFIA and GCK, followed by HNF4A and HNFIB
[49]. In our data, the maximum number of pathogenic
mutations was observed in the GCK gene (17 carriers
with 14 in the early onset sub-group) followed by
HNF1A. GCK-MODY is characterized by mild hyper-
glycemia typically without diabetes associated micro-
vascular and macrovascular complications [20].
Therefore, GCK-MODY is perhaps the most likely
form of MODY to be misdiagnosed as T2D [20].
Detection of a GCK mutation in an individual with
T2D is important from a clinical perspective since no
medications are necessary for such individuals except
for females during pregnancy.
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In addition, the frequency of missense pathogenic
mutations in commonly mutated MODY genes observed
in our cohort was much higher than the frequency of
protein truncating mutations, likely due to the fact that
individuals with early onset diabetes were screened for
MODY using phenotypic criteria and, as a result, the co-
hort is depleted of individuals with protein truncating
mutations in MODY genes likely to be fully penetrant.
Approximately 0.6% of individuals with late onset dia-
betes were observed to be carriers of likely pathogenic
missense mutations that have previously been associated
in MODY or early onset diabetes, suggesting that indi-
viduals with late onset T2D can also harbor deleterious
variants in monogenic diabetes genes with moderate
penetrance. A recent study by Flannick et al. [22]
sequenced seven MODY genes in two large population
cohorts and found 0.5-1.5% of individuals to be carriers
of rare missense mutations predicted to be deleterious
by bioinformatics tools or previously reported in
MODY. However, the majority of these individuals were
found not to have diabetes. In contrast, our study was a
case—control study and included a large number of indi-
viduals (1346) with early onset diabetes. Rare missense
mutations that have been previously associated with
MODY or early onset diabetes were strongly enriched in
the sub-group with early onset diabetes. Another recent
large-scale exome sequencing study found a modest but
statistically significant enrichment of rare deleterious vari-
ants in monogenic diabetes genes in individuals with T2D
compared to controls [62].

We detected multiple early onset diabetes subjects
with pathogenic missense mutations in the ABCC8 gene.
Such individuals can be treated effectively with sulfonyl-
ureas rather than insulin or other medications. The
ABCCS gene is considered for genetic testing in neonatal
diabetes but several studies have identified ABCC8 mis-
sense mutations in individuals with early and late onset
diabetes [63—65]. In addition, one individual with early
onset diabetes was homozygous for a rare and patho-
genic missense variant in the WFS1 gene, suggesting that
genetic testing can identify individuals with an atypical
presentation of WS.

Although sequencing can identify pathogenic mutations
in genes strongly linked with disease, such as MODY
genes, it is challenging to distinguish such mutations from
the vast number of neutral mutations observed in large-
scale sequencing studies [66]. In the GCK gene, our data
suggests that the vast majority of missense mutations in-
crease the risk for diabetes to a varying degree. However, in
MODY genes such as HNFIA and HNF4A, not all mis-
sense mutations increase the risk for diabetes and, there-
fore, it is challenging to ascribe pathogenicity to a novel
missense mutation based on predictions made by bioinfor-
matics tools. In our data, we did not observe a significant
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association between rare missense mutations in the genes
predicted to be deleterious by multiple bioinformatics tools
and risk of diabetes. Recently, Najmi et al. [67] used func-
tional assays to evaluate the missense mutations in the
HNFIA gene identified by Flannick et al. [22], and showed
that 11 of these mutations that reduced transcriptional ac-
tivity were strongly associated with an increased risk of dia-
betes (OR, 5.04). Functional assays have been used to
identify pathogenic variants in other genes linked with dia-
betes [68, 69]. Therefore, classification of novel missense
variants identified in our study using functional assays has
the potential to identify additional individuals with muta-
tions that increase the risk of MODY or T2D.

Our study leveraged the massive throughput of high-
throughput sequencing instruments and the ability to
sequence selected regions of the human genome in large
numbers of individuals. We utilized a pooled DNA
sequencing approach to reduce the cost of DNA library
preparation. Although pooled sequencing was highly
cost-effective and allowed us to sequence nearly 6900
individuals with high sensitivity and specificity for the
detection of rare variants, it is less informative than indi-
vidual sequencing about individual genotypes and does
not allow for the detection of copy number variants such
as large deletions. In addition, some of the genes tar-
geted for sequencing in our study had low sequence
coverage (e.g., the INS gene) and we estimated a false
negative rate of ~7% for the discovery of rare variants.
As a result, a small number of pathogenic mutations
were likely not detected. It is possible that additional
pathogenic variants (e.g., in non-coding regions) in
known monogenic diabetes genes as well as novel genes
for early onset diabetes remain to be identified, thereby
defining new variants with a large effect on the disease
phenotype. Another limitation of our study is the lack of
family data or access to DNA samples from first degree
relatives of individuals with diabetes for further genotype
and phenotype studies.

Our cohort represents a relatively homogeneous cohort
of European ancestry from the southern region of Germany
with well-defined criteria for classifying individuals as cases
and controls. All subjects had been screened for the pres-
ence of islet cell autoimmunity to exclude the presence of
classical autoimmune diabetes (T1D) and late onset/latent
autoimmune diabetes in adult [70]. Many large scale stud-
ies of the genetics of T2D do not measure islet cell anti-
bodies and, therefore, exclude subjects with an early age of
onset to avoid including T1D cases. In addition, in view of
the high prevalence of subjects with latent autoimmune
diabetes in adult onset diabetes subjects a major confound-
ing factor can be present in genetic studies of the so-called
T2D [71]. There is growing evidence from genetic studies
for the heterogeneity of the adult onset diabetes phenotype
and overlap with monogenic diabetes [67] and T1D [70].
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Multiple studies have shown that 5-15% of individuals with
so called T2D are positive for islet cell antibodies [72, 73].
Recent work has addressed the question of a fine-grained
categorization of adult onset diabetes using clinical data in
large cohorts [74].

Conclusion

In our sequencing study involving 6888 individuals,
2.2% of individuals with early onset diabetes and 0.7%
of individuals with late onset diabetes harbored a likely
pathogenic mutation in monogenic diabetes genes.
Our results confirm previous reports that MODY is
under-diagnosed [19, 75], particularly in individuals
presenting with early onset diabetes and clinically
labeled as T2D and, in such cases, genetic testing can
provide an etiological diagnosis. With the continuing
reduction in costs of DNA sequencing, genetic screen-
ing of all known monogenic diabetes genes in individ-
uals with early onset diabetes should be routinely
considered since it can identify individuals with
undiagnosed MODY as well as atypical forms of mono-
genic diabetes. Knowledge of mutations in monogenic
diabetes genes has the potential to influence diagnosis
and therapy for individuals with diabetes as well as to
enable the genetic testing of relatives.
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