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Traditional spintronics relies on spin transport by charge carriers, such as electrons in semiconductor crystals.
The challenges for the realization of long-range electron spin transport include rapid spin relaxation due to
electron scattering. Scattering and, in turn, spin relaxation can be effectively suppressed in excitonic devices
where the spin currents are carried by electrically neutral bosonic quasiparticles: excitons or exciton-polaritons.
They can form coherent quantum liquids that carry spins over macroscopic distances. The price to pay is a finite
lifetime of the bosonic spin carriers. We present the theory of exciton ballistic spin transport which may be applied
to a range of systems supporting bosonic spin transport, in particular to indirect excitons in coupled quantum
wells. We describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account
for the Zeeman effect induced by external magnetic fields and long-range and short-range exchange splittings of
the exciton resonances. We also consider exciton transport in the nonlinear regime and discuss the definitions of
the exciton spin current, polarization current, and spin conductivity.
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I. INTRODUCTION

Excitons are electrically neutral and have finite lifetimes.
These are two obstacles which make the development of exci-
tonic spintronics, or spin optronics, challenging. It is fair to ask
how possibly one can explore the current, which is carried by
neutral particles, and whose amplitude changes with distance
and time. While electrons and holes have been considered as
perfectly valid spin carriers, and exotic effects like the spin
Hall effect1 have been intensively studied for them,2–6 the spin
currents carried by excitons7–9 and exciton-polaritons10,11 over
tens or even hundreds of micrometers remained relatively less
explored. There existed a huge imbalance of theoretical works
on fermionic and bosonic spin transport. This is changing now.
A number of phenomena have been observed and studied in
the field of bosonic spin currents recently.7−26 To summarize
tens of publications in one sentence: Bosonic systems bring
new quantum coherent effects to the physics of spin transport.
For instance, stimulation23–25 and amplification26 of spin
currents are possible in exciton and exciton-polariton Bose
gases. Bosonic spintronics or spin optronics operates with
electrically neutral spin carriers, which makes control of spin
currents carried by excitons a nontrivial task. Fortunately,
the exciton density replaces charge in many aspects: The
density currents may be efficiently controlled by stationary
or dynamic potential gradients, as demonstrated in recent
works.27,28 Combined with evident advantages of bosonic
amplification and low dephasing, this makes spin optronics a
valuable alternative to fermionic spintronics. Besides bosonic
effects, exciton spin transport has another important specific
feature: It is dissipative by its nature, as the spin carriers have
a finite (and short for excitons in regular materials) lifetime. In
continuous-wave optical experiments stationary spin textures
can appear: Excitons are injected in the structure; they
propagate ballistically or diffusively and eventually disappear
by radiative recombination. Their polarization properties and
spin are inherited by the emitted photons, which is why the
polarization patterns observed in near-field photoluminescence

experiments directly characterize exciton spin currents in the
plane of the structure.

The goal of this work is to define what the exciton spin,
magnetization, and polarization currents are and explain how
they can be described within the most frequently used spin
density matrix (DM) approach and mean-field29,30 approx-
imation. We consider a specific system, namely a planar
zinc-blend semiconductor structure containing quantum wells,
where excitons can be formed. This choice is motivated by
recent experimental results in GaAs/AlGaAs-based coupled
quantum wells. We limit the scope of this paper to heavy-hole
excitons; however, our approach can be easily extended to
light-hole excitons or excitons in quantum wells of a different
symmetry. We do not speak here about the large variety of
recent experimental results and application of the formalism
presented here to the description of one particular experiment,
as this would make this paper too long and too specific.
For a direct comparison of theoretical simulations with the
experimental data we address the reader to Ref. 8. The
approaches formulated here are suitable for the description
of a variety of excitonic spin effects in quantum wells.

The paper is organized as follows. In Sec. II we introduce
the spin DM formalism accounting for the different mecha-
nisms of spin reorientation and the relation to electron and
hole spin currents. In Sec. III we present numerical results
obtained within the spin DM formalism and analyze them. In
Sec. IV we study the nonlinear spin dynamics of propagating
excitons using the Gross-Pitaevskii (GP) equations. The next
three sections of the paper are devoted to exciton spin currents
and polarization currents. Conclusions and perspectives are
given in Sec. VIII.

II. THE SPIN MATRIX FORMALISM FOR
PROPAGATING EXCITONS

In zinc-blend semiconductor quantum wells (e.g., in the
most popular GaAs/AlGaAs system), the lowest energy
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exciton states are formed by electrons with spin projections on
the structure axis of +1/2 and −1/2 and heavy holes whose
quasispin (sum of spin and orbital momentum) projection to
the structure axis is +3/2 or −3/2. Consequently, the exciton
spin defined as the sum of the electron spin and heavy-hole
quasispin may have one of four projections on the structure
axis: +1,−1,+2,−2 (Ref. 31). These states are usually nearly
degenerate, while there may be some splitting between them
due to the short- and long-range exchange interactions. Only
the states with quasispin projections ±1 are coupled to the
light; these are so-called bright states. The states with quasispin
projections ±2 are called dark states.

It is important to note that the present formalism addresses
the spin part of the exciton wave function, which is a product of
electron and hole spin functions. For example, the probability
to find the exciton in the spin state +1 is given by a product
of probabilities to find an electron in the spin state −1/2 and
the heavy hole in the spin state +3/2. The four-component
exciton wave function is

� = (�+1,�−1,�+2,�−2)

= (
�e,− 1

2
�h,+ 3

2
,�e,+ 1

2
�h,− 3

2
,�e,+ 1

2
�h,+ 3

2
,�e,− 1

2
�h,− 3

2

)
,

(1)

where �e,+ 1
2

and �e,− 1
2

are the components of the electron
spinor wave function; �h,+ 3

2
and �h,− 3

2
are the components of

the heavy-hole spinor wave function.
To describe the dynamics of the system we first define

the Hamiltonian (Sec. II A) describing the different physical
mechanisms of spin evolution. We then introduce the spin
DM (Sec. II B) for the description of exciton spin states. We
relate its components to the observable Stokes’ vectors of light
emitted by bright excitons and use the Liouville equation to
describe its evolution in time. From the DM one can describe
the polarization state of excitons and thus exciton spin currents.
It is also instructive to consider the relationship with electron
and hole spin currents (Sec. II C).

A. Hamiltonian

Here we derive the exciton Hamiltonian on the basis of
+1,−1,+2,−2 states, accounting for the spin-orbit interaction
(Dresselhaus and Rashba effects),32,33 long- and short-range
exchange interactions,34 and Zeeman effect, but neglecting
exciton-exciton interactions, which are discussed in the
Sec. IV, and neglecting magnetic field effect on center-of-mass
motion and internal structure of exciton.35–37 We consider
excitons propagating ballistically in the plane of a quantum
well. We characterize them by a fixed wave vector, kex. We
represent the full exciton Hamiltonian Ĥtot

ex as a sum of three
parts describing the spin-orbit and Zeeman effects on electrons,
Ĥe

ex, and holes, Ĥh
ex, and the exchange-induced splittings of

exciton states, Ĥex
ex:

Ĥtot
ex = Ĥe

ex + Ĥh
ex + Ĥex

ex. (2)

1. Dresselhaus and Zeeman terms

We recall that the Rashba-Dresselhaus effect is a
momentum-dependent splitting of spin bands in two-
dimensional semiconductor systems. It originates from a

combined effect of the atomic spin-orbit coupling and asym-
metry of the potential in the direction perpendicular to the
two-dimensional plane. This asymmetry comes either from
the applied bias (which is described by the Rashba term in the
Hamiltonian) or from the intrinsic asymmetry of the crystal
lattice (described by the Dresselhaus term in the Hamiltonian).
We separately consider both the Dresselhaus term (in this
section) and the Rashba term (in the next section).

In order to build the 4 × 4 matrix Hamiltonian for excitons,
we start with simpler 2 × 2 Hamiltonians describing the spin-
orbit and Zeeman effects for electrons and holes.

The electron Hamiltonian in the basis of (+1/2,−1/2) spin
states is

Ĥe = βe(ke,x σ̂x − ke,y σ̂y) − 1
2geμBBσ̂ . (3)

Here ge is the electron g factor, μB is the Bohr magneton,
B is a magnetic field, σ̂ is the Pauli matrix vector, and βe is
the Dresselhaus constant describing spin-orbit interactions of
electrons. The Pauli matrix operators are

σ̂z =
[

1 0

0 −1

]
, σ̂y =

[
0 −i

i 0

]
, σ̂x =

[
0 1

1 0

]
.

(4)

Rewriting Eq. (3) and retaining only z component of the
magnetic field, which corresponds to the Faraday geometry,
one can obtain

Ĥe =
[

− 1
2geμBB βe(ke,x + ike,y)

βe(ke,x − ike,y) 1
2geμBB

]

=
[

− 1
2geμBB βekee

iφ

βekee
−iφ 1

2geμBB

]
, (5)

where φ is the angle between kex and the chosen x axis.
The exciton Hamiltonian needs to be written in the basis
of (+1,−1,+2,−2) exciton spin states, which correspond to
(−1/2, +1/2, +1/2, −1/2) electron spin states. The electron
spin flip couples +1 and +2 states as well as −1 and −2
states. For each of these two couples of states we apply the
Hamiltonian [Eq. (5)], which results in the following electronic
contribution to the 4 × 4 exciton Hamiltonian:

Ĥe
ex =

⎡
⎢⎢⎢⎣

1
2geμBB 0 βekee

−iφ 0

0 − 1
2geμBB 0 βekee

iφ

βekee
iφ 0 − 1

2geμBB 0

0 βekee
−iφ 0 1

2geμBB

⎤
⎥⎥⎥⎦ .

(6)

2. Rashba terms

We note that another possible spin-orbit contribution to
the Hamiltonian may come from the Rashba effect, which
takes place in biased quantum wells. The Rashba term to
be added in Eq. (3) is αe(σ̂xke,y − σ̂yke,x), where αe is a
constant proportional to the Rashba field. The contribution
of the Rashba term to the electron Hamiltonian, on the basis
of (+1/2,−1/2) electron spin states, can be rewritten:

Ĥ′
e =

[
0 iαekee

−iφ

−iαekee
iφ 0

]
. (7)
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Using the same procedure as for Dresselhaus terms, this gives
an additional contribution to the exciton Hamiltonian, on the
basis of (−1/2, +1/2, +1/2, −1/2) electron spin states:

Ĥe′
ex =

⎡
⎢⎢⎢⎣

0 0 −iαekee
iφ 0

0 0 0 iαekee
−iφ

iαekee
−iφ 0 0 0

0 −iαekee
iφ 0 0

⎤
⎥⎥⎥⎦ .

(8)

Unless stated explicitly, we for simplicity omit the Rashba
terms in the rest of this paper and consider only the Dresselhaus
terms. Note that there are no linear in wave-vector Rashba
terms for heavy holes in zinc-blend quantum wells grown
along the (001) axis.

3. Heavy-hole contribution (Faraday geometry)

The heavy-hole contribution to the Hamiltonian can be
calculated with the reasoning similar to the electron case. The
heavy-hole Hamiltonian written on the basis of (+3/2,−3/2)
states is

Ĥh = βh(kh,xσ̂x + kh,y σ̂y) − 1
2ghμBBσ̂z. (9)

Here gh is the heavy-hole g factor and βh is the Dresselhaus
constant for heavy holes.32,33 Note that the Dresselhaus
Hamiltonian is different for heavy holes formed by p-orbital
states and for conduction band electrons formed by s-orbital
electronic states in a zinc-blend crystal lattice. The effective
magnetic fields resulting from Dresselhaus coupling acting
upon electron and heavy-hole spins are oriented differently as
well. Rewriting Eq. (9), we obtain

Ĥh =
[

− 1
2ghμBB βh(kh,x − ikh,y)

βh(kh,x + ikh,y) 1
2ghμBB

]

=
[

− 1
2ghμBB βhkhe

−iφ

βhkhe
iφ 1

2ghμBB

]
. (10)

The hole spin flip couples +1 and −2 states as well as −1
and +2 states. For each of these two couples of states we
apply the Hamiltonian (10), which results in the following
hole contribution to the 4 × 4 exciton Hamiltonian:

Ĥh
ex =

⎡
⎢⎢⎢⎣

− 1
2ghμBB 0 0 βhkhe

−iφ

0 1
2ghμBB βhkhe

iφ 0

0 βhkhe
−iφ − 1

2ghμBB 0

βhkhe
iφ 0 0 1

2ghμBB

⎤
⎥⎥⎥⎦ .

(11)

4. In-plane magnetic field (Voight geometry)

If the magnetic field is applied in the plane, it splits electron
and hole states polarized in the plane of the quantum wells.
Suppose that the field is applied in the x direction. In the
electron and hole basis the Zeeman Hamiltonian is in this case:

Ĥe,h = −1

2
ge,hμBBσ̂x =

[
0 − 1

2ge,hμBB

− 1
2ge,hμBB 0

]
.

(12)

Note that the hole g factor in plane of the quantum well
is different from the g factor in Faraday configuration, in
general. This maps into the (+1, − 1, + 2, − 2) exciton basis
as a Zeeman Hamiltonian of the form

ĤZ = −μBB

2

⎡
⎢⎢⎢⎣

0 0 ge gh

0 0 gh ge

ge gh 0 0

gh ge 0 0

⎤
⎥⎥⎥⎦ . (13)

5. Exchange terms

Besides the contributions from electron and hole spin-orbit
interactions and Zeeman splitting, there may be a purely
excitonic contribution to the Hamiltonian, which is composed
from the Hamiltonian for bright excitons written in the basis
(+1,−1),

Ĥb = EbÎ − δbσ̂x =
[

Eb −δb

−δb Eb

]
, (14)

and the Hamiltonian for dark excitons written in the basis
(+2,−2),

Ĥd = EdÎ − δd σ̂x =
[

Ed −δd

−δd Ed

]
, (15)

where Î is the identity matrix. The terms with δb and δd

describe the splittings of bright and dark states polarized along
x and y axes in the plane of the structure due to the long-range
exchange interaction. The structural anisotropy is virtually
inevitable even in the best-quality epitaxially grown quantum
wells. It arises from the reduced symmetry of heterointerfaces,
from local strains, and from islands of quantum well with
fluctuations elongated in certain crystallographic directions.
Eb − Ed is the splitting between bright (+1 and −1) and dark
(+2 and −2) exciton states due to the short-range exchange
interaction. In microcavities, this splitting is additionally
enhanced due to the vacuum field Rabi splitting of exciton-
polariton modes formed by bright excitons and a confined
optical mode of the cavity.38

The origin of Eqs. (14) and (15) can be easily seen from
the exciton Hamiltonian written in the basis of linear x and y

polarizations. For example, for the bright excitons,

ĤXY =
[

Eb − δb 0

0 Eb + δb

]
, (16)

Ĥb = Ĉ−1ĤXY Ĉ, (17)

where

Ĉ = 1√
2

[
1 1
i −i

]
, Ĉ−1 = 1√

2

[
1 −i

1 i

]
(18)

are the transformation matrices from the linear-to-circular
polarization basis and vice versa.39 The same reasoning can
be applied to the dark excitons as well.
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The sum of Hamiltonians Ĥb and Ĥd , written in the 4 × 4 exciton spin basis is

Ĥex
ex =

⎡
⎢⎢⎢⎣

Eb −δb 0 0

−δb Eb 0 0

0 0 Ed −δd

0 0 −δd Ed

⎤
⎥⎥⎥⎦ . (19)

Now, the full exciton Hamiltonian for magnetic field in the z direction can be written as
Ĥtot

ex = Ĥe
ex + Ĥh

ex+̂Hex
ex

=

⎡
⎢⎢⎢⎣

Eb + 1
2 (ge − gh) μBB −δb βekee

−iφ βhkhe
−iφ

−δb Eb − 1
2 (ge − gh) μBB βhkhe

iφ βekee
iφ

βekee
iφ βhkhe

−iφ Ed − 1
2 (ge + gh) μBB −δd

βhkhe
iφ βekee

−iφ −δd Ed + 1
2 (ge + gh) μBB

⎤
⎥⎥⎥⎦ . (20)

For the translational motion of an exciton as a whole particle
the exciton momentum is given by Pex = (me + mh) vex, where
me and mh are in-plane effective masses of an electron and
of a heavy hole, respectively; vex is the exciton velocity.
Having in mind that the exciton translational momentum is
a sum of electron and hole translational momenta given by
Pe,h = me,hve,h, where ve and vh are the electron and hole
velocity, respectively, one can easily see that vh = ve = vex.
Having in mind that Pex = h̄kex and Pe,h = h̄ke,h, we have
kex = kh + ke, with ke = me

me+mh
kex and kh = mh

me+mh
kex. Thus,

Ĥtot
ex depends on the exciton center-of-mass wave vector kex

and on the angle φ between this angle and one of the structure
axes [e.g., (100) axis].

It should be noted that in this consideration the wave vectors
kex,kh,ke are related to the translational motion of the exciton
as a whole particle, with hole and electron as its constituents.
The wave vector of relative motion of the electron and hole
“inside” the exciton is zero on average but may be important
for each given moment of time. Recently, the effect of relative
electron-hole motion on the spin-orbit effects of excitons has
been analyzed by Vishnevsky et al.40 Their analysis confirms
the presence of linear in kex spin-orbit terms in the exciton
Hamiltonian introduced above.

B. Spin density matrix

Having constructed the Hamiltonian for excitons propagat-
ing with a wave vector kex, we now consider the description
of their spin state. We use the spin DM, ρ̂ = |�〉〈�|,
where � = (�+1,�−1,�+2,�−2) are the components of the
exciton wave function projected onto the four spin states,
(|�+1〉,|�−1〉,|�+2〉,|�−2〉).

1. Relation to Stokes’ vectors and polarization degrees of light

The exciton spin DM is given by

ρ̂ = |�〉 〈�|

=

⎡
⎢⎢⎢⎣

�∗
+1�+1 �∗

−1�+1 �∗
+2�+1 �∗

−2�+1

�∗
+1�−1 �∗

−1�−1 �∗
+2�−1 �∗

−2�−1

�∗
+1�+2 �∗

−1�+2 �∗
+2�+2 �∗

−2�+2

�∗
+1�−2 �∗

−1�−2 �∗
+2�−2 �∗

−2�−2

⎤
⎥⎥⎥⎦ . (21)

The elements of the upper left quarter of this DM are linked
to the intensity of light emitted by bright exciton states, I =
�∗

+1�+1 + �∗
−1�−1, and to the components of the Stokes’

vector, Sx , Sy , and Sz of the emitted light:

ρ11 = I

2
+ Sz, (22)

ρ12 = Sx − iSy, (23)

ρ21 = Sx + iSy, (24)

ρ22 = I

2
− Sz. (25)

These expressions can be summarized more succinctly using
the Pauli matrices as[

ρ11 ρ12

ρ21 ρ22

]
= I

2
Î + S · σ̂ , (26)

where S = (
Sx,Sy,Sz

)
is the Stokes’ vector and we recall that

Î is the identity matrix. Note that the trace of the spin DM is
a number of particles in the system, which is not conserved
because of the finite lifetime, in contrast with the full quantum
optical DM which has the trace equal to unity.

Often when studying the polarization structure of fields with
nonuniform intensity, it is useful to compare the polarization
degrees of emitted light, which can be given by normalizing the
Stokes’ vectors to the light intensity. The circular polarization
degree is

ρc = 2Sz

I
= ρ11 − ρ22

ρ11 + ρ22
. (27)

The horizontal-vertical linear polarization degree is

ρl = 2Sx

I
= ρ12 + ρ21

ρ11 + ρ22
. (28)

The linear polarization degree measured in the diagonal axes
(also referred to as a diagonal polarization degree) is given by

ρd = 2Sy

I
= i

ρ12 − ρ21

ρ11 + ρ22
. (29)
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2. Liouville equation

The dynamics of the DM is given by the quantum Liouville
equation,

ih̄
dρ̂

dt
= [

Ĥtot
ex ,ρ̂

]
, (30)

where the Hamiltonian is composed from the electron, hole,
and exciton contributions given by Eqs. (6), (11), and (19)
(considering the Faraday magnetic field configuration).

So far, we have neglected all relaxation or scattering
processes in the system. The commonly used way to account
for these processes is through the introduction of a phenomeno-
logical Lindblad superoperator to the Liouville equation,

ih̄
dρ̂

dt
= [

Ĥtot
ex ,ρ̂

] − L̂ (ρ̂) , (31)

where the Lindblad superoperator is introduced as

L̂ (ρ̂) = ih̄

⎡
⎢⎢⎢⎣

ρ11/τb ρ12/τb ρ13/τc ρ14/τc

ρ21/τb ρ22/τb ρ23/τc ρ24/τc

ρ31/τc ρ32/τc ρ33/τd ρ34/τd

ρ41/τc ρ42/τc ρ43/τd ρ44/τd

⎤
⎥⎥⎥⎦ , (32)

where τb is the bright exciton decoherence time, τd is the
dark exciton decoherence time, and τc is the characteristic
decoherence time of processes between dark and bright
excitons. Note that dissipation may be crucial in the description
of exciton spin currents in realistic systems. In particular,
within this formalism, in the presence of dissipation, the
current conservation and flux conservation conditions become
valid if completed by exciton generation and decay in the
continuity equation. In the rest of this paper we neglect
dissipation to simplify the model system and clarify the
physical mechanisms which govern the characteristics of
exciton spin currents. Namely, we assume L̂ (ρ̂) = 0. We
stress that, in the experiment, the magnitude of predicted spin
currents may be reduced by dissipation.

The formalism described so far, in Sec. II A and this
section (Sec. II B), has been successfully applied in the
description of spin transport in gases of cold excitons in
coupled GaAs/AlGaAs quantum wells.8 In Ref. 8, cold
excitons are generated within localized spots and then fly
away ballistically in radial directions. The elements of the
DM, ρij , are dependent on the distance from the excitation
spot r = vext at time t and the polar angle, φ. The propagation
speed vex = h̄kex/ (me + mh). In this work, when solving
the Liouville equation introduced above, we refer to the
experimental configuration of Ref. 8. In particular, this implies
a specific choice of the initial conditions for Eq. (30): We
assume that at zero time excitons are not moving. We assume
that they populate the eigenstates of the exciton Hamiltonian
Ĥtot

ex taken with kex = 0 following a thermal distribution
with a temperature T . We assume that once created in the
equilibrium state, the excitons start moving apart in the radial
direction. Thus, implicitly, we account for a nonlinear effect:
dipole-dipole repulsion of excitons which makes them acquire
a certain in-plane velocity vex. This nonlinearity is crucial
to move the system out of equilibrium. The rest of exciton
propagation and spin dynamics are modeled using the linear
equation (30), where the Hamiltonian Ĥtot

ex contains now the
off-diagonal terms proportional to kex.

C. Electron and hole spin currents

We shall normalize exciton, electron, and heavy-hole
functions to unity, namely,

�∗
+1�+1 + �∗

−1�−1 + �∗
+2�+2 + �∗

−2�−2 = 1, (33)

�∗
e,+ 1

2
�e,+ 1

2
+ �∗

e,− 1
2
�e,− 1

2
= 1, (34)

�∗
h,+ 3

2
�h,+ 3

2
+ �∗

h,− 3
2
�h,− 3

2
= 1. (35)

Now, the exciton spin DM (21) can be represented in terms
of electron and hole wave functions as

ρ̂ =

⎡
⎢⎢⎢⎢⎢⎣

�∗
e,− 1

2
�e,− 1

2
�∗

h,+ 3
2
�h,+ 3

2
�∗

e,+ 1
2
�e,− 1

2
�∗

h,− 3
2
�h,+ 3

2
�∗

e,+ 1
2
�e,− 1

2
�∗

h,+ 3
2
�h,+ 3

2
�∗

e,− 1
2
�e,− 1

2
�∗

h,− 3
2
�h,+ 3

2

�∗
e,− 1

2
�e,+ 1

2
�∗

h,+ 3
2
�h,− 3

2
�∗

e,+ 1
2
�e,+ 1

2
�∗

h,− 3
2
�h,− 3

2
�∗

e,+ 1
2
�e,+ 1

2
�∗

h,+ 3
2
�h,− 3

2
�∗

e,− 1
2
�e,+ 1

2
�∗

h,− 3
2
�h,− 3

2

�∗
e,− 1

2
�e,+ 1

2
�∗

h,+ 3
2
�h,+ 3

2
�∗

e,+ 1
2
�e,+ 1

2
�∗

h,− 3
2
�h,+ 3

2
�∗

e,+ 1
2
�e,+ 1

2
�∗

h,+ 3
2
�h,+ 3

2
�∗

e,− 1
2
�e,+ 1

2
�∗

h,− 3
2
�h,+ 3

2

�∗
e,− 1

2
�e,− 1

2
�∗

h,+ 3
2
�h,− 3

2
�∗

e,+ 1
2
�e,− 1

2
�∗

h,− 3
2
�h,− 3

2
�∗

e,+ 1
2
�e,− 1

2
�∗

h,+ 3
2
�h,− 3

2
�∗

e,− 1
2
�e,− 1

2
�∗

h,− 3
2
�h,− 3

2

⎤
⎥⎥⎥⎥⎥⎦ . (36)

This representation allows us to obtain useful links between the elements of exciton, electron, and hole density matrices, in
particular,

ρ̂e = |�e〉 〈�e| =
[

�∗
e,+ 1

2
�e,+ 1

2
�∗

e,− 1
2
�e,+ 1

2

�∗
e,+ 1

2
�e,− 1

2
�∗

e,− 1
2
�e,− 1

2

]
=

[
ρ22 + ρ33 ρ24 + ρ31

ρ13 + ρ42 ρ11 + ρ44

]
, (37)

ρ̂h = |�h〉 〈�h| =
[

�∗
h,+ 3

2
�h,+ 3

2
�∗

h,− 3
2
�h,+ 3

2

�∗
h,+ 3

2
�h,− 3

2
�∗

h,− 3
2
�h,− 3

2

]
=

[
ρ11 + ρ33 ρ14 + ρ32

ρ23 + ρ41 ρ22 + ρ44

]
. (38)
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We know that the components of electron and hole density
matrices are linked with the projections of electron and hole
spins as

ρ̂e =
[

1
2 + Se,z Se,x − iSe,y

Se,x + iSe,y
1
2 − Se,z

]
, (39)

ρ̂h =
[

1
2 + Sh,z Sh,x − iSh,y

Sh,x + iSh,y
1
2 − Sh,z

]
, (40)

where, for the heavy hole we have assigned spin +1/2 to the
state +3/2 and spin −1/2 to the state −3/2 accounting for the
orbital momentum of these states of +1 and −1, respectively.

The z component of the spin polarization carried by
electrons can now be expressed as

Se,z = (ρ22 + ρ33 − ρ11 − ρ44) /2. (41)

Similarly, the z component of the spin polarization carried by
holes can now be expressed as

Sh,z = (ρ11 + ρ33 − ρ22 − ρ44) /2. (42)

The in-plane component of electron and hole spins can be
extracted from the off-diagonal elements of the DM. Namely,
the x component of electron spin is given by

Se,x = (ρ13 + ρ31 + ρ24 + ρ42) /2, (43)

while the x component of the hole spin is given by

Sh,x = (ρ14 + ρ23 + ρ32 + ρ41) /2. (44)

The y component of electron spin is given by

Se,y = i (−ρ13 + ρ31 + ρ24 − ρ42) /2, (45)

while the y component of the hole spin is given by

Sh,y = i (ρ14 − ρ23 + ρ32 − ρ41) /2. (46)

III. NUMERICAL RESULTS IN THE DENSITY MATRIX
FORMALISM

Figure 1 shows the numerical results obtained within the
DM formalism for a model system with the same parameters
as those of coupled double quantum wells studied in Ref. 8.
The parameters are summarized in Table I.

The dispersion of bright and dark exciton modes obtained
by diagonalization of the Hamiltonian Ĥtot

ex (20) is shown
in Fig. 1(a) by green solid lines. The momentum has been
chosen along the x direction, but the anisotropy of the band
structure remains small. The initial splittings of dark and bright
states makes these dispersion curves qualitatively different
from those presented by Vishnevsky et al.40 Note also, that
Ref. 40 accounts for the exciton kinetic energy which we
neglect in Ĥtot

ex , leaving only the spin-dependent contributions
to the energy. The numerically calculated linear and circular
polarization degrees are shown in Figs. 1(c) and 1(d), respec-
tively. To stay close to the experimental conditions of Ref. 8,
we have chosen as an initial condition the circular source area
with a radius of 4 μm, where cold excitons are generated within
localized spots. In Fig. 1(c), four lobes are unambiguously
observable in the pattern of the linear and diagonal (not shown)
polarizations. This pattern is a consequence of the Dresselhaus
spin-orbit coupling for electrons, and it is characteristic of the
chosen initial state at the source: Four split eigenstates with
zero in-plane wave vector are occupied, relative occupation
of these states corresponds to the Boltzmann distribution at
temperature T = 0.1 K. This choice of initial conditions leads
to a variety of polarization patterns observed in experiment.8 In
the absence of the damping this pattern is periodic and infinite
in the radial direction.

In order to reveal the mechanism of formation of the
polarization patterns it is instructive to consider a simplified

FIG. 1. (Color online) (a) Dispersion of the excitonic states calculated using the set of parameters from Table I (green lines) and reduced
set of parameters with Eb − Ed = 0, δb = 0, βh = 0 (red symbols). Black arrows indicate the values of the wave vectors used in (b)–(d)
kex = 15.3 μm−1 and (e) kex = 5 μm−1. Double-ended arrows indicate the energies of oscillations between the eigenstates which appear in
spatial polarization patterns. (b) Linear polarization degree along x axis calculated with the simplified set of parameters. (c) Same as (b) but
for the full set of parameters from the Table I. (d) Circular polarization degree with parameters from Table I. (e) Same but at kex = 5 μm−1.
The source area was taken circular with a radius of 4 μm.
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TABLE I. Parameters for numerical calculations.

Electron mass me 0.07 m0

Heavy-hole mass mh 0.16 m0

Electron Dresselhaus coupling βe 2.7 μeV μm
Heavy-hole Dresselhaus coupling βh 0.92 μeV μm
Bright exciton XY splitting δb 0.5 μeV
Dark exciton XY splitting δd −13 μeV
Bright-dark exciton splitting Eb − Ed 5 μeV

version of the Hamiltonian (20). In the absence of magnetic
field, zero Dresselhaus effect for holes, zero splitting of bright
excitons, and zero splitting Eb − Ed between bright and dark
excitons this Hamiltonian can be rewritten as

Ĥ = −δd

⎡
⎢⎢⎢⎣

0 0 ξe−iφ 0

0 0 0 ξeiφ

ξeiφ 0 0 1

0 ξe−iφ 1 0

⎤
⎥⎥⎥⎦ , (47)

where ξ = −βeke/δd . In other words, here we only take into
account linear splitting of dark exciton states which inevitably
results from structural anisotropy even in the best quality
samples, and the Dresselhaus field acting on the spin of
electron, bound to the hole. We will see that at sufficiently
low temperature these two ingredients provide the in-plane
asymmetry that ultimately results in the formation of linear
polarization patterns. Indeed, the eigenvalues of this Hamilto-
nian can be obtained analytically: E = ± 1

2δd ± 1
2δd

√
1 + 4ξ 2.

This corresponds to two dispersion branches at low energy
∝ ± ξ 2 and two branches at high energy ∝ ± (1 + ξ 2) for
ξ � 1. These branches are shown by red squares in Fig. 1(a).
The eigenvectors, starting from the lowest energy and taking
δd < 0, can be approximated for small ξ by⎡
⎢⎢⎢⎣

ξe−iφ

−ξeiφ

−1

1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

e−iφ

eiφ

−ξ

−ξ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

e−iφ

−eiφ

ξ

−ξ

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

ξe−iφ

ξeiφ

1

1

⎤
⎥⎥⎥⎦ . (48)

As mentioned, at low temperatures kBT � |δd |, the lowest
energy state with zero momentum is given by [0,0, − 1,1] and
is a linearly polarized dark exciton. By linearly polarized dark
exciton we mean the dark state which has a dipole moment
oriented in a certain way, and which has a zero spin projection
to the growth axis of the structure. After an acceleration
due to dipole repulsion, this initial state is no longer an
eigenstate and oscillates as a function of time between the
two eigenstates of the Hamiltonian with which the initial state
is not orthogonal, namely the first and the third eigenstates
listed in Eqs. (48). Among these two states, only the third
gives a significant contribution to the observed polarization
as it is essentially “bright” (has large projections to +1 and
−1 exciton states). The linear and diagonal polarizations
originating from this state are readily given by − cos(2φ) and
− sin(2φ), respectively. This reproduces the essential features
of the numerical results for the linear polarization pattern,
as one can see comparing the images calculated with the
reduced Hamiltonian [Fig. 1(b)] and the full Hamiltonian

[Fig. 1(c)]. In the particular case considered here (initial state
formed essentially by linearly polarized dark excitons) the
Dresselhaus spin-orbit term for electrons leads to formation
of the linear polarization vortex: The polarization plane is
always perpendicular to the wave vector direction. The linear
polarization vortex has been observed experimentally by High
et al.8,9 Rapid oscillations in radial directions are due to
periodical change in the occupation of mainly dark and mainly
bright states, indicated by double-ended arrows in Fig. 1(b).

We should emphasize that with a proper reordering of the
basis vectors, the simplified Hamiltonian (47) is analytically
equivalent to the Hamiltonian of bilayer graphene. In its
simplest expression, the Hamiltonian of bilayer graphene can
be written as41

h̄

⎡
⎢⎢⎢⎢⎢⎣

0 vF ke−iφ 0 0

vF keiφ 0 t⊥ 0

0 t⊥ 0 vF ke−iφ

0 0 vF keiφ 0

⎤
⎥⎥⎥⎥⎥⎦ , (49)

where vF is the velocity, k the amplitude of the wave vector,
φ the angle between the wave vector and the x axis, and t⊥
is the main coupling term between the two graphene layers,
which is given by hopping between two carbon atoms that
are superimposed. The four coefficients of the associated
wave functions correspond to the probability amplitudes on
the two independent sublattices of the two graphene layers.
By permutation of the basis vectors: 1 → 1, 2 → 3, 3 → 4,
4 → 2, the Hamiltonian is rewritten as

h̄

⎡
⎢⎢⎢⎢⎢⎣

0 0 vF ke−iφ 0

0 0 0 vF keiφ

vF keiφ 0 0 t⊥
0 vF ke−iφ t⊥ 0

⎤
⎥⎥⎥⎥⎥⎦ , (50)

which is equivalent to Eq. (47) with h̄t⊥ ≡ −δd and
−h̄vF k/δd ≡ ξ .

The 4 × 4 Hamiltonian of bilayer graphene is often re-
stricted to the subspace of the two low energy bands. From
Eq. (48), the corresponding eigenstates are

[eiφ, ± e−iφ]. (51)

We can then define a pseudospin vector, which represents
the relative phase between the two components of the wave
vectors. From Eq. (51), the pseudospin rotates two times when
the particle wave vector undergoes one full rotation.

Adapting the terminology used for graphene, the polariza-
tion pattern observed in Figs. 1(b) and 1(c) would be nothing
other than the fingerprint of the “pseudospin” rotation in the
exciton system. In the context of the exciton system under
consideration, the phase φ corresponds to the angle between
the exciton polarization vector and the chosen x axis of the
structure.

The buildup of circular polarization requires introduction
in the model of the splitting between linearly polarized bright
exciton states δb. This splitting acts as an effective magnetic
field applied to the Stokes vector of light emitted by bright
excitons, S = (Sx,Sy,Sz). In particular, if the x-polarized
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exciton state has a lower energy than the y-polarized exciton
state, it creates an effective magnetic field in the x direction
which rotates the Stokes vector in the yz plane. This converts
the diagonal polarization to the circular polarization and
leads to the appearance of right- and left-circularly polarized
sectors in the polarization map of exciton emission. Separation
of spins due to linear-to-circular polarization conversion is
known in exciton-polariton systems as the optical spin Hall
effect. This effect was theoretically predicted in Ref. 12
and experimentally observed in polaritonic10 and excitonic
systems.8 For microcavity polaritons it may be described in
terms of beats between TE and TM polarized polariton modes,
while in the exciton system studied here the effect is more
complex due to the mixture of four nearly degenerate (dark
and bright) exciton states. A recent theoretical paper40 predicts
the Skyrmion formation in this case. Here we concentrate
on the circular polarization patterns appearing due to the
beats between linearly polarized exciton states mixed by
the exchange interaction. Note that the circular polarization
pattern is strongly sensitive to the chosen exciton wave vector,
which governs the energies of the four involved eigenstates.
Figure 1(d) is calculated assuming kex = 15.3 μm−1. This
corresponds to the crossing point of the dispersion branches
associated to the first and second exciton eigenstates [see
Fig. 1(a)]. For comparison, Fig. 1(e) shows the circular
polarization pattern calculated with kex = 5 μm−1. One can
see that the four-lobes pattern of circular polarization is washed
out, because the lowest energy state of the system remains
essentially dark. Rapid oscillations that show up have the
period determined by the splitting between the two lowest
states.

Finally, let us underline that the dispersion curves shown in
Fig. 1(a) do not take into account the kinetic energy of excitons.

The kinetic energy would shift all curves up by K = h̄2k2
ex

2mex
.

Note that this does not affect the splittings between exciton
eigenstates and would not affect the spin dynamics of excitons.
In the spin density formalism developed above we assign to
all excitons the same kinetic energy, K . In a realistic system,
the kinetic energy may be spread, in which case averaging
of the obtained polarization patterns over kex may be needed.
This averaging would smooth the fast oscillations seen on
the images Figs. 1(c)–1(f). In the next section devoted to the
nonlinear spin dynamics we fully take into account the kinetic
energy of propagating excitons.

The distribution of in-plane projections of electron and hole
spins for the same choice of parameters as above is shown in
Figs. 2(a)–2(h). The left panels show electron spins and the
right panels show the hole spins. The direction of in-plane
spin component is shown by arrows, while the length of each
arrow is proportional to the computed value of the transverse
spin component. The upper panels, Figs. 2(a) and 2(b), show
the spin distributions in the absence of a magnetic field. In
this case the electron and hole spins are oriented along the
effective Dresselhaus fields which are oriented differently for
electrons and heavy holes, as we have discussed in the previous
section. The decrease of the in-plane spin component upon
propagation corresponds to the buildup of the z component of
electron and hole spins (figure not shown), due to rotation of the
exciton spin around the effective magnetic field. The magnetic

FIG. 2. (Color online) Spatial distribution of electron and hole
spin components in the plane of the quantum well structure, calculated
at zero magnetic field and at B = 5 T at three different orientations.
The parameters are given in Table I, kex = 15.3 μm−1. The source
area was taken circular with a radius of 4 μm.

field strongly changes the spin distribution in real space. The
spin textures become strongly anisotropic in the case of in-
plane (x- or y-oriented) magnetic field. Note that the in-plane
isotropy in the system is broken by the splitting between x-
and y-polarized exciton states, which is why switching of
the magnetic field between x and y axes strongly affects the
distribution of electron and hole spins. It should be noted also
that electron and hole in-plane spin textures can hardly be
observed directly in optical experiments. However, they can
be deduced from fitting the exciton polarization maps, e.g.,
using the formalism described above.

Figure 3 shows how the magnetic field affects spatial
patterns of linear (a)–(d) and circular (e)–(h) polarization.
Switching the magnetic field orientation between the x,
y, and z axes one can dramatically affect the polarization
patterns. Having in mind that the exciton polarization patterns
can be directly observed in near-field photoluminescence
experiments, fitting of these patterns to the experimental data
would allow extracting the Dresselhaus constants and exciton
exchange splittings, which, in turn, allow to restore electron
and hole spin textures.8

Figures 4(a)–4(d) illustrates a peculiar regime where the
Dresselhaus fields for electrons and holes are taken to be
zero and there is no magnetic field applied, but electrons are
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FIG. 3. (Color online) Spatial distribution of exciton linear
polarization [(a)–(d) length of the bars maps the intensity in arbitrary
units] and color maps of the exciton circular polarization degree [(e),
(f), same color code as in Fig. 1]. Magnetic field B = 0 in (a), (e),
and B = 5T along z in (b), (f), x in (c), (g), y in (d), (h). Parameters
are given in Table I, kex = 15.3 μm−1. The source area was taken
circular with a radius of 4 μm.

subjected to the Rashba field (the Rashba field for heavy holes
is zero). Figure 4(a) shows the electron spin distribution in
space, where the spins are clearly aligned along the Rashba
field force lines. Interestingly, the hole spins become polarized
as well, while no effective field acts on them [Fig. 4(b)].
This is an illustration of the exciton effect: Bound in excitons
by Coulomb interaction and subject to the exchange-induced
exciton effects, the holes acquire in-plane spin polarization.
The nonzero spin polarization of heavy holes is possible due
to the exciton exchange effects. Figures 4(c) and 4(d) show the
resulting linear and circular exciton polarization patterns. One
can see that the Rashba effect induces polarization patterns
strongly different from those induced by the Dresselhaus
effect, which is why from the shape of polarization patterns
one can conclude on the nature of spin-orbit coupling in the
system.

IV. NONLINEAR SPIN DYNAMICS OF PROPAGATING
EXCITONS AND EXCITON-POLARITONS

In the previous section we operated with a spin DM which
is very convenient for the description of partially coherent
and partially polarized exciton gases. The quantum Liouville
equation (31) is a very efficient tool for the description of

FIG. 4. (Color online) Spatial distribution of electron (a) and hole
(b) in-plane spin component calculated at B = 0 in the absence
of the Dresselhaus field βe = 0; βh = 0, but including Rashba
field αe = 2.7 μeV μm. Other parameters are given in Table I,
kex = 15.3 μm−1. The source area was taken circular with a radius
of 4 μm. Corresponding patterns of linear (c) and circular (d) exciton
polarization degree are shown with the same color code as in Fig. 1.

effects linear in the exciton density. On the other hand,
one cannot straightforwardly incorporate nonlinear interaction
terms in this equation. The treatment of nonlinear effects in
a partially coherent system is a nontrivial task. Much simpler
is the treatment of nonlinear effects in a perfectly coherent
system, such as a condensate at zero temperature. In this
case, the ensemble of excitons can be described by a single
four-component wave function � = (�+1,�−1,�+2,�−2)T .
The linear dynamics of this wave function for ballistically
propagating excitons having a wave vector kex is described by
the Schrödinger equation,

ih̄
d

dt
|�〉 = Ĥ|�〉, (52)

where the Hamiltonian is the same as in Eq. (20). This equation
represents a set of four coupled linear differential equations
for four exciton spin components. Nonlinear effects lead to the
condensate evolution in real and reciprocal space.

From now on we consider the exciton spin dynamics in real
space (2D), so that the wave function � will become coordinate
dependent and will not be restricted to one single value of kex.
The nonlinear interaction terms for multicomponent exciton
gases are introduced and discussed in detail in Ref. 42. Here
we expand Eq. (52) by introducing the kinetic energy (to
describe the real space dynamics) and the interaction terms.
On the other hand, we neglect the magnetic field for simplicity.
This results in a system of four nonlinear Schrödinger or
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GP equations42–44:

ih̄
d�+1

dt
= −h̄2∇̂2

2mex
�+1 + βeme

mex
(k̂x − ik̂y)�+2

+ βhmh

mex
(k̂x − ik̂y)�−2 + α1 |�+1|2 �+1

+α2|�−1|2�+1 + α3|�+2|2�+1

+α4|�−2|2�+1 + W�∗
−1�+2�−2, (53)

ih̄
d�−1

dt
= −h̄2∇̂2

2mex
�−1 + βeme

mex
(k̂x + ik̂y)�−2

+ βhmh

mex
(k̂x + ik̂y)�+2 + α1 |�−1|2 �−1

+α2 |�+1|2 �−1 + α3 |�−2|2 �−1

+α4 |�+2|2 �−1 + W�∗
+1�+2�−2, (54)

ih̄
d�+2

dt
= −h̄2∇̂2

2mex
�+2 + βeme

mex
(k̂x + ik̂y)�+1

+ βhmh

mex
(k̂x − ik̂y)�−1 + α1 |�+2|2 �+2

+α2 |�−2|2 �+2 + α3 |�+1|2 �+2

+α4 |�−1|2 �+2 + W�∗
−2�+1�−1, (55)

ih̄
d�−2

dt
= −h̄2∇̂2

2mex
�−2 + βeme

mex
(k̂x − ik̂y)�−1

+ βhmh

mex
(k̂x + ik̂y)�+1 + α1 |�−2|2 �−2

+α2 |�+2|2 �−2 + α3 |�−1|2 �−2

+α4 |�+1|2 �−2 + W�∗
+2�+1�−1. (56)

Here k̂x,y = −i∇̂x,y , mex = me + mhh. To make this sys-
tem more compact we have omitted the terms describing
exchange-induced exciton splittings given by the Hamiltonian
(20). We do not discuss here the nature and value of the
interaction constants α1,2,3,4 and W . In the system of indirect
excitons in coupled GaAs/AlGaAs quantum wells, as a zeroth
approximation, one can take α1 = α2 = α3 = α4. Note also
that in microcavities, where the lower exciton-polariton mode
is strongly decoupled from dark excitons, the dark exciton
states may be almost empty at low temperatures. If this is the
case, the spin dynamics of the exciton-polariton condensate is
given by the first two of the four GP equations [(53) and (54)]
with α3,4 = W = 0. The remaining constants α1,2 have been
widely discussed in the literature.45

The GP equations are widely used for the description of
coherent propagation of exciton-polaritons in microcavities.46

They allow for the studying of interesting topology effects
such as quantum vortices,47–52 half-quantum vortices,53–55 and
bright56 and dark51,57–60 solitons.

The polarization of light emitted by an exciton or exciton-
polariton condensate can be obtained as

ρc = 2Sz

I
= |�+1|2 − |�−1|2

|�+1|2 + |�−1|2 , (57)

ρl = 2Sx

I
= 2Re{�∗

+1�−1}
|�+1|2 + |�−1|2 , (58)

ρd = 2Sx

I
= − 2Im{�∗

+1�−1}
|�+1|2 + |�−1|2 . (59)

These expressions easily follow from the definition of the spin
DM.

A significant limitation of the GP equations as a theoretical
tool is that they assume a coherent state of the system. If
one is interested in the spin structure of the zero-temperature
ground state of excitons in a Bose-Einstein condensate,43

then this assumption is fulfilled by definition. However, in
real systems there is an incomplete coherence that, strictly
speaking, requires a description of statistical mixtures, perhaps
involving density matrices. Furthermore, Eqs. (53)–(56) have
been written assuming an infinite lifetime for the particles
(be they excitons or exciton-polaritons), which is never the
case of real nonequilibrium systems. Often pumping and
radiative decay terms are introduced into Eqs. (53)–(56)
phenomenologically.30,44 While in the case of a resonant coher-
ent pump, one can imagine that the exciton/exciton-polariton
distribution inherits coherence directly, it is less obvious how
an incoherent pump can be modeled. A phenomenological
model introduced by Wouters and Carusotto61 of incoherent
pumping has allowed the modeling of the first-order coherent
fraction observed in many experimental configurations based
on condensation.26,62–65 While the GP model cannot model
the phase transition during formation of a condensate and/or
superfluid, it can offer a suitable description of spin currents
once spatial coherence has formed.

Here we consider a localized source of the four-component
indirect exciton system, as corresponds to the localized bright
spot sources generating exciton condensates.9 We focus our
attention on the possible spin polarization textures of coherent
excitons propagating away from the source. We do not attempt
to describe the partially coherent state within the source,
noting that in exciton-polariton systems spin currents have
been generated from both coherent66 and incoherent11 tightly
focused spots utilizing the optical spin Hall effect12 in a similar
way. Since the Gross-Pitaevskii equations are only valid for
coherent excitons, we restrict the exciton wave function to
lie outside of the source area. The effect of the source is
then characterized by the chosen boundary condition along the
edge of the source area. Given that dark excitons have lower
energy than bright excitons [due to the exchange splitting of
Eq. (19)], it is reasonable to expect the source to provide
linearly polarized dark excitons. By fixing the values of the
exciton wave function along the edges of the source area,
which is assumed to be circular, to such a distribution the
boundary condition acts as an effective source for the exciton
wave function outside the source area.

The indirect excitons are known to have very long lifetime,
typically in the range of 10 ns to 10 μs (Ref. 67). This allows
them to cover substantial distances with negligible loss.8

Consequently, when we focus on the behavior of excitons
in a small (10 × 10-μm2) area around the source, the main
loss of excitons can be caused by their escape from the area of
interest rather than their decay (recombination). To model the
spin currents we thus employ an absorbing boundary condition
to allow the solution of Eqs. (53)–(56) in a finite area. This
allows a balance between source and loss to achieve a steady
state of the nonequilibrium system (for a continuous pump),
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FIG. 5. (Color online) Spatial distribution of the total exciton
density (a) and exciton brightness degree (b) [see Eq. (60)] in the
absence of a magnetic field. The parameters were the same as
those used for the DM calculations, given in Table I, with B = 0;
W = 0.2α; mex taken as 0.21 of the free electron mass. The source
area was taken to be circular with a radius of 1 μm. The images
are presented with spatial averaging over 1.5 μm. The scattering
parameter α and intensity at the source center were chosen such
that the interaction energy α(|�+1|2 + |�−1|2 + |�+2|2 + |�−2|2) =
1 μeV (compared to the other energy scales in the system, we are
in a nonlinear regime). The absorbing boundary condition used in
calculations appears outside of the plotted range, at a radius of 15 μm
from the source center.

where both source and loss appear as boundary conditions.8

The steady-state solution of the system is independent of the
initial condition.

Exciton intensity and polarization distributions calculated
within the GP approach are shown in Figs. 5 and 7. Note that
all the plotted quantities are spatially averaged over 1.5 μm
to account for the typical resolution of experimental setups.8

In principle, excitons can display features on the scale of
the de Broglie wavelength, λ = 2π/|kex|. Such features are
on the submicron scale and are far beyond experimental
resolution. We note also that while in the DM approach
we could consider excitons having a fixed radial velocity,
in the GP approach we necessarily cover the whole range
of wave vectors and propagation velocities (the dispersion
obtained from the GP approach is shown in Fig. 6). Also,
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FIG. 6. (Color online) Dispersion relation obtained from the
Gross-Pitaevskii equations, corresponding to Figs. 5 and 7(b), 7(d),
and 7(f). The dispersion is obtained by Fourier transform of the
wave functions in space and time, from which the grayscale map of
intensity is obtained. The curves show the bare dispersion, obtained
from diagonalization of Ĥtot

ex + h̄2k2

2m
.

exciton-exciton interactions modify the exciton dispersion.
For all these reasons, the DM and GP approaches cannot give
identical results, in principle. The DM approach is suitable for
the description of both coherent and partly coherent exciton
gases, while the GP approach better catches the dispersive
propagation features and accounts for nonlinear effects. Both
approaches are complementary, and it is instructive to compare
the results, obtained within these two models.

The exciton density decreases as excitons travel away from
the source [Fig. 5(a)]. This is not due to exciton recombination,
which is expected to be very slow, but more simply due to the
spreading out of excitons in all directions. The intensity spread
need not be perfectly circularly symmetric due to the presence
of the spin orbit (Dresselhaus terms), which can introduce a
directional dependence of the exciton velocity. Figure 5(b)
shows the exciton brightness degree, defined as

ρb = |�+1|2 + |�−1|2 − |�+2|2 − |�−2|2
|�+1|2 + |�−1|2 + |�+2|2 + |�−2|2 . (60)

This quantity represents the degree to which the bright exciton
density exceeds the dark exciton density. There is a conversion
of dark to bright excitons as they spread out from the source,
which can be expected from the presence of Dresselhaus
coupling terms.

The polarization distribution is shown in Fig. 7 and can
be significantly influenced by nonlinearity in the system. The
left-hand plots show the results for negligible nonlinearity
(α = 0; W = 0), which is equivalent to a weak pump intensity.
Here the polarization distributions are qualitatively similar
to those calculated in the DM formalism. In analogy to the
(intrinsic) spin Hall effect2,3 and the optical spin Hall effect10,12

the presence of the spin-orbit coupling terms introduces a
directional dependence of the polarization. The patterns of the
polarization degrees divide into quadrants. Some quantitative
differences with the DM calculations appear due to the
presence of different wave vectors.

The right-hand plots show the case of a moderate non-
linearity, with interaction strength comparable to the other
energy scales of the system. The most drastic effect is on
the circular polarization degree, which becomes higher, and
each quadrant of circular polarization divides further, giving an
eight-lobed pattern to the polarization degree. The interaction
terms that we have introduced are all spin conserving and
it can be noted that we have considered the spin isotropic
case. Even the W nonlinear interaction term, which allows
the inter-conversion of bright and dark exciton pairs does not
appear to directly change the spin polarization, conserving
both circular and linear polarizations upon scattering. Still,
the nonlinear interaction terms can have a drastic effect on
the polarization structure. This is because they are able to shift
(renormalize) the dispersion branches in the system. Given that
the potential energy of excitons is fixed by their interaction
energy at the source and that this energy is converted into
kinetic energy at distances away from the source, any shifts
in the dispersion branches can change the wave vector of
propagating excitons. Even if the nonlinear induced shifts
of the dispersion branches were not polarization dependent,
a change in the wave vector of an exciton can allow it to
experience a different effect from the k-dependent spin-orbit
coupling terms. In this way, richer structures can appear
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FIG. 7. (Color online) Spatial distribution of the polarization state
of excitons in the absence of a magnetic field: horizontal-linear
polarization degree (a), (b), diagonal polarization degree (c), (d),
and circular polarization degree (e), (f) for bright excitons, which
corresponds to the near-field emission pattern of light. The left-hand
plots show results in the absence of nonlinear interactions (α = 0;
W = 0), while the right-hand plots show the case of a moderate
nonlinearity. The parameters were the same as in Fig. 5

in the nonlinear regime. Note that the buildup of circular
polarization clearly seen in Figs. 7(e) and 7(f) would not yield
100% circularly polarized excitons, as it might be expected
in the ideal case of the optical spin Hall effect for exciton-
polaritons.12 In our system, the precession of electron and
hole spins has different frequencies, and the interplay between
dark-to-bright and linear-to-circular polarization conversion
prevents formation of a purely circularly polarized state.

V. EXCITON SPIN CURRENTS

Consider an exciton state characterized by a wave vector
kex and described by the DM ρ̂. Let us recall that the elements
of this matrix ρ11, ρ22, ρ33, ρ44 are the densities of +1,−1,+2,

and −2 spin polarized excitons, respectively. The current of
each of these densities is given by a product of the exciton
speed and the corresponding density,

ja = h̄kex

mex
ρjj , (61)

with j = 1,2,3,4 for a = +1, − 1, + 2, − 2, respectively.
Experimentally, one can measure the magnetization current
associated with the exciton density current. The magnetization
carried by propagating excitons can be found as

Mz = −μB

2
[(gh − ge) (ρ11 − ρ22) + (gh + ge) (ρ33 − ρ44)] .

(62)

This expression is obtained having in mind that an electron
with a spin projection on the z axis of ±1/2 contributes
to the magnetization projection on the z axis ∓μB

2 ge, and a
heavy hole with the spin projection of ±3/2 contributes to
the magnetization ∓μB

2 gh. Hence, the magnetization (spin)
current produced by the excitons having a wave vector kex will
be given by

jM (kex) = −h̄μBkex

2mex
{(gh − ge) [ρ11(kex) − ρ22(kex)]

+ (gh + ge) [ρ33(kex) − ρ44(kex)]} . (63)

The total magnetization current in the exciton gas can be
obtained by integration over all wave vectors:

jtot
M = − A

(2π )2

∫
jM (kex)dkex. (64)

Here A is the area of the sample. This current may be detected,
for example, by spatially resolved Kerr rotation spectroscopy.

Figure 8 shows the spin current density jM/ (2πr) calcu-
lated for the system of indirect excitons which we considered
above in the absence of external magnetic field (a) and in the
presence of a magnetic field of 5 T oriented normally to the

FIG. 8. (Color online) Spatial distribution of the exciton spin
current calculated in arbitrary units using the parameters summarized
in Table I kex = 15.3 μm−1 at B = 0 (a) and B = 5 T (b)–(d) along
the z, x, and y axis, respectively. The source area was taken to be
circular with a radius of 4 μm.
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plane of the structure (b) and along x and y axes (c,d). In all
cases the current intensity decreases as one moves away from
the excitation spot, as the exciton density decreases inversely
with the radius r . One can see that the total spin (magnetiza-
tion) of propagating excitons experiences oscillations and has
a strong angular dependence. The spin currents are suppressed
by an in-plane magnetic field, which is not surprising: jM
describes propagation of the normal-to-plane spin component,
which is strongly reduced by an in-plane magnetic field. The
images show the total spin carried by both bright and dark
excitons. They do not directly correspond to the polarized
photoluminescence map for two reasons: First, dark excitons
do not contribute to the photoluminescence; second, the
polarization degree of photoluminescence does not experience
the 1/r decay characteristic of the total spin density. On the
other hand, the images presented in Fig. 8 do correspond to the
signal of spatially resolved Kerr or Faraday rotation, which is
sensitive to the normal-to-plane magnetization.

VI. SPIN CURRENTS IN EXCITON CONDENSATES

The approach formulated above can be extended to the
description of spin currents in coherent exciton (or exciton-
polariton) condensates accounting for particle-particle interac-
tions. In this case we need to replace the momentum h̄kex with a
momentum operator p̂ = −ih̄∇̂ and the diagonal components
of the DM ρ11, ρ22, ρ33, ρ44 with the exciton densities
|ψ+1|2,|ψ−1|2,|ψ+2|2,|ψ−2|2, respectively, in the expressions
(61) and (64). In this case the density currents become

jα = −i
h̄

2mex
�∗

α∇�α, (65)

and the total magnetization current can be expressed as

jtot
M = ih̄μB

2mex
[(gh − ge)(�∗

+1∇�+1 − �∗
−1∇�−1)

+ (gh + ge)(�∗
+2∇�+2 − �∗

−2∇�−2)] (66)

= −μB[(gh − ge)(j+1 − j−1)

+ (gh + ge)(j+2 − j−2)]. (67)

The distribution of the spin density current, j+1, is shown
in Fig. 9(a). The current density propagates outward from the
source in all directions, decreasing in intensity. The apparent
rotation of the current density is a nonlinear effect coming
from the interactions in the system. The other spin density
currents, j−1, j+2, and j+2, display a similar behavior.

The magnetization current is shown in Fig. 9(b). The
current is stronger closer to the source, where the intensities
are stronger. The magnetization current is predicted to rotate
around the source.

One can also introduce the spin conductivity tensor linking
the components of the density current (65) with the gradient
of potential acting upon each of the exciton spin components,

jα,l = σ
l,m
α,β ∇Uβ,m, (68)

where l = x,y and m = x,y indicate the in-plane projections
of the current and potential gradient, respectively. One can
see that σ

l,m
α,β is a 64-component tensor in the general 2D

case. The origin of the potential gradient ∇Uβ,m needs to be

FIG. 9. (Color online) Spatial structure of the spin density current
j+1 (a) and the total magnetization current jtot

M (b). The arrows show
the directional dependence of the vector fields in space, while the
color code illustrates the intensity. The parameters were the same as
in Fig. 5. Arbitrary units are used for both the spin density and the
total magnetization current.

discussed separately. ∇Uβ,m can originate from the gradient
of the quantum well width or gradient of the barrier height,
or it can be induced by excitons themselves due to, e.g.,
dipole-dipole repulsion. Indirect excitons have built-in dipole
moments, the laterally modulated external electric field in
the z direction can create an in-plane potential landscape
and, in turn,∇U for them. This was used in studies of
transport of indirect excitons in various electrostatic potential
landscapes including potential energy gradients,28,68,69 circuit
devices,70–72 traps,73 lattices,74,75 moving lattices-conveyers,76

and narrow channels.72,77,78

VII. POLARIZATION CURRENTS

Spatially resolved measurements of the polarization de-
grees ρc, ρl , and ρd of light emitted by excitons give access
to the exciton polarization currents. In terms of the DM
formalism, they can be defined as products of the exciton
speed and the corresponding polarization degree:

jc (kex) = h̄kex

mex
ρc = h̄kex

mex

ρ11 − ρ22

ρ11 + ρ22
, (69)

jl (kex) = h̄kex

mex
ρl = h̄kex

mex

ρ12 + ρ21

ρ11 + ρ22
, (70)

jd (kex) = h̄kex

mex
ρd = h̄kex

mex

ρ12 − ρ21

ρ11 + ρ22
. (71)

The total polarization currents can be obtained integrating
the expressions (69)–(71) over reciprocal space:

jc,l,dtot = − A

(2π )2

∫
dkexjc,l,d (kex). (72)

The polarization currents in an exciton condensate can be
found from the GP equations (53)–(56) as

jc = − ih̄

mex

(�∗
+1∇�+1 − �∗

−1∇�−1)

|�+1|2 + |�−1|2 , (73)

jl = − ih̄

mex

(�∗
+1∇�−1 + �∗

−1∇�+1)

|�+1|2 + |�−1|2 , (74)

jd = − h̄

mex

(�∗
+1∇�−1 − �∗

−1∇�+1)

|�+1|2 + |�−1|2 . (75)
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FIG. 10. (Color online) Spatial structure of the polarization
currents jc (a) and jl (b). The arrows show the directional dependence
of the vector fields in space, while the color code illustrates the
intensity. The parameters were the same as in Fig. 5. Arbitrary units
are used for the polarization currents.

The distributions of the polarization currents calculated
within the GP approach are shown in Fig. 10. A striking
nonuniform structure appears due to the presence of the
spin-orbit coupling terms. Close to the source spot, there
is a strong circularly polarized current that rotates around
the source. This can be attributed to the rotating circular
polarization degree already observed in Fig. 7. Away from the
source, the circular polarization current decays, which can be
expected due to the decay of the spin density current observed
in Fig. 9. Along the vertical axis (x = 0), a strong circular
polarization current remains due to the particularly fast change
of the circular polarization degree in this region. The linearly
polarized current can be stronger further away from the source
than at closer distances. This is attributed to an increasing
linear polarization degree further from the source. In addition,
one can recall that while spin density currents are generally
weaker further from the source, there is some compensation
due to the conversion between dark and bright excitons [as
shown in Fig. 5(b), the bright exciton fraction increases further
from the source].

VIII. CONCLUSIONS

Bosonic spin transport is a young and promising area
of solid-state physics. The theories of mesoscopic transport

of charge carriers and quantum transport are among the
most interesting chapters of modern physics. Substitution
of fermions by bosons and of a scalar electric charge by
a spin vector cannot be formally done in these theories.
Basically, all mesoscopic and quantum transport effects need
to be reconsidered if we speak about electrically neutral
bosonic spin carriers like excitons or exciton-polaritons. This
is why the area of “spin optronics” essentially remains terra
incognita. Experimentally, direct measurements of transport
of indirect excitons and exciton-polaritons in time-resolved
imaging experiments have become possible in recent years.
In this work, we have demonstrated that exciton polarization
currents are inseparably connected with electron and hole spin
currents. The intensity and direction of exciton polarization
currents and electron and hole spin currents is governed
by an interplay of spin-orbit effects, Zeeman effects, and
exciton exchange effects. In the nonlinear regime, the pattern
of spin currents may also be affected by spin-dependent
exciton-exciton interactions.

We have developed two complementary approaches to
the description of exciton spin currents and textures. The
DM formalism allows for description of the spin transport
effects in both classical exciton gases and condensates of
noninteracting excitons, while the GP equations describe
propagation of exciton condensates. We predict nontrivial
topologies of interacting exciton spin in condensates and
suggest tools of their control, such as external magnetic and
electric fields, and source intensity. We have demonstrated
that ballistic propagation of excitons may result in a buildup
of polarization patterns, which may be observed in near-field
photoluminescence spectra.
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