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Finite-size effects in transcript sequencing
count distribution: its power-law correction
necessarily precedes downstream
normalization and comparative analysis
Wing-Cheong Wong1*, Hong-kiat Ng2, Erwin Tantoso1, Richie Soong2 and Frank Eisenhaber1,3

Abstract

Background: Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have
specifically singled out the Zip’s law, the observed distributions often deviate from a single power-law slope. In
hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite
observations, real world observations are finite where the finite-size effects will set in to force a power-law
distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a
log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing
mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in
analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly
been examined and quantified.

Results: The anecdotal description of transcript abundance being almost Zipf’s law-like distributed can be
conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to
the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since
sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS
(Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines
(NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of
sequencing count data from Zipf’s law and issues of reproducibility in sequencing experiments. Secondly, it
manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a
straightforward power-law correction that restores the distribution distortion to a single exponent value can
dramatically reduce data heteroskedasticity to invoke an instant increase in signal-to-noise ratio by 50% and the
statistical/detection sensitivity by as high as 30% regardless of the downstream mapping and normalization
methods. Most importantly, the power-law correction improves concordance in significant calls among different
normalization methods of a data series averagely by 22%. When presented with a higher sequence depth (4 times
difference), the improvement in concordance is asymmetrical (32% for the higher sequencing depth instance versus
13% for the lower instance) and demonstrates that the simple power-law correction can increase significant
detection with higher sequencing depths. Finally, the correction dramatically enhances the statistical conclusions
and eludes the metastasis potential of the NUGC3 cell line against AGS of our dilution analysis.
(Continued on next page)
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Conclusions: The finite-size effects due to undersampling generally plagues transcript count data with
reproducibility issues but can be minimized through a simple power-law correction of the count distribution. This
distribution correction has direct implication on the biological interpretation of the study and the rigor of the
scientific findings.

Reviewers: This article was reviewed by Oliviero Carugo, Thomas Dandekar and Sandor Pongor.

Keywords: Finite-size effects, Nyquist sampling criterion, Aliasing noise, Pareto distribution, Zip’s law, Transcript
abundance, Sequencing, Normalization, Heteroskedasticity

Author summary
In the grand scheme of things, the fundamental issue of
reproducibility has a long-term implication on scientific
rigor in this fast-paced OMICS-frenzy era. Since tech-
nology is not always WYSIWYG (What you see is what
you get), it is important to validate our observations
against some theoretical basis. For transcriptomic ana-
lysis, the lack of reproducibility is often hinted by the
high discordance among normalization methods in a
typical comparative analysis workflow given the same
data set. Since important conclusions are often made
based on these NGS-derived exploratory results, improv-
ing the reproducibility of the sequencing outputs be-
comes instrumental and ever more so since most
bioinformatics analysis seldom bridge the gap between
the exploratory finds and the true molecular actuators
via the formal arguments of underlying molecular mech-
anisms. The latter is especially critical for clinical diag-
nostics applications.

Background
Despite some cautionary notes on the generalization of
power-law on natural phenomena [1], cell transcript
abundance has often been theorized as originating from
the family of power-law distributions [2]. Typically visu-
alized in terms of histogram or rank-frequency plot,
transcript abundance distribution seems to follow the
extreme value theory where only a couple of genes are
highly-expressed while the rest are relatively lowly-
expressed. Earlier works on modelling SAGE-derived
(serial analysis of gene expression) transcript abundance
from vertebrates to lower eukaroytes have specifically
singled out the power-law distribution, namely Zip’s law
[3–7] where the slope of a power-law equation is about
− 1 on a log-log scale. Originating from information the-
ory, this slope describes the ideal compromise between
the sender and receiver as the “Principle of Least Effort”;
steep line represents a smaller and repetitive vocabulary
while a shallower slope represents a larger and more di-
verse vocabulary. As such, Zipf statistic evaluates the
balance between redundancy and diversity. Remarkably,
Zipf ’s law seemingly holds for most normal tissues of
homogenous cell type and also approximately for the

heterogenous cell type (i.e., the slope tends to be slightly
lower than 1.0) [4]. However, there exists a caveat to the
power-law association: the observed power-law distribu-
tion of transcript abundance is usually imperfect in that
it deviates from a single parameterized power-law slope.
By far, it has been unclear if this deviation is either re-

flective of the underlying true distribution or indicative of
some inherent biases in terms of library size/sequencing
depth [8], transcript lengths [9] and GC contents [10] in
the physical or technological process that generates the
observations. In our best understanding, the implications
of the power-law deviation in transcript abundance has
never been truly examined in current literature. Presum-
ably, most researchers deem this deviation to have min-
imal effects on the downstream pre-processing steps like
read mapping, normalization and statistical analysis. How-
ever, it is clear that there is no general consensus on the
pre-processing of RNA-based sequencing data but rather
best practices [11], with the normalization step contribut-
ing to the largest variation in the workflow performance
[12–14].
In retrospect, all power-laws of critical phenomena are

derived asymptotically under the conditions of infinite ob-
servations. In the real world, observations are finite and,
therefore, the deviations from asymptotic power-law is to
be expected in finite systems. The latter, which is known
as finite-size effects, will force an observed power-law dis-
tribution into an exponential decay and presents itself as a
curvature in the log-log plot [15]. Pertaining to the nature
system that governs the cell transcript abundance, the crit-
ical question is to clarify if the observed power-law devi-
ation is truly the result of the finite-size effects and not
because the underlying distribution cannot be simply de-
scribed by power-law [16, 17].
The implication here is that if transcript abundance is

truly power-law distributed, its deviation or curvature
on the log-log plot translates to varying exponent values
which, in turn, signifies the changing mathematical mo-
ments (i.e., mean, variance, skewness, kurtosis) of the dis-
tribution. Overall, this will manifest as heteroskedasticity
(i.e., unequal variance within the data) among the ex-
perimental replicates. Heteroskedasticity brings about
two issues: Firstly, it introduces both bias and unequal
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variance to the data and poses additional difficulty to
normalization methods where a good method aims to
reduce variance without increasing bias [18]. Secondly,
heteroskedasticity will bias test statistics since Type I
and Type II error increases with underestimated and
overestimated standard errors respectively as a conse-
quence of unequal variance [19, 20].
In this work, we derived a generalized concept whereby

the anecdotal description that transcript abundance se-
quencing count data is almost Zipf ’s law-like distributed
can now be objectively quantified by the Pareto power-law
distribution via its mathematical moments and how the
distribution can be rendered mathematically imperfect
when subjected to the finite-size effects in the real world;
a manifestation of the aliasing noise when undersampling
occurs. Our formalism concurs well with our empirical
analysis of two modern day NGS (Next-generation sequen-
cing) datasets: an in-house generated dilution miRNA
study of two gastric cancer cell lines (NUGC3 and AGS)
and a publicly available spike-in miRNA data; Firstly, the
finite-size effects causes deviations of sequencing count
data from Zipf ’s law and the issues of reproducibility is-
sues in sequencing experiments that seems inescapable
despite the advancement in sequencing technology since
sampling is finite in the real world. Secondly, finite-size ef-
fects manifests as heteroskedasticity among experimental
replicates to create statistical woes.
Collectively, this justifies for a simple restoration of

the sequencing count data towards a power-law distribu-
tion with a single exponent value, herein as power-law
correction, to reduce sample variance of lower transcript
counts towards homoskedasticity for improved statistical
outcomes. When this method was evaluated in a typical
NGS comparative analysis workflow that entails (i) read
mapping/count quantification (ii) pre-filtering of the
zero counts across conditions (iii) normalization and (iv)
the statistical testing, the signal-to-noise ratio (SNR) of
the workflow improved by 50% after power-law correc-
tion. In turn, this higher SNR translates to an increase in
statistical and detection sensitivity by approximately 30%
in the dilution analysis regardless of the mapping and
normalization methods used in the evaluation. Most im-
portantly, the power-law correction addresses a long-
standing issue of discordance in the comparative analysis
workflow, particularly attributed to the variations among
different normalization methods [12–14]. Using the dilu-
tion study, the increase in concordance rate was aver-
agely 22% from the baseline rate of (48.24 ± 7.07)% to
(70.32 ± 6.72)% upon power-law correction. When a
higher sequencing depth is presented, power-law correc-
tion can extract the additional information content to
increase significant detection. Specifically, in the dilution
analysis, the higher sequencing depth instance (by four
times higher) has an increase concordance rate of 32%

(44.6% ± 4.91% versus 76.25% ± 1.78%) while it was 13%
(51.88% ± 7.26% versus 64.39% ± 3.65%) for the lower
depth instance. Finally, power-law correction statistically
enhances the biological context of the experiment and elu-
cidates the multiple metastatic signatures of the NUGC3
cell line in the dilution study of two gastric cell lines.

Results and discussion
Finite-size effects introduces curvature in sequencing
count data distributions, impacts the reproducibility of
the experiment and brings about heteroskedasticity
among experimental replicates
Two miRNA sequencing datasets composed of technical
replicates were being examined; The choice of miRNA is
deliberate to avoid both transcript length bias [9] and
abundance quantification [21] as confounding factors.
The first miRNA set is the background count data of a
spike-in experiment from a published study (GEO data-
set: GSE67074) that contains 12 replicates [11]; The
original authors’ BWA-mapped counts were used. The
second set is an in-house generated dilution series of
two gastric cancer cell lines - AGS and NUGC3 (See
methods for details: The dilution dataset [22]). In this
section, only the Bowtie1-mapped NUGC3 set of 8 tech-
nical replicates that spans across 4 concentration points
of 12pM, 6pM, 3pM and 1.5pM was used. The varying
concentration design aims to simulate the different se-
quencing depth (i.e., the total mapped reads) that
mimics a system of various sizes to study its finite-size
effects (See Additional file 1: Figure S1).
Given that these datasets are made up of replicates, a

simple intra-sample scaling where the counts of each
replicate is divided by the maximum count of the same
transcript within the replicate, will suffice. Furthermore,
instead of visualizing Zipf ’s law distribution with rank-
frequency graphs, the Pareto distribution plots were
used (See methods for details: Transformation between
rank-frequency and Pareto distribution). This has the
added advantage of characterizing the sequencing count
data with the mathematical moments (i.e., mean, stand-
ard deviations) of the Pareto’s density function that is
lacking in a typical Zip’s law plot.
Figure 1a and b depict the cumulative histograms, spe-

cifically the Pareto distribution plots of the scaled counts
from the spike-in background and NUGC3 dilution
dataset (See methods for details: Property of Type I Pa-
reto distribution). The plots are segmented into its ap-
propriate highest-count to lowest-count linear ranges
based on an order of magnitude per segment (see verti-
cal dotted lines across horizontal axis). In both cases, the
highest-count segments approach the Zipf ’s law (see
dashed black line) which has a characteristic slope of − 1.
Beyond that, the slope values generally decreased and fin-
ished with an inflection for the lowest-count segments.
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While there is a general convergence of slope values
from the highest-count to the mid-count segments, a
specific divergence for the low and lowest-count seg-
ments can be readily seen. In the case of the dilution
set, its divergence is more exaggerated (as marked by
the split-end pattern) as a consequence of a more de-
liberate sequencing depth differences among the repli-
cates. The latter marks the effects of the finite-size
effects which plays a major role in the reproducibility
of the observed distributions.
Meanwhile, the trend towards changing slopes along

the count segments indicates a general deviation from a
single power-law exponent. Based on the mathematical
moments of the Pareto distribution (Eqs. 3 and 4), expo-
nent values of below “1” indicates asymptotically infinite
moments. The consequence of these infinite moments is
that their empirical estimates can converge very slowly
due to the frequent occurrences of extreme values [23].
When coupled with the changing exponents along the
count segments, heteroskedasticity (i.e., unequal error
variance) among the replicates can be expected from the
imperfect power-law distributions.

To further emphasize, the scatterplots of the scaled
counts for the 11 replicates of the spike-in background
set against the replicate with the highest total reads were
examined in Fig. 1c. Concurrently, Fig. 1d depicts the
scaled count of the 7 NUGC3 replicates of the dilution
set against the NUGC3 12pM sample with the highest
total reads. Similar segmented ranges are also superim-
posed on these figures. Complementing Fig. 1c and d,
the regression slope of the power-law fit, the total num-
ber of points, the observed and expected standard devi-
ation of each segmented range were computed and
complied in Table 1. Of particular importance is the ex-
pected standard deviation which projects the expected
heteroskedasticity of the replicate noise across the count
segments. It is extrapolated from the observed standard
deviation of a reference count segment after accounting
for the slope differences between the reference segment
and the other segments (See Table 1 legend for further
explanation).
Essentially, the observed heteroskedasticity seen in the

Fig. 1c and d exhibits the hallmark of the Pareto’s math-
ematical moments where a change in variance is

Fig. 1 Pareto distributions and scatterplots of spike-in background and dilution datasets. a and b give the Pareto distribution plots of the scaled
background counts from the spike-in background and NUGC3 dilution dataset respectively. Both plots are segmented into the highest-count to
lowest-count regions based on an order of magnitude per segment (see vertical dotted lines across horizontal axis). Generally, Zipf’s law (i.e., slope
of − 1) holds well for the highest-count segments. c and d give the scatterplots of the highest sequencing depth replicate against the rest for the
spike-in background and NUGC3 dilution dataset respectively. Both plots exhibit the hallmark of the Pareto’s mathematical moments where a
change in variance is perpetuated by a change in the power-law exponent. The noise that plagued the low and lowest-count segments, serves
to highlight the instability of the replicated count values when the corresponding power-law mathematical moments stem not only from low
exponent values but of non-comparable magnitude as well
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perpetuated by a change in the power-law exponent.
Furthermore, the observed heteroskedasticity can be di-
vided into variances of reproducible (i.e., the degree of
agreement between experimental results conducted by
different individuals/locations/instruments) and irrepro-
ducible origin. Specifically, when heteroskedasticity is
about equal between the observed (i.e., general spread of
the datapoints) and the expected (i.e., margins marked
by the dotted lines at 99% confidence interval) standard
deviations, it is simply reflective of the reproducible rep-
licate noise as for the cases of the highest to mid-count
segments. However, when heteroskedasticity spreads be-
yond the expected margins, it indicates additional irre-
producible noise as for the cases of the diverged low and
lowest-count segments. In the worst cases, the observed
standard deviation exceeds that of the expected by about
2 times for the spike-in background set and 3 times for
the NUGC3 dilution set (See Table 1: values in red).
The irreproducible noise that plagued the diverging

low and lowest-count segments, serves to highlight the
instability of the replicated count values when the corre-
sponding power-law mathematical moments stem not
only from low exponent values but of non-comparable
magnitude as well. The latter basically demonstrates the
impact of the finite-size effects on the same physical sys-
tem when sampled at different rates. Since irreproduc-
ibility can occur even for a set of replicates that has
similar sequencing depths like the case of the spike-in
set, it is expected to be worse for any datasets that have
more diverse depths as attested by the dilution set.

Unfortunately, none of the commonly used normalization
methods namely DESeq [24, 25], Relative Log Expression
(RLE) [24, 26], Trimmed Mean of M-values (TMM)
[26, 27], UpperQuartile (UQ) [12, 26], Count Per Million
(CPM) [26] and Quantile [18, 28]) can correct for the
power-law deviations in both datasets; Both power-law de-
viation and heteroskedasticity remain (See Additional files
2: Figure S2 and Additional files 3: Figure S3).

Aliasing noise explains the finite-size effects that distorts
the theoretical power-law distribution of sequencing
count data
In fact, the sequencing procedure can be recast into a
sampling problem: The total transcript population in a
cell can be viewed as a library of unique transcript spe-
cies with different frequency of occurrences. Simply put,
this library can be thought as the composites of a con-
tinuous analogue signal. And when this analogue signal
is subjected to sequencing, it undergoes a sampling pro-
cedure where the abundance of the individual transcript
species in terms of its counts, is being quantified. Col-
lectively, the digitized counts becomes the sampled sig-
nal of the original analogue signal.
Mathematically, a power-law type sampled signal Y(f )

with an amplitude of So and an exponent of α, can be
described as the sum of its original signal Sof

−α and its
alias term So(fs − f )−α given any frequency f (see Eq. 13)
and can be visualized as a frequency-domain plot. With
any sampling procedure, undersampling will occur when

Table 1 Summary of analysis for spike-in background and NUGC3 dilution datasets

The summarized analysis for two datasets, namely the spike-in background and dilution datasets, were presented. The spike-in set consists of 1387 transcripts over
12 replicates while the dilution set has 865 transcripts over 8 replicates. For each segmented range, the fitted slope to Pareto distribution, the total number of
points, the observed and expected standard deviation are calculated. The expected standard deviation σexp gives the corrected standard deviation of each “slope
< 1” segment as if its slope is the same as the reference segment (indicated by *). It is calculated via the formula σexp

segi
¼ σobssegref ðs segref =s segi Þ using the highest-

count segment as the reference. For the spike-in set, the observed and expected standard deviation is about 2 times larger while this is about 3 times for the
dilution set (highlighted in red) in the worst case
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the Nyquist sampling criterion of fmax < 2fs is not satis-
fied where fmax is the largest frequency component of
the original signal and fs is the sampling frequency. As a
consequence, this will result in a non-zero alias term
So(fs − f )−α. More specifically, the condition of aliasing
where a distortion of the sampled signal Y(f ) from its
original signal will occur [29] (See methods for details:
Derivation of the alias term in the power-law 1/
fαequation;
Eqs. 5-13).
In relation to the sampled signal Y(f ), the rank vari-

able y and maximum count value C1 of the rank-
frequency equation (see Eq. 14) are analogous to the
frequency f and the amplitude So of Y(f ) respectively. In
turn, the rank-frequency and Pareto’s tail distribution
are inversely related to each other (See methods for
details: Transformation between rank-frequency and
Pareto distribution; Eqs. 14-17). Essentially, the Pareto
plots can be straightforwardly transformed into a
frequency-domain plot.
To determine if undersampling has occurred, the sam-

pling frequency fs needs to be first determined between
the sampled signal and its original signal to check if the
Nyquist sampling criterion is fulfilled. The best estimate
or surrogate of the original signal Sof

−α can be estimated
from the replicate with the largest total reads within the
data series. For the dilution set, this was one of the 12p
NUGC3 sample which consists of a total of 632 unique
count values. In the case of the spike-in background set,
the replicate with the largest total reads has 863 unique
count values. Corresponding to their rank-frequency
(frequency-amplitude) plots, this translate to a maximum
rank (frequency) of 632 and 863 accordingly.
Using the respective surrogates as baseline, the ob-

served alias noise between a sampled signal and its ori-
ginal signal can be then determined by taking their
logarithmic differences as described by the mathematical
expression logΔY(f ) = log[Sof

−α + So(fs − f )−α] − log[Sof
−α]

(see Eq. 19). Since Zip’s law (see eq. 14 where b = 1) holds
for the high and highest-count segments of both data-
sets, the exponent term is implicitly set to α = 1. Alias
noise ΔY(f ) reaches its maximum when f = fmax such that
ΔY(f ) = ΔY(fmax), for which the sampling frequency fs
can be solved by evaluating logΔY(fmax) (See methods for
details: Solving for sampling frequency fsto determine
undersampling; Eqs. 18–21).
Furthering the analysis of the scaled datasets in Fig. 1,

Fig. 2 shows the rank-frequency plots for the NUGC3
dilution and the spike-in replicates (marked in red). In
particular, Fig. 2a–e show the plots for the 1.5p pair, 3p
pair, 6p pair, single 12p replicate and the 11 UHR repli-
cates against the best estimate of the original signals
(marked in black). In addition, the observed alias noise
(marked in blue), together with the corresponding

theoretical alias noise So(fs − f )−α (marked in magenta),
are shown in the sub-figures. For each case, the sam-
pling frequency fs and the mean square error (MSE is de-
fined as the residual error between the observed and
theoretical alias noise) are given as well. The overall low
MSE values of between 5.67e-4 to 3.58e-3 indicates a
good fit between the theoretical alias noise model and
the observed alias datapoints.
Within the NUGC3 dilution set, the 1.5pM, 3pM,

6pM replicates have failed to satisfy the Nyquist sam-
pling criterion of fmax < 2fs at sampling frequencies of
589, 592 and 1045 (See Fig. 2a–c) respectively. Since the
minimum sampling frequency needed by the NUGC3 di-
lution set is 1264 (2 × 632), undersampling has occurred
for these cases. Undersampling can also be concluded
for the spike-in background dataset at a sampling fre-
quency of 1464 (See Fig. 2e) where the required mini-
mum sampling frequency is 1726 (2 × 863). In contrast,
only the single 12pM case had satisfied the Nyquist cri-
terion at fmax < 3.4fs (See Fig. 2d). Theoretically, the sam-
pling frequency for a zero alias noise tends to infinity
(solve eq. 17 for ΔY(fmax) = 1 at f = fmax).
In hindsight, the finite-size effects has always plagued

sequencing-based studies since the early days [7] where
the alias noise manifests as the misfitted tail in Zipf ’s
law distributions. The magnitude of the finite-size effects
is dependent on the severity of undersampling and it can
now be quantified formally through a simple recasting of
the Pareto plot to the frequency-domain plot.

The necessity of power-law correction on sequencing
count data to restore distribution distortion
The restoration of the power-law plots towards a common
power-law slope were applied to the NUGC3 dilution and
spike-in background data series. (See methods for details:
Computation procedures for power-law correction of a
count data set). Akin to Figs. 1 and 3 shows the Pareto
plots and scatterplots of both the power-corrected spike-
in background and the NUGC3 dilution datasets with the
same intra-sample scaling applied. Table 2 complements
Fig. 3 with the details on the regression slope of the
power-law fit, the total number of points, the observed
and expected standard deviation of each segmented range.
Generally speaking, the Pareto plots in both Fig. 3a

and b show a power-law distribution with a more uni-
form slope throughout all count segments, which aver-
ages to about − 0.94 (see Table 2 column 3) for the
spike-in background data set and − 0.97 (see Table 2 col-
umn 7) for the NUGC3 dilution data set. The restor-
ation to a single exponent of the Pareto plot through the
power-law correction gives us an estimate of how the
true underlying distribution (see dashed line that depicts
the Zipf ’s law distribution) would have looked if there
had been no aliasing issues.
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With larger slope values than before, it implies that
the standard deviation for all count segments, should
theoretically converge towards a smaller value. Indeed,
Fig. 3c and d of the respective data sets show that the
corrected count values exhibit less heteroskedasticity
across all count segments and variation among the repli-
cates. This reduced heteroskedasticity is to be expected
if transcript abundance is power-law distributed and ad-
heres to its mathematical moments (see Eqs. 3 and 4); In
hindsight, it does indeed. Furthermore, based on Table 2
(markings in red), the difference between the observed
and expected standard deviation is merely 1.1 times for
the spike-in background dataset and 1.6 times for the
NUGC3 dilution dataset in the worst case. The stark
improvement from before the power-law correction
(i.e., worst case of 2 times and 3 times respectively) signifies
that the irreproducible noise in the data series has been
dramatically reduced in the form of alias noise. Overall, it
translates to a smaller dynamic range for the corrected
values where the uncorrected count values from the low

and lowest-count segment have now been shifted to the
mid-count segment.
When the corrected spike-in background and NUGC3

dilution data sets were subjected to a re-analysis of
aliasing, the corrected datasets shows a general absence
of undersampling. The rank-frequency plots for the cor-
rected dilution replicates are depicted by Fig. 4a for the
1.5p pair, Fig. 4b for the 3p pair, Fig. 4c for the 6p pair
and Fig. 4d for the single 12p, while Fig. 4e shows the
corrected spike-in background replicates for the set of
12 UHR replicates (marked in red). The best estimate of
the original signal is marked by black in each figure.
The corresponding observed alias noise (marked in
blue), as well as the theoretical alias noise So(fs − f )−α

(marked in magenta), shows very slight aliasing in all
cases given their new sampling frequencies of 1720,
1311, 1783, 3315 and 1920 respectively. The overall low
MSE values of between 6.00e-4 to 1.87e-3 indicates a
good fit between the theoretical model and the observed
alias.

Fig. 2 Rank-frequency plots of NUGC3 dilution and spike-in background datasets. a, b, c, d and e show the rank-frequency plots for the 1.5p pair,
3p pair, 6p pair, single 12p replicate and the 11 UHR replicates against the best estimate of the original signals (marked in black). Meanwhile, the
observed alias noise (marked in blue) and the theoretical alias noise So(fs − f)−α (marked in magenta), are also shown. In each subplot, the sampling
frequency fs and the mean square error (MSE is defined as the residual error between the observed and theoretical alias noise) are given as well.
Overall, the low MSE values of between 5.67e-4 to 3.58e-3 indicates a good fit between the theoretical alias noise model and the observed alias
datapoints. For the NUGC3 dilution set, the 1.5p, 3p, 6p replicates have failed to satisfy the Nyquist sampling criterion of fmax < 2fs at sampling
frequencies of 589, 592 and 1045; Undersampling has occurred for these cases. The same can also be concluded for the spike-in background
dataset. Only the single 12p case had satisfied the Nyquist criterion at fmax < 3.4fs

Wong et al. Biology Direct  (2018) 13:2 Page 7 of 26



Fig. 3 Post power-law correction, Pareto distributions and scatterplots of spike-in background and dilution datasets. a and b give the Pareto distribution plots
of the scaled background counts from the spike-in background and NUGC3 dilution dataset respectively, after the power-law correction was applied. Both
plots are segmented into the highest-count to lowest-count regions based on an order of magnitude per segment (see vertical dotted lines across horizontal
axis). Both plots display a power-law distribution with a more uniform slope throughout all count segments. In fact, the power-law correction estimates how
the true underlying distribution should have been without aliasing. Meanwhile, c and d show that the corrected count values exhibit less heteroskedasticity
across all count segments and variation among the replicates with the increase in slope values after the power-law correction. Finally, the minimum count
value of each replicate has increased such that the uncorrected count values previously (See Fig. 2C and D) in the low and lowest-count segment have
now been moved into the mid-count segment

Table 2 Summary of analysis for the power-law corrected spike-in background and NUGC3 dilution datasets

The summarized analysis of the Zipf’s law corrected datasets, namely the spike-in background and dilution datasets, were presented. The spike-in set consists of
1387 transcripts over 12 replicates while the dilution set has 865 transcripts over 8 replicates. For each segmented range, the fitted slope to Pareto distribution,
the total number of points, the observed and expected standard deviation are calculated. The expected standard deviation σexp gives the corrected standard
deviation of each “slope < 1” segment as if its slope is the same as the reference segment (indicated by *). It is calculated via the formula σexpsegi ¼ σobs

segref
ðs segref =

s segi Þ using the highest-count segment as the reference. For the spike-in set, the observed and expected standard deviation is about 1.1 times larger while this is
about 1.6 times for the dilution set (highlighted in red) in the worst case
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Power-law correction should precede normalization;
it increases signal-to-noise ratio and sensitivity of
statistical testing/detection in comparative analysis
To rigorously evaluate the impact on power-law correc-
tion in a typical NGS comparative analysis workflow,
Fig. 5 shows the evaluation setup that permutes across
4 mapping algorithms (Bowtie1, Bowtie2(global) [30],
Novoalign (www.novocraft.com) and BWA [31, 32]) and
6 normalization methods (DESeq [24, 25], Relative Log
Expression (RLE) [24, 26], Trimmed Mean of M-values
(TMM) [26, 27], UpperQuartile (UQ) [12, 26], Count
Per Million (CPM) [26] and Quantile normalization
[18, 28]). Furthermore, the comparisons were split into
the positive (signal between NUGC3 and AGS samples)
and the negative (noise within the NUGC3 replicates)
tests. For the statistical analysis, the generalized linear
model [33] from the EdgeR package [26] was used for
the multiple contrasts where each comparison pro-
duced a set of fold-change values, average counts (in
terms of counts-per-million) and p-values (See methods
for details: Generalized NGS comparative analysis).

Figure 6a shows the MA-plots (i,e., average count
versus fold-change) of the Bowtie1-mapped dilution
dataset before (left-column) and after (right-column) the
power-law correction for the 6 normalization algorithms
(arranged in row-wise). This Bowtie1-mapped set com-
prises of 637 paired AGS-NUGC3 paired-transcripts.
Likewise, Fig. 6b–d depict the MA-plots of the Bowtie2
(global), Novoalign and BWA-mapped dilution analysis
where the total amount of mapped transcripts are 657,
673 and 670 respectively. Their respective PPS settings
was referenced from the Bowtie1-mapped set’s optimum
setting to standardize the parameter settings of the power-
law correction step across the mapping algorithms (See
methods for details: Computation procedures for power-
law correction of a count data set).
For each MA-plot, the positive signal is depicted in

red while the noise is shown in blue. The noise model,
as a simple linear regression of y =mx, attempts is
depicted dotted line. For both signal and noise data-
points, their corresponding residual with respect to the
fitted noise model gives the fold-change variation along

Fig. 4 Post power-law correction, rank-frequency plots of NUGC3 dilution and spike-in background datasets. a, b, c, d and e show the rank-
frequency plots for the 1.5p pair, 3p pair, 6p pair, single 12p replicate and the 11 UHR replicates against the best estimate of the original signals
(marked in black) after the power-law correction. The observed alias noise (marked in blue) and the theoretical alias noise So(fs − f)−α (marked in
magenta), are also shown. In each subplot, the sampling frequency fs and the mean square error (MSE is defined as the residual error between the
observed and theoretical alias noise) are given as well. The overall low MSE values of between 6.00e-4 to 1.87e-3 indicates a good fit between the
theoretical model and the observed alias. Generally speaking, the corrected datasets shows a general absence of undersampling. For all plots, the
observed alias noise (marked in blue), as well as the theoretical alias noise So(fs − f)−α (marked in magenta), shows very slight aliasing in all cases
given their new sampling frequencies of 1720, 1311, 1783, 3315 and 1920 respectively
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the average count axis (or x-axis) and can be recapitu-
lated into a summary statistics. Essentially, the summary
statistics gives the amount of bias (the mean) and vari-
ance (the standard deviation) of the normalization
method where an effective one should reduce variance
without increasing bias [18]. Furthermore, signal-to-
noise ratio (SNR) of each mapping/normalization pair,
defined as Eðx2signalÞ=σ2

noise where Eðx2signalÞ is the expect-

ation of the second moment of the signal and σ2
noise is

the variance of the noise, was also computed. For each
mapping algorithm, the median measures of the signal
residual, noise residual and SNR across all normalization
methods are also taken and summarized in Table 3 (see
Additional file 4: Table S1 for full details).
Throughout all the MA-plots, heteroskedasticity in the

noise comparisons (depicted in blue) can be readily seen
without the power-law correction. Heteroskedasticity
brings about two issues: Firstly, it introduces both bias
and large variance to the comparisons as attested by the
mean and standard deviation ranges of − 0.192 to −
0.153 and 2.189 to 2.229 for the positive comparisons
(or signal) (Table 3 column 3). In contrast, this was

between 0.001 to 0.006 and between 1.017 to 1.022 for
power-law corrected analysis (Table 3 column 6). Over-
all, the correction improved the SNR by about 50% (i.e.,
17–11/11) given the SNR of the corrected and uncor-
rected analysis at about 17 times and 11 times respect-
ively (Table 3 columns 4 and 7).
Secondly, heteroskedasticity, which manifests as un-

equal variance, can bias the test-statistics where Type I
and Type II error will increase with underestimated and
overestimated standard errors respectively [19]. To further
emphasize, Fig. 7a–d show the same Bowtie1, Bowtie2(-
global), Novoalign and BWA-mapped dilution analysis in
terms of their volcano plots (i.e., log fold-changes versus p-
values). Likewise, the left and right columns show the be-
fore and after power-law correction for the 6 normalization
algorithms (arranged in row-wise).
In each volcano plot, the noise comparisons can essen-

tially be treated as the null hypothesis. As such, the log
fold-change and p-value cutoffs (marked by double hori-
zontal dotted lines and single vertical dotted line) for the
purpose of deriving the significant number of transcripts
in the positive comparisons, were determined from the
largest absolute fold-change value and smallest p-value
of these 6 noise comparisons (in blue). The latter aims
to exclude any false-positives. Furthermore, the rate of
change in p-value against fold-change can also be derived
from the two cutoff values and is indicated in each vol-
cano plot. Finally, for each of the 4 positive comparisons,
the exact breakdown of the number of significant tran-
scripts for all combinations of mapping and normalization
methods before and after power-law correction were com-
puted (see Additional file 5: Table S2 for full details).
Based on the volcano plots, the slower rate of change

in p-values of the uncorrected cases when compared to
the power-law corrected cases, implies that a higher
fold-change threshold is required to achieve a compar-
able p-value (or Type I error rate) during statistical test-
ing. Consequently, the higher fold-change threshold also
implies a larger type II error (i.e., failing to detect an ef-
fect that is present) for the uncorrected cases and hence,
a compromised sensitivity on the statistical testing. In-
deed, based on Table 4, the general number of signifi-
cant transcripts are higher for the power-law corrected
analysis than the uncorrected ones. The trend is consist-
ent regardless of the mapping algorithms used when
averaged over the 6 normalization methods for each posi-
tive comparison. Meanwhile, it should also be noted that
the variation contributed by different normalization algo-
rithms is larger than that of different mapping methods.
Overall, the average increase in sensitivity (in terms of per-
centage) across the 4 comparisons after power-law correc-
tion, is between 26% to 28% (36~ 42 transcripts versus
50~ 57 transcripts) for the Bowtie1-mapped analysis, be-
tween 27% to 30% (41~ 44 transcripts versus 58~ 61

Fig. 5 NGS comparative analysis evaluation workflow. The workflow
broadly entails the following 4 steps: (i) the read mapping to
produce transcript count, (ii) the filtering of the transcripts to ensure
non-zero (i.e., no missing) count values between conditions, (iii) the
application of a normalization procedure to minimize both bias and
variance and finally, (iv) the statistical testing to elucidate significant
genes based on some pre-determined p-value and fold-change cutoff.
As such, the correction step is best inserted after the filtering step and
before the normalization step
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Fig. 6 MA-plots of dilution data set before and after power-law correction. Fig. 6 shows the MA-plots (i.,e., average counts versus fold-changes) of
the dilution dataset before (left-column) and after (right-column) the power-law correction. In particular, Figs a, b, c and d shows the MA-plot
analysis for 4 mapping (Bowtie1, Bowtie2(global), Novoalign and BWA) algorithms while the permutation of the 6 normalization algorithms (DESeq,
Relative Log Expression (RLE), Trimmed Mean of M-values (TMM), UpperQuartile (UQ), Count Per Million (CPM) and Quantile normalization) are arranged in a
row-wise manner. For the power-law correction, the optimum PPS setting was evaluated to be 55 (See Additional file 6: Fig. S5A). In each MA-plot, the
positive and noise signal are shown in red and blue respectively. The noise model (y =mx) is shown in dotted lines; Ideally, the slope value is 0 for no
bias. The signal and noise residuals with respect to the noise model give the fold-change variation along the average count axis (or x-axis). Overall, it
is apparent that the heteroskedasticity (see left-column) of the uncorrected AGS and NUGC3 count values has propagated down to the level of
comparative analysis regardless of any combination of mapping and normalization methods. However when power-law correction is applied,
heteroskedasticity was dramatically minimized (see right-column)
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transcripts) for the Bowtie2(global)-mapped analysis, be-
tween 26% to 34% (36~ 43 transcripts versus 54~ 58 tran-
scripts) for the Novoalign-mapped analysis and between
26% to 32% (36~ 41 transcripts versus 53~ 58 transcripts)
for the BWA-mapped analysis.

Independent validation of power-law application on the
full spike-in data series
As an independent validation, the full spike-in dataset
which includes the 12 non-human spike-in transcripts
was also analyzed. Given 12 samples in total without
technical replicates across conditions, the total number
of possible pairwise comparisons is 66 cases (C12

2 ) where
the positive set is made up of the 12 spike-in transcripts
(or signal) while the negative set (or noise) is composed
of 460 UHR transcripts after filtering for non-zero count
values among the conditions. In addition, given that the
original authors’ BWA-mapped counts were used, the
permutation step across the 4 mapping algorithms was
excluded. Also, due to the cyclic latin-square design of
the spike-in transcripts across the 12 samples, the
uniqueness of each sample meant that there are no repli-
cates and hence, statistical evaluation is not possible. In-
stead, the cutoff criteria for significant call is simply
based on the fold-change. As an additional note, the
optimum PPS setting for the power-law corrected data
was evaluated to be 10 according to the optimization
plot (See Additional file 6: Figure S5B). Note that due to
the lack of replicates for the spike-in transcripts, only
the background set was used for the parameter
estimation.
Figure 8 shows the receivers operator characteristics

(ROC) curves for the 6 normalization methods: DESeq,
Relative Log Expression (RLE), Trimmed Mean of M-
values (TMM), UpperQuartile (UQ), Count Per Million
(CPM) and Quantile normalization. For each ROC plot,
the sensitivity and specificity values were derived through
the permutation of the log fold-change range of the noise
comparisons. The plot without correction is shown in red

while the power-law corrected one is depicted in blue.
From the ROC plots, there is an obvious improvement in
the performance across all tested normalization methods
after the power-law correction. Among the methods, the
performance is almost comparable to one another with
the exception of the quantile normalization method. Fur-
thermore, to compare against the BWA performance of
the dilution analysis, the sensitivity of the spike-in analysis
for each normalization method was evaluated at the false-
positive rate of 0 (See the sensitivity values before and after
power-law correction in the ROC plots). As compared to
the improvement in statistical sensitivity of 26% to 32% in
the dilution analysis, the improvement in detection sensi-
tivity for the spike-in analysis is lower (i.e., between 15% to
17%) across all the methods since its undersampling con-
dition was less severe than that of the dilution data set.

Power-law correction improves the concordance in
significant transcript call among normalization
algorithms, especially with increased sequencing depth
Another important implication of the power-law correction
is that the improved concordance in significant transcript
call among the different normalization methods [12–14]
will decrease the workflow’s dependency on the variations
in specific algorithms. Returning to the dilution data set
analysis, Table 5 gives the average concordance in sig-
nificant calls by various mapping/normalization methods
(see Additional file 5: Table S2 for the detail breakdown). It
summarizes the level of agreement between the 6
normalization algorithms per mapping method for the
positive comparisons in NGS workflow as shown in Fig. 5.
Briefly, the “intersect” row gives the total number of com-
mon significant transcripts with the same fold-change dir-
ectionality among the 6 algorithms, the “union” row gives
the total number of significant transcripts reported by any
of the 6 algorithms while the concordance ratio (in %) is
taken between the “intersect” total and the “union” total.
The concordance ratio serves as an unbiased measure given
its double-edged sword nature; While an increase in signifi-
cant call by all algorithms is necessary to increase the

Table 3 The average signal-to-noise characteristics of the comparative dilution analysis (AGS versus NUGC3) before and after power-
law correction

Original data Power-law corrected data

Mapping method Median residual
(μ ± σ)noise

Median residual
(μ ± σ)signal

Median
signal-to-noise ratio

Eðx2signalÞ
σ2noise

Median residual
(μ ± σ)noise

Median residual
(μ ± σ)signal

Median
signal-to-noise ratio

Eðx2signalÞ
σ2noise

Bowtie1 0.018 ± 0.649 −0.192 ± 2.229 11.3 0.002 ± 0.261 0.006 ± 1.021 15.4

Bowtie2 (global) 0.019 ± 0.642 −0.169 ± 2.200 11.3 0.002 ± 0.244 0.003 ± 1.022 17.6

Novoalign 0.017 ± 0.641 −0.153 ± 2.189 11.3 0.001 ± 0.238 −0.001 ± 1.017 18.2

BWA 0.017 ± 0.648 −0.159 ± 2.193 11.1 0.001 ± 0.242 0.001 ± 1.019 17.8

This table complements the MA-plots in Fig. 6A to D. It summarizes the characteristics of the signal and noise comparisons before and after power-law correction for
each aligner across 6 normalization methods. The bias and variance of each normalization method, in terms of signal and noise, are computed from the difference
between the comparisons and the fitted noise model and with the summary statistics taken. The signal-to-noise ratio, before and after power-law correction, are also
given. The average signal-to-noise ratio improvement is about 1.5 times after the correction
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Fig. 7 Volcano plots of dilution data set before and after power-law correction. Akin to Fig. 6, the volcano plots of the dilution dataset before (left-column)
and after (right-column) the power-law correction is shown in Fig. 7. In particular, Figs a, b, c and d shows the MA-plot analysis for 4 mapping (Bowtie1,
Bowtie2(global), Novoalign and BWA) algorithms while the permutation of the 6 normalization algorithms (DESeq, Relative Log Expression (RLE), Trimmed
Mean of M-values (TMM), UpperQuartile (UQ), Count Per Million (CPM) and Quantile normalization) are arranged in a row-wise manner. Overall, the apparent
asymmetrical spread of the noise comparisons (in blue) of the uncorrected data set demonstrates the non-zero fold-change bias despite the application of
various normalization methods. Most importantly, the slower rate of change in p-values of the uncorrected cases (see left-column) when compared to the
power-law corrected cases (see right-column), implies that a higher fold-change threshold is needed to acquire the same p-value (or Type I error rate) during
statistical testing. In turn, a higher fold-change threshold also implies a larger type II error (i.e., failing to detect an effect that is present) for the uncorrected
cases and eventually, a compromised sensitivity on the statistical testing
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“intersect” count, it also increases the likelihood that only
some of the algorithms are making the call, thus lowering
the concordance ratio.
With the power-law correction, the increase in the

“intersect” total has almost doubled for all mapping/
normalization combinations across all comparisons (see
“intersect” rows). Meanwhile, the corresponding increase
in the “union” total is less than one-quarter at its worst
(see “union” rows). This gives an increase of about 22%

in concordance rate after the power-law correction
i.e., (70.32 ± 6.72)% versus (48.24 ± 7.07)% (See “sum-
mary statistics” first row in Table 5). When the com-
parisons are further stratified by their sequencing depths
(i.e., AGS-12p and AGS-3p comparisons), an increase in
sequencing depth does not necessarily improve the con-
cordance rates. In fact, the higher sequencing depth AGS-
12p instance has a lower concordance rate of (44.6 ±
4.91)% than that of the lower sequencing instance at

Table 4 Median number of significant transcripts calls in the comparative dilution analysis (AGS versus NUGC3) before and after
power-law correction

Original data Power-law corrected data

Mapping method AGS 12p vs
NUGC3 12p

AGS 12p vs
NUGC3 3p

AGS 3p vs
NUGC3 12p

AGS 3p vs
NUGC3 3p

AGS 12p vs
NUGC3 12p

AGS 12p vs
NUGC3 3p

AGS 3p vs
NUGC3 12p

AGS 3p vs
NUGC3 3p

Bowtie1 42 41 39 36 57 52 52 50

Bowtie2 (global) 44 43 43 41 61 59 61 58

Novoalign 43 40 39 36 58 57 57 54

BWA 41 41 39 36 58 55 56 53

The breakdown of significant transcript calls for each combination of the mapping algorithms (Bowtie1, Bowtie2(global), Novoalign and BWA) and normalization
methods (DESeq, RLE, TMM, Upperquartile, CPM and Quantile) for all 4 positive comparisons (AGS-12p versus NUGC-12p, AGS-12p versus NUGC-3p, AGS-3p versus
NUGC-12p and AGS-3p versus NUGC-3p) are given in the following table. The median number of significant calls for 6 normalization methods are highlighted in
red for each mapping algorithm

Fig. 8 Receivers Operator Characteristics (ROC) curves of the spike-in data set before and after power-law correction. Figure 8 shows the receivers operator
characteristics (ROC) curves for the 6 normalization methods: DESeq, Relative Log Expression (RLE), Trimmed Mean of M-values (TMM), UpperQuartile (UQ),
Count Per Million (CPM) and Quantile normalization. For each ROC plot, the sensitivity and specificity values were derived through the permutation of the
log fold-change range of the noise comparisons. The plot without correction is shown in red while the power-law corrected one is depicted
in blue. Overall, an obvious improvement in the performance upon the power-law correction can be seen regardless of normalization methods.
Among the methods, the quantile normalization method gave the worst performance
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(51.88 ± 7.26)% (See “summary statistics” second row in
Table 5). In retrospect, although the number of significant
transcript calls or the “intersect” total has generally
increased with a higher sequencing depth, the incon-
sistency in significant transcript calls among the various
normalization methods (i.e., the “union” total) has in-
creased at a faster rate which resulted in a lower concord-
ance rate despite the higher sequencing depth.
With the power-law correction, a higher sequencing

depth correctly returns a higher concordance rate. Be-
tween the uncorrected and power-law corrected analysis,
the improvement is somewhat asymmetrical where it was
about 32% (44.6% ± 4.91% versus 76.25% ± 1.78%) for the
higher sequencing depth AGS-12p instance while this was
about 13% (51.88% ± 7.26% versus 64.39% ± 3.65%) for the
lower depth AGS-3p instance. It remains that sufficient
sequencing depth is necessary to generate enough infor-
mation but when the condition is met, power-law correc-
tion will be able to extract any additional information
content to increase significant detection.

Enhanced statistical conclusions elucidates the metastatic
potential of the NUGC3 gastric cancer cell line
While both AGS and NUGC3 cell lines were commonly
described as gastric adenocarcinoma according to the
Cellosaurus database (version 22; http://web.expasy.org/
cellosaurus/), NUGC3 was derived from a distal metasta-
sis site - the Brachialis muscle of a male patient and
AGS is presumably taken from the primary site of a fe-
male patient. Therefore, their comparison should elude
the metastasis potential of the NUGC3 cell line beyond
the common gastric adenocarcinoma. According to current

literature, the common metastasis site of stomach cancer
(in ascending order) is the liver, peritoneum, lung and bone
[34, 35] while it is considerably rare to spread to the pan-
creas and skeletal muscle [36, 37]. When compared to gen-
eric adenocarcinoma which often spreads to the liver and
lung [38], signet-ring adenocarcinoma frequently metasta-
sizes within the peritoneum, bone, ovaries and sometimes
to the breast [34, 39].
In our comparative study of the two gastric cell

lines, the Bowtie1-mapped concordance transcripts
from Table 5 before and after power-law correction
were independently subjected to gene-set enrichment
analysis (GSEA) via the MiEAA webserver to identify
plausible disease groups from the collection of Hu-
man microRNA and Disease Database (HMDD).
Briefly, using the Bowtie1-mapped results from Table 5,
the concordance transcripts across the 4 comparisons be-
fore power-law correction (see “intersect row”; columns 3–
6) were compiled into a union set of concordance tran-
scripts. The same was done for the power-law corrected
comparisons (see “intersect row”; columns 7–10).
Altogether, the uncorrected and power-law corrected
union sets consist of 30 and 52 concordance pre-cursor
miRNA transcripts respectively (see Additional file 7:
Table S3 columns 1 and 2). The uncorrected list exceeded
the maximum intersect value of 28 (AGS-12p versus
NUGC3–12p) due to some slight variations among the 4
comparisons. Between the two concordance sets, the un-
corrected set is almost a complete subset of the corrected
set; one transcript is unique to the uncorrected set while
this was 23 for the corrected set (See Additional file 7:
Table S3 columns 3 and 4).

Table 5 Concordance summary of significant transcripts calls of comparative dilution analysis (AGS versus NUGC3) before and after
power-law correction

The following table gives the agreement of significant transcript calls among the 6 normalization methods (DESeq, RLE, TMM, Upperquartile, CPM and Quantile) for
each mapping algorithms (Bowtie1, Bowtie2(global), Novoalign and BWA) for the following 4 positive comparisons: AGS-12p versus NUGC-12p, AGS-12p versus
NUGC-3p, AGS-3p versus NUGC-12p and AGS-3p versus NUGC-3p. The summary statistics row gives the concordance of comparisons (i) across all sequencing
depth (top row) and (ii) stratified by sequencing depth (bottom row)
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Thereafter, both lists were independently subjected to
gene-set enrichment analysis (GSEA) via the MiEAA
webserver to identify plausible disease groups from the
collection of Human microRNA and Disease Database
(HMDD). For the power-law corrected list, the specific
parameters are as follows: count≥10 and FDR-adjusted
p ≤ 0.05; This gives a maximum expected value of 0.5
for false-positives (FP). To match the FP count of 0.5,

the necessary parameters for the uncorrected list are:
count≥5 and FDR-adjusted p ≤ 0.1 (See Table 6 legend
for detailed explanation).
Table 6 consolidates the identified HMDD categories

of both analysis sorted by observed count, then by FDR-
adjusted p-value. The expected baseline category -
“adenocarcinoma” was used as the cutoff point for signifi-
cance and hence, any categories beyond it were considered

Table 6 miRNA enrichment of concordance transcripts before and after power-law correction

This table gives the gene-set enrichment analysis (GSEA) in the significant HMDD (Human microRNA and Disease Database) categories of the Bowtie1-mapped
uncorrected and power-law corrected concordance transcripts (total of 30 and 52 respectively) as listed in Table 5, via the MiEAA webserver. For the power-law
corrected list, the specific parameters are as follows: count≥10 and FDR-adjusted p ≤ 0.05; This gives a maximum expected value of 0.5 for false-positives (FP). To
match the FP count of 0.5, the necessary parameters for the uncorrected list are: count≥5 (approximated from 10/52*30 = 5.77 where 10/52 is the ratio of power-
corrected count of 10 over its total concordance transcripts of 52) and FDR-adjusted p ≤ 0.1 (approximated from 0.5/5.77 = 0.08). The identified HMDD categories from
the two MiEAA runs were sorted by observed count, then FDR-adjusted p-value based on the power-law corrected results. Categories highlighted in red, blue and black
are denoted as significant, significant false-positives and non-significant
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as insignificant hits (marked in black). Within the significant
categories, there are two likely false-positive hits (marked in
blue). They are the “Leukemia, Myeloid, Acute” hit that
should be grouped with the non-significant “Leukemia,
Lymphocytic, Chronic” and the “Carcinoma, Squamous
Cell” hit that should group with the non-significant “Esopha-
geal Neoplasms” hit to explain esophageal cancer.
Between the uncorrected and power-law corrected re-

sult sets, the latter presents the stronger evidence of ex-
pected gastric adenocarcinoma through its more
significant p-values for both “stomach neoplasms” and
“adenocarcinoma”. Likewise, the remaining significant
hits suggest several neoplasms and carcinoma (“lung
neoplasms”, “pancreatic neoplasm”, “ovarian neoplasm”
“carcinoma, non-small-cell lung”) as possible metastasis
sites for NUGC3 with stronger statistical conclusions
being drawn from power-law corrected analysis. In
addition, power-law analysis discovers two more metas-
tasis categories - “carcinoma, hepatocellular” and
“breast neoplasms” with significant p-values 0.015 and
0.023 respectively. Overall, the power-law corrected
analysis concurs significantly better with the clinical
evidence.

Conclusion
Specifically, our work has identified and mathematically
quantified an important technical limitation of the se-
quencing technology for transcriptomics applications
where finite-size effects due to undersampling [15,
29] can have profound effects on the reproducibility
and statistical qualities of underlying transcript abun-
dance distribution for its subsequent interpretation;
This is independent of the advancement in sequen-
cing technology since sampling is finite in the real
world. With a simple distribution correction, the
signal-to-noise ratio and sensitivity of statistical detec-
tion in a typical comparative analysis can experience an
instant and dramatic improvement that greatly impacts
the reliability of the final biological interpretation of the
study.

Methods
Property of type I Pareto distribution
When transcript abundance is being visualized in a rank-
frequency plot, the Zip’s law [3–7] is specifically being sin-
gled out. Meanwhile, there exists a close relationship be-
tween the family of Pareto distributions (Type I, II, II and
IV) to the Zip’s law; Type II to IV Pareto distributions var-
ied from Type I mainly from the addition of a location
and shape parameter that are irrelevant to the modelling
of transcript abundance. Among the Pareto family, the
Type I Pareto distribution remains the most mathematic-
ally compatible to the rank-frequency plot where their two
axis can be shown to be interchangeable (See methods for

details: Transformation between rank-frequency and Pa-
reto distribution).
Mathematically, the probability (PDF) and cumulative

(CDF) density function of the Type I Pareto distribution
are defined as:

P X ¼ x; xmin; sð Þ ¼ sxsmin

xsþ1
ð1Þ

P X ≤x; xmin; sð Þ ¼
1−

xmin

x

� �s
for x≥xmin

0 for x < xmin

8<
: ð2Þ

for the interval x ≥ xmin and xmin is the minimum value of
the distribution and is necessarily positive (i.e. xmin > 0). In
addition, the Pareto’s tail distribution (complementary
CDF) is simply defined as P(X > x). Correspondingly, the
mean and variance of the Pareto distribution are given as:

μ ¼
sxmin

s−1
for s > 1

∞ for s≤1

8<
: ð3Þ

σ2 ¼
sx2min

s−1ð Þ2 s−2ð Þ for s > 2

∞ for 0 < s≤2

8><
>: ð4Þ

Therefore, for large values of the exponent term s, the
corresponding mean μ and variance term σ2 converges
towards smaller values for a fixed xmin.

Derivation of the alias term in the power-law 1/fα equation
Aliasing refers to a distortion or an artifact when a re-
constructed signal differs from its original continuous
signal. In this section, the alias term for the power-law
equation 1/fα is derived. Note that the main derivation
originates from Kirchner [29] and this section provides
only a concise adaptation.
Given a time series x(t), its Fourier transform of its

discrete sampled time series y(t) is given as:

Y fð Þ ¼
Z∞
−∞

x tð ÞIII tð Þe−i2Πftdt ð5Þ

Furthermore, given that the sampling function III(t) is
a periodic function at a sampling interval of Δt = 1/fs, it
can be defined as:

III tð Þ ¼
X∞
−∞

cke
i2Πkf st ð6Þ

where ck ¼ 1
Δt

R Δt=2
−Δt=2 ∂ð f stÞe−i2Πkf stdt ¼ 1

Δt
1
f s
¼ 1 for all k.
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Combining Eqs. (5) and (6), one can re-express the
Fourier transform of y(t) into:

Y fð Þ ¼
Z∞
−∞

X∞
k¼−∞

ei2Πkf stx tð Þe−i2Π f stdt

¼
Z∞
−∞

X∞
k¼−∞

x tð Þe−i2Π f −kf sð Þtdt ð7Þ

Also, given that the summation is taken over all k, the
term −kfs can replace by kfs. Together with interchanging
the summation and integration sign, one yields the
following:

Y fð Þ ¼
X∞
k¼−∞

Z∞
−∞

x tð Þe−i2Π fþkf sð Þtdt

¼
X∞
k¼−∞

X f þ kf sð Þ ð8Þ

In addition, the sampled function Y(f ) can be decom-
posed into its original signal X(f ) and its alias compo-
nents as follows:

Y fð Þ ¼ X fð Þ þ
X∞

k¼−∞;k≠0

X f þ kf sð Þ ð9Þ

Since x(t) is a real function, its Fourier transform X(f )
is Hermitian. Therefore, X(−f ) = X(f ) and Eq. (9) can be
written for positive frequencies only as follows:

Y fð Þ ¼ X fð Þ þ
X∞
k¼1

X kf s− fð Þ þ X kf s þ fð Þ ð10Þ

Substituting the power-law equation X(f ) = Sof
−α into

(10) yields:

Y fð Þ ¼ So f
−α þ

X∞
k¼1

So kf s− fð Þ−α

þ
X∞
k¼1

So kf s þ fð Þ−α ð11Þ

For Eq. (11) to converge mathematically, (i) the
high frequency component (kfs + f ) cannot be ex-
tended infinitely; In real-world, high frequency com-
ponents fall off faster than 1/fα way above the
sampling frequency) and (ii) the condition where
α > 1 needs to be satisfied. Hence, the Fourier trans-
form of x(t) can be simplified to the following
form:

Y fð Þ ¼ So f
−α þ

X∞
k¼1

So kf s− fð Þ−α ð12Þ

Furthermore, for a band-limited signal of 0 ≤ f ≤ fmax, the
only relevant alias term is (fs− fmax) where k= 1, since (kfs−
fmax) > 0 will satisfy the Nyquist sampling criterion of fmax <
kfs for which k ≥ 2. In other words, aliasing will not occur for
k ≥ 2. Finally, the power-law Fourier series of x(t) with the
relevant alias term when undersampling occurs, is given as:

Y fð Þ ¼ So f
−α þ So f s− fð Þ−α ð13Þ

where Y(f ) is the sampled function, Sof
−α is the original

signal and So(fs − f )−α is the alias component.

Transformation between rank-frequency and Pareto (type I)
distribution
The Pareto (Type I to IV) distribution belongs to the large
family of power-law distributions; the subsequent deriv-
ation refers specifically to the Type I Pareto distribution.
Given an observation, the Pareto’s tail distribution (comple-
mentary CDF) describes how many cases are seen greater
than the observation in terms of cumulative density func-
tion (CDF). Meanwhile, the rank-frequency distribution is
an inverse CDF (quantile function) seen in a reverse order
with respect to the Pareto distribution, where it depicts the
occurrence of the observation at a given rank.
First, let the rank-frequency equation be defined as:

x ¼ C1y
−b ð14Þ

where y is a yth ranked value and x is the number of
observed occurrences at y. One can further implies that
there exists y number of values for which their corre-
sponding x values are greater than C1y

−b. As such, one
can write a cumulative density function for random vari-
able X for the number of observations larger than C1y

−b

in the form:

P X > C1y
−b� � ¼ C2y ð15Þ

where C2 is a normalization constant such that P(X ≥
C1y

−b) ≤ 1 must be satisfied. Then, rearranging Eq. (14)

into y ¼ ½ xC1
�−1

b and substituting it into Eq. (15) yields the

Pareto’s tail distribution or complementary CDF:

P X > xð Þ ¼ C2
x
C1

� �−1
b

ð16Þ

For completeness sake, one can replace xmin ¼ C1Cb
2 to

obtain the usual Pareto’s tail distribution form of PðX > xÞ
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¼ ½ x
xmin

�−1
b for x ≥ xmin. Meanwhile, to convert from the

complementary CDF to the complementary cumulative
total function (CTF), the expression can simply be rear-
ranged as follows:

y ¼ 1
C2

� P X > xð Þ ¼ C
−1
b

1 x
−1
b ð17Þ

Hence, comparing terms in Eqs. (14) and (17), it can
be seen that the Pareto’s tail distribution (in terms of
complementary CTF) and rank-frequency distribution
are inversely related.

Solving for sampling frequency fs to determine
undersampling
Taking logarithm on both sides of Eq. (13), the sampled
function Y(f ) can be rewritten in logarithmic form as:

logY fð Þ ¼ log So f
−α½ �

þ log
So f

−α þ So f s− fð Þ−α
So f

−α

� � ð18Þ

The second term on the right hand-side gives a distor-
tion ratio between an aliased signal Sof

−α + So(fs − f )−α

and original signal Sof
−α. As such, let the distortion ratio

ΔY(f ) be defined as:

ΔY fð Þ ¼ So f
−α þ So f s− fð Þ−α

So f
−α ð19Þ

Further simplification yields:

ΔY fð Þ ¼ 1þ f s− fð Þ−α
f −α

ð20Þ

And solving for the sampling frequency fs gives:

f s ¼ f þ f � ΔY fð Þ−1½ �−1
α ð21Þ

For a rank-frequency plot where Zipf ’s law holds (i.e.,
α = 1), fs can directly be evaluated when f = fmax, ΔY(f )
=ΔY(fmax).

Derivation of the power-law correction factor
In an earlier section, the rank-frequency distribution
and Pareto’s tail distribution has been proven to be
inversely related to each other. For the purpose of es-
timating the exponent term in the rank-frequency
plot, a better approach is to use Pareto’s tail distribu-
tion. This is because the large-ranked tail of rank-
frequency distribution tend to be clustered with small

values of the same rank. As a result, this give a hori-
zontal tail. In contrast, the same segment is always
monotonically-increasing in Pareto. As such, let the
count and rank of the ith transcript be x and y re-
spectively. Then the rank-frequency equation in its
Pareto’s tail distribution form or complementary CTF
can be written as.

y ¼ kx−s ð22Þ
where y = C2 ⋅ P(X ≥ x), k ¼ C−s

1 and s ¼ 1
b from Eq.

(17).
Taking logarithm on both sides, the expression is re-

written as:

logby ¼ logbk þm logbx ð23Þ

where the slope and intercept are represented by m =
− s and logbk respectively. Then, to convert the original
slope and intercept (m, logbk) to a reference set of pa-
rameters (mref, logbkref ), we let:

logby ¼ logbk− logbkref
� �þ logbkref

þmref
m
mref

� 	
logbx

logby ¼ logbkref þ logb
k
kref

x
mref

m
mref

� � ! ð24Þ

In the original scale, the rank-frequency equation can
be re-expressed as:

y ¼ kref
k
kref

� 	 1
mref

x
m

mref

" #mref

ð25Þ

Finally, the corrected count x' is given as:

x
0 ¼ k

kref

� 	 1
mref

x
m

mref ð26Þ

The power-law correction is implemented in PERL
language and can be downloaded from the supplemen-
tary website [22].

Computation procedures for power-law correction of a
count data set
The restoration of an observed distribution towards an
uniform power-law entails that the slopes of all count
segments to be the same. The reference power-law slope
is taken from the highest-count segment since this seg-
ment is sampled from the higher abundance transcripts
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and should have the best mathematical convergence to-
wards its real value. And with the correction towards a
common slope, it is expected that all count segments
will have similar variation among the replicates and that
the overall heteroskedasticity should be dramatically
reduced. Without the loss of generality, the proposed
sequencing count correction will be, herein, named as
the power-law correction.
In the actual implementation of the power-law correc-

tion procedure, there are two important computational
aspects to note. Firstly, for the purpose of estimating the
exponent term in a rank-frequency plot, the Pareto equa-
tion (see Eq. 21) is used rather than Zipf ’s (see Eq. 14) be-
cause the large-ranked tail of Zipf ’s law tends to be
clustered with small values of the same rank. As a result,
this gives a horizontal tail which is sub-optimal for slope
estimation. In contrast, the same segment is always mono-
tonically increasing in Pareto.
Secondly, the power-law correction is performed at a

per-sample level. The total number of count segments in
a Pareto plot is dependent on a fixed number of points
per segment, herein, as points-per-segment (PPS). The
partitioning of points will start from the highest count
value. For each partitioned count segment, a set of slope
and intercept (m, logbk) values will be solved using linear
regression (see Eq. 22). The first-fitted count segment of
the replicate which mimics the highest-count segment,
will be used as the reference set of slope and intercept
(mref, logbkref ) values for the subsequent power-law cor-
rection via Eq. 26.
To find the optimum PPS setting that will yield the

best overall fit between any replicate to a reference repli-
cate in a N-sample dataset, the PPS parameter first
needs to be permuted across a range of between 5 to
100 at an interval of 5. At a given PPS setting, two mea-
sures can be derived. First, the median of the N first-
fitted count segment slopes of the data series can be
taken. Secondly, a total of (N-1) R2 (i.e., coefficient of de-
termination) values can be derived from the linear re-
gression results between the N-1 replicates against the
reference replicate. Consequently, a median R2 can also
be taken.
The preceding computational procedures were then

applied to the original BWA-mapped spike-in back-
ground and Bowtie1-mapped NUGC3 dilution data.
Additional file 8: Figure S4A and S4B show the median
slope of the first-fitted segments versus the median R2

value of the spike-in background set and the NUGC3 di-
lution set respectively. The PPS values are indicated be-
sides the data points in the plots. Like before, the
reference replicate was taken as the replicate with the
largest total reads within the data series for the neces-
sary R2 computations. For both Figures, the refined solu-
tion space of the optimum PPS is indicated by the error

margins defined by the slope of the first highest-count
segments from Table 1. Within this margin, the
optimum PPS value is determined by the largest median
R2 value. As such, the optimum PPS settings for the
spike-in background set and the NUGC3 dilution set are
20 and 45 respectively. The subsequent analysis is then
based on the power-law corrected data sets using these
PPS settings and their associated median slopes as the
reference slope values for the respective data series.
Similarly, the procedures were also applied to the BWA-
mapped spike-in and Bowtie1-mapped full dilution data
sets to obtain the optimum parameters (see Additional
file 6: Figure S5A and S5B). The parameter sets were
subsequently used on the Bowtie2(global)-mapped,
Novoalign-mapped and BWA-mapped full dilution data
sets to generate the results in Table 3.

The dilution dataset
Overview of design: The dilution series was created for
two gastric cancer cell lines - AGS and NUGC3. The
NUGC3 set consists of 8 replicates and spans across 4
concentration points of 12p, 6p, 3p and 1.5p so that each
concentration contains exactly two technical replicates.
Meanwhile, the AGS set is similarly designed except that
it consists of 4 replicates across 2 concentrations of 12p
and 3p. The varying concentration design aims to simu-
late the different sequencing depth (i.e., the total
mapped reads) that mimics a system of various sizes to
study its finite-size effects. The original sequencing files
(in FASTQ format) of this dilution dataset can be down-
loaded from the supplementary website [22].
Sample preparation (Total RNA extraction): Isolation of

total RNA from AGS and NUGC3 was performed using a
Qiagen miRNeasy mini kit (Qiagen). Briefly, 5× volume of
QIAzol lysis reagent was added to 1 million cells, incu-
bated at room temperature for 5 min to disrupt and
homogenize the cells. 1 volume of chloroform is then
added to the tube, shaking vigorously for 15 s and incu-
bates at room temperature for 2–3 min. Mixture is then
transferred to a 2 ml Qiagen MaXtract high density tube
and centrifuged for 15 min at 12,000 g for phase separ-
ation. Upper aqueous phase is carefully transferred to a
new collection tube and 1.5 volume of 100% ethanol is
added to aqueous phase for precipitation of total RNA in
aqueous phase. The mixture is then pass into the RNeasy
mini elute spin column (700ul each time) placed in a 2 ml
collection tube. The column is spin at ≥8000 g for 15 s at
room temperature and flow through is discarded. Process
is repeated until all mixture has pass through column.
Column is washed with 700ul of Buffer RWT and centri-
fuged at ≥8000 g for 15 s at room temperature Column is
further washed with 500ul of Buffer RPE, spin at ≥8000 g
for 15 s at room temperature. Lastly, column is washed
with 500ul of 100% ethanol, centrifuge for 2 min at
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≥8000 g. Column is transferred to a new collection tube
and spin at ≥8000 g for 5 min at room temperature to re-
move residual ethanol and total RNA elute in 10ul of
RNase-free water.
TruSeq small RNA library construction and sequencing:

6 (4 for NUGC3 and 2 for AGS) small RNA libraries were
prepared in parallel for both NUGC3 and AGS cell lines
using the Illumina TruSeq small RNA sample preparation
kit according to manufacturer’s instruction. The 6 samples
were uniquely indexed to enable sequencing of all 6 librar-
ies in one MiSeq flow cell. Briefly, 1μg of total RNA was li-
gated with 5′ and 3′ adapter, cDNA was converted with
SuperScript II Reverse Transcriptase and RT Primer. The
cDNA was PCR amplified for 12 cycles with RNA PCR
Primer and unique PCR Primer Index provided; It is im-
portant to note that indexing during PCR amplification
minimizes the issue of barcoding bias [40] which masks
significant expression differences between miRNA librar-
ies. Amplified cDNA construct were first purified using
QIagen MinElute PCR Purification kit and the construct
were then size selected for fragments ranging between
145 bp to 150 bp using 10% TBE PAGE Gel. The indexed
libraries were quantified individually by qPCR using
KAPA SYBR FAST qPCR Kit (Kapa Biosciences, inc). To
stimulate differences in sequencing depth in a multiplex
sequencing experiment, the small RNA libraries for the
NUGC3 cell line were pooled such that there was a 1, 2, 4
and 8× difference in concentration between the four
unique libraries (12pM, 6pM, 3pM, 1.5pM). Small RNA li-
braries for AGS was pooled such that there is a 4× differ-
ence in concentration between the two unique libraries
(12pM and 3pM). The libraries from both cell lines were
pooled to yield a single pooled library and sequenced
twice on the MiSeq instrument using MiSeq Reagent v2
for 1 × 40 + 6 (index) sequencing cycle (Illumina Inc., CA,
USA).

Generalized NGS comparative workflow
Read mapping:
Raw data in FASTQ format was preprocessed using

Trimmomatic [41] version 0.33 by trimming adapter
sequences, removing trailing or leading low quality
bases (base quality below 3). Subsequently, scan the
reads with a 4-base wide sliding window and trim
when the average base quality drops below 15. Specif-
ically, the command for Trimmomatic is:

The preprocessed reads were then aligned to miRBase v21
primary sequences using three different aligners, i.e. Bowtie
(version 1.1.1 and 2.3.0) [30], Novoalign (www.novocraft.com;
version V3.04.06) and BWA (version 0.7.12-r1039) [31, 32]
with the specific parameters as shown below:

Aligned reads in BAM format is then quantified using
BEDtools [42] by counting how many reads map to each of
the miRNA transcript. The respective mapped count files
can be downloaded from the supplementary website [22].
For normalization, the EdgeR, DESeq and preprocessCore

R packages were used in this work. Prior to normalization,
the data is first organized into its specific cell lines (NUGC3,
AGS) and concentration (12pM, 6pM, 3pM, 1.5pM) groups
of 2 technical replicates via the following command:

Next, the data is read from an input file to perform the
specific normalization. At the same time, an EdgeR DGE-
list object and the associated normalization factors for the
proper scaling of the raw library sizes will also be created.
For DESeq normalization, the combined commands

are as follows:

For Quantile normalization, the combined commands
are as follows:

For CPM normalization, the combined commands are
as follows:

For TMM, RLE, upperquartile normalization where m
takes one of the following values “TMM”,“RLE”,“upper-
quartile”, the commands are as follows:

For performing statistical analysis, the generalized linear
model (GLM) [33] from the EdgeR package was used.
First, the count data is first fitted to the negative binomial
model in the EdgeR package [26] for the purpose of
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estimating the common and tag dispersion. This is
achieved through the Cox-Reid profile-adjusted likelihood
methods via the following commands:

Next, to allow for multiple contrasts in the compari-
son of AGS cell line against NUGC3 cell line, the GLM
design matrix is to be set up. Specific to the dilution
data set, the 4 treatment contrasts are AGS-12p versus
NUGC-12p, AGS-12p versus NUGC-3p, AGS-3p ver-
sus NUGC-12p and AGS-3p versus NUGC-3p while
the 6 control contrasts are NUGC3-6p versus NUGC3–
12p, NUGC3–3 versus NUGC3–12p, NUGC3–1.5p
versus NUGC3–12p, NUGC3–3p versus NUGC3-6p,
NUGC3–1.5p versus NUGC3-6p and NUGC3–1.5p
versus NUGC3–3p. This translates to the following
commands:

To perform the GLM likelihood test for the 4 treatments
and 6 controls, the following commands were issued:

Reviewers’ comments
Reviewer’s report 1: Oliviero Carugo, University of Vienna,
Austria
The manuscript submitted by Wong and coworkers de-
scribes a computational technique that minimizes finite-
size effects in NGS datasets and robustly improves the
reproducibility of the results. It is an interesting example
of how statistical tools may distort reality (see for ex-
ample an article on Nature today: https://www.nature.-
com/articles/d41586-017-07522-z) and should be used
with extreme caution. It is also a nice example of how
statistics begins when science ends. The methodology is
described with high accuracy as well as the tests per-
formed with both in-house and publicly available NGS
data. Although very long and perhaps prolix and al-
though the math level is probably inaccessible to most
of the Biology Direct readers, I think that this manu-
script deserves publication because it might inspire fur-
ther research in this field.

Authors’ response: We thank the reviewer for his posi-
tive comments. The concept behind the observed power-
law distortion required a rigorous treatment as it has
never been addressed in current literature and therefore,
the length of the article. At the same time, we agree that
the mathematics seems complex yet it was necessary for
a complete treatment of the topic. Interestingly, even spe-
cialized bioinformatics journals shy away from our find-
ings due to its lack of perceived appeal to readers
attributed by the heavy mathematical contents; Regret-
tably, the mathematics cannot be further simplified.
Taken together, we deeply appreciate the reviewer for his
support of this manuscript.

Reviewer’s report 2: Thomas Dandekar, Department of
Bioinformatics, University of Wuerzburg, Germany
I have the following comments: At present I would think
the normal reader (non mathematician) realizes: "yes, this
could be an important correction, but I am not sure.".
1) So I think everything which makes the article easier

to understand and more accessible would be nice. First
of all, explain Zipf ’s law. It is a power law probability
distribution. Thus the frequency of any word is inversely
proportional to its rank in the frequency table (at least
like this the linguist Zipf stumbled upon it). Thus the
most frequent word will occur approximately twice as
often as the second most frequent word, three times as
often as the third most frequent word, etc.: the rank-
frequency distribution is an inverse relation.
Authors’ response: We have expanded the Zipf ’s law

explanation in the first paragraph of the “Background”
section to give the readers a better understanding of the
origin and characteristics of Zipf ’s law.
2) I recommend I would start the article results sec-

tion with a figure explaining and showing the assumed
Zipf distribution regarding the sequence count data and
then illustrate in the same figure how now the corrected
distribution looks like (the property of type I Pareto dis-
tribution). Furthermore, it is critical to show now how
the observed distribution of tag counts for the sequen-
cing data set looks like. Ideally for the reader then it
should be readily to grasp that the new function really
fits better the observed data and this message should be
transported by the introductory figure of the results.
Authors’ response: Although less intuitive than the re-

viewer’s suggestion, we have added the Zipf ’s distribution
to show how the original observed distribution deviates
from Zipf ’s law (see dashed lines in Fig. 1a and b) and
how the corrected observed distribution now coincides
with the Zipf ’s law (see dashed lines in Fig. 3a and b).
The necessary text has also been added to the associated
section where the figures were being discussed.
Mainly, what we wanted to achieve in the introductory

message of the results section is to (i) show the observed
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distribution which suffers from a curvature will fit an
under-sampled power-law equation Y(f ) = Sof

−α + So(fs −
f )−α(eq. 13) and that (ii) correcting the alias noise reverts
the distribution to the form Y(f ) = Sof

−α(analogous to x =
C1y

−b(eq. 14) of the rank-frequency plot). As a conse-
quence, the corrected observed data now fits better with
Zipf ’s law (i.e., x =C1y

−bwhere b ≈ 1) as shown in Fig. 3a
and b.
3) Another point is whether that correction is the best

possible correction: could it for instance not be possible to
find the best distribution by some data-driven modelling?
3b) Or are there some analytical results available why for
instance a type II Pareto distribution would perform less?
Authors’ response: The reviewer brought up an inter-

esting issue on the interplay between the data-driven ap-
proach and model-driven (i.e., analytical forms)
approach. On one hand, current sequencing-based tran-
scriptome data suffers from inherent undersampling issue
which has a direct impact on the distributional shape
and hence, a purely data-driven approach is not optimal.
Meanwhile, a purely model-based approach to force all
segments in a distribution towards a strict Zipf ’s law
without a good justification can be overbearing and
might lead to overfitting. In our work, we balance be-
tween both data-driven and model-driven approaches by
correcting the middle and tail segment of the distribution
(i.e., model-driven) towards the exponent value of the fit-
ted (i.e, data-driven) high-abundance segment of the dis-
tribution which incidentally and approximately obeys
the Zipf ’s law.
As a side note, Pareto Type I has a direct 1:1 relation-

ship to the Zipf ’s law and has a support from
x ∈ [xmin,∞). For modelling transcript count which neces-
sarily starts from at least one (i.e., xmin ≥ 1), Pareto Type
I (or Zipf ’s law) seems to be the most apt distribution
within the Pareto family. Meanwhile, Pareto Type II (or
Lomax distribution) is simply a shifted Type I such that
its support starts from 0. Mathematically, it is as follows:

P X ¼ x; xmin≥0; sð Þ ¼ sxsmin

xþ xminð Þsþ1

For modelling transcript count, the extra range of 0 to
1 has no relevance.
4) The confidence of the reader would increase if you

can claim that you present the current dataset but you
have the correction on e.g. ten other, unrelated data sets
and each time the type I Pareto distribution was the
best. 4b) Even better would be to rationalize the as-
sumed correction by the typical distribution of se-
quences. p.10 does something in this direction, but what
I was thinking of is more a physical explanation and best
taking into account specifics of the used NGS technique,

for instance may be with pacific biosciences sequencing
the correction should be completely different, right?
Authors’ response: To recapitulate, SAGE-based mes-

senger RNA data fits Type I Pareto distribution, particu-
larly the Zip’s law relatively well [3–7] other than the
low abundance tail segments. Independently of previous
findings, we also found that NGS-based microRNA data
follows the same trend in this work. When we investi-
gated the NGS-based messenger RNA (GSE47774) of the
Universal Human Reference (UHR), we found that Zipf ’s
law holds approximately for both the middle segments of
the observed distributions (see Additional file 9: Figure
S6) despite the differences in count quantification ap-
proach between HTSeq [43] and RSEM [44] (i.e., conser-
vative versus greedy mapping approach). Expectedly, the
low abundance segments exhibit curvatures albeit differ-
ent in their slope trends.
Of particular interest is that the highest and high seg-

ments in NGS-based messenger RNA data tends to ex-
hibit steeper slopes than the Zipf ’s law which
characterizes the SAGE-based messenger RNA data. Pre-
liminary conclusions suggests that this is attributed to
transcript-length bias in NGS-based sequencing that is
absent in SAGE-based sequencing for the messenger RNA
species [9]. In other words, these high and highest NGS-
based segments suffer from over-estimated counts that
arise from abundant transcripts with multiple pair-end
reads due to longer transcript lengths. As a side note, the
differences in the slope trends for the low, high and high-
est segments between the HTSeq and RSEM quantified
distributions implies that quantification algorithms gen-
erally do introduce bias in the count estimates and im-
pacts on distributional shapes.
Nevertheless, regardless of the differences in technology

(SAGE versus NGS), RNA species (microRNA versus mes-
senger RNA) and count quantification algorithms (HTSeq
versus RSEM), there exists common segments in the dis-
tribution that seems to follow the Zip’s law (i.e., a specific
instance of Type I Pareto distribution where its exponent
term equals to 1) in our preliminary investigations. How-
ever, a generalization of Zipf ’s law on transcript distribu-
tion over all types of conditions will require a separate
and more thorough investigation that is beyond the scope
of this manuscript.
5) Apart from the questions I raise here I personally

am convinced that such a correction is important and
basically does the right thing. So another good point to
spread the word would be to make some material (just
the script used, page 24–26) available for download to-
gether with a tutorial, best of course integrated into R or
some other gene expression analysis standard.
Authors’ response: The code is currently available at

the supporting data website at http://mendel.bii.a-star.e-
du.sg/SEQUENCES/PLSDBC/, but it is likely that we
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will re-write the code in R language and to provide tutor-
ial for future releases.
6) General final comment: the better understandable

the language, the easier and intuitive clear figures, the
more the people will understand your nice findings and
actually APPLY them (which currently does not happen
so often and hence leads then to wrong conclusions).
Authors’ response: We thank the reviewer for his posi-

tive comments of our work and his constructive sugges-
tions to improve this manuscript.

Reviewer’s report 3: Sandor Pongor, International Centre
for Genetic Engineering and Biotechnology (ICGEB), Italy
To the discretion of the authors: The authors may want
to show results on more datasets or just preliminarily in-
dicate how the findings generalize to other datasets.
Also, instructions for practical use, availability of codes
would be useful provided the authors do not plan to
publish these data elsewhere.
Authors’ response: We thank the reviewer for his posi-

tive comments. In fact, the concept has been generalized
beyond microRNA to messenger RNA sequencing data
(see Additional file 9: Fig. S6) where we found the general
trend of Zipf ’s law in transcript abundance. In an on-
going work, we were able to show an increase in sensitiv-
ity of a miRNA-mRNA analysis that leads to enhanced
biological conclusion when the finite-size effect or power-
law correction is applied; This is in a current working
manuscript.
Also, although the code is already currently available

at the supporting data website i.e. http://mendel.bii.a-
star.edu.sg/SEQUENCES/PLSDBC/, it is likely that we
will re-write the code in R language for future releases.

Additional files

Additional file1: Figure S1. Concentration versus total mapped reads
of the dilution data set. Figures S1A to D shows the concentrations of
the AGS cell line (12pM, 3pM) and NUGC3 cell line (12pM, 6pM, 3pM,
1.5pM) versus the respective total mapped reads by the 4 mapping methods:
Bowtie1, Bowtie2(global), Novoalign and BWA. Regardless of the mapping
methods, the sequencing depth (i.e., the total mapped reads) is shown to be
linearly proportional to the system size (in terms of transcript concentration) in
the logarithmic scale. Overall, the dilution data set attempts to mimic a system
of various sizes of finite-size effects. (PNG 371 kb)

Additional file 2: Figure S2. Pareto distributions and scatterplots of
spike-in background data set. Figure S2A to F show the Pareto plots (left
column) and supplementary Figure S2G to L show the scatterplots (right
column) of the spike-in background set where each applied normalization
methods (i.e., DESeq, RLE, TMM, UQ, CPM and Quantile) are arranged row-
wise. Generally speaking, the characteristics of these Pareto plots of the
normalized spike-in background set are very comparable to that of Fig.
1A and C, where only a simple intra-sample scaling has been applied.
Despite the application of normalization, two characteristics remain un-
changed. Firstly, the non-uniform slope values and its decreasing trend
from the highest to lowest-count segment indicate that heteroskedasti-
city among the replicates will remain. Secondly, for those count segment
with slope values far from “-1”, their mathematical moments are infinite

and hence, large variation among the replicates will be expected for
these segments. (PNG 1662 kb)

Additional file 3: Figure S3. Pareto distributions and scatterplots of
NUGC3 dilution data set. Figures S3A to F show the Pareto plots (left
column) and Figure S3G to L show the scatterplots (right column) of the
spike-in background set where each applied normalization methods (i.e.,
DESeq, RLE, TMM, UQ, CPM and Quantile) are arranged row-wise. Likewise,
the same conclusion can be made of the Pareto and scatterplots of the
NUGC3 dilution set (Fig. 3A-F) versus Fig. 1B and D where both the
exaggerated spit-end among the Pareto plots and the extreme heteroskedas-
ticity of the scatter plots in the NUGC3 dilution set remain. (PNG 1415 kb)

Additional file 4: Table S1. Signal-to-noise characteristics of the
comparative dilution analysis (AGS versus NUGC3) before and after
power-law correction. (DOCX 21 kb)

Additional file 5: Table S2. Significant transcripts calls of comparative
dilution analysis (AGS versus NUGC3) before and after power-law
correction. (DOCX 16 kb)

Additional file 6: Figure S5. Medians of Regressed slopes of first-fitted
segment versus R2 fit for the full dilution and spike-in datasets. Figure
S5A and 5B show the median slope of the first-fitted segments versus
the median R2 value of the dilution and the spike-in data set respectively.
In both plots, the refined solution space of the optimum points-per-
segment (PPS; as indicated besides the data points) is indicated by the error
margins defined by the slope of the first highest-count segments from
Table 1 like before. Consequently, the optimum PPS value is determined by
the largest average R2 value where it is 55 for the dilution set and 10 for the
spike-in set. Note that due to the lack of replicates for the spike-in tran-
scripts, only the background of the spike-in set was used for the parameter
estimation. (PNG 315 kb)

Additional file 7: Table S3. Concordance list of miRNA transcripts
before and after power-law correction. (DOCX 12 kb)

Additional file 8: Figure S4. Medians of Regressed slopes of first-fitted
segment versus R2 fit for NUGC3 dilution and spike-in background datasets.
Figure S4A and 4B show the median slope of the first-fitted segments versus
the median R2 value of the spike-in background set and the NUGC3 dilution
set respectively. For the necessary R2 computations, the reference replicate
was taken as the replicate with the largest total reads within the data series.
In both plots, the refined solution space of the optimum points-per-
segment (PPS; as indicated besides the data points) is indicated by the error
margins defined by the slope of the first highest-count segments from
Table 1. Within this margin, the optimum PPS value is determined by the
largest average R2 value where it is 20 for the spike-in background set and
45 for the NUGC3 dilution data sets. (PNG 316 kb)

Additional file 9: Figure S6. Pareto distributions of Universal Human
Reference (UHR) mRNA HTSeq-mapped and RSEM-mapped sequencing count
data. Figures S6A and B show the Pareto distributions of the Universal Human
Reference (UHR) mRNA data set from the publicly available source - GSE47774
that has been quantified by HTSeq and RSEM respectively. Generally, Zipf’s law
holds approximately for the middle segments of the observed distributions
despite the differences in abundance quantification approach between HTSeq
[43] and RSEM [44]; HTSeq tends to be more conservative than RSEM by limit-
ing quantification to uniquely mapped reads. Meanwhile, the low abundance
segments exhibit different trends. Of particular interest is that the highest
and high segment in NGS-based mRNA data seems to exhibit a higher slope
than the Zipf’s law that characterized SAGE-based mRNA data. Preliminary
findings suggests that this might be attributed to transcript-length
bias in NGS-basedsequencing that is absent in SAGE-based sequencing
[9]. Nevertheless, Type I Pareto distribution (or approximately Zip’s law)
seemingly holds true for transcript abundance distributions despite the
differences in technology (SAGE versus NGS) and RNA species (miRNA and
mRNA). (PNG 313 kb)

Abbreviations
CDF: Cumulative density function; CPM: Count Per Million; CTF: Cumulative
total function; NGS: Next-generation sequencing; PDF: Probability density
function; RLE: Relative Log Expression; SNR: Signal-to-noise ratio;
TMM: Trimmed Mean of M-values; UQ: UpperQuartile
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