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Finite-size effects in transcript sequencing =
count distribution: its power-law correction
necessarily precedes downstream
normalization and comparative analysis
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Abstract

Background: Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes| have
specifically singled out the Zggaw, the observed distributions often deviate from a single power-law slope. |
hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite
observations, real world observations are finite where the finite-size effects will set in to force a power-law
distribution into an exponential decay and consequently, manifests as a curvajwearyimg exponent valyésa
log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing
mathematical moments (e,gnean, variang@nd creates heteroskedasticity which compromises statistical riggr in
analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly
been examined and quantified.

Results:The anecdotal description of transcript abundance being almoss Epif-like distributed can be
conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to
the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since
sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS
(Next-generation sequentidgtasets: an in-house generated dilution miRNA study of two gastric cancer cell lines
(NUGC3 and Alz&hd a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of
sequencing count data from Zigflaw and issues of reproducibility in sequencing experiments. Secondly, it
manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a
straightforward power-law correction that restores the distribution distortion to a single exponent value can
dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the
statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization
methods. Most importantly, the power-law correction improves concordance in significant calls among different
normalization methods of a data series averagely by 22%. When presented with a higher sequendetidegsh
differende the improvement in concordance is asymmetrida¥{ for the higher sequencing depth instarsas
13% for the lower instah@ad demonstrates that the simple power-law correction can increase significant
detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions
and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis.
(Continued on next page)
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Conclusions:The finite-size effects due to undersampling generally plagues transcript count data with
reproducibility issues but can be minimized through a simple power-law correction of the count distribution.| This
distribution correction has direct implication on the biological interpretation of the study and the rigor of the
scientific findings.

Reviewers:This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

Keywords: Finite-size effects, Nyquist sampling criterion, Aliasing noise, Pareto distribusideZifranscript
abundance, Sequencing, Normalization, Heteroskedasticity

Author summary heterogenous cell type (i.ethe slope tends to be slightly
In the grand scheme of things, the fundamental issue oflower than 1.Q [4]. However, there exists a caveat to the
reproducibility has a long-term implication on scientific power-law association: the observed power-law distribu-
rigor in this fast-paced OMICS-frenzy era. Since tech-tion of transcript abundance is usually imperfect in that
nology is not always WYSIWYGWAhat you see is what it deviates from a single parameterized power-law slope.
you ge}, it is important to validate our observations By far, it has been unclear if this deviation is either re-
against some theoretical basis. For transcriptomic anaflective of the underlying true distribution or indicative of
lysis, the lack of reproducibility is often hinted by the some inherent biases in terms of library size/sequencing
high discordance among normalization methods in adepth [8], transcript lengths ] and GC contents 1(] in
typical comparative analysis workflow given the samethe physical or technological process that generates the
data set. Since important conclusions are often madeobservations. In our best understanding, the implications
based on these NGS-derived exploratory results, improv-of the power-law deviation in transcript abundance has
ing the reproducibility of the sequencing outputs be- never been truly examined in current literature. Presum-
comes instrumental and ever more so since mostably, most researchers deem this deviation to have min-
bioinformatics analysis seldom bridge the gap betweerimal effects on the downstream pre-processing steps like
the exploratory finds and the true molecular actuators read mapping, normalization and statistical analysis. How-
via the formal arguments of underlying molecular mech- ever, it is clear that there is no general consensus on the
anisms. The latter is especially critical for clinical diag- pre-processing of RNA-based sequencing data but rather

nostics applications. best practices 11], with the normalization step contribut-
ing to the largest variation in the workflow performance
Background [12-14].

Despite some cautionary notes on the generalization of In retrospect, all power-laws of critical phenomena are
power-law on natural phenomenal], cell transcript derived asymptotically under the conditions of infinite ob-
abundance has often been theorized as originating fromservations. In the real world, observations are finite and,
the family of power-law distributions 2]. Typically visu- therefore, the deviations from asymptotic power-law is to
alized in terms of histogram or rank-frequency plot, be expected in finite systems. The latter, which is known
transcript abundance distribution seems to follow the as finite-size effects, will force an observed power-law dis-
extreme value theory where only a couple of genes ardribution into an exponential decay and presents itself as a
highly-expressed while the rest are relatively lowly-curvature in the log-log plot L5. Pertaining to the nature
expressed. Earlier works on modelling SAGE-derivedsystem that governs the cell transcript abundance, the crit-
(serial analysis of gene expressidranscript abundance ical question is to clarify if the observed power-law devi-
from vertebrates to lower eukaroytes have specificallyation is truly the result of the finite-size effects and not
singled out the power-law distribution, namely Ziplaw because the underlying distribution cannot be simply de-
[3-7] where the slope of a power-law equation is about scribed by power-law16, 17].

1 on a log-log scale. Originating from information the-  The implication here is that if transcript abundance is
ory, this slope describes the ideal compromise betweertruly power-law distributed, its deviation or curvature
the sender and receiver as ti®rinciple of Least Effort  on the log-log plot translates to varying exponent values
steep line represents a smaller and repetitive vocabularyvhich, in turn, signifies the changing mathematical mo-
while a shallower slope represents a larger and more difments (i.e, mean, variance, skewness, kurtpsisthe dis-
verse vocabulary. As such, Zipf statistic evaluates thdribution. Overall, this will manifest as heteroskedasticity
balance between redundancy and diversity. Remarkably(j.e, unequal variance within the datpamong the ex-
Zipf's law seemingly holds for most normal tissues ofperimental replicates. Heteroskedasticity brings about
homogenous cell type and also approximately for thetwo issues: Firstly, it introduces both bias and unequal
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variance to the data and poses additional difficulty to (44.6% +4.91% versus 76.25% * 1.78%) while it was 13%
normalization methods where a good method aims to (51.88% + 7.26% versus 64.39% * 3.65%) for the lower
reduce variance without increasing biad§]. Secondly, depth instance. Finally, power-law correction statistically
heteroskedasticity will bias test statistics since Type lenhances the biological context of the experiment and elu-
and Type Il error increases with underestimated and cidates the multiple metastatic signatures of the NUGC3
overestimated standard errors respectively as a consezell line in the dilution study of two gastric cell lines.
guence of unequal variancel, 20].

In this work, we derived a generalized concept wherebyResults and discussion
the anecdotal description that transcript abundance se-Finite-size effects introduces curvature in sequencing
quencing count data is almost Zifg law-like distributed count data distributions, impacts the reproducibility of
can now be objectively quantified by the Pareto power-lawthe experiment and brings about heteroskedasticity
distribution via its mathematical moments and how the among experimental replicates
distribution can be rendered mathematically imperfect Two miRNA sequencing datasets composed of technical
when subjected to the finite-size effects in the real world;replicates were being examined; The choice of miRNA is
a manifestation of the aliasing noise when undersamplingdeliberate to avoid both transcript length bias9] and
occurs. Our formalism concurs well with our empirical abundance quantification 21] as confounding factors.
analysis of two modern day NG3\ext-generation sequen- The first miRNA set is the background count data of a
cing datasets: an in-house generated dilution miRNA spike-in experiment from a published studyGEO data-
study of two gastric cancer cell linedNUGC3 and AG$ set: GSE67074that contains 12 replicates 1[1]; The
and a publicly available spike-in miRNA data; Firstly, the original authors BWA-mapped counts were used. The
finite-size effects causes deviations of sequencing courdecond set is an in-house generated dilution series of
data from Zipfs law and the issues of reproducibility is- two gastric cancer cell lines - AGS and NUGC3XSée
sues in sequencing experiments that seems inescapabheethods for details: The dilution datasd22]). In this
despite the advancement in sequencing technology sinceection, only the Bowtiel-mapped NUGC3 set of 8 tech-
sampling is finite in the real world. Secondly, finite-size ef- nical replicates that spans across 4 concentration points
fects manifests as heteroskedasticity among experimentasf 12pM, 6pM, 3pM and 1.5pM was used. The varying
replicates to create statistical woes. concentration design aims to simulate the different se-

Collectively, this justifies for a simple restoration of quencing depth (i.. the total mapped reads that
the sequencing count data towards a power-law distribu-mimics a system of various sizes to study its finite-size
tion with a single exponent value, herein as power-laweffects SeeAdditional file 1: Figure S1).
correction, to reduce sample variance of lower transcript Given that these datasets are made up of replicates, a
counts towards homoskedasticity for improved statistical simple intra-sample scaling where the counts of each
outcomes. When this method was evaluated in a typicalreplicate is divided by the maximum count of the same
NGS comparative analysis workflow that entails (i) readtranscript within the replicate, will suffice. Furthermore,
mapping/count quantification (ii) pre-filtering of the instead of visualizing Zigé law distribution with rank-
zero counts across conditions (i) normalization and (iv) frequency graphs, the Pareto distribution plots were
the statistical testing, the signal-to-noise ratiGNR of used See methods for details: Transformation between
the workflow improved by 50% after power-law correc- rank-frequency and Pareto distributign This has the
tion. In turn, this higher SNR translates to an increase in added advantage of characterizing the sequencing count
statistical and detection sensitivity by approximately 30%data with the mathematical moments (i.emean, stand-
in the dilution analysis regardless of the mapping andard deviationg of the Pareté& density function that is
normalization methods used in the evaluation. Most im- lacking in a typical Zigs law plot.
portantly, the power-law correction addresses a long- Figurelaandb depict the cumulative histograms, spe-
standing issue of discordance in the comparative analysisifically the Pareto distribution plots of the scaled counts
workflow, particularly attributed to the variations among from the spike-in background and NUGC3 dilution
different normalization methods 12-14]. Using the dilu- dataset §ee methods for details: Property of Type | Pa-
tion study, the increase in concordance rate was averfeto distribution). The plots are segmented into its ap-
agely 22% from the baseline rate of (48.24+7.07)% tpropriate highest-count to lowest-count linear ranges
(70.32+£6.72)% upon power-law correction. When abased on an order of magnitude per segmerseé verti-
higher sequencing depth is presented, power-law correccal dotted lines across horizontal ajidn both cases, the
tion can extract the additional information content to highest-count segments approach the Zipflaw Eee
increase significant detection. Specifically, in the dilution dashed black lingwhich has a characteristic slope of1.
analysis, the higher sequencing depth instand®y four Beyond that, the slope values generally decreased and fin-
times highey has an increase concordance rate of 32%shed with an inflection for the lowest-count segments.
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Fig. 1 Pareto distributions and scatterplots of spike-in background and dilution dagaaetkb give the Pareto distribution plots of the scaled
background counts from the spike-in background and NUGC3 dilution dataset respectively. Both plots are segmented into the highest{count to
lowest-count regions based on an order of magnitude per segnses yertical dotted lines across horizontal@giserally, Zipflaw (i.e.slope
of 1) holds well for the highest-count segmertsaandd give the scatterplots of the highest sequencing depth replicate against the rest far the
spike-in background and NUGCS3 dilution dataset respectively. Both plots exhibit the hallmark of tisenfhetmatical moments where a
change in variance is perpetuated by a change in the power-law exponent. The noise that plagued the low and lowest-count segmentg, serves
to highlight the instability of the replicated count values when the corresponding power-law mathematical moments stem not only from{low

exponent values but of non-comparable magnitude as well

While there is a general convergence of slope values To further emphasize, the scatterplots of the scaled
from the highest-count to the mid-count segments, a counts for the 11 replicates of the spike-in background
specific divergence for the low and lowest-count seg-set against the replicate with the highest total reads were
ments can be readily seen. In the case of the dilutionexamined in Fig.1c. Concurrently, Fig.1d depicts the
set, its divergence is more exaggerateak (marked by scaled count of the 7 NUGC3 replicates of the dilution
the split-end pattern) as a consequence of a more de-set against the NUGC3 12pM sample with the highest
liberate sequencing depth differences among the repli-total reads. Similar segmented ranges are also superim-
cates. The latter marks the effects of the finite-sizeposed on these figures. Complementing Fitic and d,
effects which plays a major role in the reproducibility the regression slope of the power-law fit, the total num-
of the observed distributions. ber of points, the observed and expected standard devi-
Meanwhile, the trend towards changing slopes alongation of each segmented range were computed and
the count segments indicates a general deviation from ecomplied in Table1. Of particular importance is the ex-
single power-law exponent. Based on the mathematicapected standard deviation which projects the expected
moments of the Pareto distribution (Egs. 3 and 4), expo-heteroskedasticity of the replicate noise across the count
nent values of below1” indicates asymptotically infinite segments. It is extrapolated from the observed standard
moments. The consequence of these infinite moments isdeviation of a reference count segment after accounting
that their empirical estimates can converge very slowlyfor the slope differences between the reference segment
due to the frequent occurrences of extreme valuez3] and the other segmentsSeeTable 1 legend for further
When coupled with the changing exponents along the explanation).
count segments, heteroskedasticity (j.ainequal error Essentially, the observed heteroskedasticity seen in the
variance among the replicates can be expected from theFig. 1c and d exhibits the hallmark of the Parete math-
imperfect power-law distributions. ematical moments where a change in variance is
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Table 1 Summary of analysis for spike-in background and NUGC3 dilution datasets

Datasets
Spike-in background (UHR) Dilution (NUGC3)
Fitted Fitted
slope s | No.of slope s | No.of
Index/ Range points, Observed Expected points, Observed Expected
Description to/dn | %) | 0,06™ | o o7 to/dn | n (%) | 0,6™ | g 0™
-0.92 24 -0.89 24
-0.5,0.0 | #0.049 (0.3) 0.0669 0.0787 +0.073 (0.6) 0.0154 0.0455
1/Highest- -0.94* 72 -1.25* 48
Count -1.0,-0.5 | #0.049 (0.8) 0.0780 0.0780 +0.079 (1.2) 0.0382 0.0382
-0.77 168 -0.85 160
-1.5,-1.0 | +0.029 (1.8 0.1016 0.0863 +0.022 (4.1) 0.0475 0.0465
2/High- -0.59 204 -0.61 224
Count -2.0,-1.5 | +0.011 (2.2) 0.0886 0.0984 +0.009 (5.7) 0.0450 0.0547
-0.40 324 -0.42 296
-2.5,-2.0 | #0.010 (3.5) 0.1100 0.1191 +0.006 (7.5) 0.0491 0.0659
3/Mid- -0.45 528 -0.32 352
Count -3.0,-2.5 | #0.009 (5.6) 0.1049 0.1129 +0.004 (8.9) 0.0692 0.0753
-0.36 756 -0.29 400
-3.5,-3.0 | +0.006 (8.1) 0.1077 0.1259 +0.003 (10.2) 0.0980 0.0803
4/Low- -0.36 1008 -0.27 508
count -4.0,-3.5 | #0.007 (10.8) 0.1372 0.1265 +0.011 (12.9)
-0.37 1363 -0.29 597
4540 | *0.015 | (14.6) +0.035 | (15.2)
5/Lowest- -0.49 4900 -0.33 1330
count -5.0,-4.5 | +0.047 (52.4) +0.162 (33.8)

The summarized analysis for two datasets, namely the spike-in background and dilution datasets, were presented. The spike-in set consists of 1387 transcripts over
12 replicates while the dilution set has 865 transcripts over 8 replicates. For each segmented range, the fitted slope to Pareto distribution, the total number of
points, the observed and expected standard deviation are calculated. The expected standard deviati$hgives the corrected standard deviation of eactslope

<1” segment as if its slope is the same as the reference segment (indicated by *). It is calculated via the fom?gﬁg’@% °§§ge'€ssegef:ssegpusing the highest-

count segment as the reference. For the spike-in set, the observed and expected standard deviation is about 2 times larger while this is about 3 times for the
dilution set (highlighted in red) in the worst case

perpetuated by a change in the power-law exponent. Unfortunately, none of the commonly used normalization
Furthermore, the observed heteroskedasticity can be dimethods namely DESe@®#§, 25|, Relative Log Expression
vided into variances of reproducible (i,ethe degree of (RLE) R4, 26], Trimmed Mean of M-values (TMM)
agreement between experimental results conducted Hg6, 27], UpperQuartile (UQ) [12 26], Count Per Million
different individuals/locations/instruments and irrepro- (CPM) [26] and Quantile [L8, 28]) can correct for the
ducible origin. Specifically, when heteroskedasticity ispower-law deviations in both datasets; Both power-law de-
about equal between the observed (j.general spread of viation and heteroskedasticity remairséeAdditional files
the datapointy and the expected (i.e.margins marked 2: Figure S2 and Additional file8: Figure S3).
by the dotted lines at 99% confidence interyatandard
deviations, it is simply reflective of the reproducible rep-
licate noise as for the cases of the highest to mid-countAliasing noise explains the finite-size effects that distorts
segments. However, when heteroskedasticity spreads behe theoretical power-law distribution of sequencing
yond the expected margins, it indicates additional irre- count data
producible noise as for the cases of the diverged low andn fact, the sequencing procedure can be recast into a
lowest-count segments. In the worst cases, the observedampling problem: The total transcript population in a
standard deviation exceeds that of the expected by aboutell can be viewed as a library of unique transcript spe-
2 times for the spike-in background set and 3 times for cies with different frequency of occurrences. Simply put,
the NUGC3 dilution set Se€Table 1: values in redl. this library can be thought as the composites of a con-
The irreproducible noise that plagued the diverging tinuous analogue signal. And when this analogue signal
low and lowest-count segments, serves to highlight theis subjected to sequencing, it undergoes a sampling pro-
instability of the replicated count values when the corre- cedure where the abundance of the individual transcript
sponding power-law mathematical moments stem not species in terms of its counts, is being quantified. Col-
only from low exponent values but of non-comparable lectively, the digitized counts becomes the sampled sig-
magnitude as well. The latter basically demonstrates thenal of the original analogue signal.
impact of the finite-size effects on the same physical sys- Mathematically, a power-law type sampled signé(f)
tem when sampled at different rates. Since irreproduc-with an amplitude of §, and an exponent of , can be
ibility can occur even for a set of replicates that hasdescribed as the sum of its original sign&f and its
similar sequencing depths like the case of the spike-inalias termS,(fs f) given any frequency (see Eq. 13)
set, it is expected to be worse for any datasets that havand can be visualized as a frequency-domain plot. With
more diverse depths as attested by the dilution set. any sampling procedure, undersampling will occur when
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the Nyquist sampling criterion off,,.x< 2fs is not satis- theoretical alias noiseS,(fs f) (marked in magentg

fied where fax is the largest frequency component of are shown in the sub-figures. For each case, the sam-

the original signal ands is the sampling frequency. As a pling frequencyfs and the mean square errofMSE is de-
consequence, this will result in a non-zero alias termfined as the residual error between the observed and

S(fs f) . More specifically, the condition of aliasing theoretical alias noiseare given as well. The overall low

where a distortion of the sampled signaf(f) from its MSE values of between 5.67e-4 to 3.58e-3 indicates a

original signal will occur R9] (See methods for details: good fit between the theoretical alias noise model and

Derivation of the alias term in the power-lawl/ the observed alias datapoints.

f equation; Within the NUGC3 dilution set, the 1.5pM, 3pM,
Egs. 5-13 6pM replicates have failed to satisfy the Nyquist sam-
In relation to the sampled signa¥(f), the rank vari- pling criterion of f.x<2fs at sampling frequencies of

able y and maximum count valueC; of the rank- 589, 592 and 1045SeeFig. 2a-c) respectively. Since the

frequency equation gee Eq. 4are analogous to the minimum sampling frequency needed by the NUGC3 di-

frequencyf and the amplitudeS, of Y(f) respectively. In lution set is 1264 (2 x 632), undersampling has occurred

turn, the rank-frequency and Paret® tail distribution for these cases. Undersampling can also be concluded
are inversely related to each othelSée methods for for the spike-in background dataset at a sampling fre-
details: Transformation between rank-frequency andquency of 1464 $eeFig. 2e) where the required mini-

Pareto distribution; Eqgs. 14-37 Essentially, the Pareto mum sampling frequency is 1726 (2 x 863). In contrast,

plots can be straightforwardly transformed into a only the single 12pM case had satisfied the Nyquist cri-

frequency-domain plot. terion at f,ax < 3.4 (SeeFig. 2d). Theoretically, the sam-
To determine if undersampling has occurred, the sam-pling frequency for a zero alias noise tends to infinity
pling frequencyfs needs to be first determined between (solve eq. 17 for Y(fay) =1 at f=fa)-

the sampled signal and its original signal to check if the In hindsight, the finite-size effects has always plagued

Nyquist sampling criterion is fulfilled. The best estimate sequencing-based studies since the early dagjswhere

or surrogate of the original signakf can be estimated the alias noise manifests as the misfitted tail in Zipf

from the replicate with the largest total reads within the law distributions. The magnitude of the finite-size effects

data series. For the dilution set, this was one of the 12ps dependent on the severity of undersampling and it can

NUGC3 sample which consists of a total of 632 unique now be quantified formally through a simple recasting of

count values. In the case of the spike-in background setthe Pareto plot to the frequency-domain plot.

the replicate with the largest total reads has 863 unique

count values. Corresponding to their rank-frequency The necessity of power-law correction on sequencing

(frequency-amplitudgplots, this translate to a maximum count data to restore distribution distortion

rank (frequency of 632 and 863 accordingly. The restoration of the power-law plots towards a common
Using the respective surrogates as baseline, the obpower-law slope were applied to the NUGC3 dilution and

served alias noise between a sampled signal and its orspike-in background data seriesS¢e methods for details:

ginal signal can be then determined by taking their Computation procedures for power-law correction of a

logarithmic differences as described by the mathematicacount data set Akin to Figs.1 and 3 shows the Pareto

expression logY(f)=log[Sf +S(fs f) 1 log[Sf ] plots and scatterplots of both the power-corrected spike-

(see Eg. 19 Since Zigs law 6ee eq. 14 wherel) holds in background and the NUGC3 dilution datasets with the

for the high and highest-count segments of both data- same intra-sample scaling applied. Tabkecomplements

sets, the exponent term is implicitly set to =1. Alias Fig. 3 with the details on the regression slope of the
noise Y(f) reaches its maximum whefi=f,,5x such that power-law fit, the total number of points, the observed
Y(f)= Y(fnax), for which the sampling frequencyfs and expected standard deviation of each segmented range.
can be solved by evaluating lo(fax) (See methods for  Generally speaking, the Pareto plots in both Figa
details: Solving for sampling frequencyof determine and b show a power-law distribution with a more uni-
undersampling; Egs. 121). form slope throughout all count segments, which aver-
Furthering the analysis of the scaled datasets in Rig. ages to about 0.94 (see Table2 column 3) for the

Fig. 2 shows the rank-frequency plots for the NUGC3 spike-in background data set and0.97 (see Tabl@ col-

dilution and the spike-in replicatesrfarked in red. In  umn 7) for the NUGC3 dilution data set. The restor-

particular, Fig.2a—e show the plots for the 1.5p pair, 3p ation to a single exponent of the Pareto plot through the
pair, 6p pair, single 12p replicate and the 11 UHR repli- power-law correction gives us an estimate of how the
cates against the best estimate of the original signalsrue underlying distribution 6ee dashed line that depicts

(marked in blacR. In addition, the observed alias noise the Zipf's law distribution) would have looked if there

(marked in blug, together with the corresponding had been no aliasing issues.



Wong et al. Biology Direc(2018) 13:2 Page 7 of 26

Fig. 2 Rank-frequency plots of NUGC3 dilution and spike-in background degabetsd and e show the rank-frequency plots for the 1.5p pair,
3p pair, 6p pair, single 12p replicate and the 11 UHR replicates against the best estimate of the originalssigris plagk Meanwhile, the
observed alias noiseérked in blyeand the theoretical alias noiSffs f) (marked in magen}aare also shown. In each subplot, the sampljng
frequencyfs and the mean square errdvIGE is defined as the residual error between the observed and theoreticgl atemgineisas well.
Overall, the low MSE values of between 5.67e-4 to 3.58e-3 indicates a good fit between the theoretical alias noise model and the obs¢rved alias
datapoints. For the NUGC3 dilution set, the 1.5p, 3p, 6p replicates have failed to satisfy the Nyquist sampling fariteri2fp atf sampling
frequencies of 589, 592 and 1045; Undersampling has occurred for these cases. The same can also be concluded for the spike-in bagkground
dataset. Only the single 12p case had satisfied the Nyquist critefignr<€8.4s

With larger slope values than before, it implies that and lowest-count segment have now been shifted to the
the standard deviation for all count segments, shouldmid-count segment.
theoretically converge towards a smaller value. Indeed, When the corrected spike-in background and NUGC3
Fig. 3c and d of the respective data sets show that thedilution data sets were subjected to a re-analysis of
corrected count values exhibit less heteroskedasticityaliasing, the corrected datasets shows a general absence
across all count segments and variation among the repli-of undersampling. The rank-frequency plots for the cor-
cates. This reduced heteroskedasticity is to be expectedected dilution replicates are depicted by Figa for the
if transcript abundance is power-law distributed and ad- 1.5p pair, Fig4b for the 3p pair, Fig.4c for the 6p pair
heres to its mathematical momentsée Eqgs. 3 and)4ln  and Fig.4d for the single 12p, while Figde shows the
hindsight, it does indeed. Furthermore, based on TalZle corrected spike-in background replicates for the set of
(markings in red, the difference between the observed 12 UHR replicatesrarked in red. The best estimate of
and expected standard deviation is merely 1.1 times forthe original signal is marked by black in each figure.
the spike-in background dataset and 1.6 times for theThe corresponding observed alias noisendrked in
NUGC3 dilution dataset in the worst case. The stark blue), as well as the theoretical alias noisg(fs f)
improvement from before the power-law correction (marked in magent3 shows very slight aliasing in all
(i.e, worst case of 2 times and 3 times respectj&iynifies cases given their new sampling frequencies of 1720,
that the irreproducible noise in the data series has beenl311, 1783, 3315 and 1920 respectively. The overall low
dramatically reduced in the form of alias noise. Overall, it MSE values of between 6.00e-4 to 1.87e-3 indicates a
translates to a smaller dynamic range for the correctedgood fit between the theoretical model and the observed
values where the uncorrected count values from the lowalias.
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Fig. 3 Post power-law correction, Pareto distributions anitbspkots of spike-in background and dilution datasetsd b give the Pareto distribution plots
of the scaled background counts from the spike-in background and NUGE® didtaset respectively, after the power-law correction was apyited. B
plots are segmented into the highest-count to lowesttiregions based on an order of magnitude per segmee (/ertical dotted lines across horizontal
axi3. Both plots display a power-law distribution with a more uniform slopeghooi all count segments. In fact, thewer-law correction estimates\u
the true underlying distribution should have been without aliasing. Meane/aiteld show that the corrected count values exhibit less heteroskedasticity

across all count segments and variation among the replicates with the increase in slope values after the power-law correction. Finally, tr@intinimum c
value of each replicate has increased such that the uncorrected count values prevasigly2Cand D) in the low and lowest-count segment have
now been moved into the mid-count segment

J

Table 2 Summary of analysis for the power-law corrected spike-in background and NUGC3 dilution datasets

Datasets
Spike-in background (UHR) Dilution (NUGC3)
Fitted No. of Fitted No.of
Index/ Range slope s pgi.n(t)s Observed | Expected | Slope § poci’ﬁtt)s Observed | Expected
Description to/Jn |y %) | 0,6™ | o 0™ to/n | n (%) | o o™ o, o7
-0.98* 24 -0.89 24
-0.50.0 | 0.025 | (0.3) | 0.0651 | 0.0651 $0.073 | (0.6) 0.0160 0.0496
1/Highest- -0.89 84 -1.25* 48
count -1.0,-0.5 +0.047 (0.9 0.0770 0.0680 +0.080 (1.2) 0.0419 0.0419
-0.89 216 -0.83 160
-1.5,-1.0 +0.014 (2.3) 0.0764 0.0681 +0.025 (4.1) 0.0520 0.0515
2/High- -0.94 648 -1.04 352
count -2.0,-1.5 | #0.006 (6.9) 0.0489 0.0663 +0.016 (8.9) 0.0457 0.0536
-0.93 1824 -0.88 1016
-2.5,-2.0 | +0.004 (19.5) 0.0464 0.0666 +0.007 (25.8) 0.0388 0.0514
3/Mid- -0.95 6551 -0.94 2339
count -3.0,-2.5 +0.009 (70.1) +0.022 (59.4)

The summarized analysis of the Zipflaw corrected datasets, namely the spike-in background and dilution datasets, were presented. The spike-in set consists of
1387 transcripts over 12 replicates while the dilution set has 865 transcripts over 8 replicates. For each segmented range, the fitted slope to Pareto distribution,
the total number of points, the observed and expected standard deviation are calculated. The expected standard deviafihgives the corrected standard

deviation of each“slope < I' segment as if its slope is the same as the reference segment (indicated by *). It is calculated via the forn@ﬂ’@% "sb: e'Eissegf
SsegPusing the highest-count segment as the reference. For the spike-in set, the observed and expected standard deviation is about 1.1 times larger while this is
about 1.6 times for the dilution set (highlighted in red) in the worst case
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Fig. 4 Post power-law correction, rank-frequency plots of NUGC3 dilution and spike-in background datasetsand e show the rank-
frequency plots for the 1.5p pair, 3p pair, 6p pair, single 12p replicate and the 11 UHR replicates against the best estimate of the original signals
(marked in blaglafter the power-law correction. The observed alias nmiagkéd in blyeand the theoretical alias noiSgfs f) (marked in
magentq, are also shown. In each subplot, the sampling frequgacyl the mean square errdviGE is defined as the residual error between| the
observed and theoretical alias na@ise given as well. The overall low MSE values of between 6.00e-4 to 1.87e-3 indicates a good fit between the
theoretical model and the observed alias. Generally speaking, the corrected datasets shows a general absence of undersampling. For|all plots, the
observed alias noismérked in bljeas well as the theoretical alias n@gg f) (marked in magenjashows very slight aliasing in all cases|
given their new sampling frequencies of 1720, 1311, 1783, 3315 and 1920 respectively

J

Power-law correction should precede normalization; Figure 6a shows the MA-plots {,e., average count
it increases signal-to-noise ratio and sensitivity of versus fold-changg of the Bowtiel-mapped dilution
statistical testing/detection in comparative analysis dataset beforeléft-column) and after ¢ight-column) the

To rigorously evaluate the impact on power-law correc- power-law correction for the 6 normalization algorithms
tion in a typical NGS comparative analysis workflow, (arranged in row-wisg This Bowtiel-mapped set com-
Fig. 5 shows the evaluation setup that permutes acrossprises of 637 paired AGS-NUGC3 paired-transcripts.
4 mapping algorithms Bowtiel, Bowtie2(global}30], Likewise, Figbb-d depict the MA-plots of the Bowtie2
Novoalign (vww.novocraft.cojnand BWA [31, 32]) and (global), Novoalign and BWA-mapped dilution analysis
6 normalization methods DESeq[24, 25], Relative Log where the total amount of mapped transcripts are 657,
Expression (RLE)R4, 26], Trimmed Mean of M-values 673 and 670 respectively. Their respective PPS settings
(TMM) [26, 27], UpperQuartile (UQ)[12, 26], Count was referenced from the Bowtiel-mapped &optimum
Per Million (CPM) [26] and Quantile normalization setting to standardize the parameter settings of the power-
[18, 28]). Furthermore, the comparisons were split into law correction step across the mapping algorithmSee
the positive 6ignal between NUGC3 and AGS samples methods for details: Computation procedures for power-
and the negative rfoise within the NUGC3 replicatgs law correction of a count data spt

tests. For the statistical analysis, the generalized linear For each MA-plot, the positive signal is depicted in
model [33] from the EdgeR package2f] was used for red while the noise is shown in blue. The noise model,
the multiple contrasts where each comparison pro-as a simple linear regression of=mx, attempts is
duced a set of fold-change values, average counts ( depicted dotted line. For both signal and noise data-
terms of counts-per-milliopand p-values See methods points, their corresponding residual with respect to the
for details: Generalized NGS comparative analysis fitted noise model gives the fold-change variation along
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( between 0.001 to 0.006 and between 1.017 to 1.022 for
power-law corrected analysis (Tabl@é column 6. Over-

all, the correction improved the SNR by about 50% (j.e.
17-11/11) given the SNR of the corrected and uncor-
rected analysis at about 17 times and 11 times respect-
ively (Table3 columns 4 and 7.

Secondly, heteroskedasticity, which manifests as un-
equal variance, can bias the test-statistics where Type
and Type Il error will increase with underestimated and
overestimated standard errors respectivehd]. To further
emphasize, Fig7a-d show the same Bowtiel, Bowtie2(-
global), Novoalign and BWA-mapped dilution analysis in
terms of their volcano plots (i.elog fold-changegersusp-
valueg. Likewise, the left and right columns show the be-
fore and after power-law correction for the 6 normalization
algorithms @rranged in row-wiskg

In each volcano plot, the noise comparisons can essen-
tially be treated as the null hypothesis. As such, the log
fold-change and p-value cutoffarfarked by double hori-
zontal dotted lines and single vertical dotted lipéor the
purpose of deriving the significant number of transcripts
in the positive comparisons, were determined from the
largest absolute fold-change value and smallest p-value

Fig. 5 NGS comparative analysis evaluation workflow. The workflow of these 6 noise comparisonsn(blue). The latter aims

et a5 P o e e 10 EACHe 8y flse-posives. Furhermore, th rate o

gon-zero (i.eno rgissinpcc;unt values bet?/veen conditiong, (iii) the change in p-value against fold-changg can al-so be derived

application of a normalization procedure to minimize both biasand ~ from the two cutoff values and is indicated in each vol-
variance and finally, (iv) the statistical testing to elucidate significant cano plot. Finally, for each of the 4 positive comparisons,
genes based on some pre-determingdalue and fold-change cutoff,  the exact breakdown of the number of significant tran-

As such, the corrgctiqn step is best inserted after the filtering step gnd scripts for all combinations of mapping and normalization

before the normalization step methods before and after power-law correction were com-

. ) ) puted (see Additional files: Table S2 for full details).
the average count axiso( x-axig and can be recapitu- * gaged on the volcano plots, the slower rate of change
lated into a summary statistics. Essentially, the summary, p-values of the uncorrected cases when compared to
statistics gives the amount of biashe mear) and vari- o power-law corrected cases, implies that a higher
ance the standard deviatiop of the normalization 44 change threshold is required to achieve a compar-
m.ethod yvhere an effgctlve one should reduc_e varianCepie p-value ¢r Type | error ratd during statistical test-
without increasing bias 18]. Furthermore, signal-to- g consequently, the higher fold-change threshold also
noise ratio (SNR) of each mapping/normalization pair, jyyjies a larger type Il error (i.e.failing to detect an ef-

defined asE&Ggq = 7ose Where ESCG,,Pis the expect-  fect that is presentfor the uncorrected cases and hence,
ation of the second moment of the signal and?,. is a compromised sensitivity on the statistical testing. In-
the variance of the noise, was also computed. For eackeed, based on Tabld, the general number of signifi-
mapping algorithm, the median measures of the signalcant transcripts are higher for the power-law corrected
residual, noise residual and SNR across all normalizatioranalysis than the uncorrected ones. The trend is consist-
methods are also taken and summarized in Tal8gsee ent regardless of the mapping algorithms used when
Additional file 4: Table S1 for full details). averaged over the 6 normalization methods for each posi-
Throughout all the MA-plots, heteroskedasticity in the tive comparison. Meanwhile, it should also be noted that
noise comparisonsdepicted in blug can be readily seen the variation contributed by different normalization algo-
without the power-law correction. Heteroskedasticity rithms is larger than that of different mapping methods.
brings about two issues: Firstly, it introduces both biasOverall, the average increase in sensitiviily {erms of per-
and large variance to the comparisons as attested by theentaggacross the 4 comparisons after power-law correc-
mean and standard deviation ranges 0f0.192 to tion, is between 26% to 28% (36~42 transcripts versus
0.153 and 2.189 to 2.229 for the positive comparisonss0~57 transcripts) for the Bowtiel-mapped analysis, be-
(or signal) (Table3 column 3. In contrast, this was tween 27% to 30% (41~44 transcripts versus 58~61
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Fig. 6 MA-plots of dilution data set before and after power-law correction6 Blgpws the MA-plotd.(e., average countsrsudold-changgsof
the dilution dataset befordeft-columpand after fight-columipthe power-law correction. In particular, Fgs, c andd shows the MA-plot

analysis for 4 mappin@¢wtiel, Bowtie2(global), Novoalign and Bitsithms while the permutation of the 6 normalization algoritHbtsSeq,

Relative Log Expression (RLE), Trimmed Mean of M-values (TMM), UpperQuartile (UQ), Count Per Million (CPM) and Quaatéerangedlizaion
row-wise manner. For the power-law correction, the optimum PPS setting was evaluated t8®e\B8itional filet: Fig. S5A). In each MA-plot, the
positive and noise signal are shown in red and blue respectively. The noiseyrang) (s shown in dotted lines; Ideally, the slope value is 0 for jno
bias. The signal and noise residuals with respect to the noise model give the fold-change variation along the average moxxebdxi®Verall, it
is apparent that the heteroskedasticigé left-columrof the uncorrected AGS and NUGC3 count values has propagated down to the lgvel of
comparative analysis regardless of any combination of mapping @mdatization methods. However when power-law correction is applied,

heteroskedasticity was dramatically minimizee (right-column

J
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Table 3 The average signal-to-noise characteristics of the comparative dilution analysis (AGS versus NUGC3) before and after power-
law correction

Original data Power-law corrected data
Mapping method Median residualMedian residual Median ) Median residual Median residual Median )

( £ noise (% dsignal signal-to-noise ratigmgL“P ( £ noise ( £ signal signal-to-noise ratig‘EL"aP
Bowtiel 0.018+0.649 0.192+2.229 113 0.002+0.261 0.006 +1.021 15.4
Bowtie2 (global)  0.019+0.642 0.169+2.200 11.3 0.002+0.244 0.003 +1.022 17.6
Novoalign 0.017+0.641 0.153+2.189 11.3 0.001+0.238 0.001+1.017 18.2
BWA 0.017+0.648 0.159+2.193 11.1 0.001+0.242 0.001+1.019 17.8

This table complements the MA-plots in Fi§Ato D. It summarizes the characteristics of the signal and noise comparisons before and after power-law correction for
each aligner across 6 normalization methods. The bias and variance of each normalization method, in terms of signal and noise, are computed frorfietende

between the comparisons and the fitted noise model and with the summary statistics taken. The signal-to-noise ratio, before and after power-law correction, are also
given. The average signal-to-noise ratio improvement is about 1.5 times after the correction

transcripts) for the Bowtie2(global)-mapped analysis, bewhile the power-law corrected one is depicted in blue.
tween 26% to 34% (36~ 43 transcripts versus 54~ 58 tranFrom the ROC plots, there is an obvious improvement in
scripts) for the Novoalign-mapped analysis and betweerthe performance across all tested normalization methods
26% to 32% (36~ 41 transcripts versus 53~ 58 transcriptspfter the power-law correction. Among the methods, the
for the BWA-mapped analysis. performance is almost comparable to one another with
the exception of the quantile normalization method. Fur-
thermore, to compare against the BWA performance of
Independent validation of power-law application on the the dilution analysis, the sensitivity of the spike-in analysis
full spike-in data series for each normalization method was evaluated at the false-
As an independent validation, the full spike-in dataset positive rate of 0 See the sensitivity values before and after
which includes the 12 non-human spike-in transcripts power-law correction in the ROC pldtsAs compared to
was also analyzed. Given 12 samples in total withouthe improvement in statistical sensitivity of 26% to 32% in
technical replicates across conditions, the total numberthe dilution analysis, the improvement in detection sensi-
of possible pairwise comparisons is 66 cas€g?) where tivity for the spike-in analysis is lower (i.ebetween 15% to
the positive set is made up of the 12 spike-in transcripts17%) across all the methods since its undersampling con-
(or signal) while the negative set (or noise) is composedlition was less severe than that of the dilution data set.
of 460 UHR transcripts after filtering for non-zero count
values among the conditions. In addition, given that the Power-law correction improves the concordance in
original authors BWA-mapped counts were used, the significant transcript call among normalization
permutation step across the 4 mapping algorithms wasalgorithms, especially with increased sequencing depth
excluded. Also, due to the cyclic latin-square design ofAnother important implication of the power-law correction
the spike-in transcripts across the 12 samples, thes that the improved concordance in significant transcript
uniqueness of each sample meant that there are no replicall among the different normalization methods1p-14]
cates and hence, statistical evaluation is not possible. Inwill decrease the workflols dependency on the variations
stead, the cutoff criteria for significant call is simply in specific algorithms. Returing to the dilution data set
based on the fold-change. As an additional note, theanalysis, Table5 gives the average concordance in sig-
optimum PPS setting for the power-law corrected data nificant calls by various mapping/normalization methods
was evaluated to be 10 according to the optimization(seeAdditional file 5: Table S2 for the detail breakdown). It
plot (SeeAdditional file 6: Figure S5B). Note that due to summarizes the level of agreement between the 6
the lack of replicates for the spike-in transcripts, only normalization algorithms per mapping method for the
the background set was used for the parameterpositive comparisons in NGS workflow as shown in Fh.
estimation. Briefly, the“intersect row gives the total number of com-
Figure 8 shows the receivers operator characteristicsmon significant transcripts with the same fold-change dir-
(ROC) curves for the 6 normalization methods: DESeq,ectionality among the 6 algorithms, théunion” row gives
Relative Log Expression (RLE), Trimmed Mean of M- the total number of significahtranscripts reported by any
values (TMM), UpperQuartile (UQ), Count Per Million of the 6 algorithms while the concordance ratian(%) is
(CPM) and Quantile normalization. For each ROC plot, taken between the'intersect total and the “union” total.
the sensitivity and specificity values were derived throughThe concordance ratio serves as an unbiased measure given
the permutation of the log fold-change range of the noiseits double-edged sword nature; While an increase in signifi-
comparisons. The plot without correction is shown in red cant call by all algorithms is necessary to increase the
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Fig. 7 Volcano plots of dilution data set before aafter power-law correction. Akin to Fegthe volcano plots of the dilution dataset befdedt{columh
and after ight-columhthe power-law correction is shown in Fgln particular, Figsb, c andd shows the MA-plot analysis for 4 mappiBg\tiel,
Bowtie2(global), Novoalign and Bsligforithms while the permutation tife 6 normalization algorithmBESeq, Relative Log Expression (RLE), Trimmed
Mean of M-values (TMM), UpperQuartile (UQ), Count Per Million (CPM) and Quantile)ramavaatiaatied in a row-wise manner. Overall, the apparent
asymmetrical spread of the noise comparisombl(é of the uncorrected data set demonstrates the-zero fold-change bias gpite the application of
various normalization methods. Most importantly, the slower rate of chapgeines of the uncorrected cassed left-colummvhen compared to the
power-law corrected caseseg right-columyimplies that a higher fold-change threshold is needed to acquire the same pevalypd | error rawuring
statistical testing. In turn, a higher fold-chatigeshold also implies a larger type Il error fgiéng to detect an effect that is prg¢genthe uncorrected
cases and eventually, a compromised sensitivity on the statistical testing
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Table 4 Median number of significant transcripts calls in the comparative dilution analysis (AGS versus NUGC3) before and after
power-law correction

Original data Power-law corrected data

Mapping method AGS 12pvs AGS 12pvs AGS 3pvs AGS3pvs AGS12pvs AGS12pvs AGS3pvs AGS 3p vs
NUGC312p NUGC33p NUGC312p NUGC33p NUGC312p NUGC33p NUGC312p NUGC33p

Bowtiel 42 a1 39 36 57 52 52 50
Bowtie2 (global) 44 43 43 41 61 59 61 58
Novoalign 43 40 39 36 58 57 57 54
BWA a1 41 39 36 58 55 56 53

The breakdown of significant transcript calls for each combination of the mapping algorithnBofvtiel, Bowtie2(global), Novoalign and B\&Ad normalization
methods DESeq, RLE, TMM, Upperquartile, CPM and Q)éottitdl 4 positive comparisonsAGS-12persusNUGC-12p, AGS-12ersusNUGC-3p, AGS-8prsus
NUGC-12p and AGS-8ersusNUGC-3pare given in the following table. The median number of significant calls for 6 normalization methods are highlighted in
red for each mapping algorithm

“intersect count, it also increases the likelihood that only in concordance rate after the power-law correction
some of the algorithms are making the call, thus loweringi.e., (70.32+6.72)% versus (48.24 +7.078&e('sum-
the concordance ratio. mary statistic$ first row in Table 5). When the com-
With the power-law correction, the increase in the parisons are further stratified by their sequencing depths
“intersect total has almost doubled for all mapping/ (i.e, AGS-12p and AGS-3p comparisQngn increase in
normalization combinations across all comparisonseg sequencing depth does not necessarily improve the con-
“intersect rowg. Meanwhile, the corresponding increase cordance rates. In fact, the higher sequencing depth AGS-
in the “union” total is less than one-quarter at its worst 12p instance has a lower concordance rate of (44.6+
(see“union” rows. This gives an increase of about 22%4.91)% than that of the lower sequencing instance at

=

Fig. 8 Receivers Operator Characteristics (ROC) curves ofékia gpila set before and after power-law correction. Fah®ws the receivers operatq
characteristics (ROC) curves for the 6 nornmatizacthods: DESeq, Relative Log ExpressionTifthEgd Mean of M-values (TMM), UpperQuguids,
Count Per Million (CPM) and Quantile normalizaétimneach ROC plot, the sensitivity and specificity values were derived through the permiutagion| o
log fold-change range of the noise comparisons. The plot without correction is shown in red while the power-law corrected one is depicted
in blue. Overall, an obvious improvement in the performance upon the power-law correction can be seen regardless of normalization methods.
Among the methods, the quantile normalization method gave the worst performance

J
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Table 5 Concordance summary of significant transcripts calls of comparative dilution analysis (AGS versus NUGC3) before and after
power-law correction

Original data Power-law corrected data
AGS AGS AGS AGS AGS AGS AGS AGS
12p 12p 3p 3p 12p 12p 3p 3p
Mapping Concordance vs Vs vs vs Vs Vs Vs vs
Method summary NUGC3 | NUGC3 | NUGC3 | NUGC3 | NUGC3 | NUGC3 | NUGC3 | NUGC3
12p 3p 12p 3p 12p 3p 12p 3p
intersect 28 26 25 23 52 45 43 42
union 59 63 54 45 65 61 69 62
Bowtiel C.R.(%) 47.46 41.27 46.30 51.11 80.00 73.77 62.32 67.74
Bowtie2 intersect 35 33 31 28 56 53 52 48
(global) union 65 72 58 46 74 70 86 77
C.R.(%) 53.85 45.83 53.45 60.87 75.68 75.71 60.47 62.34
intersect 29 27 27 27 54 50 46 45
Novoalign union 65 71 60 44 70 66 74 67
C.R.(%) 44.62 38.03 45.00 61.36 77.14 75.76 62.16 67.16
intersect 30 29 25 26 51 47 46 46
BWA union 66 72 60 47 67 62 74 65
C.R.(%) 45.45 40.28 41.67 55.32 76.12 75.81 62.16 70.77
(U+0)c R (%)
Summary (H£O)c R (%)
statistics By depth

The following table gives the agreement of significant transcript calls among the 6 normalization methoB&§eq, RLE, TMM, Upperquartile, CPM and Q)éottile

each mapping algorithms Bowtiel, Bowtie2(global), Novoalign and Béh the following 4 positive comparisons: AGS-12p versus NUGC-12p, AGS-12p versus
NUGC-3p, AGS-3p versus NUGC-12p and AGS-3p versus NUGC-3p. The summary statistics row gives the concordance of comparisons (i) across all sequencing
depth (top row) and (ii) stratified by sequencing depth (bottom row)

(51.88+ 7.26)% See“summary statistics second row in literature, the common metastasis site of stomach cancer
Table 5). In retrospect, although the number of significant (in ascending order) is the liver, peritoneum, lung and bone
transcript calls or the “intersect total has generally [34, 35 while it is considerably rare to spread to the pan-
increased with a higher sequencing depth, the incon-creas and skeletal muscl&86, 37]. When compared to gen-
sistency in significant transcript calls among the variouseric adenocarcinoma which often spreads to the liver and
normalization methods (i.e.the “union” total) has in- lung [3§], signet-ring adenocarcinoma frequently metasta-
creased at a faster rate which resulted in a lower concordsizes within the peritoneum, bone, ovaries and sometimes
ance rate despite the higher sequencing depth. to the breast B4, 39.

With the power-law correction, a higher sequencing In our comparative study of the two gastric cell
depth correctly returns a higher concordance rate. Be-lines, the Bowtiel-mapped ancordance transcripts
tween the uncorrected and power-law corrected analysisfrom Table 5 before and after power-law correction
the improvement is somewhat asymmetrical where it waswere independently subjected to gene-set enrichment
about 32% (44.6% +4.91% versus 76.25% + 1.78%) for taealysis (GSEA) via the MIEAA webserver to identify
higher sequencing depth AGS-12p instance while this wagplausible disease groups from the collection of Hu-
about 13% (51.88% * 7.26% versus 64.39% + 3.65%) for tk&n microRNA and Disease Database (HMDD).
lower depth AGS-3p instance. It remains that sufficient Briefly, using the Bowtiel-mapped results from Tabte
sequencing depth is necessary to generate enough infothe concordance transcripts across the 4 comparisons be-
mation but when the condition is met, power-law correc- fore power-law correction $e€‘intersect row, columns 3
tion will be able to extract any additional information 6) were compiled into a union set of concordance tran-
content to increase significant detection. scripts. The same was done for the power-law corrected

comparisons ¢ee ‘“intersect row; columns %10).
Enhanced statistical conclusions elucidates the metastatic Altogether, the uncorrected and power-law corrected
potential of the NUGC3 gastric cancer cell line union sets consist of 30 and 52 concordance pre-cursor
While both AGS and NUGCS3 cell lines were commonly miRNA transcripts respectively dee Additional file 7:
described as gastric adenocarcinoma according to thélable S3 columns 1 and 2). The uncorrected list exceeded
Cellosaurus databasevérsion 22;http://web.expasy.org/ the maximum intersect value of 28 AGS-12p versus
cellosaurus), NUGC3 was derived from a distal metasta- NUGC3-12p) due to some slight variations among the 4
sis site - the Brachialis muscle of a male patient andcomparisons. Between the two concordance sets, the un-
AGS is presumably taken from the primary site of a fe- corrected set is almost a complete subset of the corrected
male patient. Therefore, their comparison should elude set; one transcript is unique to the uncorrected set while
the metastasis potential of the NUGC3 cell line beyondthis was 23 for the corrected setSgeAdditional file 7:
the common gastric adenocarcinoma. According to current Table S3 columns 3 and 4).
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Thereafter, both lists were independently subjected tothe necessary parameters for the uncorrected list are:
gene-set enrichment analysis (GSEA) via the MiIEAAcount 5 and FDR-adjustedp 0.1 SeeTable 6 legend
webserver to identify plausible disease groups from thefor detailed explanatioi.
collection of Human microRNA and Disease Database Table 6 consolidates the identified HMDD categories
(HMDD). For the power-law corrected list, the specific of both analysis sorted by observed count, then by FDR-
parameters are as follows: courtO and FDR-adjusted adjusted p-value. The expected baseline category -
p 0.05; This gives a maximum expected value of 0.5'‘adenocarcinoméwas used as the cutoff point for signifi-
for false-positives (FP). To match the FP count of 0.5,cance and hence, any categories beyond it were considered

Table 6 miRNA enrichment of concordance transcripts before and after power-law correction

FDR- Observed FDR- Observed

adjusted count adjusted count
HMDD category p-value p-value
Leukemia, Myeloid, Acute 0.078 7 0.013 22
Carcinoma, Squamous Cell 0.075 10 0.028 22
Adrenocortical Carcinoma 0.017 13 0.005 18
Head and Neck Neoplasms - - 0.030 17
Esophageal Neoplasms 0.029 8 0.045 15
Leukemia, Lymphocytic, Chronic, B-
Cell 0.078 5 0.047 15
Myelodysplastic Syndromes - - 0.001 14
Inflammation - - 0.007 13
Nasopharyngeal Neoplasms - - 0.038 12
Endometriosis - - 0.001 11
Muscular Disorders, Atrophic 0.065 8 0.030 11
Retinoblastoma - - 0.048 10

This table gives the gene-set enrichment analysis (GSEA) in the significant HMDD (Human microRNA and Disease Database) categories of the Bowtie1l-mapped
uncorrected and power-law corrected concordance transcripts (total of 30 and 52 respectively) as listed in Tahia the MIEAA webserver. For the power-law
corrected list, the specific parameters are as follows: couh® and FDR-adjusteg 0.05; This gives a maximum expected value of 0.5 for false-positives (FP). To
match the FP count of 0.5, the necessary parameters for the uncorrected list are: cdbifapproximated from 10/52*30 =5.77 where 10/52 is the ratio of power-

corrected count of 10 over its total concordance transcripts of 52) and FDR-adjugied.1 (approximated from 0.5/5.77 = 0.08). The identified HMDD categories from

the two MIEAA runs were sorted by observed count, then FDR-adjusted p-value based on the power-law corrected results. Categories highlighted in red, blue and black
are denoted as significant, significant false-positives and non-significant
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as insignificant hits iharked in black. Within the significant ~ details Transformation between rank-frequency and Pa-
categories, there are two Iy false-positive hitsnarked in  reto distribution).

blug). They are the“Leukemia, Myeloid, Acuté hit that Mathematically, the probability (PDF) and cumulative
should be grouped with the non-significantLeukemia, (CDF) density function of the Type | Pareto distribution

Lymphocytic, Chroni¢ and the “Carcinoma, Squamous are defined as:

Cell’ hit that should group with the non-significantEsopha- S

geal Neoplasnishit to explain esophageal cancer. POX %2 X; Xmin; SP 1/4)@7'{1 alp
Between the uncorrected and power-law corrected re-

sult sets, the latter presents the stronger evidence of ex- 8 s

pected gastric adenocarcinoma through its more <1 =2 for X Xmin

significant p-values for both“stomach neoplasnisand PBX X, Xmin; SP ¥4 X &P

“adenocarcinomé Likewise, the remaining significant 0 for X< Xmin

hits suggest several neoplasms and carcinonibur(g

neoplasms “pancreatic neoplasif) “ovarian neoplasr for the intervalX Xmin and Xmin is the minimum value of
“carcinoma, non-small-cell lunt) as possible metastasis the distribution and is necessarily positive (ixgni, > 0). In
sites for NUGC3 with stronger statistical conclusions 2ddition, the Parets tail distribution (complementary
being drawn from power-law corrected analysis. In CDF) is simply defined as>(X >x). Correspondingly, the
addition, power-law analysis discovers two more metas-hean and variance of the Pareto distribution are given as:

tasis categories -“carcinoma, hepatocelluldr and 8 S
“breast neoplasniswith significant p-values 0.015 and <M for s> 1
0.023 respectively. Overall, the power-law corrected Ya, S asP
analysis concurs significantly better with the clinical ' for s 1
evidence.
8 2
Conclusion — _ 21/42 &1Bs 20 O 572 b
Specifically, our work has identified and mathematically >
quantified an important technical limitation of the se- for 0<s 2

guencing technology for trascriptomics applications
where finite-size effects due to undersamplinglf

29] can have profound effects on the reproducibility
and statistical qualities of mderlying transcript abun-
dance distribution for its subsequent interpretation;
This is independent of the advancement in sequen

cing technology since sampling is finite in the real . : . - .
g gy png constructed signal differs from its original continuous

world. With a simple distribution correction, the = L In thi tion. the alias t for th |
signal-to-noise ratio and sensitivity of statistical detec- sighal. In this section, the alias term for the power-law
equation 1f is derived. Note that the main derivation

tion in a typical comparative analysis can experience an riginates from Kirchner P9l and thi tion provid
instant and dramatic improvement that greatly impacts originates 1ro irchner 9 a IS section provides

the reliability of the final biological interpretation of the only a concise adap_tanon. . . .
Given a time seriex(t), its Fourier transform of its

Therefore, for large values of the exponent tersnthe
corresponding mean and variance term 2 converges
towards smaller values for a fixelin.

_Derivation of the alias term in the power-law 1/f equation
Aliasing refers to a distortion or an artifact when a re-

study. . . ) e
d discrete sampled time seriegt) is given as:
Methods 7
Property of type | Pareto distribution .
perty of typ Y3fb Y, xamidle 2 fgt &b

When transcript abundance is being visualized in a rank-
frequency plot, the Zifs law 3—7] is specifically being sin-
gled out. Meanwhile, there exists a close relationship be-
tween the family of Pareto distributionsTipe I, II, Il and
IV) to the Zip's law; Type Il to IV Pareto distributions var-
ied from Type | mainly from the addition of a location
and shape parameter that are irrelevant to the modelling X
of transcript abundance. Among the Pareto family, the |1gp1, gd? K &b
Type | Pareto distribution remains the most mathematic-

ally compatible to the rank-frequency plot where their two R

axis can be shown to be interchangeabBeg methods for  whereo, a1 72, of e 12 Kddt 1/4%%5 Y41 for all k.

Furthermore, given that the sampling functiofil (t) is
a periodic function at a sampling interval of t = 1/f, it
can be defined as:
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Combining Egs. (5) and (6), one can re-express the

Fourier transform ofy(t) into:

z
Y&fb Ya g? Ky e 12 fidt
kY
Z x .
Yy xdt ke 2 8F KisRgt
kY

orp

Also, given that the summation is taken over all k, the

term kfs can replace bkfs. Together with interchanging

the summation and integration sign, one yields the

following:
z
Yaf b Vs x& fe 12 SP KIS Rqy

k¥a

Ya
kYa

X&f p kf b b

In addition, the sampled functionY(f) can be decom-
posed into its original signalX(f) and its alias compo-
nents as follows:

Y&t b YXat b b
k¥4

X&f p kf P
k O

eb

Sincex(t) is a real function, its Fourier transfornmX(f)
is Hermitian. Therefore,X( f) =X(f) and Eg. (9) can be
written for positive frequencies only as follows:

X
Y8fPYXafbp  X&kf, fbpXekf p fb

ob

kvl
Substituting the power-law equatiorX(f) =Sf into

(10) yields:
X
Yof bYs,f p Sfg fb
k¥al
X

b S&fp fb alib

k¥a1
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X
Y3fbY&f p
kYal

S&f, fb alzp

Furthermore, for a band-limited signal of Of f,., the
only relevant alias term isf{ fnad Wherek=1, since Kkfs
fmax) > O will satisfy the Nyquist sampling criterion dfax<
kfsfor which k 2. In other words, aliasing will not occur for
k 2. Finally, the power-law Fourier series &ft) with the
relevant alias term when undersampling occurs, is given as:

Yof b Y& f b Sofs TP aL3p

whereY(f) is the sampled functiongf is the original
signal andS,(fs f) is the alias component.

Transformation between rank-frequency and Pareto (type I)
distribution
The Pareto (Type | to 1V) distribution belongs to the large
family of power-law distributions; the subsequent deriv-
ation refers specifically to the Type | Pareto distribution.
Given an observation, the Paréesaail distribution (comple-
mentary CDF describes how many cases are seen greater
than the observation in terms of cumulative density func-
tion (CDF). Meanwhile, the rank-frequency distribution is
an inverse CDF duantile functior) seen in a reverse order
with respect to the Pareto distribution, where it depicts the
occurrence of the observation at a given rank.

First, let the rank-frequency equation be defined as:

XY4Cry P al4p

wherey is ay" ranked value andx is the number of
observed occurrences at One can further implies that
there existsy number of values for which their corre-
sponding x values are greater tha,y °. As such, one
can write a cumulative density function for random vari-
able X for the number of observations larger tha@,y °
in the form:

P X> Ciy® %Cyy al5p

where C, is a normalization constant such thaP(X
Ciy ®) 1 must be satisfied. Then, rearranging Eq. (14)

into yl/ﬂé 5 and substituting it into Eq. (15) yields the

For Eg. (11) to converge mathematically, (i) the Paretds tail distribution or complementary CDF:

high frequency component Kfs+f) cannot be ex-

tended infinitely; In real-world, high frequency com-

ponents fall off faster than X/ way above the

sampling frequency) and (ii) the condition where

x °
PoX > xb ¥Cyr —
C

aLep

>1 needs to be satisfied. Hence, the Fourier trans-

form of x(t) can be simplified to the following
form:

For completeness sake, one can replaGe, 1/4C1C‘2’ to
obtain the usual Parets tail distribution form of P&X > xb
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Va1 b for x Xmn. Meanwhile, to convert from the Vvalues of the same rank. As a result, this give a hori-
- zontal tail. In contrast, the same segment is always

monotonically-increasing in Pareto. As such, let the
count and rank of thei transcript be x and y re-
spectively. Then the rank-frequency equation in its
Paretds tail distribution form or complementary CTF
can be written as.

complementary CDF to the complementary cumulative
total function (CTF), the expression can simply be rear-
ranged as follows:

1 1
y¥a POX> xPb yC,bx b a7p
2
Hence, comparing terms in Egs. (14) and (17), it can  y%akx ® 2P
be seen that the Parew tail distribution (in terms of
complementary CTF) and rank-frequency distribution

wherey=C, P(X x), k%C,® and 51/4% from Eq.
are inversely related. 7

Taking logarithm on both sides, the expression is re-

Solving for sampling frequency fs to determine written as:
undersampling log,y Y2 log,k p m logyx ®23p
Taking logarithm on both sides of Eq. (13), the sampled
function Y(f) can be rewritten in logarithmic form as:
where the slope and intercept are represented foy=
s and logk respectively. Then, to convert the original

logY 3f b Yalogi&f aep slope and intercept i, log,k) to a reference set of pa-
St p Sofg Tp rameters Myes, l0GKrer), We let:
b log
Sof
The second term on the right hand-side gives a distor- logy,y ¥2 logyk logpkrer P lOgpKret
tion ratio between an aliased signahf +S(fs f) m
and original signalSf . As such, let the distortion ratio b Myt o log,x b
Y(f) be defined as: ref !
K mer 2
|09by1/4 Iogbkrefb Iogb k—xmf ref
ref
YESfDl/L.S’f b S8 fP aLop . .
Sf In the original scale, the rank-frequency equation can
L . be re-expressed as:
Further simplification yields:
! k _1 #mref
3, fp Vikeet —— X ®5p
Yofbvdp Sfi &b Y 74 Kref Kior X
And solving for the sampling frequenci gives: Finally, the corrected coun is given as:
: s
fovafp f %YBfP1 ®1p Y kL N P6b
For a rank-frequency plot where Zigg law holds (i.e. el
=1), fs can directly be evaluated wheh="1,., Y(f) The power-law correction is implemented in PERL
= Y(fnax- language and can be downloaded from the supplemen-

tary website 2.
Derivation of the power-law correction factor
In an earlier section, the rank-frequency distribution Computation procedures for power-law correction of a
and Paretés tail distribution has been proven to be count data set
inversely related to each other. For the purpose of es-The restoration of an observed distribution towards an
timating the exponent term in the rank-frequency uniform power-law entails that the slopes of all count
plot, a better approach is to use Paredotail distribu- segments to be the same. The reference power-law slope
tion. This is because the large-ranked tail of rank-is taken from the highest-count segment since this seg-
frequency distribution tend to be clustered with small ment is sampled from the higher abundance transcripts
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and should have the best mathematical convergence tomargins defined by the slope of the first highest-count
wards its real value. And with the correction towards a segments from Table 1. Within this margin, the
common slope, it is expected that all count segmentsoptimum PPS value is determined by the largest median
will have similar variation among the replicates and that R? value. As such, the optimum PPS settings for the
the overall heteroskedasticity should be dramaticallyspike-in background set and the NUGC3 dilution set are
reduced. Without the loss of generality, the proposed20 and 45 respectively. The subsequent analysis is then
sequencing count correction will be, herein, named asbased on the power-law corrected data sets using these
the power-law correction. PPS settings and their associated median slopes as the
In the actual implementation of the power-law correc- reference slope values for the respective data series.
tion procedure, there are two important computational Similarly, the procedures were also applied to the BWA-
aspects to note. Firstly, for the purpose of estimating themapped spike-in and Bowtiel-mapped full dilution data
exponent term in a rank-frequency plot, the Pareto equa-sets to obtain the optimum parametersséeAdditional
tion (see Eq. 2lis used rather than Zip$ (see Eq. Idbe- file 6: Figure S5A and S5B). The parameter sets were
cause the large-ranked tail of Zijsf law tends to be subsequently used on the Bowtie2(global)-mapped,
clustered with small values of the same rank. As a resultNovoalign-mapped and BWA-mapped full dilution data
this gives a horizontal tail which is sub-optimal for slope sets to generate the results in Tab&
estimation. In contrast, the same segment is always mono-
tonically increasing in Pareto. The dilution dataset
Secondly, the power-law correction is performed at aOverview of design: The dilution series was created for
per-sample level. The total number of count segments intwo gastric cancer cell lines - AGS and NUGC3. The
a Pareto plot is dependent on a fixed number of points NUGC3 set consists of 8 replicates and spans across 4
per segment, herein, as points-per-segment (PPS). Theoncentration points of 12p, 6p, 3p and 1.5p so that each
partitioning of points will start from the highest count concentration contains exactly two technical replicates.
value. For each partitioned count segment, a set of slopéMeanwhile, the AGS set is similarly designed except that
and intercept (, log,k) values will be solved using linear it consists of 4 replicates across 2 concentrations of 12p
regression (see Eq. 22). The first-fitted count segment ofand 3p. The varying concentration design aims to simu-
the replicate which mimics the highest-count segment, late the different sequencing depth (i,e.the total
will be used as the reference set of slope and interceptnapped readythat mimics a system of various sizes to
(mer, logkrer) Values for the subsequent power-law cor- study its finite-size effects. The original sequencing files
rection via Eq. 26. (in FASTQ formaj of this dilution dataset can be down-
To find the optimum PPS setting that will yield the loaded from the supplementary websit27].
best overall fit between any replicate to a reference repli- Sample preparation (Total RNA extraction): Isolation of
cate in a N-sample dataset, the PPS parameter firstotal RNA from AGS and NUGC3 was performed using a
needs to be permuted across a range of between 5 tQiagen miRNeasy mini kit (Qiagen). Briefly, 5x volume of
100 at an interval of 5. At a given PPS setting, two mea-QIAzol lysis reagent was added to 1 million cells, incu-
sures can be derived. First, the median of the N first-bated at room temperature for 5 min to disrupt and
fitted count segment slopes of the data series can bdomogenize the cells. 1 volume of chloroform is then
taken. Secondly, a total of (N-1)°Ri.e, coefficient of de- added to the tube, shaking vigorously for 15 s and incu-
termination) values can be derived from the linear re- bates at room temperature for-23 min. Mixture is then
gression results between the N-1 replicates against théransferred to a 2 ml Qiagen MaXtract high density tube
reference replicate. Consequently, a mediaf &n also and centrifuged for 15 min at 12,000 g for phase separ-
be taken. ation. Upper aqueous phase is carefully transferred to a
The preceding computational procedures were thennew collection tube and 1.5 volume of 100% ethanol is
applied to the original BWA-mapped spike-in back- added to aqueous phase for precipitation of total RNA in
ground and Bowtiel-mapped NUGC3 dilution data. aqueous phase. The mixture is then pass into the RNeasy
Additional file 8: Figure S4A and S4B show the median mini elute spin column (700ul each time) placed in a 2 ml
slope of the first-fitted segments versus the mediaf R collection tube. The column is spin at8000 g for 15 s at
value of the spike-in background set and the NUGC3 di- room temperature and flow through is discarded. Process
lution set respectively. The PPS values are indicated beis repeated until all mixture has pass through column.
sides the data points in the plots. Like before, theColumn is washed with 700ul of Buffer RWT and centri-
reference replicate was taken as the replicate with thefuged at 8000 g for 15 s at room temperature Column is
largest total reads within the data series for the necesfurther washed with 500ul of Buffer RPE, spin a8000 g
sary R computations. For both Figures, the refined solu- for 15 s at room temperature. Lastly, column is washed
tion space of the optimum PPS is indicated by the errorwith 500ul of 100% ethanol, centrifuge for 2 min at
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8000 g. Column is transferred to a new collection tube

A i bowtie: bowtie -n 0 -1 14 -y --best -S
and spin at 8000 g for 5 min at room temperature to re- novoalign: novoalign -1 15 -t 30 -r R
move residual ethanol and total RNA elute in 10ul of bwa: bwa -n 1 -0 0 -e 0 -k 0

RNase-free water. ) . . . .
TruSeq small RNA library construction and sequencing: Aigned reads in BAM format is then quantified using
6 (4 for NUGC3 and 2 for AGS) small RNA libraries were BEDt00IS B2] by counting how many reads map to each of
prepared in parallel for both NUGC3 and AGS cell lines the miRNA transcript. The respective mapped count files
using the lllumina TruSeq small RNA sample preparation €1 be downloaded from the supplementary websig2]}
kit according to manufactures instruction. The 6 samples _ For normalization, the EdgeR, DESeq and preprocessCore
were uniquely indexed to enable sequencing of all 6 librar-R Packages were used in this work. Prior to normalization,
ies in one MiSeq flow cell. Briefly, Iy of total RNA was li- the data is first organl_zed into its specific cell lines (NUGC3,
gated with 5 and 3 adapter, cDNA was converted with AGS) and concentration (12pM, 6pM, 3pM, 1.5pM) groups
SuperScript | Reverse Transcriptase and RT Primer. ThePf 2 technical replicates via the following command:
cDNA was PCR amphﬁed for 12 Cycles With RNA PCR group<—c (rep ("nuGC12p", 2) , rep ("NUGC6p”, 2) , rep ("NUGC3p", 2) , rep ("NUGCL. 5p", 2) ,

rep ("AGS12p",2),rep ("AGS3p",2))

Primer and unique PCR Primer Index provided; It is im-
portant to note that indexing during PCR amplification  Next, the data is read from an input file to perform the
minimizes the issue of barcoding biaglf] which masks  gpecific normalization. At the same time, an EdgeR DGE-
significant expression differences between miRNA librar-jist opject and the associated normalization factors for the
ies. Amplified cDNA construct were first purified using proper scaling of the raw library sizes will also be created.
Qlagen M|nEIute PCR Purification kit and thg construct - For DESeq normalization, the combined commands
were then size sele_cted for fragments ranging t_)etweer&re as follows:
145 bp to 150 bp using 10% TBE PAGE Gel. The indexed ‘
libraries were quantified individually by QPCR USING aife et ane amut, febor mmos, row. names i mia)
KAPA SYBR FAST qPCR Kit (Kapa BioSCIENCES, INC). T0 tucamminmiasor (ania ooosantoonat ion) | Homamenn Hberyee)

. . . - - . cds=estimateSizeFactors (cds)
stimulate differences in sequencing depth in @ multipleX normdata=counts (cds, normalized-raue)
sequencing experiment, the small RNA libraries for the 5o i iroorers (aneenainmonen
NUGCS3 cell line were pooled such that there was a 1, 2, 4
and 8x difference in concentration between the four For Quantile normalization, the combined commands
unique libraries (12pM, 6pM, 3pM, 1.5pM). Small RNA li- are as follows:
brane.s for AGS was pooled such that there isa 4->< dlffer-data<_read.delim(input,header:m row.names="miRNA")
ence in concentration between the two unique libraries rowids<-row.names (data)
(12pM and 3pM). The libraries from both cell lines were datamat<-data.matrix(data)

. . . datamat<-normalize.quantiles (datamat)

pooled to yield a single pooled library and sequenced.qinames (datamat)<-group
twice on the MiSeq instrument using MiSeq Reagent v2 rownames (datamat) <-rowids

for 1 x 40 + 6 (index) sequencing cycle (lllumina Inc., CA, Normdata<-data.frame (datamat)
d<-DGEList (counts=normdata, group=group)

USA)- d<-calcNormFactors (d, method="none")
Generalized NGS comparative workflow For CPM normalization, the combined commands are
Read mapping: as follows:

Raw data in FASTQ format was preprocessed USiNQhata<-read.delim (input,header=T, row.names="miRNA")
Trimmomatic [41] version 0.33 by trimming adapter d<-DGEList (counts=data,group=group)
. . . .. cpm(d,normalized.lib.size=TRUE)
sequences, removing trailing or leading low quality ;o .} xormractors (4 method="none")
bases (base quality below 3). Subsequently, scan the
reads with a 4-base wide sliding window and trim For TMM, RLE, upperquartile normalization where m
when the average base quality drops below 15. Specitakes one of the following value§sTMM " “RLE’ “upper-

ically, the command for Trimmomatic is: quartile’, the commands are as follows:
%ELSMINAE?’;;add;i;tnii‘::t,;iloeii%a;:8 = LEA;?}?{;?SBa TRA?;‘}?{‘?;::ERISELIDI;g;x;gv{z}?; data<-read.delim(input, header=T, row.names="miRNA")
MINLEN:16 d<-DGEList (counts=data, group=group)

d<-calcNormFactors (d,method=m)
The preprocessed reads were then aligned to miRBase v21
primary sequences using three different aligners, i.e. Bowtie For performing statistical analysis, the generalized linear
(version 1.1.1 and 2.3.03(], Novoalign (www.novocraft.com model (GLM) [33] from the EdgeR package was used.
version V3.04.06) and BWA (version 0.7.12-r1038),[32]  First, the count data is first fitted to the negative binomial
with the specific parameters as shown below: model in the EdgeR package2§| for the purpose of
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