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Multipartite polariton entanglement in semiconductor microcavities

T. C. H. Liew and V. Savona
Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne EPFL, CH-1015 Lausanne, Switzerland

(Received 11 March 2011; published 1 September 2011)

We study the entanglement of multiple polariton modes, which results in continuous variable cluster states
suitable for quantum computation. Schemes are based on parametric scattering between spin-polarized lower
and upper polariton branches in planar microcavities or spin-polarized orbital angular momentum states in mesa
structures. Such systems are modeled by numerical solution of truncated density matrices and compared to the
solution of the Heisenberg equations for the set of field correlators up to third order. Four-body entanglement is
evidenced by violation of the van Loock–Furusawa quadripartite inequalities. We show that the entanglement is
able to withstand a realistic strength of pure dephasing present in typical systems.
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I. INTRODUCTION

The Bose-Einstein condensation of exciton polaritons in
semiconductor microcavities [1–3], their superfluidity [4,5],
and multistability [6–8] are examples of some of the stunning
effects that arise from the strongly nonlinear interactions
between polaritons [9–11]. In the quantum realm, squeezing
[12] and quantum complementarity have been shown experi-
mentally [13], while polariton pair entanglement [14–17] and
nonclassical correlations [18–24] are expected theoretically.

Many works allude to the possibility of polaritons being
used for quantum computation. However, it is difficult to
imagine how polaritons could satisfy the DiVincenzo criteria
[25] for conventional quantum computational schemes given
their rather short lifetime, which hinders their isolation
and manipulation without significant losses. Furthermore,
even though nonlinearity at the single polariton level can
be achieved through confinement [18], a proposal for the
essential controlled-NOT (CNOT) quantum logic gate remains
elusive.

Nevertheless, the crucial ingredient for quantum compu-
tation is entanglement. Advances in the field of quantum
information science show that it is not necessary to have
control of qubits; rather, one can work in a basis of continuous
variables [26,27], such as the conjugate quadrature observables
of a quantized field (which can be measured using homodyne
detection [28]). Bipartite continuous variable entanglement
has been measured between modes with both equal [28] and
different energy [29].

Other developments have shown that, by taking advantage
of quantum teleportation, one can replace the quantum circuit
model with a scheme based on measurements. Starting with
an initially highly entangled state of many qubits, known as
a cluster state, a quantum circuit can be simulated using only
local measurements on the qubits in a specific order [30]. In
other words, if one has entanglement, one does not need to
worry about moving particles around in a circuit or interacting
them further to make quantum logic gates. The combination of
the two ideas of working with continuous variables and with
cluster-state quantum computation has appeared in Ref. [31]
and systems for its implementation have been proposed [32].
The fundamental step of generating continuous variable mul-
tipartite entanglement has been considered based on coupled
parametric processes in χ (2) nonlinear crystals [33–35].

II. SCHEME

Our interest lies in the creation of four-mode cluster states
(the most basic cluster state) using exciton polaritons in
semiconductor microcavities. We consider the simultaneous
resonant excitation of polaritons at the bottom of both the lower
and upper polariton branches by continuous wave linearly
polarized laser beams, illustrated with black spots in Fig. 1(a).
Parametric scattering can take place to the states marked by the
gray spots [17], conserving the total energy and momentum.
Accounting for σ+ and σ− spin-polarized components [36], a
total of four signal states are generated, labeled an. Interactions
between polaritons with parallel spins entangle the modes a0

and a1 as well as a2 and a3; interactions between polaritons
with antiparallel spins entangle the modes a0 and a3 as well
as a1 and a2. This gives rise to the square-type cluster state
illustrated in Fig. 1(b).

There are several advantages of this scheme. First, the signal
states lie at a point on the lower polariton dispersion with
both a decent photonic fraction and a high gradient. This is
expected to suppress contributions due to excitonic noise and
polariton-phonon scattering [37] as well as excitonic disorder,
provided the exciton inhomogeneous broadening is sufficiently
small [38]. Additionally, a high photonic fraction of the states
is important for their efficient detection [16,39]. Second,
because the signal states lie at a different energy to the pump
states, polariton scattering mediated with disorder or phonons
is strongly suppressed. This was likely a problem in previous
experiments searching for two-mode entanglement [40,41] in
planar microcavities. Additionally, surface scattering from the
incoming pump does not pollute the signal states, allowing
one to work in a reflection geometry. Third, the signal states
are easily separable by exploiting their different wave vectors
and polarizations. Fourth, we have chosen a scheme in which
the signal states have the same energy (aiding measurements
with homodyne detection), linewidth, and photonic fraction.
Finally, although two excitation lasers are required, this
represents an improvement on alternative schemes requiring
four lasers [42].

Before describing our model, it is worth noting that a
completely analogous scheme can be constructed using the
orbital angular momentum carrying modes [43] in mesa
structures in semiconductor microcavities. For example, the
modes with orbital angular momentum l = ±1 and circular
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FIG. 1. (Color online) (a) Four-mode entanglement scheme: solid
curves show the typical dispersion of lower and upper branch
polaritons, formed by the strong coupling of exciton and photon
modes (dashed curves). Parametric scattering to the modes marked
by gray circles can realize a square cluster state illustrated in (b). (c)
An alternative scheme for the creation of four-mode entanglement
can be based on the orbital angular momentum carrying modes
in a confined mesa structure. We have taken typical parameters
for a GaAs/AlAs-based microcavity, with Rabi splitting 5 meV,
cavity photon effective mass 10−5 of the free electron mass, and
an exciton-photon detuning of −3 meV.

polarization σ = ± can be arranged such that a0 = (1,+),
a1 = (−1,+), a2 = (1,−), and a3 = (−1,−), as illustrated in
Fig. 1(c). We will present a coupled-mode model in which
the four modes of the cluster state are described in a fully
quantum way. The model will be general enough such that its
conclusions hold for both the interpolariton branch scattering
in planar microcavities as well as interangular momentum
mode scattering in mesas. In mesa structures, the pumps would
be replaced with a single linearly polarized pump with no
orbital angular momentum.

III. THEORETICAL MODEL

The system is described by the Hamiltonian:

Ĥ =
∑

n

[En + 8(α1 + α2)|ψ |2]â†
nân + α1â

†
nâ

†
nânân

+α1[2ψ2(â†
0â

†
1 + â

†
2â

†
3) + 2ψ∗2(â0â1 + â2â3)

+ 4(â†
0â

†
1â0â1 + â

†
2â

†
3â2â3)] + α2[8|ψ |2(â†

0â2

+ â
†
2â0 + â

†
1â3 + â

†
3â1) + 8ψ2(â†

0â
†
3 + â

†
1â

†
2)

+ 8ψ∗2(â0â3 + â1â2) + 4(â†
0â0 + â

†
1â1)

× (â†
2â2 + â

†
3â3) + 4(â†

0â
†
3â1â2 + â

†
1â

†
2â0â3)], (1)

where En represents the bare energy levels of the signal
states; α1 and α2 represent the strength of interactions between
polaritons with parallel and antiparallel spins, respectively. â†

and â are creation and annihilation operators, respectively,
associated with the different modes labeled by n. ψ represents

the mean field of the pump states. For simplicity, the two
intracavity pump states are assumed to have equal amplitudes.
Note that this would actually require external pumps with
different intensities due to the differing photonic fractions
of the upper and lower polariton branches. We also assume
that the polarization is collinear such that the σ+ and σ−
polarized pump amplitudes are equal. The choice of collinear
polarization is important as it results in the strongest inter-
action between the two pumps. Scattering is expected to be
suppressed in a cross-polarized setup [44].

The Hamiltonian can be derived from the general two-body
interaction Hamiltonian [17] by separating out the eight spin-
polarized modes of our scheme [Fig. 1(a)] from other unpop-
ulated modes (and applying the mean-field approximation to
the pumped modes). The first line of the Hamiltonian contains
terms that arise from forward scattering processes, which cause
a renormalization of the energy yet do not directly change
the distribution of polaritons across the different modes.
These forward scattering processes include processes in which
polaritons in a given signal mode scatter with one of the pump
modes, as well as processes in which polaritons in a given mode
scatter with polaritons in the same mode (this latter process is
described by the term α1â

†
nâ

†
nânân). The second and third lines

describe scattering processes involving polaritons with parallel
spins. The second line contains parametric scattering processes
where a pair of polaritons, one from each pump, scatter to the
signal states. The reverse process is also accounted for. The
third line contains processes in which polaritons in different
signal modes interact. These are also forward scattering
processes that do not change the distribution of polaritons in
the different modes but rather contribute a renormalization of
the energy. The remaining lines describe processes involving
polaritons with antiparallel spins. The fourth line accounts
for processes where a polariton interchanges its spin with a
polariton in one of the pump states. The fifth line contains
parametric scattering processes involving a pair of oppositely
spin-polarized polaritons, one from each pump, scattering to
the signal states. The sixth line contains forward scattering
processes analogous to those in the third line, but involving
polaritons with opposite spin polarization. The last line in the
Hamiltonian accounts for a spin-flip process in which a pair
of polaritons with opposite wave vectors interchanges their
spins.

The evolution of the corresponding density matrix, ρ, is
given by

ih̄
dρ

dt
= [Ĥ,ρ] + i

�

2

2∑
n=1

(2ânρâ†
n − â†

nânρ − ρâ†
nân), (2)

where the last term represents the standard Lindblad dissipa-
tion characterized by decay rate �. Equation (2) can be solved
by expanding the density matrix over a particle number basis
in a similar way to that done in Ref. [18]; one truncates at a
given particle number and propagates in time from the vacuum
to the steady state.

An alternative method involves using the Heisenberg
equation for the evolution of operators:

ih̄
dÔ
dt

= [Ô,Ĥ] + i
�

2

2∑
n=1

(2â†
nOân − â†

nânO − Oâ†
nân). (3)
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This yields a large set of equations for the set of observables:
〈ân〉, 〈â†

n〉, 〈ânâm〉, 〈â†
nâm〉, 〈â†

nâ
†
m〉, 〈ânâmâl〉, etc. Due to the

nonlinear interaction terms in the Hamiltonian, the set of
equations cannot be closed since the evolution of a given
observable depends on a correlator of higher order. However,
in the regime of low occupancy of the modes, it is valid to
truncate the set of equations at a given order. Below, we will
show that the full result of Eq. (2), in the regime of considered
pump intensities, is very well reproduced by Eq. (3) if one
truncates after second-order correlators, 〈ânâmâl âk〉. While we
still end up with a very large set of equations, the equations
can be computer generated and the matrix of observables is
much smaller than the density matrix in the particle-number
basis, easing numerical solution.

IV. ANALYZING ENTANGLEMENT

In analogy to the Bell inequalities that were used to evidence
bipartite qubit entanglement, the violation of inequalities for
locally realistic theories can be used to evidence entanglement
between continuous variable states. Bipartite entanglement
between any pair of modes can be evidenced by violation
of the inequality [27,29]:

1 � Snm = V (p̂n − p̂m) + V (q̂n + q̂m) (4)

= 1 + 〈â†
nân〉 + 〈â†

mâm〉 − 〈ânâm〉 − 〈â†
nâ

†
m〉

+ 〈â†
n − âm〉〈â†

m − ân〉, (5)

where the variance is defined as V (Ô) = 〈Ô2〉 − 〈Ô〉2 and
p̂n and q̂n are conjugate quadrature operators, defined by
p̂n = (ân + â

†
n)/2 and q̂n = (ân − â

†
n)/(2i). It is necessary to

optimize over the phase references of the modes in Eq. (5)
(which can be changed by local operations), that is, ân �→
âne

−iφn . The minimum value of Snm is

S ′
nm = 1 + 〈â†

nân〉 + 〈â†
mâm〉 − 〈â†

n〉〈ân〉 − 〈â†
m〉〈âm〉

−
√

〈â†
nâ

†
m〉 − 〈â†

n〉〈â†
m〉

√
〈ânâm〉 − 〈ân〉〈âm〉, (6)

and the violation of the inequality 1 � S ′
nm evidences a

bipartite entangled state.
The bipartite inequalities have been generalized to the

multimode continuous variable case by van Loock and Furu-
sawa [45]. For quadripartite entanglement, three inequalities
must be simultaneously violated [42]:

I1 = V (p̂0 − p̂1) + V (q̂0 + q̂1 + g2q̂2 + g3q̂3) � 1, (7)

I2 = V (p̂1 − p̂2) + V (g0q̂0 + q̂1 + q̂2 + g3q̂3) � 1, (8)

I3 = V (p̂2 − p̂3) + V (g0q̂0 + g1q̂1 + q̂2 + q̂3) � 1. (9)

gi are arbitrary real parameters that should be chosen to
optimize the violation of these inequalities. In Ref. [42],
inequalities (7) and (9) are optimized separately over (g2,g3)
and (g0,g1), respectively. While this can be done analytically,
it does not guarantee that the gi are optimum for inequality
(8). Instead, we prefer to make a numerical optimization of the
parameters for the three inequalities simultaneously, where gi

are chosen to minimize the largest value of the set of In, that
is, Ĩ = max{I1,I2,I3}. As in the bipartite case, an additional
optimization is made by varying the phase reference of each
of the modes.
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FIG. 2. (Color online) (a) Dependence of Ĩ on the pump state
population, P0 = |ψ |2, calculated by truncated density matrices
(spots) and Heisenberg equations up to second-order correlators
(curves). Ĩ < 1 characterizes a four-mode cluster state. The different
sets of results correspond to different values of α2/α1. (b) Dependence
of the two-mode entanglement parameter S̃ for the same parameters
in (a). Parameters: h̄/� = 10 ps, α1 = 0.012 meV, and En = 0.

V. RESULTS

Figure 2(a) shows the variation of Ĩ on the pump intensity
for different values of α2/α1. We have chosen a realistic
value of the polariton-polariton interaction constant, α1, in
a GaAs/AlAs-based microcavity, which does not require any
special conditions to be achieved. The spots indicate results
from the solution of Eq. (2) over a truncated Fock basis, which
can be matched by solving the Heisenberg equations [Eq. (3)]
for the set of field correlators up to second order (shown by
the solid curves). The relative difference between the two
approaches is of the order of a few thousandths of a percent
and shown in Fig. 3(a). The extremely small differences when
solving the set of field correlators up to third order are also
shown. To achieve multimode entanglement requires α2 �= 0.

It is well known that the exchange interaction between exci-
tons provides the dominant mechanism [46,47] for polariton-
polariton interactions, which causes a strong repulsion be-
tween polaritons with parallel spins, represented by α1 > 0.
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FIG. 3. (Color online) (a) Relative difference between Ĩ cal-
culated with truncated density matrices and Ĩ calculated with the
Heisenberg equations up to second- [green (light gray)] or third- [blue
(dark gray)] order correlators. The parameters were the same as in
Fig. 2. (b) Variation of Ĩ [blue (dark gray)] and S̃ [green (light gray)]
with α2 for a fixed pump intensity (P0 = 10 on the scale of Fig. 2). As
in Fig. 2, the calculations using truncated density matrices are shown
by spots and those with Heisenberg equations up to second-order
correlators are shown by the curves. The other parameters were the
same as in Fig. 2.
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However, the mechanism is suppressed for polaritons with
opposite spins, since it causes scattering to dark states, which
are split in energy. For this reason, one expects |α2| < α1 [48].
The exact value of α2 seems to vary between samples and
values ranging between α2 = −α1 [49] and α2 = 0.4α1 [8]
have been reported. Multimode entanglement can be achieved
for both positive and negative values of α2; however, it is more
clearly evidenced for α2/α1 ≈ ±0.25. Figure 3(b) illustrates
the variation of Ĩ for a fixed pump intensity. The abrupt
changes in the slope of the curve for some values of α2

correspond to crossovers in the inequality determining Ĩ (that
is, which of I1, I2, and I3 is the largest after minimization
of Ĩ ).

Figure 2(b) shows the corresponding value of the param-
eter S̃ = max{S ′

01,S
′
12,S

′
23,S

′
30}, which was calculated using

Eq. (6). This parameter shows that ordinary bipartite entangle-
ment is present between pairs of modes and exhibits a similar
dependence on the parameters as Ĩ . The variation of S̃ with α2

for a fixed pump intensity is also shown in Fig. 3(b).
We would like to stress that the signal states are in the

low occupation regime, which can be seen from Fig. 4(a). For
this reason, additional parametric scattering processes such
as those in Ref. [9] are not stimulated, since we are much
below threshold. Even if these processes were to occur, energy-
momentum conservation would match them to a different state
than our pump state at the bottom of the lower polariton branch
[see Fig. 1(a)]. That is, our signal states are sufficiently far from
the magic angle [9]. It is therefore also not possible for our
pump state to trigger such parametric scattering processes.

An important question that should be asked when thinking
of quantum effects in nanostructures is the significance of
pure dephasing, which is associated with exciton-phonon
scattering. Theoretically, pure dephasing can be accounted for
by adding the term

ih̄
dρ

dt

∣∣∣∣
pure deph

= i�P

2

∑
n

(2â†
nânρâ†

nân − â†
nânâ

†
nânρ − ρâ†

nânâ
†
nân) (10)

to the right-hand side of Eq. (2). The effect of this term on the
parameters Ĩ and S̃ is shown in Fig. 4(b). Following Ref. [50],
a realistic estimate of the dephasing is �P = 0.2 μeV. In
our scheme, entanglement is very robust against this level
of dephasing, requiring a dephasing strength over two orders
of magnitude higher to be broken.

One may also consider the effects of nonlinear loss [17]
or background photoluminescence (due to phonon-assisted
scattering). We note that we operate at low intensities such that
the former should not be a problem. Phonon-assisted scattering
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FIG. 4. (Color online) (a) Dependence of the average signal oc-
cupation, 〈â†

nân〉, on the pump state population, P0 = |ψ |2, calculated
by truncated density matrices (spots) and Heisenberg equations up to
second-order correlators (curves). (b) The effect of pure dephasing on
Ĩ [blue (dark gray)] and S̃ [green (light gray)], for α2 = −0.25α1 and
a fixed pump intensity (P0 = 10 on the scale of Fig. 2). As in Fig. 2,
the calculations using truncated density matrices are shown by spots
and those with Heisenberg equations up to second-order correlators
are shown by the curves. The parameters were the same as in Fig. 2.

is reduced for wave vectors at and below the bottleneck
region in planar microcavities, where our signal states lie, and
fully suppressed in mesa structures. In addition, background
photoluminescence does not destroy entanglement [51] and
could be further suppressed in a pulsed excitation scheme.

VI. CONCLUSION

The generation of multimode cluster states is the chal-
lenging step toward the development of one-way quantum
computers. We have considered the use of a semiconductor
microcavity for the generation of a four-mode continuous
variable cluster state, by exploiting the spin degree of freedom
of polaritons together with either interbranch scattering in
planar systems or scattering between orbital angular momen-
tum carrying modes in mesas. The system can be described
in a coupled quantum mode model using density matrices
in a truncated Fock basis or the Heisenberg equations for
a truncated set of field correlators. These two methods give
matching results for low excitation density, which evidence
four-mode entanglement by violation of the van Loock–
Furusawa quadripartite inequalities. Such entanglement sur-
vives a realistic strength of pure dephasing.
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69, 031802(R) (2004).

[13] S. Savasta, O. Di Stefano, V. Savona, and W. Langbein, Phys.
Rev. Lett. 94, 246401 (2005).

[14] S. Savasta, R. Girlanda, and G. Martino, Phys. Status Solidi A
164, 85 (1997).

[15] P. Schwendimann, C. Ciuti, and A. Quattropani, Phys. Rev. B
68, 165324 (2003).

[16] J. P. Karr, A. Baas, and E. Giacobino, Phys. Rev. A 69, 063807
(2004).

[17] C. Ciuti, Phys. Rev. B 69, 245304 (2004).
[18] A. Verger, C. Ciuti, and I. Carusotto, Phys Rev. B 73, 193306

(2006).
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