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The experimental investigation of spontaneously created vortices is of utmost importance for the

understanding of quantum phase transitions towards a superfluid phase, especially for two-dimensional

systems that are expected to be governed by the Berezinski-Kosterlitz-Thouless physics. By means of

time-resolved near-field interferometry we track the path of such vortices, created at random locations in

an exciton-polariton condensate under pulsed nonresonant excitation, to their final pinning positions

imposed by the stationary disorder. We formulate a theoretical model that successfully reproduces the

experimental observations.
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The spontaneous formation and kinetics of quantum
vortices in two-dimensional bosonic quantum fluids is a
subject of fundamental interest. The vortices are crucially
involved in the appearance of superfluidity [1]. For an
interacting two-dimensional Bose gas, a superfluid phase
can be formed below a critical temperature as a result of the
phase transition that is associated with binding of pairs of
vortices with opposite topological charges: the Berezinski-
Kosterlitz-Thouless (BKT) transition [2]. It has been ar-
gued, though, that for realistic finite-size 2D ultracold
atomic gases or exciton-polariton systems, the BKT tran-
sition is not a valid picture and a finite-size Bose-Einstein
condensate (BEC) may be formed at finite temperatures
instead of a superfluid [3]. Out of equilibrium, a pathway
to the creation of spontaneous quantum vortices is the
Kibble-Zurek mechanism [4,5]. When an interacting Bose
gas is brought rapidly from the incoherent to coherent
phase, the order parameter forms locally, and a domain
structure appears. The merging of the order parameter
domains having different phases leads to formation of
topological defects, as those observed recently for atomic
condensates [6].

In atomic condensates, up to now the spontaneously
created vortices have been only monitored by destructive
methods: the condensate is allowed to expand, then the
vortices are recorded by the acquisition of single snapshots
[2,6]. Although this method is elegant and efficient, it does
not allow for the in depth investigation of the dynamics of
neither the formation nor the propagation of the vortices.

In this Letter we study the dynamics of spontaneously
created vortices in a two-dimensional nonresonantly gen-
erated quantum fluid of exciton polaritons in a semicon-
ductor microcavity [7]. So far, vorticity in polariton
quantum fluids has only been investigated for the cases
of pinned [8] or resonantly imprinted vortices [9,10].

The dynamical behavior of spontaneously created vortices
under nonresonant excitation remained unknown.
Although at first sight the nonequilibrium character of
polariton systems (due to the short radiative lifetime of
polaritons) might appear as a drawback, it allows access to
both phase and amplitude of the polariton quantum fluid in
a continuous nondestructive manner for as long as the
condensate is being replenished by the incoherent exci-
tonic reservoir.
The sample used here is the same as in our previous

studies [7,11]. It was excited by nonresonant subpicosec-
ond pulses (250 fs pulses at 695 nm). A high numerical
aperture microscope objective collecting the luminescence
emitted by the condensate (at�740 nm) ensures a diffrac-
tion limited real-space resolution. Access to the phase of
the polariton quantum fluid is obtained by means of inter-
ferometric measurements performed with a modified
Michelson interferometer in the mirror-retroreflector con-
figuration. Vortex 2� phase singularities leave a clear
signature on the interference fringes with the form of a
forklike dislocation.
Randomly moving vortices cannot be seen in a time

averaged experiment but are rather expected to wash out
the interference pattern reducing the observed contrast.
Surprisingly enough, clear forklike dislocations can be
identified in time-integrated interferograms yielding the
existence of, possibly, pinned quantum vortices. A typical
time-integrated interferogram at the output of the interfer-
ometer is shown in Fig. 1(a) where the pinning location of a
vortex is highlighted by the red circle, centered at the
forklike dislocation of the interference pattern. From the
interference fringes it is possible to extract the phase of
the polariton quantum fluid, which inevitably changes
by 2� as one goes around the vortex core, as shown in
Fig. 1(b). To gain access to the dynamics, the interferogram

PRL 106, 115301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 MARCH 2011

0031-9007=11=106(11)=115301(4) 115301-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.115301


was sent to the entrance slits of a streak camera where it
was ‘‘decomposed’’ into multiple slices with real-space
and temporal resolution throughout a tomographic decom-
position [12]. This allowed for a full reconstruction of the
two-dimensional interferogram from 0 to 155 ps with 3 ps
resolution given by the streak camera.

The forklike dislocation observed in the time-integrated
interferogram is initially not pinned. It exhibits a smooth
motion along a well-defined path towards the center of the
condensate. The most interesting migration dynamics is
found within the first 35 ps of the condensate life. The
vortex appears close to the side of the excitation spot
simultaneously with the formation of the condensate at
about 20 ps after the excitation pulse arrival. The subse-
quent smooth vortex motion is then abruptly interrupted at
55 ps when the vortex encounters a potential trap created
by the stationary disorder that acts as a pinning center.

Four snapshot interferograms taken during this time
interval are shown in Fig. 2. For visibility purposes the
constant component of the 2D interferograms is removed
and the color scale of the remaining interference pattern is
saturated, giving a very high contrast. At the sample loca-
tion we studied here, the condensate of exciton polaritons
was linearly polarized with a polarization pinned to one of
the crystal axis, suppressing the existence of half-quantum
vortices detected at different places on the same sam-
ple [13].

Figure 3(a) shows the real-space path of the vortex as
extracted from the interferometric snapshots (shown in
Fig. 2). During 35 ps the vortex migrates by about 3 �m.
The velocity of the vortex migration is an inhomogeneous
function of time. The vortex velocity profile is shown in
Fig. 3(b) with a general trend showing an early period with
almost constant velocity followed by a significant decel-
eration to zero indicating the pinning of the vortex.

The clear observation of the vortex movement is highly
surprising having in mind that the interferometric images
are the result of an ensemble averaging over millions of
independent experiments corresponding to a train of exci-
tation pulses. In the case of stochastic motion of vortices,
the averaging would wash out each particular trajectory.
Our observation indicates the existence of some preferen-
tial paths that vortices follow in thousands of experiments.
In order to better understand the appearance of prefer-

ential vortex paths we have performed numerical modeling
using the stochastic generalized Gross-Pitaevskii equation.
In our experiment, the nonresonant excitation creates a hot
electron-hole plasma that further relaxes to form high-
energy excitons [14], which we separate in two subsets:
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FIG. 1 (color online). (a) Time-integrated interferogram after
the reconstruction of the temporally resolved real-space lumi-
nescence. The autocorrelation was set to (0, 0). The forklike
dislocation created by the phase singularity of the vortex is
indicated by a red circle and appears in two symmetric sites of
the image, (0.3, 4.4) and (� 0:3, �4:4), because of the action of
the retroreflector. (b) Phase of the polariton fluid with the 2�
vortex signature highlighted with the red circle.
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FIG. 2 (color online). Dynamics of the migration of the vortex.
Each image corresponds to a subsequent time frame (25, 35, 45
and 55 psec). The red circle shows the final vortex location and is
present in each time frame whereas the colored squares show the
current vortex location. The cw part of the interferograms has
been here removed and the contrast is saturated for readability
purposes.
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FIG. 3 (color online). (a) Real-space coordinates of the vortex
at different times as denoted by the color (shading) of the
markers. (b) Velocity of the vortex plotted as a function of
time. The large error bars are due to the poor resolution induced
by the tomographic technique.
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(i) the ‘‘inactive’’ excitons that do not fulfill the required
energy and momentum conservation conditions to scatter
directly into the condensate state, described by the density
nIðr; tÞ and (ii) the ‘‘active’’ excitons that do fulfill those
conditions and act as the condensate source, described by
the density nAðr; tÞ.

The initial inactive exciton concentration nIðr; tÞ is cre-
ated by the external pump Pðr; tÞ. These excitons disappear
by nonradiative recombination, which is described by the
decay rate �I, or they can turn into the active excitons at a
rate 1=�R. Those excitons may further relax into the con-
densate. The dynamics of optically injected excitons is
given by a rate equation:

@nIðr; tÞ
@t

¼ ��InIðr; tÞ � 1

�R
nIðr; tÞ þ Pðr; tÞ: (1)

The active exciton population may decay radiatively (with
a rate �A) or be scattered to the condensate of exciton
polaritons. This scattering is stimulated by the population
of the condensate. The rate equation for the reservoir of
active excitons reads

@nAðr; tÞ
@t

¼ �ð�A þ RRjc ðr; tÞj2ÞnAðr; tÞ þ 1

�R
nIðr; tÞ;

(2)

where RR is the rate at which excitons scatter into the
condensate. c ðr; tÞ is the mean scalar polariton field.

The equation for the polariton field that we use here is
the well-known Gross-Pitaevskii equation [15], which has
previously been used to describe the nonlinear spatial
dynamics in various microcavity experiments [11,12]:

i
@c ðr; tÞ

@t
¼

�
� @r2

2m
þ gjc ðr; tÞj2 þ VðrÞ þ gRnAðr; tÞ

þ gRnIðr; tÞ � i

2
½�c � RRnAðr; tÞ�

�
c ðr; tÞ:

(3)

The interactions between condensed polaritons in the
mean-field approximation are characterized by the con-
stant g whereas interactions between incoherent excitons
and polaritons are accounted for by gR. The stationary
disorder VðrÞ has been chosen as a randomly generated
Gauss correlated disorder [16]. Polaritons decay from the
condensate at a rate �c. Note that it is important to dis-
tinguish between active and inactive excitons as we did,
since once stimulated scattering into the condensate takes
place, the reservoir of active excitons is depleted.
Experimentally we observe a condensate lifetime longer
than the polariton lifetime and so we deduce that depleted
active excitons must be replenished by inactive excitons in
order to maintain the condensate. The stochastic element
in our model is given by the initial condition
c ðr; 0Þ ¼ ½�ðrÞ=2�dr where � is a stochastic noise, drawn
from a Gauss distribution and characterized by the corre-
lators h��ðrÞ; �ðr0Þi ¼ 2�ðr� r0Þ, h�ðrÞ; �ðr0Þi ¼ 0 with dr

being the grid spacing. This initial condition implies an
average mode occupancy of 1

2 and random phase, which

samples the Wigner distribution of a vacuum state and
physically represents the quantum noise of the polariton
vacuum.
The relaxation of excitons from the reservoir to the

condensate that is triggered by the initial noise, amplifies
the density creating small isolated regions with well-
defined phase. Merging of these regions with random rela-
tive phase at the transition to form a state with macroscopic
phase coherence leaves initially many topological defects
in the phase. This spontaneous vortex generation process is
a manifestation of the Kibble-Zurek mechanism [4,5].
Equations (1)–(3) can be solved numerically and each

realization of the initial noise term corresponds to the
arrival of a different pulse in the experiment. Averaging
over multiple realizations of the noise is equivalent to the
experimental procedure where the images registered by the
streak camera result from averaging over multiple pulses
[17]. Different initial conditions result in an altered distri-
bution of vortices. The kinetics of vortices is defined by the
interplay between the local disorder potential and the
nonequilibrium character that induces flows of polaritons.
Vortices are dragged by the existent flows resulting in a
vortex migration.
A comparison of the evolution of the condensate for

different initial conditions yields two distinct kinds of
vortices: those that tend to have random paths during the
condensate evolution and those that follow specific space-
time trajectories. This interesting latter kind of vortices is
seen to appear not necessarily in every, but in most of the
noise realizations. The vortices which have similar trajec-
tories during the evolution of the condensation tend to
survive the averaging and manifest themselves by a clear
phase singularity in the time-resolved ensemble averaged
interferograms.
The simulations give us direct access to the phase and

amplitude of the polariton fluid which we interfere with a
reference field resulting in interferograms directly compa-
rable to those experimentally observed. The orange (gray)
points in Figs. 4(a)–4(d), represent the locations of the
spontaneously generated vortices for four subsequent in-
stants (40, 50, 60, and 90 ps after the condensate forma-
tion) of the condensate evolution averaged over the
different experimental realizations. The disorder potential
profile is depicted by the contour plots. A comparison of
these images reveals two important features: (i) the density
of vortices changes as time increases, which can be under-
stood by the possible processes of vortex-antivortex bind-
ing (unbinding) or the escape of vortices from the finite-
size condensate, indicative of the establishment of a long
range spatial order. (ii) The preferential vortex locations
are in the vicinity of extrema of the disorder because the
flow of polaritons in and out of the extrema favors the
pinning of a vortex at those locations. Note that the high
vortex density regions close to the edges of the condensate
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are indicative of the poor spatial phase coherence in the
low polariton density regions. Figures 4(e)–4(h) show the
ensemble averaged interferograms for the same four in-
stants of the condensate evolution as in Figs. 4(a)–4(d).

The interferograms show forklike dislocations which
follow specific trajectories, characterizing a correlated mi-
gration of vortices in different experimental realizations.
One of the migrating forklike dislocations is indicated by
colored squares. The red circle shows its final location as
shown in Fig. 4(h). We note that not every pulse contributes
a vortex moving along such a trajectory. This is the main
reason for the reduced final contrast of the interference
fringes.

In conclusion, a thorough experimental and theoretical
investigation of the dynamics of spontaneously created
quantum vortices is presented. Quantum vortices are
shown to arise from the Kibble-Zurek mechanism. By
means of advanced high temporal resolution interferomet-
ric techniques, the spontaneous vortices are found to follow
well-defined space-time trajectories and finally get pinned
by the stationary disorder. Our analysis allows us to con-
clude that although between different pulses certain differ-
ences in the vortex trajectories occur, the ensemble
averaged interferograms do present the forklike disloca-
tions provided the vortices in different experimental real-
izations are close enough in space and time. The stable
paths are defined by the flows of polaritons in the disorder
potential which ‘‘drags’’ along the randomly generated
vortices.
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Y. Leger for fruitful discussions. The work was supported
by the Swiss National Research Foundation through
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FIG. 4 (color online). (a)–(d) Simulation of real-space vortic-
ity map for subsequent time frames (40, 50, 60, and 90 ps)
where the orange (gray) pixels correspond to the appearance of
vortices under different initial condition realizations. The col-
ored (shaded) contours depict the local disorder potential.
(e)–(h) Realization averaged interference patterns for the same
time frames as in (a)–(d). Many forklike dislocations migrate in
time to different real-space locations. The red circle shows the
final location of a pinned vortex. The colored (shaded) squares
show the current position of the specific vortex for the different
time frames.
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