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Linking bottleneck clogging with flow kinematics in granular materials:
The role of silo width
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We demonstrate experimentally that clogging in a silo correlates with some features
of the particle velocities in the outlet proximities. This finding, that links the formation
of clogs with a kinematic property of the system, is obtained by looking at the effect
that the position of the lateral walls of the silo has on the flow and clogging behavior.
Surprisingly, the avalanche size depends nonmonotonically on the distance of the outlet
from the lateral walls. Apart from evidencing the relevance of a parameter that has been
traditionally overlooked in bottleneck flow, this nonmonotonicity supposes a benchmark
with which to explore the correlation of clogging probability with different variables within
the system. Among these, we find that the velocity of the particles above the outlet and
their fluctuations seem to be behind the nonmonotonicity in the avalanche size versus wall
distance curve.
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I. INTRODUCTION

When a many-body system passes through a bottleneck, the development of blockages may
lead to flow intermittencies that eventually end up in a complete arrest of the flow. This clogging
phenomenon appears in many different systems with typical sizes ranging over several orders of
magnitude. At very small spatial scales, clogging leads to intermittent flow when a dense suspension
of microbes [1] or microparticles [2–4] passes through a constriction in a microchannel. Clogging is
also behind dramatic cases of deaths when crowds in panic are evacuated through small emergency
exits [5]. On an intermediate scale, clogging of granular materials in narrow conduits and silos
supposes an hindrance as its occurrence may completely arrest a production line.

Clogging in all these different systems shares strong similarities [6] and, in the past years,
its noteworthy importance has lead to a significant advance in its understanding. This has been
especially notable for the case of inert grains within a silo, a system which has been traditionally
used as a reference to compare other, more complex, scenarios. Typically, clogging is characterized
by avalanche size statistics, where avalanche sizes are defined as the number of beads that flow out
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of the silo from the destruction of a clogging structure until the development of a new one. From
the pioneering work of To in 2001 [7], we know that this magnitude grows abruptly with the outlet
size [8–11]. It has also been proven that, for a given outlet size, the avalanche size distribution
decays exponentially [12], indicating a constant probability of clogging over the whole avalanche
duration [11–14]. Apart from these findings, the development of blockages was reported to be
affected by the packing fraction above the orifice, which may determine the probability that a given
number of particles meet above the outlet [15]. The placement of an obstacle above the orifice can
prevent clogging if its position is appropriately selected [6]. Other variables that have been shown to
affect clogging are orifice geometry [16,17], particle shape [18–20], particle polydispersity [21], and
gravity [22–24]. Nevertheless, we are not aware of any work looking at the influence of the width of
the silo, a variable that in most of the existing experiments and simulations remains uncontrolled.

In this work, we aim to explore the role of the lateral walls on silo clogging. To this end, we
have performed experiments and simulations of a two-dimensional silo in which we set the outlet
and particle size, and we vary the distance of the lateral walls to the orifice. Our findings reveal that
this parameter affects the mean avalanche size in a complex manner, evidencing a correlation with
some features of the flow of grains in the outlet proximities. This result suggests that the ambition
of correlating clogging with a kinetic property of the flow [25] is achievable.

II. EXPERIMENTAL SETUP

The experimental apparatus consists of a two-dimensional rectangular silo similar to the one
described in Ref. [10], as shown in Fig. 1. The silo is 800 mm high and is made of two glass sheets
separated by two vertical stripes 1.0 mm thick that also act as lateral walls. The distance among
these two stripes determines the width of the silo W . The bottom is flat, being formed by two facing
metal pieces which are slightly separated, giving rise to the outlet. In this work, the outlet is always
at the center of the silo (±0.2 mm) and its size (D = 4.32 ± 0.02 mm) is fixed by gluing the metal
pieces to the supporting bench. The granular sample consists on monodisperse stainless steel beads
with mass 4.00 ± 0.01 mg and diameter of d = 1.00 ± 0.01 mm. These grains are poured into the
silo along its whole width, through a hopper at the top, conforming a monolayer. After the silo
filling, grains start to flow freely through the outlet until an arch is formed and stabilized. When
this occurs, the avalanche size is measured, in number of beads, using a balance placed below the
orifice. Then, the flow is restarted by blowing a jet of compressed air aimed at the orifice. The silo is
refilled whenever the level of grains falls below 300 mm. For the case of narrow silos, this 300-mm
level is kept constant by means of an intermediate hopper structure that allows a continuous refilling,
which has been checked to have no effect on the development of clogging. In this way, around 2000
avalanches were registered for each of the 13 different values of W investigated.

For several of these silo width configurations, 10 movies of the region above the outlet
were recorded at 2000 frames per second during 4 s. Importantly, the videos were always
recorded during the avalanche, avoiding flow interruptions. From these recordings we obtained the
positions of the particles, which were thereafter used to calculate space-time averaged magnitudes
[26,27]. Specifically, the two-dimensional solid fraction φ and velocity v values were attained by
implementing a coarse-graining technique [28,29]:

φ(�r,t) = AP

N∑

i=1

�[�r − �ri(t)], (1)

�v(�r,t) = AP

N∑

i=1

�vi�[�r − �ri(t)]/φ(�r,t), (2)

where AP is the two-dimensional (2D) projected area of the particles, N is the number of them, and
�[�r − �ri(t)] = [1/2πω2]exp(−|�r − �ri(t)|2/2ω2) is the coarse-graining function, a Gaussian whose
rms, ω, was set to the particle radius in order to minimize the strong dependence of the averaging
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FIG. 1. Photographs of the two-dimensional silo. W is the silo width; D = 4.32 mm is the outlet length;
d = 1.00 mm is the particle’s diameter; and H = 800 mm is the height of the silo. The origin of the Cartesian
coordinate system has been set at the center of the exit orifice.

domain size observed for larger values [30]. Then, mean fields φ(�r) and �V (�r) were calculated by
time averaging throughout all the temporal sequences in each experimental condition. Analogously,
a magnitude that accounts for the local velocity fluctuations, which is proportional to the trace of the
recently introduced kinetic stress tensor [27], was computed in the two-dimensional projection as

σ k(�r,t) = AP

N∑

i=1

(
v′2

ix + v′2
iz

)
�[�r − �ri(t)], (3)

where v′
ix and v′

iz are the two components of the vector �v′[�ri(t)] = �v[�ri(t)] − �V [�ri(t)]. Finally, the
temporal average of σ k(�r,t) is calculated, which will be named σ k(�r).

In addition to the two-dimensional experiments, some tests have been implemented using three-
dimensional (3D) silos. The setup is the one already used in Refs. [8,12]. The silos were made
with stainless steel cylinders 500 mm high and with different diameters W3D (see Table I). The
bottom of the silo is a flat disk with a circular hole in the center which, in this work, has a fixed
diameter of D3D = 26.35 ± 0.05 mm. The particles were delrin spheres with mass 0.360 ± 0.001 g
and d3D = 8.00 ± 0.01 mm diameter. Therefore, the rescaled outlet size is D3D/d3D = 3.29. The
experimental procedure is the same than for the two-dimensional case; i.e., a balance at the bottom
detects the avalanche weight and a blower destroys the clogging arches to trigger a new avalanche.
The silo is also refilled whenever the level of the grains falls below 300 mm.
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TABLE I. Mean avalanche size (in number of particles) and 95% confidence interval obtained in four three-
dimensional silos with different diameters W3D and the same outlet size (diameter D3D = 26.35 ± 0.05 mm).
The particle diameter is d3D = 8 mm so the rescaled outlet size is D3D/d3D = 3.29.

W3D 36 mm 46 mm 80 mm 150 mm

W3D/d3D 4.5 5.75 10 18.75
〈s〉 >104 72.5 139.6 221.0
IC95 4.2 8.7 13.1

III. NUMERICAL SIMULATIONS

Apart from the experiments, we performed numerical simulations of the discharge of inert
grains from a silo by gravity, following the same procedure as in Refs. [23,24,31]. We use soft-
particle molecular dynamics simulations of monosized disks in two dimensions. The restoring force
in the normal direction of collision depends linearly on the particles overlap ξ = d − rij , with
stiffness kn = 105(mg/d), where d = 1 mm is the particle diameter, m = 1 is the mass, and rij is the
distance between the centers of the particles. Additionally, there is a dissipative force proportional to
the relative normal velocity of the colliding grains, with damping parameter γn = 300(m

√
g/d). We

implement static friction by placing a spring in the direction tangential to the normal joining the
centers of the particles. The elongation of this spring is obtained by integrating the relative velocity
of the surfaces in contact. The parameters are kt = (2/7)kn and γt = 200(m

√
g/d). The friction

coefficient is set to μ = 0.5. The number of particles varies from around 800 for the narrowest silo
to more than 8000 for the widest.

The simulation protocol is as follows: A flat-bottomed rectangular silo is filled with grains which
fall freely from a height much larger than their size. The side walls of the container are smooth,
while the base is formed by fixed grains at mutual distances of 0.5d. Once all grains in the silo came
to a rest, a hole is opened at the center of the base and the particles start to flow. The fallen grains
are reinserted at the top of the silo in order to keep a constant height of the granular layer. A clog is
detected when the kinetic energy of the system falls to the value it had before opening the hole (the
difference amounts to several orders of magnitude) and remains under this value for 20 000 time
steps. Then, the avalanche size (measured in number of particles) and duration are registered and
the flow is resumed by removing three of the grains forming the blocking arch.

IV. RESULTS

The first experimental results presented are about the statistics of the avalanche sizes (measured in
number of grains). In all the cases, for a given experimental condition, the avalanche size distribution
has an exponential tail (not shown). Then, the first moment of the distribution, 〈s〉, is represented vs
the silo width [Fig. 2(a)]. Unexpectedly, the dependence upon these parameters is nonmonotonic,
displaying a minimum around 15–18 particle diameters. In order to rule out any uncontrolled
experimental artifact, we implemented numerical simulations that revealed the same trend [Figs. 2(b)
and 2(c)]. Undoubtedly, the avalanche size is minimum (and the probability of clogging maximum)
for a silo width of 15–20 particle diameters. In addition, quantitative comparison of results displayed
in Fig. 2 evidences the well-known strong effect that the outlet size has on the mean avalanche size
[7–11], which is much stronger than that of the silo width. This issue impedes us from finding a
dimensionless parameter that includes both W and D and collapses all the curves. To check if the
nonmonotonic behavior is also present in three-dimensional silos, we have performed experiments
with four different silo diameters (W3D). The outcomes are summarized in Table I. Clearly, for
values of W3D/d3D above 5.75 the avalanche size grows with the silo width. Also, when the silo
becomes very narrow (i.e., W3D/d3D = 4.5), the avalanche size grows abruptly, up to the point that
no clogging is observed after the discharge of more than 104 grains.

084304-4



LINKING BOTTLENECK CLOGGING WITH FLOW . . .

FIG. 2. Average avalanche size 〈s〉 in number of beads (#) versus silo width W rescaled by the particle size
d . Results are presented for (a) experiments for an outlet size of D/d = 4.32, (b) numerical simulations for
D/d = 4.2, and (c) numerical simulations for D/d = 5.0. In all cases, the particle diameter is d = 1.00 mm.
Error bars indicate 95% confidence intervals. Note the lin-log scale.

Once we have shown that the nonmonotonicity of the avalanche size with the silo diameter
is something generic, occurring for different outlet sizes and in two and three dimensions, we
will focus on the 2D experiments, where we analyze several properties of the flow of grains

FIG. 3. Dependence of the flow rate 〈q〉 (measured in grains per second) on the rescaled silo width W/d

(note the lin-log scale).
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FIG. 4. Probability distribution function (pdf) of the instantaneous flow rates q normalized by 〈q〉 for
different rescaled silo widths W/d as indicated in the legend. The values of q are obtained by counting the
number of particles passing through the outlet in temporal windows of 200 ms.

through the bottleneck. The first one is the flow rate (Fig. 3), which seems to behave monotonically,
increasing around 20% as the silo becomes narrower. By looking at the flow rate in small temporal
windows (which we name instantaneous flow rate q) we can obtain the fluctuations of this magnitude
(Fig. 4). Interestingly, for silo widths going from W = 10 mm to W = 42 mm (around the value
corresponding to the minimum avalanche size), we observe the appearance of long tails toward
small values of q, indicating that the intermittencies become more important. These long tails are
not present for very narrow and wide silos, hence corroborating the existence of a relation between
clogging and flow rate intermittencies [32,33].

The next step was to experimentally characterize, in the exit proximities, the solid fraction,
velocity, and σ k . The fields for six different silo widths are shown in Fig. 5. Reducing W leads
to a decrease of packing fraction in the lateral sides of the outlet, which seems to be related with
a destabilization of the natural hopper that forms when the silo is wide enough. Also, as the silo
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FIG. 5. Experimental fields of (a) two-dimensional packing fraction, (b) velocity, and (c) σ k in the outlet
proximities for six silo widths as indicated at the top. The maps have been obtained from the particle positions
and velocities after applying an averaging coarse-graining technique. For comparison, the same color-bar scales
have been used in all cases.

narrows, the presence of the lateral wall near the orifice induces an increase of the vertical velocity
at the center of the silo. Finally, the fields of σ k corroborate that the maximum values take place
at an archlike region [29]. Noteworthy, as the silo width decreases, σ k increases, but also the arch
shape becomes distorted.

Aiming to quantify these variables with more depth, we represent the solid fraction and vertical
velocity versus the height within the silo, z, for a thin slice centered with the orifice, x = 0 (Fig. 6).

FIG. 6. (a) Packing fraction, φc, and (b) vertical velocity, vzc, at the center of the silo (x = 0) versus the
height z from the silo bottom. Experimental results are shown for six different silo widths as indicated in
the legend. In panel (c), the value of vzc for z = 4 mm is plotted vs the silo width. In panel (a) some values
marginally above the densest possible 2D packing are obtained due to slightly 3D arrangements.
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FIG. 7. (a) Position of zc, the local maximum of σ k as a function of the distance to the center of the outlet
x for different silo widths as indicated in the legend. (b) Experimental values of σ k in the positions zc shown in
panel (a). (c) Difference 	 between the maximum of σ k (for x ≈ 2 mm) and the local minimum (at x ≈ 0 mm)
versus silo width. Note the lin-log scale.

Interestingly, φ does not show any clear trend that can be related with clogging. On the contrary, the
velocity of the grains when z > 3 mm displays a nonmonotonic behavior that coincides with that
of Fig. 2, being vz minimum for W = 18 mm [Fig. 6(c)]. This correlation might be related to the
fact that as the kinetic energy of the particles when they form an arch increases, the more difficult
it is for this structure to become stabilized, as suggested in Ref. [34] and numerically observed in
Refs. [23,24].

Having discovered this possible relationship between clogging and particles velocity, it seems
pertinent to further investigate other kinetic variables such as σ k . In Fig. 7(a), we report the height zc

at which the maximum value of σ k develops for each horizontal position, x. Clearly, this maximum
has a characteristic arch shape [29], which seems to be independent on the silo width. In Fig. 7(b), the
magnitude of σ k in the arch region is plotted as a function of x. The first noticeable result is that the
maximum σ k always develops at the arch base (x = ±2 mm), whereas there is a local minimum at
the center of the arch. Both magnitudes (the maximum and the minimum) monotonically reduce with
the silo width. Therefore, this behavior can be connected with the strong reduction of avalanche size
and flow rate observed with W for narrow silos but not with the further increase of avalanche size
observed for wider ones.

FIG. 8. Difference 	 between the maximum of σ k (for x ≈ 2 mm) and the local minimum (at x ≈ 0 mm)
vs the average avalanche size 〈s〉 (in number of beads). The arrow indicates the sense in which the silo width
W increases.
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Nevertheless, looking with more detail to the plots of Fig. 7(b), we observe that the 18-mm-wide
silo (the one with the maximum probability of clogging) is the one in which σ k is more homogeneous
along the arch. In order to obtain a simple measure of the σ k inhomogeneity along the arch, we have
calculated 	, the difference in σ k between x = 0 and x = ±2 mm. This magnitude is represented
versus the silo width in Fig. 7(c), evidencing a strong resemblance with Fig. 2 and suggesting that
the homogeneity of σ k in the arch region is important to clogging development. This is confirmed
by plotting 	 vs 〈s〉 as in Fig. 8. Effectively, an increase of the mean avalanche (reduction of
clogging probability) is associated with an enhancement of σ k inhomogeneity. Nonetheless, it is
clear that there is not a one-to-one 	 − 〈s〉 correspondence; indeed, at both sides of the minimum
the relationship is different as, for the same increase of 〈s〉, the growth of 	 is more important for
small values of W .

V. CONCLUSIONS

In summary, we have shown a previously unnoticed dependence of bottleneck clogging on silo
width. The effect of this parameter is rather strong for narrow silos (where clogging increases with
width) becoming weaker as the silo gets wider. In this region, clogging reduces with width, giving
rise to a nonmonotonic behavior. This is associated with the effect that the silo width has on the
velocity of grains in the region of arch formation and also with some features of the variance of the
instantaneous velocity of the particles (which is proportional to the kinetic stress): Clogging is more
likely when its magnitude is smaller and more homogeneous along the arch region.

Although more work is necessary to confirm this result for other silo widths and to unveil the
origin of the changes in the kinematic variables, the importance of our findings is twofold. On the
one hand, we connect clogging probability with a kinematic property of the flow of grains through
the bottleneck; this suggests that analyzing the flowing regime can be used to predict whether or not
an eventual arrest of the flow will develop. On the other hand, we prove the importance of silo width
on clogging. It seems reasonable to think that the applied relevance of this finding is marginal, as
most of real silos are wide enough to be in the asymptotic limit. Nevertheless, there are many other
systems—such as particle rafts [35], pedestrian flows [36], and colloids [37]—where, commonly,
the distance to the walls in the enclosure previous to the bottleneck is small and is therefore expected
to affect clogging. Moreover, for the case of very narrow silos, this work raises new questions, such
as if a small asymmetry of the outlet position is able to further prevent clogging or whether there is a
smooth transition to a situation where the silo width equals the outlet size, i.e., the case of clogging
in pipe flow [38,39].
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