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Abstract  
Adult neurogenesis is defined as the generation of newborn functional neurons during adulthood. 

In addition to the canonical neurogenic niches in the hippocampus and lateral ventricles, the 

hypothalamus has recently been shown to exhibit adult neurogenesis. We first aimed to elucidate 

the regulation of adult hypothalamic neurogenesis by investigating the effect of novel external 

factors on hypothalamic cell proliferation: physical exercise, antidepressant (fluoxetine) and non-

nutritive artificial sweetener, acesulfame-K (Ace-K). Short/mid-term (14-21 days) exposure of 

Ace-K, but not physical exercise or fluoxetine induced changes in the number of newly generated 

cells: a decrease in the dorsomedial nucleus at 7 days, and an increase in the ventromedial 

nucleus at 14 days. Next, although the exact identity of the neural stem/progenitor cells underlying 

hypothalamic neurogenesis is still under debate, tanycytes have been proposed as an attractive 

candidate. However, the cellular/molecular mechanism underlying their neurogenic role has yet 

to be elucidated. We hypothesized that the intracellular calcium signalling induced by their 

chemosensory role might also be linked to their neurogenic role. We used a Cre-inducible genetic-

labelling approach (nestin-CreERT2:Rosa-YFP) to characterize hypothalamic nestin+ 

stem/progenitor cells as part of validating this strategy for in vivo optogenetic stimulation of 

tanycytes. The vast majority (97%) of labelled cells were found at the ependymal layer and 

identified as tanycytes and ependymocytes. A small percentage of parenchymal cells were also 

labelled, which resembled neuronal and glial cells. Over time, an increasing trend in parenchymal 

labelled cells was seen, indicating a slow basal rate of neurogenesis. We then generated a 

transgenic line (nestin-CreERT2:Rosa-ChR2-YFP) in which tanycytes expressed 

Channelrhodopsin-2. Optogenetic stimulation of tanycytes in mouse brain slices induced strong 

and reproducible intracellular calcium waves. In vivo optogenetic stimulation of hypothalamic cells 

specified by nestin expression induced an increase in newly generated cells in close proximity to 

optically-responsive tanycytes, whilst long-term optogenetic stimulation indicated an increasing 

trend in labelled tanycytes and hypothalamic neurons. We have thus, successfully generated an 

optogenetic mouse model and validated its use in the hypothalamus to stimulate tanycytes (and 

potentially other putative neural progenitors). Although we cannot determine if the observed 

effects were solely due to tanycyte stimulation, we speculate that adult hypothalamic 

neurogenesis is regulated slowly, requiring long-term stimulation (optogenetically or by 

external/environmental stimuli). Further investigation using this optogenetic approach would 

prove helpful in elucidating the role/contribution of tanycytes in the regulation of adult 

hypothalamic neurogenesis.  
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Chapter 1: Review of adult neurogenesis in the hypothalamus 

Neurogenesis is defined as the process by which functionally integrated neurons are 

generated from progenitor cells, referred to as neural stem cells [Ming & Song, 2005]. It 

was long believed that this process was limited to the embryonic and perinatal stages of 

mammalian development, and that the adult central nervous system was incapable of 

regenerating [Ramon y Cajal, 1913]. However, this notion was challenged five decades 

ago, and has since been disproven with accumulating evidence for a plastic, adaptable 

and regenerative adult brain. 

Stem cells generally refer to progenitor cells responsible for the initiation of a lineage and 

retain two key characteristics; the ability to amplify and self-renew through cell division, 

and generate specialized cell-types through differentiation [Ming & Song, 2011]. Atlhough 

neural stem cells (NSCs) are a more specialized subset of stem cells, pertaining to neural 

tissue, they still retain these cardinal properties; they are multipotent and are able to 

commit to a range of neural lineages (including neurons and glia) whilst being able to self-

renew for extended periods of time [Gage, 2000]. 

Historical overview of adult neurogenesis 

The first study to suggest the occurrence of neurogenesis after birth and in adulthood 

came from a pioneering study that made use of the [3H]-thymidine radiolabelling 

technique to identify proliferating cells [Altman and Das, 1965]. [3H]-thymidine is 

permanently incorporated into the DNA of dividing cells in S-phase, which can be 

detected with autoradiography [Sidman et al, 1959]. Using this technology, Altman and 

colleagues were able to provide anatomical evidence for the generation of cells de novo 

in the dentate gyrus of the hippocampus [Altman & Das, 1965], neocortex [Altman 1963], 

and in the olfactory bulb [Altman, 1969]. The results of these studies were only 

substantiated later by Kaplan and colleagues, using electron microscopy to reveal typical 

neuronal structures in [3H]-thymidine-labelled cells, including axons, dendrites and the 

presence of synapses [Kaplan & Hinds, 1977; Kaplan & Bell, 1984; Kaplan et al, 1985]. 

Soon after, the first studies emerged providing evidence for functional roles of adult 

neurogenesis, in this case, in the seasonal learning of new songs involved in courtship 

behaviour in songbirds [Goldman & Nottebohm, 1983; Paton and Nottebohm, 1984; 



			

	 2	

Alvarez-Buylla & Nottebohm, 1988]. In these studies, it was shown that there was a 

substantial seasonal replacement of neurons in the high vocal centre (a structure critical 

for song production) with newly generated neurons that originated from the lateral 

ventricle walls. Indeed, the increase in neuronal replacement in this region correlated with 

the peak season in learning new songs [Nottebohm, 2004]. 

Progress in the field of adult neurogenesis accelerated upon the development and use of 

a simpler labelling technique that uses the same premise as [3H]-thymidine labelling. 5-

bromo-2'-deoxyuridine (BrdU) is a thymidine analogue that permanently incorporates into 

the DNA of S-phase dividing cells and has thus, been used to identify newborn cells 

and/or neural progenitors [Taupin, 2007]. In addition, the cellular fate of these BrdU-

labelled cells can also be determined through immunohistochemical/phenotypic analysis 

(e.g. BrdU co-localization with neuronal/cell fate markers) at later time-points. 

Furthermore, the extent of newborn cells’ survival can be examined by quantitative 

comparison of BrdU+ cells between two different time points [Kuhn et al, 1996; Taupin, 

2007]. Thus, this tool has since allowed for robust analysis of cell proliferation, cell survival 

and differentiation. However, a key limitation of using BrdU as a labelling tool is its 

progressive dilution in rapidly-dividing stem cells [Kiel et al, 2007]; because the BrdU label 

is shared between daughter cells, after multiple proliferation events, the levels of BrdU 

becomes undetectable by immunohistochemistry. Another one of the major pitfalls is the 

fact that BrdU is a toxic and mutagenic substance, which can trigger a range of 

ectopic/detrimental effects on cells that incorporate it (and hence, on neurogenesis) 

[Taupin, 2007]. As a result more recent studies have made use of genetic markers via 

viral-mediated or transgenic approaches (e.g. inducible cre-recombinase) to permanently 

label, lineage-trace and/or manipulate putative adult neural stem cells in vivo [Solek & 

Ekker, 2012; Dhaliwal & Lagace, 2011]. Indeed, using combined labelling and 

electrophysiological techniques (such as patch-clamp recording of retroviral GFP-labelled 

adult-born neurons), studies have provided irrefutable evidence that newborn neurons in 

the adult brain are indeed functionally and synaptically integrated [van Praag et al, 2002, 

Belluzzi et al, 2003]. 

Finally, the identification of growth factors that render mitogenic and trophic effects in 

neural tissue, such as epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-
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2), allowed the successful isolation and culture of neural stem cells in vitro [Reynolds and 

Weiss, 1992]. As a result, a novel ‘neurosphere’ assay was developed and has since 

been used as the definitive experimental test for bona fide NSCs [Reynolds & Rietze, 

2005]. In this assay, isolated cells that were able to form neurospheres in vitro 

(proliferate), whose progeny could also form neurospheres (self-renew) and differentiate 

into tissue-specific cell-types, were granted as bona fide NSCs [Reynolds & Weiss, 1996; 

Weiss et al, 1996; Reynolds & Rietze, 2005]. Using this assay, both human embryonic 

and adult neural stem cells have subsequently been isolated and studied [Kukekov et al, 

1999; Vescovi et al, 1999]. However, the neurosphere assay has recently been criticized 

for its lack of stringency to isolate bona fide NSCs due to the lack of markers that allow 

discrimination between ‘true’ NSCs and transit-amplifying neural progenitors [Pastrana et 

al, 2011]. As a result, neurospheres may constitute of a heterogeneous cell population 

(that may consist of different lineage-committed progenitors and not multipotent NSCs) 

instead of a homogenous clonal population [Gil-Perotin et al, 2013] 

Studies have since indicated the evolutionary conservation of postnatal and adult 

neurogenesis across several species of higher vertebrates, including in humans (although 

the latter is still highly debated; see below) [Lledo et al, 2006; Eriksson et al, 1998; 

Kempermann, 2012, Grandel & Brand, 2013]. It is now widely accepted that neurogenesis 

occurs in distinct regions of the adult mammalian brain [Ming and Song, 2005]. Two 

canonical neurogenic niches have since been identified, namely, the subgranular zone 

(SGZ) of the dentate gyrus in the hippocampus and the subventricular zone (SVZ) lining 

the lateral ventricles, and until very recently, the vast majority of research in the field has 

focused on these two brain regions due to the robust level of neurogenesis observed 

[Gage, 2000; Ming and Song, 2011]. 

The canonical neurogenic niches 

In the SGZ of the rodent dentate gyrus, adult-born cells have been seen to briefly migrate 

(as neuroblasts) into the inner granule cell layer, where they further differentiate and 

mature into excitatory granule neurons that project into the CA3 region of the 

hippocampus within 1 to 3 weeks from their birth (in rodents) [Lledo et al, 2006; Zhao et 

al, 2008]. The functional integration of these newborn neurons into the hippocampal 
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neural circuitry has been confirmed and characterized using electrophysiological 

recordings [van Praag, 2002]. It has been suggested that SGZ neurogenesis plays a role 

in hippocampus-dependent learning and memory formation [Zhao et al, 2008]. 

In the SVZ of rodents, adult-born cells acquire a migratory phenotype (expressing 

markers such as doublecortin; DCX, and polysialylated neural-cell-adhesion molecule; 

PSA-NCAM) and travel as neuroblasts to the olfactory bulb via the rostral migratory 

stream [Lledo et al, 2006; Whitman & Greer, 2009]. Unlike hippocampal adult-born cells, 

those of the SVZ migrate over a great distance, and hence are highly regulated by 

diffusible factors and scaffolding structures [Kaneko et al, 2017]. Chemoattractants 

Prokineticin-2, Netrin-1 and glial cell line-derived neurotrophic factor are released from 

the rostral olfactory bulb [Murase & Horwitz 2002; Ng et al. 2005; Paratcha et al, 2006], 

and the chemorepellant Slit2 secreted from the septum [Wu et al, 1999] to provide 

directional (caudal-to-rostral) migration for SVZ neuroblasts, whilst being kept along the 

migratory pathway by the attractant Hepatocyte growth factor [Garzotto et al. 2008; Wang 

et al. 2011a]. Neuroblasts migrate along the RMS as chains [Lois et al, 1996], enabled 

through dynamic regulation of PSA-NCAM-mediated adhesion [Hu et al, 1996]. 

Interestingly, neuroblasts also express matrix metalloproteinases (proteolytic enzymes 

well-known for their role in tumorigenesis and cancer-cell migration [Nabeshima et al, 

2002]), which were proven essential for cytokine-mediated migration [Barkho et al, 2008]. 

Upon arrival at the olfactory bulb, neuroblasts detach from their chain, which is regulated 

by extracellular matrix proteins such as Reelin and Prokineticin-2 [Hack et al, 2002; Ng 

et al, 2005], and migrate radially into the olfactory bulb where they differentiate into one 

of two inhibitory (granule or periglomerular) interneurons [Kaneko et al, 2017]. Adult-born 

neurons in the olfactory bulb exhibited a lower activation threshold for novel odors and/or 

for odors involved in reward-associated memories, thereby implicating SVZ neurogenesis 

in perceptual learning, olfactory discrimination and ultimately, olfactory-dependent 

memory formation [Magavi et al, 2005; Lazarini & Lledo, 2011; Lepousez & Lledo, 2013].  

Both neurogenic canonical niches share some broad similarities. Firstly, the NSCs 

underlying neurogenesis in both regions have been identified as radial glia-like cells that 

express astrocytic features/genes [Doetsch et al, 1999; Seri et al, 2001]. Whilst these 

cells are predominantly quiescent [Morshead et al, 1994; Doetsch et al, 1999; Seri et al, 
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2001], these cells are capable of long-term self-renewal and generating several lineages 

(astrocytes, oligodendrocytes and neurons), both being hallmarks of NSCs [Ge et al, 

2007; Kriegstein & Alvarez-Buylla, 2009]. It should be noted however, that it has been 

debated if the SVZ may harbour a heterogeneous population of NSCs, in which 

ependymal cells may also partake in neurogenesis [Chojnacki et al, 2009]. Secondly, 

although both niches comprise of different cell-types and generate different neuronal cell-

types, their lineage hierarchy and expression profiles are somewhat mirrored; [Glial 

fibrillary acidic protein-positive (GFAP+), Sox-2+ and/or nestin+] NSCs of both niches 

give rise to highly proliferative (Sox-2+ and/or nestin+) intermediate progenitor cells (also 

referred to as transit amplifying cells), which are capable of developing into (Dcx+) 

migrating immature neurons (neuroblasts) and differentiating further into (Prox1+, NeuN+ 

or other specific neuronal marker+) mature, functionally integrated neurons [Ming & Song, 

2011] (Figure 1.1). Thirdly, these neurogenic niches are also responsive/sensitive to 

changes in the peripheral environment. This is because they are in close proximity to, or 

in direct contact with the vasculature. Through the vasculature, fluctuations in circulating 

levels of neurotrophic factors and hormones can impose a regulatory effect. [Palmer et 

al, 2000; Tavazoie et al, 2008]. In the case of the SVZ, NSCs also contact the 

cerebrospinal fluid (CSF), which may further regulate their behaviour [Mirzadeh et al, 

2008]. The cellular process of neurogenesis in the SGZ and SVZ, their components and 

their lineage hierarchies have been highlighted in Figure 1.1. 
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Although the phenotype and functional role of adult-born neurons generated may differ 

between these two neurogenic niches, it has been suggested that adult neurogenesis 

provides an adaptive mechanism to encode contextual or olfactory information and 

optimize discrimination between similar and/or ambiguous stimuli [Sahay et al, 2011; 

Brennan & Keverne, 2015]. Indeed, ablation of hippocampal and bulbar neurogenesis 

resulted in decreased discriminatory capability between similar spatial locations and 

olfactory stimuli, respectively [Clelland et al, 2009; Mouret et al, 2009] (although some 

Figure 1.1 Adult neurogenesis in the canonical neurogenic niches. A) SGZ NSCs (type I 
cells) generate transit amplifying intermediate progenitor cells (type 2 cells), which develop into 
neuroblasts (type 3 cells) that differentiate into hippocampal granule cells. B) SVZ NSCs (type B 
cells) give rise to intermediate progenitor cells (type C cells), which develop into neuroblasts (type 
A cells) that migrate into the olfactory bulb and differentiate into olfactory interneurons. 
Characteristic gene expression profiles for each different developmental stage during 
neurogenesis is underlined below. EC, ependymal cell (layer); ML, molecular layer; GCL, granule 
cell layer; GFAP, Glial fibrillary acidic protein; Sox-2, sex-determining region Y-box 2; DCX, 
doublecortin; Ascl1, Achaete-scute homolog 1; NeuN, Neuronal nuclei; CR, Calretinin. Adapted 
from Braun & Jessberger (2014). 
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compensatory effects were seen in the long-term [Breton-Provencher et al, 2009; Singer 

et al, 2011]). 

The refinement of these circuits is regulated by programmed cell death/apoptosis, 

whereby newborn neurons that fail to receive sufficient synaptic input or neurotrophic 

factors do not survive [Kim & Sun, 2011; Kuhn, 2015]. Accordingly, high levels of 

apoptosis have been mostly observed in the neurogenic regions (including the 

subventricular zone, the dentate gyrus, then rostral migratory stream and in the olfactory 

bulb), in which the majority of apoptotic cells were identified as immature neurons [Biebl 

et al, 2000; Dayer et al, 2003; Kuhn et al, 2005]. Thus, the equilibrium between adult 

neurogenesis and apoptosis may collectively fulfill the common goal of enabling the 

optimal adaptation of the organism to the changing environment [Migaud et al, 2016]. 

Indeed, dysregulation of this balance has been linked to impaired synaptic activity and 

implicated in several neurodegenerative and psychiatric diseases [Santarelli et al, 2003; 

Grote & Hannan, 2007; Kim et al, 2009]. 

It should be noted that the occurrence of adult neurogenesis in humans has more recently 

been debated [Arellano et al, 2018; Kempermann et al, 2018; Snyder, 2018]. Although 

several studies have reported persisting adult neurogenesis in the human hippocampus 

(DG) [Eriksson et al, 1998; Spalding et al, 2013; Boldrini et al, 2018; reviewed in 

Kempermann et al, 2018], other recent studies have challenged this notion [Dennis et al, 

2016; Cipriani et al, 2018; Sorrells et al, 2018]; one particular study suggested that 

hippocampal neurogenesis rapidly decreased, with none detected from adolescents older 

than 13 years [Sorrells et al, 2018]. However, it has been criticized that the lack of a 

positive observation may have been due to poor tissue preparation (long post-mortem 

delay, and varied duration/type of fixation) and lack of consideration for crucial factors in 

matching brain tissue from patients and controls for postmortem research, such as 

disease-phase of patients’ brains, environmental (lifestyle) or tissue-based 

(angiogenesis, hormone levels and volume) parameters  [Bao & Swaab, 2018; 

Kempermann et al, 2018]. 
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Emerging sites of adult neurogenesis 

It is now apparent that mammalian adult neurogenesis is not limited to the aforementioned 

regions; there is a growing number of reports of adult neurogenesis and newly-identified 

NSC-like populations in additional brain regions, including but not limited to the neocortex 

[Gould et al, 1999; Dayer et al, 2005], the striatum [Pencea et al, 2001; Bedard et al, 

2002; Dayer et al, 2005], the amygdala [Bernier et al, 2002; Fowler et al, 2002], the 

substantia nigra [Lie et al, 2002; Zhao et al, 2003], the cerebellum [Lee et al, 2005; Klein 

et al, 2005; Ahlfeld et al, 2017], the entire ventricular system [Weiss et al, 1996; Chouaf-

Lakhdar et al, 2003], and most notably, the hypothalamus [Pencea et al, 2001; Kokoeva 

et al, 2005; 2007; Migaud et al, 2010], although no definitive evidence has been provided 

in humans [Batailler et al, 2014]. However, due to the substantially lower levels of 

neurogenesis observed in these regions in comparison to the canonical niches (For 

example, the total number of newly-generated neurons in the hypothalamus was not even 

2% or 0.1% of those generated in the dentate gyrus and olfactory bulb, respectively; 

estimated from [Matsuzaki et al, 2009; Kandasamy et al, 2015; Leuchtweis et al, 2014], 

the occurrence of neurogenesis in the majority of these ‘non-canonical’ regions has been 

met with scepticism and is still a topic of debate [Migaud et al, 2010; Lee & Blackshaw, 

2012; Rojczyk-Gołębiewska et al, 2014]. Interestingly, it has been postulated that the 

conventional methods of detecting proliferating cells and adult-born neurons in more-

vascularized brain regions (SGZ and SVZ) might not be adequate for these regions (with 

exception to the hypothalamic median eminence), which are less vascularized or may 

contain slow-dividing/quiescent progenitors [Lee & Blackshaw, 2012; Sousa-Ferreira et 

al, 2014a]. For instance, by using a different delivery method (intracerebroventricular; icv 

injection) for BrdU-labelling (conventionally via intraperitoneal; ip injection) in the 

hypothalamus, substantially more proliferative cells were identified, which differentiated 

into neurons [Kokoeva et al, 2007]. Furthermore, it can be argued that since only a small 

number of new-born neurons have been found to be critical in regulating functional 

outputs in the canonical regions, for example hippocampal memory formation/retention 

[Han et al, 2009], the low levels (or contribution) of neurogenesis to small brain regions 

(such as the hypothalamus), which may contain fewer but critical neurons, may be equally 

important [Lee & Blackshaw, 2012]. 
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Many lines of evidence support the notion of the hypothalamus emerging as a third site 

of adult neurogenesis, including a constitutive capacity for cell proliferation and 

generation of neurons in various species, and a putative NSC niche highly reminiscent of 

that in the SVZ [Lee & Blackshaw, 2012; Haan et al, 2013; Migaud et al, 2016; Rojczyk-

Gołębiewska et al, 2014]. Furthermore, the morphological plasticity exhibited by 

hypothalamic neurons in response to secreted neuropeptides and hormones [Theodosis 

et al, 2006; Prevot et al, 2010] further indicates the potential ease of integration of adult-

born neurons in existing hypothalamic circuitry [Lee & Blackshaw, 2012]. Indeed, as a 

master regulator of neuroendocrine function and physiological homeostasis, further 

elucidation of the cellular processes and key players in adult hypothalamic neurogenesis 

would render extensive implications for therapeutic intervention for hypothalamic 

(particularly metabolic) disorders, and so has attracted substantial interest in the field of 

adult neurogenesis [Sousa-Ferreira et al, 2014a; Lee & Blackshaw, 2012]. 

Structure and functions of the hypothalamus 

The hypothalamus is located directly below the thalamus, which together form the 

diencephalon of the forebrain. This diencephalic structure sits in between the cerebral 

hemispheres and the midbrain, and lies caudal to the basal forebrain and olfactory bulb 

[Yuan & Carrion, 2011] (Figure 1.2A). It also contains the lateral and ventral walls of the 

3rd ventricle. 
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Although the hypothalamus occupies a relatively small volume of the total brain volume, 

it is an integral part of the limbic system and regulates a myriad of autonomous 

physiological processes essential for the organism’s adaptation and survival to their 

environment [Migaud et al, 2016]. These include, thermoregulation, food and water 

intake, energy metabolism, sexual behaviour and reproduction, and circadian rhythms 

[Saper & Lowell, 2014]. Each of these processes is regulated by one or more anatomically 

distinct neuronal nuclei within the hypothalamic parenchyma, which can detect external 

signals and interface with (relay information to and from) other brain regions [Schwartz et 

al, 2000; Sousa-Ferreira et al, 2014a]. For instance, the arcuate, paraventricular, 

ventromedial and dorsomedial hypothalamic nuclei, in addition to the lateral hypothalamic 

area have been implicated in feeding regulation and energy homeostasis (Figure 1.2B) 

[Schwartz et al, 2000; Simpson et al, 2009]. 

The hypothalamus mediates its regulatory functions by forming the physical link between 

the nervous and endocrine systems via the pituitary gland. The ventral most hypothalamic 

structure, the median eminence (ME) is devoid of any blood-brain barrier by the presence 

Figure 1.2 Location and anatomy of the rodent hypothalamus. A) Saggital plane: the 
hypothalamus is situated in the forebrain, on the ventral-most side, below the thalamus (TH). 
B) Coronal plane: rostral/anterior (left) and tuberal/mid- (right) sections of the hypothalamus. 
The 3rd ventricle (3V) spans along the length of the hypothalamus. The hypothalamic 
nuclei/regions that have been implicated in energy balance are indicated; paraventricular 
(PVN), arcuate (ARC), ventromedial (VMH) and dorsomedial (DMH) nuclei, the lateral (LHA) 
hypothalamic area, and the median eminence (ME). Image adapted from Schwartz (2000).	
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of fenestrated capillaries (a hallmark of circumventricular organs [Bennett et al, 2009]), 

allowing access of small molecules to and from the portal blood circulation [Johnson & 

Gross, 1993; Langlet, 2014]. This makes the ME an important site of information transfer 

between the blood circulation and hypothalamus, whereby blood-borne molecules can be 

detected by hypothalamic nuclei, which in turn can secrete hormones into the hypophysial 

portal blood circulation system to act on pituitary secretory cells [Migaud et al, 2010]. As 

well as the ME, information can also be attained from the circulating ventricular CSF to 

act on the hypothalamic parenchyma [Frayling et al, 2011; Bolborea & Dale, 2013]. Thus, 

the hypothalamus is able to detect changes from the peripheral environment (from both 

media, portal blood and ventricular CSF), integrate information received from other brain 

regions, and modulate secretion of pituitary hormones to regulate the aforementioned 

physiological processes [Rizzoti & Lovell-Badge, 2017]. 

Adult hypothalamic neurogenesis 

The adult hypothalamus has been reported to exhibit constitutive cell proliferation and 

neurogenesis in a range of mammalian species, including mice [Kokoeva et al, 2005; 

2007], rats [Pencea et al, 2001; Xu et al, 2005], hamsters [Huang et al, 1998], vole [Fowler 

et al, 2002], sheep [Migaud et al, 2010; 2011] and pigs [Raymond et al, 2006], but has 

yet to be decisively demonstrated in humans [Bakos et al, 2016]. These observations 

have been accompanied with the expression of several neural stem and/or progenitor cell 

markers, including nestin [Xu et al, 2005], musashi-1 [Haan et al, 2013], sox-2 [Haan et 

al, 2013], PSA-NCAM [Bonfanti, 2006] and hes-5 [Lee et al, 2012]. Studies have indicated 

that the basal levels of neurogenesis in the adult hypothalamus is substantially lower than 

that in the canonical neurogenic niches [Pencea et al, 2001; Kokoeva et al, 2007; Migaud 

et al, 2010; Lee & Blackshaw, 2012; Robins et al, 2013a], and decreases substantially 

with age, with post-natal ages exhibiting the highest levels [Lee et al, 2012; McNay et al, 

2012; Haan et al, 2013]. 

Initial studies  

One of the first pieces of evidence highlighting the occurrence of adult neurogenesis in 

the hypothalamus came from a study that investigated the effect of intracerebroventricular 

infusion (cannular administration into the CSF) of a growth factor, brain derived 
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neurotrophic factor (BDNF) on adult neurogenesis in a number of brain regions [Pencea, 

2001]. In addition to those brains infused with BDNF, control brains (infused with PBS) 

also demonstrated newborn (BrdU+) cells in the hypothalamic parenchyma with 

increasing frequency towards the 3V. Furthermore, at later time points BrdU+ cells 

adopted a neuronal fate indicated by expression of the immature neuronal marker, βIII-

tubulin. Indeed, both cell proliferation and neuronal differentiation of BrdU+ cells were 

enhanced upon infusion of BDNF, suggesting that the hypothalamus exhibits low basal 

levels of adult neurogenesis which could be up-regulated by growth factors [Pencea et al, 

2001]. 

In vitro studies further supported the hypothalamus’ neurogenic capacity. In primary 

hypothalamic cultures from adult rats, α-internexin+ neuroblasts were identified that were 

able to incorporate BrdU, express additional neuronal markers (βIII-tubulin, MAP-2, Tau) 

at later time-points and exhibit modest electrophysiological properties of neurons [Evans, 

2002]. When cultured in monolayers, hypothalamic cells were able to differentiate into 

glia as well as a range of neuropeptide-expressing neurons typically found in the 

hypothalamus, as assessed by immunohistochemistry [Markakis et al, 2004]. 

Furthermore, isolated primary cells could form spheroid floating cell clusters 

(neurospheres), which could be passaged repeatedly and whose progeny could 

differentiate into several neural cell types (astrocytes, oligodendrocytes and neurons), 

reflecting their capacity for self-renewal and multipotency, respectively [Xu et al, 2005]. 

These results suggested that NSCs or neural stem-like progenitor cells exist in the adult 

hypothalamus and are capable of neurogenesis. 

After the initial demonstration of adult neurogenesis in the hypothalamus, subsequent 

studies have further investigated several features of adult hypothalamic neurogenesis, 

including the source of and identity of adult newborn neurons, regulatory factors, and its 

functions. 

Cell proliferation in the adult hypothalamus 

Several regions of proliferative capacity have been identified, albeit differentially between 

studies (summarized in Table 1.1). These include the ependymal layer lining the 3rd 

ventricle walls, the underlying subependymal layer, the median eminence, and the 
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hypothalamic parenchyma [Migaud et al, 2010; Lee & Bradshaw, 2012; Sousa-Ferreira 

et al, 2014a; Rojczyk-Gołębiewska et al, 2014]. These proliferative regions can be 

classed into two main domains; the ventricular and the parenchymal zones (Figure 1.3). 

Publication/ 

Author	
Observed location of BrdU+ 
cells	

Survival 
period(s)	

Species	 BrdU 
injection 
method/ 
period	

Pencea et al, 
2001	

Parenchyma (PVN) and 
periventricular area (not specified)	

28 days	 Rat	 i.c.v.;  

12 days  	

Chouaf-Lakhdar 
et al, 2003	

Periventricular area 
(subependymal, ependymal 
ependymocytes & tanycytes), ME	

5 days	 Rat	 i.c.v.; 

3 days	

Xu et al, 2005	 Ependymal layer (tanycytes but 
rare), but not in parenchyma	

2 or 5  
days 
(unclear)	

Rat	 i.p.;  

2 days	

Kokoeva et al, 
2005	

Parenchyma (not specified), 
periventricular area (not specified), 
ME	

1, 20, 40, 
60days	

Mice	 i.c.v.;  

5 days 	

Kokoeva et al, 
2007	

Parenchyma (not specified), 
periventricular area (not specified), 
ME	

1 or7, 14 
days	

Mice	 i.c.v. 1 or 7 
days, 14 i.p; 

7 days  	

Perez-Martin et al, 
2010	

Parenchyma (rarely), 
periventricular (subependymal, 
ependymal tanycytes but not 
ependymocytes), ME	

3 days	 Rat	 i.p.; 

3 days	

Cifuentes et al, 
2011	

I.P.; parenchymal (sparse), 
periventricular (not specified), ME. 
I.C.V; Parenchymal (including 
microglia and neurons), 
periventricular (subependymal 
astrocytes, microglia; ventral 
ependymal tanycytes but not 
ependymocytes)	

7 days	 Rat	 i.c.v., i.p; 

7 days	
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Migaud et al, 
2011	

Parenchyma (not specified), 
periventricular (subependymal, 
ependymal; not specified), ME	

1 day, 4 
weeks	

Sheep	 i.v.; 

1 days, 2days	

Robins et al, 
2013a	

Parenchyma (not specified), 
periventricular area (not specified)	

7 days, 6 
weeks	

Mouse	 i.c.v.; 

7 days	

Robins et al 
2013b	

Parenchyma (ARC, VMH, DMH), 
Periventricular (not specified), ME	

1, 7, 28 
days	

Mouse	 i.c.v.; 

1,7 days, oral: 
28 days	

Haan et al, 2013	 Parenchyma (not specified), 
ependymal (ventral tanycytes), ME 	

9, 15 
days	

Mouse	 Ad libitum 
(drinking 
water) 

9, 15 days  	

 

The ventricular zone 

This zone collectively comprises structures and cellular layers surrounding the 3rd 

ventricle (Figure 1.3A). This mostly refers to the periventricular area (PeA), which is 

composed of the lateral ependymal layers, the subependymal layer and the adjacent 

proximal parenchyma [Perez-Martin et al, 2010]. However, the median eminence, albeit 

being a separate structure (as a circumventricular organ), is also included in this category 

due to its contact with the ventricular CSF. Both the PeA and the ME have been described 

to retain proliferative capacities and exhibit constitutive adult neurogenesis [Perez-Martin 

et al, 2010; Lee et al, 2012; Haan et al, 2013 Robins et al, 2013a; Sousa-Ferreira et al 

2014a]. 

Table 1.1 BrdU-labelling studies reporting different hypothalamic regions of 
constitutive cell proliferation; ependymal layer, the periventricular area (here referring to 
the subependymal layer and adjacent parenchyma, unless specified in parenthesis) the 
parenchyma (PVN; paraventricular nucleus, ARC; arcuate nucleus, VMH; ventromedial 
nucleus, DMH; dorsomedial nucleus) and the median eminence (ME). BrdU was 
administered via intraperitoneal (i.p.), intravenous (i.v.), intracerebroventricular (i.c.v) 
injections, or ad libitum (ad lib) as drinking water. Survival period refers to time (days) from 
the first BrdU treatment until termination of experiment/brain fixation.    	
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The ependymal layer consists of two cell types; multiciliated cuboidal ependymocytes and 

non-ciliated, radial glia-like cells called tanycytes [Rodriguez et al, 2005]. Both cell-types 

contact the CSF, and are at the interface between the 3V and the hypothalamic 

parenchyma (Figure 1.3A). Tanycytes are characteristically identified by an elongated cell 

body and a long basal process (blue; Figure 1.3B). They are found at increasing 

Figure 1.3 Location and cellular organization of the ventricular and parenchymal 
proliferative zones. A) Cellular architecture of the 3rd ventricle. Tanycytes are located within 
the ependymal layer (ovals); α1 (green) and α2 (blue), β1 (red) and β2 (dark blue) and project 
to the ventromedial nucleus (red), arcuate nucleus (yellow) and median eminence. B) 
Magnified representation of the cellular components of the ventricular and parenchymal 
proliferative (and neurogenic) zones. In the mediolateral periventricular area, tanycytes 
(blue; corresponding to α-subtypes from A and subependymal astrocytes (red) can 
proliferate. In the ME tanycytes (blue; indicated as β-subtypes from A are proliferative. Within 
the parenchymal zone, proliferative NG2+ glia (pink) as well as microglia (light grey), 
endothelial cells (dark grey), and neurons (orange) were seen. Parenchymal zone (PZ), 
ventricular zones (VZ), including the periventricular area (PeA) have been defined. Adapted 
from Yuan & Arrias-Carrion, 2011; Rojczyk-Gołębiewska et al, 2014. 
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frequency dorsoventrally along the 3V, first appearing interspersed with ependymocytes 

along the mediolateral 3V walls before gradually becoming a contiguous layer ventrally, 

at the ME interface [Bolborea & Dale, 2013]. It should be noted that whilst the ependymal 

layer is a continuous lining of the 3rd ventricle, the ventral ependymal layer forms part of 

the ME, and is therefore collectively referred to here with/as the ME.  

Within the mediolateral ependymal layer, BrdU+ tanycytes have been observed, although 

this was very rare under basal conditions [Xu et al, 2005]. However, upon infusion of 

growth factors, FGF-2 or insulin growth factor 1 (IGF-1), proliferation was robustly 

upregulated as seen by BrdU uptake in tanycytes visualized with astroglial (GFAP) [Xu et 

al, 2005] or ependymal (Vimentin) [Perez-Martin et al, 2010; Robins et al, 2013a] marker 

expression. As in the SVZ [Spassky et al, 2005; Chojnacki et al, 2009], ependymocytes 

have been reported to not having a proliferative capability [Perez-Martin et al, 2010; 

Cifuentes et al, 2011; Haan et al, 2013], although some conflicting BrdU-labelling data 

exists [Chouaf-Lakhdar, 2003]. 

In addition to the ependymal layer, subependymal astrocytes have been identified with a 

capability to proliferate [Perez-Martin et al, 2010; Cifuentes et al, 2011]. These cells are 

characteristically identified by GFAP expression and possession of a single apical 

process that contacts the ventricular interface, features reminiscent of SVZ astrocytes 

[Perez-Martin et al, 2010; Mathew, 2008]. A unique pinwheel structure was described for 

SVZ astrocytes in which the apical process would occupy the centre of a rosette formed 

by ependymal cells [Mirzadeh et al, 2008]. Although this has not been investigated for 

hypothalamic subependymal astrocytes, their close proximity to the ependymal layer is 

suggestive of a similar structure to that of the SVZ neurogenic niche [Perez-Martin et al, 

2010; Rojczyk-Gołębiewska et al, 2014]. In summary, the microarchitecture and cellular 

components of the mediolateral PeA is very reminiscent of the SVZ niche; it contains a 

heterogeneous pool of quiescent or low-proliferative cells (subependymal astrocytes and 

radial glia-like tanycytes), some of which exhibit strong morphological and expressional 

similarities to type-B SVZ NSCs and whose proliferative state can be regulated by 

mitogenic/growth factors [Rojczyk-Gołębiewska et al, 2014; Migaud et al, 2016]. 
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The ME, has been reported to exhibit a very high rate of basal proliferation relative to 

other hypothalamic proliferative zones, from postnatal periods and throughout adulthood, 

though a decline is seen with age [Lee et al, 2012; Haan et al, 2013]. Ventral tanycytes, 

unlike their mediolateral counterparts, are readily proliferative under basal conditions 

[Cifuentes et al, 2011; Lee et al, 2012; Haan et al, 2013], but are not responsive to IGF-

1 or FGF-2 [Robins et al, 2013a; Perez-Martin et al, 2010]. Instead, environmental factors 

such as dietary signals can regulate ME cell proliferation. For instance, a high fat diet or 

low protein diet upregulates ME cell proliferation, whilst caloric restriction induced the 

opposite effect [Lee et al, 2014]. It should be noted that additional proliferative cells have 

been observed in the ME other than tanycytes. It can be speculated that, NG2+ glia 

residing in the ME [Djogo et al, 2016], may constitute proliferative capacities [Robins et 

al, 2013b]. 

The parenchymal zone 

Whilst all studies (with the exception of Hawken et al, 2009) agree upon the existence of 

proliferative (BrdU+) cells in the hypothalamic parenchyma (Table 1.1), the levels of cell 

proliferation and distribution of these BrdU+ cells vary in the literature. Some studies saw 

few BrdU+ cells scattered evenly throughout the parenchyma [Xu et al, 2005; Perez-

Martin et al, 2010; Migaud et al, 2011], whilst other studies saw a high number of BrdU+ 

cells whose density was inversely proportional to the distance from the 3rd ventricle 

[Pencea et al, 2001; Kokoeva et al, 2005; Haan et al, 2013; Robins et al, 2013a]. The 

potential causes for this disparity are discussed below. 

Neural/glial antigen-2 (NG2)+ glia appear to comprise the majority of proliferative 

parenchymal cells, accounting for approximately 80% of parenchymal BrdU+ cells 

[Robins et al, 2013b]. In addition to NG2+ glia, proliferating microglia and endothelial cells 

have been reported, although the latter was only observed when IGF-1 was administered 

centrally [Cifuentes et al, 2011; Perez-Martin et al, 2010]. Whilst IGF-1 mostly induces 

periventricular cell proliferation [Perez-Martin et al, 2010], ciliary neurotrophic factor 

(CNTF) induces a significant (5-fold) increase in proliferation throughout the hypothalamic 

parenchyma [Kokoeva et al, 2005; Kokoeva et al, 2007]. 
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Difficulties in assessing hypothalamic cell proliferation 

The majority of discrepancies in the categorical identification of hypothalamic proliferative 

cells, their respective locations (Table 1.1), and their relative proliferative capacities is 

owed to some technical factors and endogenous limitations that require consideration 

when using BrdU as a proliferative marker in the hypothalamus [Sousa-Ferreira et al, 

2014a]. 

Different BrdU-delivery techniques used reflect varying BrdU permeability by different 

regions of the hypothalamus [Lee & Blackshaw, 2012; Sousa-Ferreira et al, 2014a]; 

peripheral administration (intraperitoneal; i.p. injection) of BrdU appears to be 

preferentially incorporated in cells of the median eminence, which has its unrestricted 

access to circulating blood, whereas central (intracereboventricular; i.c.v) delivery of BrdU 

preferentially labels cells lining the 3rd ventricle and in the parenchyma, which have higher 

permeability across the ventricular interface [Kokoeva et al, 2007; Cifuentes et al, 2011]. 

This leads to question whether the observation of higher BrdU+ cells in the ME, relative 

to the PeA or distal parenchyma (when BrdU is administered peripherally) is due to an 

inherently higher proliferative capacity or due to higher accessibility to the ME [Lee et al, 

2012]. Indeed, when delivered centrally, a more comparable BrdU+ cell density is seen 

between the PeA and ME [Kokoeva et al, 2007]. 

Further methodological differences in BrdU administration, such as the duration and 

frequency of delivery/injections, may account for additional variation in observations 

made [Sousa-Ferreira et al, 2014a]. For instance, when injected for short periods, BrdU+ 

cells are scarcely seen in the parenchyma [Xu et al, 2005; Perez-Martin et al, 2010], 

whereas longer delivery periods indicate otherwise [Robins et al, 2013b; Haan et al, 

2013]. Equally, the disparity in survival periods (the time window from the first BrdU 

injection to tissue fixation and analysis) used between studies (Table 1.1) can affect the 

observed location of proliferation since, with increasing survival time, there is a greater 

likelihood of BrdU+ cell migration [Sousa-Ferreira, 2014a]. 

The properties of hypothalamic neural stem/progenitor cells, such as how frequently they 

enter the cell cycle and how long their cycles are, is not clear. Considering that the 

hypothalamus may comprise of a heterogeneous pool of neural stem/progenitor cells 
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[Haan et al, 2013; Robins et al, 2013a; 2013b], each of which may have different cell-

cycle properties, as seen in other stem cell niches [Li & Clevers, 2010], it is not known 

whether BrdU may reliably labelled all, or just a proportion of this heterogeneous 

population. For instance, when BrdU is administered for discrete/short periods, neural 

stem/progenitor cells with an active cell-cycle (fast-dividing) are more likely to be labelled 

with BrdU, whereas longer BrdU administration increases the chances of ‘capturing’ 

neural stem/progenitor cells that may be in the cell-cycle infrequently (slow-dividing) 

[Sousa-Ferreira et al, 2014a]. 

Indeed, BrdU-studies in the SGZ and SVZ have conventionally used a single peripheral 

(i.p) pulse to label proliferating cells [Migaud et al, 2010; Lee & Blackshaw, 2012]. As 

explained, this methodology yields exceedingly low hypothalamic BrdU+ cells and thus, 

is not optimal for labelling dividing neural progenitors in the hypothalamus. Thus, multiple 

BrdU injections and/or central (i.c.v.) BrdU delivery has been used. However, an increase 

in the length and duration of BrdU delivery (and hence, the survival time) may compromise 

the unequivocal identification/location of proliferating cells and their discrimination from 

post-mitotic progeny. Furthermore, given the additional limitations of using BrdU as a 

proliferative marker, namely its potential incorporation in non-dividing cells (during DNA 

repair and/or apoptosis) when administered at high doses [Bauer & Patterson, 2005; 

Breunig et al, 2007], may render misleading. Alternative endogenous proliferative 

markers such as Ki67 and PCNA have previously been detected for to confirm the 

proliferative status/capacity of BrdU+ cells [Kokoeva et al, 2007; Pierce & Xu, 2010], but 

have not been used to as great an extent. 

Assessing neurogenesis using transgenic lineage-tracing  

In addition to BrdU, genetic labelling approaches have more recently been employed to 

lineage-trace and fate-map neural stem/progenitor cells [Imayoshi et al, 2011; Blanpain 

& Simons, 2013]. Lineage-tracing/fate-mapping entails the (visual) identification of a cell 

(population) and its progeny by a permanent labelling method [Kretzschmar & Watt, 

2012]. A widely-used approach to lineage-trace cells in mice is the genetically inducible 

lineage-tracing approach (Fig 1.4), which makes use of the P1 bacteriophage-derived 

Cre-Lox recombination system [Hamilton & Abremski, 1984; Joyner & Zervas, 2006; 
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Imayoshi et al, 2011]. The Cre-Lox system was initially used to generate gene mutations 

(including knock-outs) in mice [Lakso et al, 1992; Orban et al, 1992; Nagy, 2000]; the site-

specific recombinase, Cre acts on LoxP recognition sites to delete, insert or invert any 

DNA sequence flanked by these LoxP sites via homologous recombinaton [Nagy, 2000; 

Kretzschmar & Watt, 2012]. The yeast-derived FLP-FRT system is an alternative site-

specific recombination system which has also been used for gene-targeting and lineage-

tracing, including in mice [Dymecki, 1996; Golic & Lindquist, 1989; Kretzschmar & Watt, 

2012].   

Cre activity can be spatially and temporally controlled by insertion of a cell-type/tissue-

specific promoter sequence upstream from the recombinase gene, and fusion with a 

mutated ligand-binding domain (with stronger affinity for a synthetic estrogen analogue 

such as tamoxifen or its metabolite, 4-hydroxy-tamoxifen) of the estrogen receptor to give 

the modified Cre-ERT, respectively [Feil et al., 1997, Indra et al, 1999, Metzger & 

Chambon, 2001]. Thus, in this system, Cre-ERT expression is restricted to cells that 

express the endogenous gene regulated by the same upstream promoter sequence as 

Cre-ERT, and can only translocate to the nucleus (where it can induce recombination) 

upon binding to Tamoxifen or 4-OHT.  

In the lineage-tracing approach, a double-transgenic mouse is used, whereby one 

transgenic construct comprises of Cre-ERT under the control of a cell-type/tissue-specific 

promoter sequence (Fig 1.4). The second transgenic construct consists of a reporter gene 

under the control of a ubiquitous promoter, such as CAG or Rosa26, but interrupted by a 

floxed STOP cassette [Branda & Dymecki, 2004]. Thus, only upon tamoxifen (or 4-OHT) 

administration Cre-ERT is allowed to translocate to the nucleus and excise the STOP 

cassette, resulting in the permanent expression of the reporter. Daughter cells that derive 

from these recombined cells will inherit the excised reporter construct and thus, express 

the reporter as well. However, although the inducible Cre-ERT enables control of 

recombination in a specific cellular population, some instances of non-specific Cre-

expression and ectopic activation have been noted, indicating potential caveats of using 

this lineage-tracing approach [Favaro et al, 2009; Chen et al, 2009; Imayoshi et al, 2011]. 
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Hypothalamic neurons generated  

Using BrdU-labelling and genetic lineage-tracing approaches, different neuronal cell-

types associated with feeding behaviour are generated in the adult hypothalamus. These 

include orexigenic (stimulate feeding) Agouti-related peptide (AgRP), Neuropeptide Y 

(NPY), and Orexin A-expressing neurons [Xu et al, 2005; Kokoeva et al, 2005; Pierce & 

Xu, 2010; Li et al, 2012; McNay et al, 2012; Lee et al, 2012; Haan et al, 2013], as well as 

anorexigenic (inhibit feeding) Proopiomelanocortin (POMC)-expressing neurons [Pierce 

& Xu 2010; Li et al, 2012; McNay et al, 2012; Lee et al, 2012]. These newly-generated 

neurons were functionally integrated into the existing hypothalamic circuitry as indicated 

by expression of immediate-early genes (c-fos) or activation of early-response 

Figure 1.4 Cre-inducible transgenic approach for lineage-tracing. Double transgenic mice 
are used containing two separate constructs; one containing an inducible Cre-recombinase 
(CreERT2) gene, and another containing a STOP cassette flanked by lox-P (recombinastion) 
sites followed by a reporter gene (usually a fluorescent protein). By using a tanycyte- or NSC-
specific promoter, CreERT2 expression can be restricted to tanycytes or NSCs, respectively. 
Under normal conditions, CreERT2 is expressed in an inactive form. However, upon injection 
of tamoxifen, is translocated to the nucleus where it actively recombines lox-P sequences, 
resulting in the excision of the STOP cassette. This allows for permanent YFP expression 
(driven by a constitutive promoter in the Rosa26 locus) in tanycytes/NSCs and in their progeny. 
This approach allows temporal control of reporter-labelling and lineage-tracing. Adapted from 
Lee et al, 2012. 
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transcription factor expression (STAT3) in response to acute or hormone-induced (leptin) 

fasting [Kokoeva et al, 2005; Pierce & Xu, 2010; Lee et al, 2012; Haan et al, 2013]. 

Tanycytes of the mediolateral ependymal layer were suggested to generate new-born 

cells which migrate along tanycytes processes into the hypothalamic parenchyma where 

they differentiate into mature neurons, indicated by NeuN or Hu expression [Xu et al, 

2005; Robins et al, 2013a]. Similarly, another study implied that DCX+ neuroblasts 

migrated into the deeper parenchyma, where they adopted more neuronal morphologies 

and phenotypes; rounded shaped DCX+/Nestin+ cells were seen with no processes in 

the periventricular area, whilst bipolar/fusiform-shaped DCX+ cells were seen in the distal 

parenchyma co-expressing NeuN [Batailler et al, 2014]. The reported identity of adult-

born neurons from the mediolateral PeA is limited, with only one study reporting the 

generation of Orexin-A-expressing neurons [Xu et al, 2005]. Whilst BrdU+ subependymal 

astrocytes were seen [Perez-Martin et al, 2010], their involvement in hypothalamic 

neurogenesis has yet to be elucidated. 

Tanycytes of the ME have been shown to generate both neurons in the ME [Lee et al, 

2012; 2014] and those that migrate to the hypothalamic parenchyma [Haan et al, 2013]. 

Newborn neurons (DCX+ neuroblasts) were observed in the ME albeit at lower levels 

respectively to the PeA and parenchyma [Batailler et al, 2014]. Tanycyte-derived 

progenies matured into ME and arcuate neurons as demonstrated by their Hu or NeuN 

expression, and was further characterized as NPY and POMC- peptidergic neurons [Lee 

et al, 2012; Haan et al, 2013]. 

NG2+ glia were identified as the predominant proliferative cell-type in the hypothalamic 

parenchyma, and were seen to retain neurogenic, gliogenic and self-renewal capabilities 

[Robins et al 2013b; 2013c]. However, although the authors identified the glial 

descendants as oligodendrocytes and astrocytes, they did not further investigate the 

identity of NG2+-derived neurons after confirming their neuronal fate with Hu [Robins et 

al, 2013b]. 
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Functional implications of adult hypothalamic neurogenesis 

In addition to the generation of appetite-regulating neurons, several studies have 

indicated further evidence for a role of adult hypothalamic neurogenesis in energy 

homeostasis and metabolic regulation and its functional relevance from induction/ablation 

studies [Bolborea & Dale, 2013; Sousa-Ferreira et al, 2014a; Migaud et al, 2016]. 

Application of CNTF induced increased neurogenesis associated with an increase in new-

born diet-regulating (NPY and POMC) neurons [Kokoeva et al, 2005].  This was 

accompanied by a reduction in food intake and weight gain in obese mice, which could 

be reversed upon ablation of cell proliferation with the mitotic blocker, arabinosylcytosine 

(AraC) [Kokoeva et al, 2005]. In another study, a neurodegenerative mouse model for 

AgRP neurons exhibited a dependence on de novo neurogenesis for keeping intact food 

intake and body weight; when proliferation was inhibited with AraC, decreased food intake 

and body fat followed [Pierce & Xu, 2010], mirroring the effects seen upon acute ablation 

of AgRP neurons (severe anorexia and weight loss) [Gropp et al, 2005]. Similarly, in 

another study where neurogenesis was ablated in the ME using focal irradiation, changes 

in weight and basal metabolic activity were observed [Lee et al, 2012]. 

Several lines of evidence suggest that obesity induces hypothalamic injury and impairs 

neurogenesis in the hypothalamic parenchyma [Thaler et al, 2012; Sousa-Ferreira et al, 

2014a]. HFD-induced obese mice indicate reduced cell proliferation and generation of 

hypothalamic (including NPY and POMC-expressing) neurons, further suppressing 

neuronal turnover by increasing apoptosis of new-born neurons in the arcuate nucleus 

[Moraes et al, 2009; Li et al, 2012; McNay et al, 2012]. The negative effect of HFD-induced 

obesity on neural stem/progenitor cell proliferation has been linked to an increase in pro-

inflammatory signalling; overexpression of IKKβ in hypothalamic NSCs led to the onset 

of (diet-independent) obesity [Li et al, 2012]. It is interesting to note that hypothalamic 

IKKβ/NF-κB activation is also linked to ageing [Zhang et al, 2013], since ageing is 

associated with an increased risk of obesity and neuroinflammation [Yang et al, 2012]. 

Genetically (leptin-deficient) obese mice also exhibit diminished levels of neurogenesis, 

but notably due to a substantially smaller neural stem/progenitor population, since leptin 

signalling is required for NSC proliferation [Desai et al, 2011; McNay et al, 2012]. On the 

other hand, other studies have nevertheless indicated that HFD can positively regulate 



			

	 24	

postnatal and adult hypothalamic neurogenesis in the ME in a sexually dimorphic manner 

(in females only) [Lee et al, 2012; 2014]. Upon the onset of HFD, increased cell 

proliferation is observed, peaking at 3 days after introduction to HFD, followed by an 

increase in POMC neuron generation [Gouaze et al, 2013]. Inhibition of this HFD-induced 

neurogenesis resulted in an accelerated onset of obesity, suggesting an adaptive 

anorectic function. Indeed in mice exhibiting progressive AgRP neurodegeneration, a 

similar compensatory role is played, whereby the energy-balance is maintained by 

increased generation of AgRP neurons [Pierce & Xu, 2010]. These studies indicate that 

adult hypothalamic neurogenesis may serve as an early protective mechanism to 

maintain energy homeostasis under detrimental conditions [Sousa-Ferreira et al, 2014a]. 

In addition to nutritional cues, adult hypothalamic neurogenesis is also regulated by 

external environmental stimuli. Seasonal changes such as a shift in photoperiod (from 

long to short days) leads to increased hypothalamic cell proliferation [Huang et al, 1998; 

Migaud et al, 2011; 2014] and increased DCX+ neuroblast migration [Batailler et al, 2014]. 

Similarly, changes in social environment, such as exposure to the opposite sex, increased 

cell proliferation and neuronal differentiation [Fowler et al, 2002]. Thus, it appears that 

adult hypothalamic neurogenesis may exist as a physiological mechanism to respond and 

adapt to changing metabolic and environmental challenges, remodelling hypothalamic 

neuronal circuitry de novo throughout adult life [McNay et al, 2012; Sousa-Ferreira et al, 

2014a]. 

Interestingly, inducers of hippocampal neurogenesis such as social enrichment and 

physical exercise [Kempermann et al, 1998; van Praag et al, 1999] and antidepressants 

(fluoxetine) [Santarelli et al, 2003; Sairanen et al, 2005] were reported to have an effect 

on some hypothalamic functions (Novak et al, 2012; McGuirk et al, 1992). However, it 

has yet to be determined if these external factors might also regulate (induce) 

hypothalamic neurogenesis. 
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Tanycytes 

Tanycytes were first described in 1954 [Horstmann, 1954] and named accordingly due to 

their characteristic morphology of bearing a long basal process [Rodriguez et al, 2005; 

Goodman & Hajihosseini, 2015]. Although they were first identified lining the 

hypothalamic 3rd ventricle, tanycytes and/or tanycyte-like cells have been found lining the 

ventricular walls of additional circumventricular organs other than the ME, along the 

(dorsal) 3rd and 4th ventricles [Langlet et al, 2014; Mirzadeh et al, 2017]. 

Hypothalamic tanycytes have been suggested to arise from local glial cells in the median 

eminence, and are first observed during late-gestation after embryonic day 18 in rats 

[Rutzel & Schliebler, 1980], but undergo terminal differentiation postnatally [Bruni et al, 

1983; Rodriguez et al, 2005]. Thus, due to their late development/ontogeny, tanycytes do 

not likely partake in embryonic neurogenesis. Interestingly, tanycytes and 

ependymocytes may share the same ancestral lineage, as deletion or downregulation of 

transcription factors, Lhx-2 or Rax in tanycytes resulted in the acquisition of 

ependymocyte features in tanycytes or the ectopic presence of ependymal cells in 

tanycyte regions, respectively [Miranda-Angulo, 2014; Salvatierra et al, 2014]. 

Tanycyte subtypes 

Tanycytes have been classified into α and β subtypes, based on differences in their 

anatomical location, projection paths and distinguishing features (Figure 1.3) [Rodriguez 

et al, 2005]. α tanycytes are further subdivided into α1 and α2, as are β tanycytes into β1 

and β2 tanycytes. α-tanycytes reside more dorsally to β tanycytes, along the mediolateral 

3rd ventricular walls and project into the parenchyma where they proximate glucosensitive 

neurons (orange; Figure 1.3B) of the ventromedial (α1) and arcuate (α2) nuclei 

[Rodriguez et al, 2005; Bolborea & Dale, 2013; Langlet, 2014]. β tanycytes, on the other 

hand, line the infundibular recess and the ventral floor of the 3rd ventricle, where they 

project either into the arcuate nucleus (β1) to contact vascular endothelial cells (dark grey; 

Figure 1.3B) or ventrally into the ME (β2) to contact portal blood vessels [Rodriguez et al, 

2005; Goodman & Hajihosseini, 2015]. Unlike β tanycytes, α tanycytes lack direct contact 

with the blood circulation. 
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Another key differentiating feature between α and β tanycytes entails the barrier 

properties that β tanycytes exclusively exhibit [Rodriguez et al, 2005; Langlet, 2014]. Due 

to the lack of a blood-brain barrier (BBB) at the ME (blood vessels are fenestrated), this 

gives β2 tanycytes direct access to the circulating blood and borne molecules [Bolborea 

& Dale, 2013]. Barrier properties are assigned to β2 tanycytes by expressing tight junction 

proteins along their apical cell bodies to form an impermeable ‘belt’ between the CSF and 

ME [Mullier et al, 2010; Langlet, 2014]. Interestingly, β1 tanycytes contact and ensheath 

parenchymal (arcuate) capillaries, but the barrier properties are retained in the endothelial 

cells expressing tight junctions to maintain the BBB [Mullier et al, 2010]. Instead, β1 

tanycytes express zonula adherens along their lateral cell bodies to maintain the arcuate-

CSF barrier [Rodriguez et al, 2005]. Interestingly, β2 tanycytes play additional exclusive 

roles in hypothalamic neuroendocrine functions, such as regulation of thryroid hormone 

synthesis and secretion [Sanchez et al, 2009; Bolborea & Dale, 2013] as well as 

modulation of gonadotropin-releasing hormone secretion, which is associated with 

reproductive function [Prevot et al, 2010; Rizzotti & Love-badge, 2016]. 

Indeed, α and β tanycytes exhibit differential gene expression profiles, although both 

express some common markers, such as Sox-2, vimentin and nestin [Haan et al, 2013; 

Bennett et al, 2009; summarized in Goodman & Hajihosseini et al, 2015]; α tanycytes 

express GLAST (Glutamate aspartate transporter), GFAP and S100β [Haan et al, 2013; 

Robins et al, 2013a; Goodman & Hajihosseini, 2015], whilst β tanycytes express BLBP, 

FGF10 and FGF receptors 1 and 2 [Gonzalez et al, 1994; Hajihosseini et al, 2008; Haan 

et al, 2013, Goodman & Hajihosseini, 2015]. As indicated by Goodman & Hajihosseini 

(2015), S100β expression represents a potential domain-marker that can distinguish 

between the α- and β- tanycyte domains along the ventricular wall.  

Tanycytes as chemosensors 

The location of tanycytes at the 3rd ventricle lining and in the ME gives them the ability to 

sense and integrate changes in metabolism and the peripheral environment [Sousa-

Ferreira et al, 2014a]. As a result, tanycytes can sense changes in the CSF composition 

[Bolborea & Dale, 2013]. Indeed, β2 tanycytes have unrestricted access to the circulating 

blood from fenestrated capillaries [Rodriguez et al, 2005] and as a result, can sense a 
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range of metabolic signals, including glucose [Frayling et al, 2012] and hormones such 

as leptin [Balland et al, 2014]. Tanycytes can also respond to several neurotransmitters 

including ATP, histamine and acetylcholine, when applied exogenously [Frayling et al, 

2011]. 

Several lines of evidence have implicated tanycytes as glucose sensors. Selective 

ablation of tanycytes impairs the feeding response to hypoglycaemia, which can be 

reversed when tanycytes were allowed to regenerate [Sanders et al, 2004]. Tanycytes 

express components of the glucosensing system adopted in pancreatic β-cells: GLUT-1 

[Peruzzo et al, 2000], GLUT-2 [Garcia et al, 2003], glucokinase [Salgado; 2014], and 

ATP-sensitive potassium channels [Thomzig, 2005]. However, it has been debated on 

whether this glucosensing system is actually utilized by tanycytes [Bolborea & Dale, 

2013]. More recently a new sweet-taste receptor (Tas1r2/Tas1r3)-mediated mechanism 

for glucosensing was identified in a substantial proportion of tanycytes [Benford et al, 

2017]. However, since 40% of tanycytes were still glucosensitive, it can be speculated 

that a combination of receptors and or additional as-of-yet unknown mechanisms may 

exist.   

Tanycytes have been shown to exhibit glucose sensitivity via ATP-mediated purinergic 

signalling [Frayling et al, 2011; Dale, 2011]; when glucose was directly applied onto 

tanycyte cell bodies, calcium influx is stimulated, causing a large intracellular calcium 

wave to propagate the tanycyte layer. This is brought about by two events; short-range 

propagation of intracellular calcium into neighbouring tanycytes via gap junctions 

[Orellana et al, 2012] and activation of intracellular signalling cascades that result in the 

release of ATP [Frayling et al, 2011]. Released ATP stimulates activation of the purinergic 

receptor, P2Y1R, causing further calcium influx along the tanycyte layer [Frayling et al, 

2011]. This mode of glucosensing allows for tanycyte signalling at short ranges (via gap 

junctions) and long ranges (ATP release into the extracellular space, leading to P2Y1R 

stimulation) [Bolborea & Dale, 2013]. Tanycytes have also shown to respond to non-

metabolizable glucose analogs and non-nutritive (artificial) sweeteners via the same 

mechanism [Frayling et al, 2011; Benford et al, 2017]. 
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Tanycytes as neural stem/progenitor cells 

During embryonic brain development, radial glia serve as neuronal progenitors and are 

thus considered to be the embryonic counterpart to adult neural stem cells (NSCs) 

[Alvarez-Buylla et al, 2001; 2002; Rodriguez et al, 2005]. Interestingly, tanycytes 

resemble radial glia and NSCs in more ways than one. Radial glia possess long basal 

extensions to support the migration of newborn neurons/progenitors [Kriegstein & 

Alvarez-Buylla, 2009]. Tanycytes possess a similar basal process and evidence has been 

shown to indicate a potentially analogous mechanism of progenitor guidance during adult 

hypothalamic neurogenesis [Xu et al, 2005]. As previously described, tanycytes are 

responsive to ATP amongst other molecules [Frayling et al, 2011]. The intracellular 

calcium waves evoked through the tanycyte layer is reminiscient of that seen in radial glia 

during proliferation [Weissman et al, 2004]. Furthermore, episodic bursts of ATP release 

result in autocrine and paracrine induction of NSC proliferation and inhibition of 

differentiation, by specifically acting on purinergic P2X and P2Y receptors [Scemes et al, 

2003; Lin et al, 2007; Cavaliere et al, 2015]. In line with this, tanycytes also express 

NTPDase2, an enzyme typically expressed in some NSC populations that degrade 

extracellular ATP to enable a tight regulation of extracellular ATP levels [Braun et al, 2003; 

Gampe et al, 2015].  

Tanycytes also express a wide variety of NSC/neural progenitor markers, some of which 

include nestin, vimentin and Sox-2 [Rodriguez et al, 2005; Lee & Bradshaw, 2012]. 

Furthermore, when isolated in vitro, tanycytes were able to form self-renewing 

neurospheres, which were able to differentiate into both, glia and neurons, indicating their 

parallel multipotency to NSCs [Xu et al, 2005, Robins et al, 2013a]. However, the 

physiological proliferative capacity of tanycytes is not well-established. Whilst BrdU+ 

tanycytes were seen in few studies, this occurrence was either very rare [Xu et al, 2005] 

or seen only under long survival periods after BrdU administration (9-15 days; no BrdU+ 

cells were seen at the ependymal layer after 6 days of BrdU) [Hajihosseini et al, 2008; 

Haan et al, 2013]. Other studies reporting tanycyte proliferation lacked any morphological 

characterization of BrdU+ cells at the ependymal layer to confirm that these cells were 

indeed tanycytes [Chouaf-Lakdar et al, 2003]. Finally, BrdU+ tanycytes were only 

abundantly seen upon infusion of growth factors such as FGF-2 and IGF-1 [Xu et al, 2005; 
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Perez-Martin et al, 2010; Robins et al, 2013a]. Given the low basal levels of adult 

hypothalamic neurogenesis it is reasonable to suggest that tanycytes may represent a 

quiescent population of NSCs [Morshead et al, 1994]. However, it could also be argued 

that the non-physiological levels of growth factors used in these studies may evoke 

ectopic proliferation not seen under physiological conditions, and more importantly, no 

conclusive evidence was provided to distinguish that tanycytes, and not other nearby 

proliferative cells, such as subependymal astrocytes had taken up BrdU. Thus, it is not 

clear if tanycytes are bona fide neural stem/progenitor cells capable of cell proliferation 

(and self-renewal). 

Lineage-tracing of tanycytes 

More recently, genetically inducible fate-mapping approaches have been used to 

investigate the contribution of tanycytes toward hypothalamic neurogenesis [Lee et al, 

2012; Haan et al, 2013; Robins et al, 2013a] (Figure 1.4). In these studies, inducible Cre-

recombinase (CreER) was under the control of promoter sequences specific for β-

tanycytes (FGF10) [Hajihosseini et al, 2008; Haan et al, 2013] or α-tanycytes (GLAST) 

[Robins et al, 2013a]. Upon induction of recombination by tamoxifen, these particular 

tanycyte subpopulations were permanently labelled with a reporter, allowing studies to 

track the migration and map the cellular fate of these cells and their progeny. 

Indeed, studies using this approach have indicated tanycytes as components of the 

hypothalamic neurogenic niche in both postnatal [Lee et al, 2012] and adult [Xu et al, 

2005; Haan et al, 2013; Robins et al, 2013a] rodents. Lineage-traced β tanycytes were 

seen to mostly generate neurons of the parenchyma in several nuclei (Arcuate, VMH, 

DMH, lateral hypothalamus), but predominantly to the arcuate nucleus, where progeny 

developed into NPY+ neurons [Haan et al, 2013]. A rare contribution to parenchymal 

astrocytes was also noted. Conversely, lineage-traced α tanycytes generated GFAP+ 

astrocytes robustly, whilst few NeuN+ neurons were observed, of which only half I 

migrated into the parenchyma after an extended period of time (9 months) [Robins et al, 

2013a]. Although specific neuronal descendants of α tancycytes were not identified in this 

study, adenoviral labelling of mediolateral (presumably α) tanycytes indicated newly 

generated Orexin A+ neurons [Xu et al, 2005]. Interestingly, lineage-tracing of α 
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tancycytes also indicated labelled tanycytes residing in the ventral 3V walls, suggesting 

their potential to generate β tanycytes [Robins et al, 2013a]. 

Some conflicting observations were made in these studies; lineage-traced β tanycytes 

were seen to amplify in number within the ependymal layer, suggestive of self-renewal 

[Haan et al, 2013]. However, Robins et al [2013a] suggested that, using the neurosphere 

assay, only neurospheres from sub-dissections of hypothalamic slices containing α2 

tanycytes could self-renew for an extended period (over 7 generations), but not β 

tanycytes. These findings require further investigation to assess and confirm tanycyte 

self-renewal in alternative experimental paradigms, for instance, whether either tanycyte 

subpopulation can be restored upon genetic ablation. Further controversy is added to the 

matter as GLAST expression is not limited to tanycytes [Berger & Hediger, 2001], but is 

also expressed in parenchymal astrocytes [Hartfuss et al, 2001; Fuente-Martin et al, 

2012]. Thus, the absolute contribution of GLAST-expressing α tanycytes to neurogenesis 

remains unclear. 

Due to conflicting findings described above, it is unclear which subtype (α or β) is the 

predominant population contributing to hypothalamic neurogenesis. Indeed, since 

different promoters were used in these studies to drive Cre-mediated labelling of specific 

tanycyte subtypes, it is possible that the other tanycyte subtype and their role in adult 

neurogenesis may have been overlooked [Sousa-Ferreira et al, 2014a]. Thus, it is 

possible that α and β tanycytes may simply represent different neural stem cell/progenitor 

populations, or neural progenitors in sequential states of differentiation, given that α 

tanycytes may give rise to β tanycytes [Robins et al, 2013a; Sousa-Ferreira et al, 2014a]. 

Although accumulating evidence has supported tanycytes’ contribution to adult 

hypothalamic neurogenesis, the current understanding of tanycytes and their involvement 

in neurogenesis is still rudimentary and many questions remain [Bolborea & Dale, 2013; 

Goodman & Hajihosseini, 2015]. For example, the intermediate steps by which tanycytes 

mediate their role in neurogenesis and the signalling pathway(s) regulating this role still 

remains unclear (Figure 1.5). 

Given tanycytes’ role as chemosensors and putative neural stem cells, it could be 

speculated that tanycytes may represent the cellular link between sensing changes in the 
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peripheral environment and integrating these changes via neurogenic remodelling of 

homeostatic circuitry [Sousa-Ferreira et al, 2014a]. Indeed, the molecular events involved 

in tanycyte-mediated glucosensing (induction of calcium influx, ATP release and 

subsequent P2Y1R activation) [Frayling et al, 2011; Benford et al, 2017] are also 

exhibited in radial glia and NSC proliferation [Weissman et al, 2004; Lin et al, 2007]. Thus, 

this very mechanism may well be associated in the stimulation of tanycyte proliferation 

and subsequent neurogenesis. 

 

 

 

  

Figure 1.5 Potential intermediate steps by which tanycytes may mediate their neurogenic 
role. Upon stimulation by soluble factors (e.g. neurotrophic or metabolic molecules) in the CSF 
or blood circulation, tanycytes may release ATP to stimulate proliferation in neighbouring cells. 
Tanycytes may directly generate neurons (1) or indirectly via intermediate progenitor cells (2), 
which may amplify further (3) prior to committing to a cellular fate (neuronal or glial). Newly 
generated cells may either migrate along tanycyte’s long processes into the relevant 
hypothalamic nuclei, or via other unknown means. Adapted from Bolborea & Dale, 2013.  
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Aims 

The general aim of this project was to investigate the regulation of adult hypothalamic 

neurogenesis and elucidate the role that tanycytes play in this. This can be broken down 

into 3 specific aims. 

1) Investigate external factors that regulate adult hypothalamic proliferation 

Given that environmental stimuli can regulate hypothalamic neurogenesis, I hypothesized 

that external factors such as physical exercise, artificial sweeteners (Acesulfame-K) and 

antidepressant (fluoxetine) also influence hypothalamic neurogenesis to refine/adapt 

hypothalamic functions accordingly. Thus, the effect of these external factors on 

hypothalamic proliferation was assessed. BrdU-labelling and Ki67 immunodetection was 

used to assess hypothalamic cell proliferation. Null hypothesis: these stimuli do not have 

any effect on hypothalamic cell proliferation. 

2) Characterize the identity of hypothalamic nestin-expressing cells and their progenies  

Although the identity of all putative hypothalamic neural stem/progenitor cells is not clear, 

tanycytes have been implicated as potential candidates [Lee et al, 2012; Haan et al, 2013; 

Robins et al, 2013a]. Since nestin might be expressed by α and β tanycytes, an inducible 

genetic-labelling approach was used to characterize the identity of all putative 

stem/progenitor cells defined by a transgenic nestin promoter. This characterization was 

used as preliminary validation for optogenetic stimulation of tanycytes. 

3) Investigate the role of calcium signalling in adult hypothalamic neurogenesis 

In addition to neurogenesis, tanycytes have been demonstrated to have a chemosensing 

role, which is dependent on purinergic stimulation of intracellular calcium waves [Frayling 

et al, 2011]. Given that purinergic signalling and calcium waves have also been implicated 

in radial glia/NSC proliferation [Weissman et al, 2004; Tang & Illes, 2017], I hypothesized 

that this mechanism may underlie tanycytes’ neurogenic function. Thus, optogenetic 

stimulation was used to induce intracellular calcium waves in tanycytes and assess any 

effect on hypothalamic neurogenesis. Null hypothesis: optogenetic stimulation does not 

have any effect on tanycyte cell proliferation and hypothalamic neurogenesis. 
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Chapter 2: Exposure to acesulfame-K, but not physical exercise or 
fluoxetine, showed variable effects on the number of newly-generated 
cells in the adult hypothalamus 

Background 

Adult hypothalamic neurogenesis can be modulated by changes in several external 

environmental factors, such as seasonal photoperiodic change [Huang et al, 1998; 

Migaud et al, 2011; 2014; Batailler et al, 2015], increased exposure to reproductive/social 

cues [Fowler et al, 2002], heat [Matsuzaki et al, 2009] and dietary changes [Gouaze et 

al, 2013; Lee et al, 2014]. Indeed, it has been proposed that similarly in the hippocampus, 

adult neurogenesis in the hypothalamus may serve as a physiological mechanism to 

respond and adapt to changing metabolic and environmental challenges throughout 

adulthood [Sousa-Ferreira et al, 2014a; Migaud et al, 2016]. Thus, it is reasonable to 

suggest that adult hypothalamic neurogenesis may be modulated by 

external/environmental stimuli. 

Indeed, studies investigating the effects of factors that modulate adult hippocampal 

neurogenesis have revealed a potential link to hypothalamic function [Lee & Blackshaw, 

2012]. More specifically, inducers of hippocampal neurogenesis were seen to affect 

several physiological features, homeostatic and behavioural processes governed by the 

hypothalamus. Physical activity, which positively regulates hippocampal neurogenesis 

[van Praag et al, 1999; Kempermann et al, 2000; Vivar et al, 2013], was also seen to 

affect several aspects of energy balance, including body weight and adiposity, food 

intake, and energy expenditure, as well as behaviours related to the stress response, 

mood, and reward [Novak et al, 2012]. Similarly, treatment with fluoxetine, a 

pharmaceutical drug developed to treat depression and previously identified as another 

positive modulator of hippocampal neurogenesis [Malberg et al, 2000; Santarelli et al, 

2003; Sairanen et al, 2005], caused changes in food intake and body weight [McGuirk et 

al, 1992], aggressive [Datla et al, 1991] and reproductive [Maswood et al, 2008] 

behaviours, all of which are functions regulated by the hypothalamus. Furthermore, the 

hypothalamic-pituitary-adrenal (HPA) axis, an intricate stress-response signalling system, 

is disrupted in the pathogenesis of depression and can be reversed by antidepressant 
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treatment [Barden, 2004; Pariante & Lightman, 2008; Mendez-David et al, 2013]. Thus, 

both physical activity and fluoxetine can bring about long-term changes in several 

hypothalamic functions, but it has yet to be determined if these effects are mediated 

through modulation of adult hypothalamic neurogenesis. 

Recently, another study indicated that changes in diet such as calorie-restriction and high-

fat diet can regulate hypothalamic cell proliferation and adult neurogenesis [Lee et al, 

2014]. Whilst high sugar/artificial sweetner-intake have been argued to be linked to weight 

gain and obesity [Berkey et al, 2004; Yang, 2010; Musselman et al, 2011; Bes-Rastrollo 

et al, 2016], it has not been determined whether this effect is also associated with changes 

in hypothalamic neurogenesis. It is interesting to note that tanycytes,, in addition to their 

neurogenic function, have demonstrated a sweet-tasting function and are able to detect 

both glucose and non-nutritive sweeteners, such as acesulfame-K [Frayling et al, 2011; 

Benford et al, 2017]. 

Given that several environmental stimuli/changes have been reported to regulate the 

levels of hypothalamic neurogenesis, I hypothesized that the reported changes in 

hypothalamus-related functions upon exposure to physical exercise, antidepressant 

administration or high artificial sweetner intake may reflect a modification of the 

hypothalamic neural circuitry via adult neurogenesis. Thus, this chapter aims to assess 

whether the aforementioned external stimuli can modulate hypothalamic cell proliferation 

and accordingly, neurogenesis.  

Methods  

Mice and treatments 

Early-adult (5-6 weeks-old) C57BL/6NTac mice (male) were purchased and used from 

InVivos (Singapore). 5 mice were housed in each cage. Mice were given 10 days to 

acclimatize prior to starting any treatment. 

Physical activity (Fig. 2.2); mice (n=8) were housed in cages with a running wheel (Bio-

serv, K3250/K3328) for 14 days. These ‘Runner’ mice were visually monitored daily in 

order to ensure running wheels were operational and being used frequently. Control mice 

(n=10) were housed in cages under the same conditions except lacking a running wheel. 
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On day 7, all mice were injected i.p. with 50mg/kg BrdU (Sigma, T-5648; 10mg/ml stock 

in 0.9% saline). Brains were perfusion-fixed on day 14, and extracted for 

immunohistochemical analysis. 

Antidepressant (Fig. 2.3); fluoxetine (Sequoia Research, SRP01950f; stock concentration 

of 4mg/ml in 0.9% saline/3% Tween20) was injected daily intraperitoneally into mice 

(n=10) for 21 consecutive days at a dose of 20mg/kg (of bodyweight). Control mice (n=8) 

were injected with 0.1ml 0.9% saline. On day 14, all mice were injected i.p. with 50mg/kg 

BrdU (Sigma, T-5648; 10mg/ml stock in 0.9% saline). Brains were perfusion-fixed after 

the last injection and extracted for immunohistochemical analysis.  

Artificial sweetener (Fig 2.4); Mice (n=11) were given Acesulfame K (Ace-K; Sigma, 

04054-25G) ad libitum (50mM in drinking water) for 14 days. The concentration of Ace-K 

resulting in the highest Ace-K intake was determined in a previous trial experiment; the 

concentration yielding the maximum intake of Ace-K was found to be 50mM. However, in 

this experiment, quantities of Ace-K consumed was not recorded. Control mice (n=10) 

were given drinking water. On day 7, all mice were injected i.p. with 50mg/kg BrdU 

(Sigma, T-5648; 10mg/ml stock in 0.9% saline). Brains were perfusion-fixed on day 14, 

and extracted for immunohistochemical analysis.   

Tissue processing & immunohistochemistry 

Mice were anesthetized with a lethal dose of pentobarbital and intracardially perfused 

with 4% paraformaldehyde (PFA; Sigma, P-6148) in 0.1M phosphate buffer (PB). Brains 

were immediately post-fixated in 4% PFA solution overnight at 4 °C, and subsequently 

cryoprotected in 30% sucrose in 0.1M PB for at least 48 hours. Cryoprotected brains were 

sectioned coronally at a thickness of 40μm using a freezing microtome at -30°C (Microm 

HM430, Thermo Scientific, USA). Serial coronal sections were collected along the 

anteroposterior axis (approx. from Bregma 0 to -3.0mm) covering the hypothalamus and 

stored in cryoprotective solution (20% Glycerin, 30% Ethylene Glycol in 0.1M PB) at -20 

°C. For multiple immuohistochemisty, a total of 8 sections were used (1 every 4 serial 

sections). This was appropriate to capture the majority of the hypothalamus. The free-

floating method [Bachman, 2013] was used; sections were rinsed 3 times for 10 minutes 

in 0.1M Tris-buffered saline (TBS), incubated in 50% Formamide at 65°C for 2 hours in a 
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shaking water bath, rinsed in 2X saline sodium citrate (SSC) for 15 min, incubated in 2N 

HCl al 37°C for 30 min, rinsed in 0.1M Borate Buffer for 10 min, rinsed 6 times with TBS 

for 15 min, incubated in blocking buffer, TBS++ (3% Donkey serum, 0.25% Triton-X100 

in TBS) for 60min, prior to incubation with primary antibody in TBS++ at 4°C for 36 hours 

(two nights). Primary antibodies used: rabbit anti-Ki67 (1:500; Leica, NCL-Ki67p), mouse 

anti-NeuN (1:1200; Millipore, MAB377), rat anti-BrdU (1:400; AbD Serotec, OBT0030G). 

Following primary antibody incubation, sections were rinsed with TBS 2 times for 10min, 

blocked in TBS++ for 20 min, and incubated in secondary antibody in TBS++ for 4 hours 

at room temperature. Secondary antibodies used: donkey Anti-Rat Cy3 (1:250; Jackson 

Immuno., 712-165-153), donkey Anti-Rabbit 488 (1:250; Jackson Immuno., 711-545-

152), donkey anti-mouse 647 (1:250; Jackson Immuno., 705-605-147). Nuclear staining 

was performed with incubation with 4’,6-Diamidino-2-phenylindole-dihydrochloride (DAPI; 

0.5µg/mL; Sigma, 28718-90-3) for 10 mins. Immunostained sections were rinsed with 

TBS 3 times for 10 minutes and mounted on glass slides with mounting medium, polyvinyl 

alcohol (PVA)-DABCO. 

Analysis & quantification 

From immunostained slides, 4-6 sections (at an interval of 1 in every 4 sections) were 

selected based on their location (mid-caudal hypothalamus), from Bregma -1.22mm to -

2.18mm, and analysed for BrdU+ and Ki67+ cell quantification. Selected sections were 

imaged/viewed under the epifluorescence microscope (Zeis Axio Imager 2) to outline 

hypothalamic nuclei and count BrdU+ and Ki67+ cells.  

Autofluorescence from DAPI staining (eradicated by BrdU pretreatment) was used to 

outline the hypothalamus at 2.5X magnification (Fig. 2.1A), whilst NeuN staining was used 

to outline the ventromedial nucleus (VMH), and in turn, the predicted hypothalamic nuclei 

boundaries according to the ‘Mouse Brain in Sterotaxic co-ordinates’ (Paxinos & Franklin, 

2012). The following hypothalamic nuclei/regions were outlined at 5X magnification (Fig 

2.1B); Median Eminence (ME), 3rd Ventricle wall (3V), Periventricular nucleus (Pe), 

Arcuate nucleus (Arc), Ventromedial nucleus (VMH), Dorsomedial nucleus (DMH). The 

Lateral hypothalamic area (LH) is attributed here to the remaining hypothalamic tissue 

that was not outlined. 
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A blind-approach was adopted during the counting of BrdU+ and Ki67+ cells (under 20X 

magnification); the identity (control or treatment) of immunostained sections was hidden 

(by Sandhya Kamath) to the counter. Total number of BrdU+/Ki67+ cell numbers were 

counted (in the 4-6 sections) and standardised as cell densities per volume (µm3) of brain 

tissue per mouse (n = number of animals used) to allow for comparisons between different 

mice/brains.  

Statistics 

Results are expressed using box plots (median and interquartile range with whiskers 

representing the min/max values). The Kruskal-Wallis one-way analysis of variance was 

used, followed by post-hoc Dunn’s for pairwise comparisons within multiple groups. For 

comparisons between two groups, two-tailed independent samples Mann-Whitney test 

was used. Significance was only established when p ≤ 0.05 (*) and satisfied a post-hoc 

false-discovery test [Curran-Everett, 2000]. Higher levels of significance is indicated when 

p ≤ 0.01 (**) or p ≤ 0.001 (***). 

 

 

Figure 2.1. Methodology for determining the hypothalamic nuclei for BrdU+ and Ki67+ 
cell quantification. A) Autofluorescence observed through the DAPI filter was used to help 
visualize and outline the hypothalamus (note, nuclear staining with DAPI has been ablated 
by acid pre-treatment for BrdU immunostaining). B) NeuN staining was used to help identify 
the Bregma point of the section and hence outline the predicted boundaries of the respective 
nuclei/regions.	
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Results 

Physical activity may not elicit an effect on hypothalamic cell proliferation 

Using the experimental design in Figure 2.2A, BrdU and Ki67-labelling was used to 

analyze cell proliferation at two different time-points; the thymidine analog BrdU was 

injected at day 7 to incorporate into S-phase dividing cells and their progenies, whilst Ki67 

expression (which is present in all phases of cell division) was immunolabelled for post-

mortem to visualize actively proliferating cells at day 14 [Scholzen & Gerdes, 2000; Kuhn 

et al, 2007]. 

 

Figure 2.2 The effect of physical exercise on cell proliferation in the dentate gyrus. A) 
schematic of the experimental paradigm/design. Exemplar images of sections 
immunostained for B) BrdU and D) Ki67 are indicated. C) BrdU+ and E) Ki67+ cells were 
quantified and calculated as the density of positive cells per mm3 of tissue. Significant 
differences detected are denoted by an asterisk and the level of significance by the number 
of asterisks. Runner n=8 mice, Control; n=10 mice. 	
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Firstly, the effect of running on cell proliferation in the dentate gyrus was assessed (Fig. 

2.2B-E) for confirmation that the experimental paradigm was effective, since physical 

exercise is known to elicit an increase in cell proliferation here [van Praag et al, 1999]. A 

significant increase in BrdU+ (p<0.005, two-tailed independent samples Mann-Whitney 

test; Fig. 2.2C) and Ki67+ (p<0.005, two-tailed independent samples Mann-Whitney test; 

Fig. 2.2E) cell density was seen in the dentate gyrus of ‘Runner’ mice. Thus, in this 

experiment, cell proliferation was increased in the dentate gryus after 7 and 14 days of 

physical exercise. This observation is in line with the reported effect of physical activity 

on cell proliferation and neurogenesis in the adult dentate gyrus [van Praag et al, 1999]. 

Of note, there is a clear difference in the magnitude of the increase in BrdU+ cells versus 

Ki67+ cells in ‘Runner’ mice. The larger increase in BrdU+ cells might be caused by the 

continued proliferation and/or increased survival of BrdU+ cells from day 7 until the end 

of the experiment, whereas Ki67+ proliferating cells were labeled and quantified within a 

single temporal snapshot (on day 14, post-mortem). 
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Figure 2.3 
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In the hypothalamus, the effect of physical activity on cell proliferation was assessed 

individually in several hypothalamic nuclei/regions. This was done so as to more 

accurately assess this effect (if any), since it is possible that an effect on cell proliferation 

may be localized in specific nuclei/regions, as previously seen with exposure to other 

environmental/molecular stimuli [Fowler et al, 2002; Xu et al, 2005; Robins et al, 2013a; 

Perez-Martin et al, 2010]. The average number of hypothalamic BrdU+ cells counted per 

(40µm) brain section of Control and Runner mice was 41.4±1.6 and 36.6±1.8, 

respectively. The average number of hypothalamic Ki67+ cells counted per (40µm) brain 

section of Control and Runner mice was 69.4±3.2 and 57.6±2.6, respectively. Both BrdU- 

and Ki67-labelling indicated an apparent decrease in Runner mice. Indeed, comparison 

of calculated BrdU+ cell densities also indicated a decrease in the majority of 

hypothalamic nuclei of Runner mice, with the most notable differences seen in the median 

eminence, arcuate nucleus and along the 3rd ventricle (Fig. 2.3C). Comparison of Ki67+ 

cell densities indicated a smaller but similar decrease in Runner mice (Fig. 2.3D). 

However, these differences in cell density were not significant (p>0.05, two-tailed 

independent samples Mann-Whitney test) in any of the hypothalamic nuclei/regions 

analyzed, although some were very close (in the ME; p=0.055, and the cumulative total; 

p=0.055; Fig. 2.3C). Whilst the lack of statistical significance may be suggestive that 7 or 

14 days of physical exercise may not have an effect on hypothalamic cell proliferation, 

this cannot be decisively concluded due to the high variation in the data. 

Fluoxetine may not elicit an effect on hypothalamic cell proliferation 

A similar experimental design was used for this experiment to assess for cell proliferation 

at two time-points (Fig 2.3A); the antidepressant, fluoxetine was applied daily for 21 days, 

Figure 2.3 The effect of physical exercise on cell proliferation in the hypothalamus. 
Cell proliferation was also assessed in the hypothalamus of the same mice used in Fig 2.2. 
Exemplar images of sections immunostained for A) BrdU and C) Ki67 are indicated. C) Insets 
indicate magnified images of Ki67+ cells. B) BrdU+ and D) Ki67+ cells were quantified and 
calculated as the density of positive cells per mm3.of tissue in several hypothalamic 
nuclei/regions (ME; median eminence, Pe; periventricular nucleus, Arc; arcuate nucleus, 
VMH; ventromedial nucleus, DMH; dorsomedial nucleus, LHA; lateral hypothalamic area, 
TOTAL; entire hypothalamus). Runner; n=8, Control; n=10. 	
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starting from day 0. BrdU was injected to assess cell proliferation on day 14, whilst Ki67 

immunostaining was aimed to indicate cell proliferation at day 21. 

 

The average number of hypothalamic BrdU+ cells counted per (40µm) brain section of 

Control and fluoxetine-injected mice was 36.3±1.8 and 29.4±1.6, respectively. Although 

Figure 2.4 The effect of Fluoxetine on cell proliferation in the hypothalamus. A) 
Schematic of the experimental paradigm/design. B) Exemplar images of BrdU-
immunostained sections are indicated. C) BrdU+ cell densities were quantified in several 
hypothalamic nuclei/regions (ME; median eminence, Pe; periventricular nucleus, Arc; 
arcuate nucleus, VMH; ventromedial nucleus, DMH; dorsomedial nucleus, LH; lateral 
hypothalamic area, HYPO; entire hypothalamus). Fluox; n=10, Control; n=8.	
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this implies a difference, comparison of calculated BrdU+ cell densities indicated no 

observable difference in any of the hypothalamic nuclei (except the ME) between both 

groups (Fig. 2.4C). Concurrently, no significant difference in BrdU+ cell density (p>0.05, 

two-tailed independent samples Mann-Whitney test) was seen in any of the hypothalamic 

regions/nuclei analyzed between fluoxetine-treated or control mice (Fig 2.4C). However, 

similarly to physical exercise, due to the high variation in data it cannot be concluded that 

fluoxetine had no effect on hypothalamic cell proliferation (regardless of the lack of any 

significant difference in BrdU+ cell numbers).  

Acesulfame-K induces elicits a divalent effect on hypothalamic cell proliferation 

The effect of Acesulfame-K (Ace-K) on hypothalamic cell proliferation was assessed to 

test the hypothesis that tanycyte activation by Ace-K (as seen by Benford et al, 2017) 

could upregulate adult hypothalamic cell proliferation and neurogenesis. Ace-K (in 

drinking water) was given to mice ad libitum for 14 days. During this, BrdU was injected 

to assess cell proliferation on day 7, whilst Ki67 immunostaining was aimed to indicate 

cell proliferation at day 14 (Fig. 2.5A) 
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Figure 2.5 
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The average number of hypothalamic BrdU+ cells counted per (40µm) brain section of 

Control and Ace-K-treated mice was 40.9±1.6 and 37.3±0.8, respectively. The average 

number of hypothalamic Ki67+ cells counted per (40µm) brain section of Control and Ace-

K-treated mice was 30.9±1.2 and 34.2±1.1, respectively. Comparison of calculated BrdU+ 

densities indicated a small yet significant decrease in the dorsomedial hypothalamic 

nuclei of mice given Ace-K (p=0.007; two-tailed independent samples Mann-Whitney 

test). On the other hand, comparison of Ki67+ cell densities indicated an increase in 

several hypothalamic nuclei/regions upon Ace-K consumption, of which there was a small 

yet significant increase in the ventromedial nucleus (p<0.05; two-tailed independent 

samples Mann-Whitney test; Fig. 2.5E). These results potentially suggest that Ace-K 

consumption may decrease cell proliferation in the DMH within the first 7 days but then 

increase cell proliferation in the VMH between 7 to14 days.  

Discussion 

Physical exercise 

In this study, physical exercise did not have any significant effect on hypothalamic cell 

proliferation. In contrast to these results, recent studies have since reported a positive 

effect of physical exercise (running) on hypothalamic cell proliferation [Li et al, 2013a; 

Borg et al, 2014; Niwa et al, 2015]. Using BrdU labelling, increased cell proliferation was 

observed at several time-points as early as 6 days from initiating voluntary physical 

exercise [Li et al, 2013a; Borg et al, 2014]. Another study noted an increase in cell 

proliferation particularly at the ependymal layer, in the arcuate nucleus and median 

eminence [Niwa et al, 2015].  Finally, long-term (12 weeks) voluntary physical exercise 

Figure 2.5 The effect of acesulfame-K on cell proliferation in the hypothalamus. A) 
Schematic of the experimental paradigm/design. Exemplar images of B) BrdU- and C-D) Ki67-
immunostained sections are indicated. Boundaries of the arcuate nucleus, in which a change 
in cell proliferation was detected are outlined. D) BrdU+ and E) Ki67+ cell densities were 
quantified in several hypothalamic nuclei/regions (ME; median eminence, Pe; periventricular 
nucleus, Arc; arcuate nucleus, VMH; ventromedial nucleus, DMH; dorsomedial nucleus, LH; 
lateral hypothalamic area, HYPO; entire hypothalamus). Significant differences detected are 
denoted by an asterisk and the level of significance by the number of asterisks. Ace-K; n=11, 
Control; n=10. 	
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was able to restore diminished levels of cell proliferation (indicated by Ki67-

immunolabelling) in diet-induced obese mice [Laing et al, 2016]. 

The number of hypothalamic BrdU+ cells counted in control/sedentary mice was 

comparable between our study (41±2 cells per 40µm section) and of a separate study in 

the same species (31±5 cells per 30µm section) [Borg et al, 2014]. However, whilst Borg 

et al reported a 3.5-fold increase in BrdU+ cells after 7 days of physical activity, we 

observed no such change. Our study administered BrdU (peripherally; i.p.) at a single 

instance (day 7) and terminated/analysed 7 days after, whereas Borg et al [2014] 

continuously administered BrdU (centrally) over the 7 days of physical exercise, followed 

by termination/analysis 1 day after.  

Although BrdU+ cell numbers in control/sedentary mice were comparable in both studies, 

the difference in effects observed may be due to several methodological differences. 

Firstly, administration of BrdU centrally (i.c.v) or peripherally (i.p) has been reported to 

indicate preferential BrdU uptake in different hypothalamic regions (the 

ventricular/periventricular and parenchymal, respectively) [Kokoeva et al, 2007]. Thus 

any potential effect, as reported in the ependymal layer [Niwa et al, 2015], may not have 

been detected in our study. Furthermore, in our study the (potential) continued 

proliferation of BrdU+ cells from day 7 until the end of the experiment (day 14), may have 

affected the BrdU+ cell numbers (i.e. to yield increased BrdU+ cells or conversely, BrdU 

dilution beyond detection limits could yield a decrease in BrdU+ cells) thereby not 

representing the exact numbers of proliferative cells on day 7. Finally, the number of 

BrdU+ cells could be further influenced by an effect of physical exercise on cell survival 

or migration from other areas from day 7 to 14 [Kuhn et al, 1996; Taupin, 2007]. 

Importantly, although the survival period (time from last BrdU administration to 

termination) was limited by Borg et al [2014] and Li et al [2013] to 1 day, BrdU was 

administered for several days during physical exercise (7 and 5 days, respectively), 

allowing the possibility of physical exercise to influence BrdU+ cell survival and/or 

migration, just as in our study. Our study used Ki67-immunolabelling to assess cell 

proliferation at the end of 14 days of physical exercise and saw no significant change in 

Ki67+ cells either. Ki67 is expressed and identified in cells during all active phases of the 

cell cycle (G1, S, G2 and mitosis) [Scholzen & Gerdes, 2000], and unequivocally 
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represents proliferative cells at the time of perfusion/termination on day 14. Thus, it 

cannot be determined if physical exercise is able to induce hypothalamic cell proliferation 

at any time point before day 14.  

In order to understand the cause of discrepancy in results with Borg et al [2014], and 

effectively distinguish between the effects of physical exercise on cell proliferation and 

cell survival, future studies may require higher methodological stringency. Firstly, by 

utilizing a combination of central and peripheral delivery methods and multiple instances 

(injections) of BrdU administration, a high number of parenchymal and ventricular 

proliferating cells can be labelled, providing reliable quantitative comparison/analysis. 

Secondly, by minimising the time-frame of these injections and the survival period after 

BrdU administration (ideally to 1 day, in each respect), the influence of cell survival on 

BrdU+ cell numbers is very limited. Immunolabelling for endogenous proliferative 

markers, such as Ki67 or proliferating cell nuclear antigen (PCNA) [Ino & Chiba, 2000] 

would provide an effective alternative to BrdU-labelling-based proliferation studies.. 

Indeed, this would mean that any varied durations of physical exercise (7,14 or more 

days) would require separate experimental-groups. To evaluate cell survival, two time-

points of analysis are required. If the ratio of BrdU+ cell numbers (late:early time points) 

in exercised mice are higher than that in control mice, an effect on survival may be 

claimed. However, this would require confirmation by assessing any changes in apoptosis 

with cell death markers at these time-points.  

Some studies have associated an increase in observed cell proliferation with enhanced 

neurogenesis, indicated by an increase in BrdU+ cells expressing neuronal fate-markers 

(NeuN/Hu) at later time-points [Li et al, 2013a; Niwa et al, 2015], as well as increased 

expression of neurotrophic factors, such as EGF, FGF-2 and BDNF in exercising mice 

[Borg et al, 2014; Niwa et al, 2015]. These factors have been previously reported to 

upregulate hypothalamic cell proliferation and adult neurogenesis [Pencea et al, 2001; Xu 

et al, 2005; Robins et al, 2013a]. Of particular interest, physical exercise was suggested 

to increase tanycyte proliferation, as indicated by a semi-quantitative increase in tanycyte 

marker (vimentin, nestin and GFAP) expression levels and increased BrdU uptake in 

ependymal and subependymal layers [Niwa et al, 2015]. However, other studies on diet-

induced (HFD) obese mice provide evidence that question whether neurogenesis is 
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indeed responsible for the metabolic changes associated with physical exercise. Although 

a relative increase in cell proliferation was seen in exercising obese mice, no significant 

change in differentiation (BrdU+/NeuN+ colocalization) was noted [Borg et al, 2014]. 

Furthermore, ablation of neurogenesis with the anti-mitotic drug, Ara-C, in these mice did 

not alter metabolic parameters (food intake, body weight, fat mass and insulin sensitivity) 

[Borg et al, 2014]. Instead, another study suggested that the observed metabolic changes 

associated with physical exercise was more due to a neuroprotective effect, whereby a 

shift in POMC neuronal turnover was altered by increasing cell proliferation and 

decreasing obesity/HFD-induced apoptosis [Laing et al, 2016]. Although, these latter 

studies focussed on the effect of physical exercise in (HFD-induced) obese mice and that 

the mechanisms by which physical activity may mediate metabolic changes may differ in 

healthy mice, this may provide evidence that physical exercise may not in fact, alter 

neurogenesis, at least in the short-term. 

Fluoxetine 

In our study, fluoxetine did not have any statistically significant effect on hypothalamic cell 

proliferation after 14 days of treatment. Fluoxetine has previously been reported to 

increase cell proliferation in the dentate gyrus of the hippocampus [Malberg et al, 2000; 

Santarelli et al, 2003; Sairanen et al, 2005]. However, this effect was not confirmed in our 

study as a positive control. Thus, the interpretation of our results is based on the 

assumption that the current experimental protocol was sufficient to induce hippocampal 

cell proliferation, as previously reported. Whilst it could be argued that this assumption is 

fair, since a significant increase in cell proliferation (BrdU+ cells) was seen as early as 11 

days of daily administration at half the dose [Santarelli et al, 2003], it cannot be 

conclusively determined whether this effect was achieved in our study. 

In contrast to our results, other studies have reported that fluoxetine upregulates 

hypothalamic cell proliferation [Sachs & Caron, 2014; Sousa-Ferreira et al, 2014b]. An 

increase in Ki67-expressing cells was seen when fluoxetine was applied to embryonic 

hypothalamic neurosphere cultures [Sousa-Ferreira et al, 2014b]. In a more comparable 

experimental paradigm, chronic application of fluoxetine (for 28 days) in mice induced an 

increase in BrdU uptake in the hypothalamus of adult mice [Sachs & Caron, 2014]. It was 
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further demonstrated in this study that this reported increase in cell proliferation was 

attributed to the upregulation of BDNF expression, a neuropeptide previously indicated to 

upregulate hypothalamic cell proliferation (and neurogenesis) [Pencea et al, 2001]. 

Finally, using a fate-mapping approach to label putative neural stem/progenitor cells 

driven by nestin expression, fluoxetine treatment also led to a two-fold increase in these 

labelled cells at the ependymal layer [Sachs & Caron, 2014].  

Several methodological differences exist between the aforementioned study [Sachs and 

Caron, 2014] and the current study that may account for the difference in observed 

effects. First, Sachs and Caron administered fluoxetine for longer (28 days) and at a dose 

of 155mg/L in drinking water, whereas in our study, fluoxetine was administered for 21 

days at a dose of 20mg/kg of bodyweight with i.p. injection. Thus, in our study, a maximum 

of 0.6mg fluoxetine was injected into mice daily (volumes no more than 0.15ml of 4mg/ml 

fluoxetine), whereas in the study by Sachs & Caron [2014] mice drinking any more than 

4ml of 155mg/L fluoxetine would have ingested a higher dose. This is highly likely as a 

study indicated that average of 6ml/mouse (or 8ml/30g bodyweight) of water was drank 

daily by C57BL/6J mice (same background strain used in both studies) [Bachmanov et 

al, 2002]. Secondly, although BrdU was delivered via i.p. injection in both studies, Sachs 

& Caron injected BrdU multiple (three) times at a much higher concentration (100mg/kg) 

vs our study (once, at a dose of 50mg/kg), thus the chances of capturing proliferating 

cells was higher. This may be relevant as it could be argued that increased BrdU-labelling 

may be necessary for a more reliable statistical estimate for a detecting any significant 

changes. Furthermore, BrdU-labelling was done at different time-points with Sachs and 

Caron assessing cell proliferation after 4 weeks of fluoxetine, whilst our study assessed 

cell proliferation after 2 weeks of fluoxetine. Again, this may be important to note as 

chronic effects of fluoxetine may differ from its short-term effects [Yuan et al, 2015].  

Similarly to our results with physical exercise, it could be speculated that the increased 

survival period (7 days) in our study may have caused for misinterpretation of cell 

proliferation at day 7 and overlooking an effect on cell survival. Indeed, the study by Sachs 

and Caron provides a more stringent assessment of cell proliferation (injecting BrdU 

multiple times within 24 hours) and limits the influence of cell survival and BrdU dilution 

in their analysis. 
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It should be highlighted that the current methodology in quantifying proliferative (BrdU+ 

and Ki67+) cells (analyzing 4-6 sections from a total of 8 immunostained sections per 

brain at an interval of every 4th section) was used with the following aims and benefits in 

mind. Firstly, to cover the entire anterior-posterior (AP) axis of the hypothalamus, given 

that cell proliferation may not be uniform throughout the hypothalamus. Secondly, the 

interval was used to minimize the possibility of re-counting the same (split) cells in 

separate sections, as previously highlighted (Matsuzaki et al, 2009). However, a caveat 

that requires consideration is that a limited number of sections were analyzed per brain. 

The majority of the hypothalamic nuclei analyzed in my experiments may have been too 

small to accurately quantify BrdU+ cells with the interval used. Indeed, this is reflected in 

the fact that only 4-6 sections out of 8 immunostained sections were relevant for BrdU+ 

cell quantification in these nuclei. Thus, by lowering the section interval (i.e. 1 in every 3 

sections), more relevant sections can be analyzed (per brain) and any change in cell 

proliferation (in each nucleus) can be more reliably captured. This would be further aided 

with the suggested changes in BrdU administration methodology (described previously) 

to label a higher number of proliferative cells in each section. 

Whilst fluoxetine treatment has been demonstrated to increase cell proliferation in the 

hypothalamus in vivo [Sachs & Caron] and hypothalamic neurospheres in vitro [Sousa-

Ferreira et al, 2014], it did not affect the percentage of BrdU+ cells that become NeuN+ 

neurons or GFAP+ astrocytes in vivo [Sachs & Caron, 2014], and even inhibited 

differentiation in vitro [Sousa-Ferreira et al, 2014b]. It has thus been suggested that 

fluoxetine may only increase cell proliferation and self-renewal, but it does not alter the 

commitment of newly-generated cells to a neural fate [Sachs & Caron, 2014]. Indeed, a 

study on hippocampal neurogenesis suggested that neuronal turnover is increased upon 

antidepressant administration, mediated by an increase in cell proliferation as well as 

apoptosis [Sairanen et al, 2005]. Interestingly, although BDNF has been implicated in 

antidepressants’ mechanism of action [Nestler et al, 2002; Castrén, 2004], it was also 

indicated that BDNF and its receptor (trkB) activation do not play a major role in the 

antidepressant-induced increase in hippocampal cell proliferation [Sairanen et al, 2005]. 
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Acesulfame-K 

Ace-K is an artificial sweetner used as a dietary substitute for sucrose in manufactured 

food products [Shankar et al, 2013]. Indeed, whilst Ace-K is non-nutritive, it is 

approximately 200 times sweeter than sucrose and can stimulate tanycytes via sweet-

taste receptor activation at the ependymal layer [Benford et al, 2017]. Thus it was 

hypothesized that Ace-K could potentially have an effect on hypothalamic neurogenesis, 

through tanycyte activation.  

To the best of my knowledge, this is the first study to assess the effect of artificial 

sweetener (Ace-K) exposure on adult hypothalamic cell proliferation. Our results may 

suggest that cell proliferation is initially downregulated in the dorsomedial hypothalamic 

nucleus (at day 7), but is recovered later (at day 14), whilst cell proliferation is upregulated 

in the ventromedial hypothalamic nucleus after two weeks of Ace-K consumption. Thus, 

a divalent effect is observed whereby initially, cell proliferation is decreased, but later 

increases in different hypothalamic nuclei. This observation might be explained by a 

similar but opposite effect seen under other dietary conditions; upon short exposure to a 

high fat diet, a transient increase in cell proliferation was observed in the arcuate and 

ventromedial nuclei [Gouaze et al, 2013], but long-term exposure resulted in differential 

regulation (increase in the median eminence and decrease in the arcuate nucleus) of cell 

proliferation [Lee et al, 2014]. Indeed, these effects of a high-fat diet can be explained; 

upon increased exposure to high fat diet, initially neurogenesis is induced in a 

neuroprotective context and generate anorexigenic POMC neurons to mediate adaptive 

anorectic behaviour (reduced feeding) [Gouaze et al, 2013]. Inhibition of this early onset 

HFD-induced neurogenesis resulted in an accelerated onset of obesity and 

neuroinflammation [Gouaze et al, 2013]. However, upon prolonged exposure, 

neurogenesis is down-regulated in the arcuate and instead upregulated in the median 

eminence to modify the metabolic neural circuitry and mediate changes in energy 

metabolism and energy storage [Li et al, 2012; Lee et al, 2012; 2014].  

The opposite divalent effect of Ace-K is much more difficult to explain given the technical 

issues with interpreting BrdU+ cell numbers. As highlighted earlier, BrdU+ cell numbers 

may be influenced by ongoing cell proliferation and any change in BrdU+ cell survival and 
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migration into the nuclei from day 7 up until the end of the experiment (day 14). Thus, it 

cannot be determined if the effect seen in the dorsomedial nucleus is due to a decrease 

in cell proliferation, cell survival, migration or any combination of them. Ki67, on the other 

hand, is expressed in cells during all active phases of the cell cycle (G1, S, G2 and 

mitosis) [Scholzen & Gerdes, 2000], so Ki67-immunolabelling unequivocally identified 

proliferative cells at the time of animal perfusion on day 14. Accordingly, the increase in 

Ki67+ cells in the ventromedial nucleus was clearly due to an increase in cell proliferation.  

Both, the ventromedial and dorsomedial nuclei host populations of gluco-sensitive 

neurons and have been implicated in glucose-sensing and metabolic regulation, 

particularly in hypoglycemia detection [Song et al, 2001; Routh et al, 2014]. Thus, these 

changes in cell proliferation could potentially reflect an adaptive mechanism for glucose-

sensitivity, which are integral to the counterregulatory response to (Ace-K-induced) 

hypoglycaemia [Watts & Donovan, 2010; Routh et al, 2014]; for example, with this 

mechanism, neurogenesis of dorsomedial glucose-inhibited neurons may be inhibited, 

whilst that of glucose-excited neurons of the ventromedial nucleus may be enhanced to 

potentially achieve increased counterregulatory hormone (glucagon and adrenaline) 

release and/or activation of orexinergic (apetite-inducing) neurons in the arcuate nucleus 

[Verberne et al, 2014].  

Summary 

Our results suggest that, under the current experimental paradigm, short/mid-term 

exposure to physical exercise and fluoxetine may not have any effect on the number of 

newly-generated hypothalamic cells (whose identity was not determined), whilst Ace-K 

may induce a divalent effect; decreasing and increasing these cell numbers in the 

dorsomedial and ventromedial nuclei, respectively. However, as seen in previously-

described studies, a change in cell proliferation may not necessarily equate to a change 

in neurogenesis. Since our studies lack phenotypic characterization of the newly-

generated cells quantified, we cannot determine whether these stimuli (short/mid-term) 

had an effect on neurogenesis. Thus, further investigation is required to clarify this and 

the discrepancies between our proliferation results and of previous studies. Further-

investigating the effect of Ace-K on cell proliferation, survival or migration is warranted. 
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Chapter 3: characterization of cells defined by a transgenic nestin 
promoter and their progenies in the adult hypothalamus 

Background 

Lineage-tracing/fate-mapping is defined as the visual identification of a cell or cell 

population and its progeny by a permanent labelling method [Kretzschmar & Watt, 2012]. 

Since the permanent labelling is inherited in all subsequent progeny, this allows for the 

characterization of the location, proliferative capacity and the cellular fate(s) of the source 

cell and its progeny [Kretzschmar & Watt, 2012]. Indeed, provided the context of adult 

neurogenesis, fate-mapping studies have allowed for elaborate characterization of neural 

stem/progenitor cells to further elucidate their cellular dynamics and mechanisms of cell 

fate determination/regulation [Blanpain & Simons, 2013; Imayoshi et al, 2011]. 

Several studies in adult neurogenesis have indeed established and adopted different 

transgenic mice using the genetic inducible fate-mapping approach to label neural 

stem/progenitor cells. One of the most abundantly used promoter sequences to drive Cre 

expression is that of nestin [Imayoshi et al, 2011; Dhaliwal & Lagace, 2011]. nestin is an 

intermediate filament protein that is expressed in neuroepithelial cells of the developing 

CNS and in neural stem/progenitor cells of the SVZ and SGZ in the adult brain [Lendahl 

et al, 1990; Zimmerman et al, 1994; Doetsch et al, 1997]. Indeed, when tamoxifen was 

injected in mice expressing Cre-ER under the control of the nestin promoter (Nestin-

CreER mice), neural stem/progenitor cells were reporter-labelled, which gave rise to 

reporter-positive newborn neurons [Carlen et al, 2006; Lagace et al, 2007; Burns et al, 

2007; Imayoshi et al, 2006; Chen et al, 2009; Giachino & Taylor, 2009; Dranovsky et al, 

2011]. However, it should be noted that the specificity and efficiency of reporter 

expression in neural progenitors was seen to vary highly between transgenic mice 

developed by different research groups [Sun et al, 2014]; of the transgenic mice 

evaluated, the Nestin-CreERT2 driver mouse from the Eisch group [Lagace et al, 2007] 

appeared to provide the highest specificity, albeit at the cost of labeling a smaller 

percentage of neural progenitors. In addition to nestin, other promoter sequences of 

neural stem/progenitor cell-associated genes (Sox-2, GLAST, GFAP) have been used in 
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fate-mapping studies, demonstrating successful recombination following tamoxifen 

injection [Favaro et al, 2009; Mori et al, 2006; Ganat et al, 2006].  

Whilst the prior studies focussed on neural stem/progenitor cells in the adult canonical 

neurogenic niches, it was only recently that such transgenic mice (and analogous genetic 

fate-mapping methods) were applied in parallel to identify and study neurogenesis and/or 

neural stem/progenitor cells in the postnatal and adult hypothalamus [Pierce & Xu, 2010; 

El Agha et al, 2012; Lee et al, 2012; Li et al, 2012; Haan et al, 2013; Robins et al, 2013a; 

Robins et al, 2013b; Pak et al, 2014].  

In a study using the Sox2-promoter-directed Cre-expression, shortly following 

recombination, reporter (YFP) expression was detected in the parenchyma, indicating 

that another previously uncharacterized parenchymal neural stem/progenitor cell 

population existed in the hypothalamus [Li et al, 2012]. It was later suggested that the 

majority of these parenchymal Sox-2+ cells were NG2+ glia, by yet another fate-mapping 

study [Robins et al, 2013b]. Using the promoter from another canonical NSC/progenitor 

gene, nestin, both α- and β-tanycytes were successfully fate-mapped in the postnatal 

hypothalamus, and were later seen to differentiate into predominantly ME neurons, 

exhibiting a range of different neuronal subtypes [Lee et al, 2012]. Subsequent studies 

were able to fate-map specific subpopulations of tanycytes. Radial glial promoters such 

as GLAST [Robins et al, 2013a] and FGF10 [Haan et al, 2013] were used to drive CreER-

expression and label α- and β- tanycytes, respectively. However, whilst both subtypes of 

tanycytes were indicated to exhibit neurogenic capacities, the interpretations from these 

two studies contradict each other, in that α-tanycytes (and not β) were explicitly proposed 

to retain neural stem cell properties. It should be noted however, that GLAST is also 

strongly expressed in astrocytes [Rothstein et al, 1994; Anderson & Swanson, 2000], and 

thus the contribution of GLAST+ α-tanycytes to neurogenesis is not clear. Whilst the 

contribution of FGF10+ β-tanycytes to neurogenesis can be appreciated, it could be 

hypothesized that each tanycyte subtype (α and β) may still potentially contribute towards 

neurogenesis (of different neuronal subtypes or in different regions) in the hypothalamus. 

Thus, whilst the literature clearly suggests a role for tanycytes in neurogenesis, the 

responsible subtype is still under debate. Meanwhile, no study as of yet, has been able 

to successfully fate-map the collective population of tanycytes in the adult hypothalamus. 
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Whilst this was achieved this in the postnatal mice [Lee et al, 2012], it has yet to be 

demonstrated whether nestin+ tanycytes can be fate-mapped in the adult. 

The aim of this study was to characterize cells labelled under the control of a transgenic 

nestin promoter sequence, and assess this mouse model (Nestin-CreERT2/Rosa26-lox-

STOP-lox-YFP) as a suitable tool to label tanycytes and other putative neural 

stem/progenitor cells in the adult hypothalamus. Indeed, this mouse would provide 

preliminary support for the use of a similar transgenic mouse model to optogenetically 

stimulate tanycytes. 

Methods 

Animals  

The following transgenic mice were purchased from Jackson Laboratory (Bar Harbour, 

ME, U.S.A) and bred in the animal facility at Biopolis (Singapore): Nestin-CreERT2 

[C57BL/6-Tg(Nes-creERT2)KEisc/J] generated by Eisch lab [Lagace et al, 2007], 

ROSA26loxP-STOP-LoxP-YFP [B6.129X1-Gt(ROSA)26Sortm1(EYFP) Cos/J]. Nestin-

CreERT2:ROSA26-loxP-STOP-loxP-YFP mice were obtained by breeding Nestin-

CreERT2 mice with ROSA26loxP-STOP-LoxP-YFP mice. Only offspring positive for Cre-

recombinase (Nestin-CreERT2+/-:ROSA26-loxP-STOP-loxP-YFP+/+, hereon referred to 

as NCE-YFP) were selected for experiments based on genotyping results.  

Mice were genotyped using the following PCR primers: Nestin-CreERT2 transgene; CCG 

GTG AAC GTG CAA AAC AGG CTC TA (mutant forward), GAT TAA CAT TCT CCC ACC 

GTC AGT (mutant reverse), CTA GGC CAC AGA ATT GAA AGA TCT (wildtype forward), 

GTA GGT GGA AAT TCT AGC ATC ATC C (wildtype reverse). Mutant primers amplified 

a smaller transgenic sequence for positive identification of Cre+ mice, whilst the wildtype 

primers amplified a larger endogenous sequence common to both Cre+ and Cre- mice. 

Primers used to identify ROSA26-loxP-STOP-loxP-YFP transgene; AAA GTC GCT CTG 

CGT TGT TAT (common forward), AAG ACC GCG AAG AGT TTG TC (mutant reverse), 

GGA GCG GGA GAA ATG GAT ATG (wildtype reverse). In mice negative for the 

transgene, the common forward primer and the wildtype reverse primer will produce a 

PCR product that spans the transgene integration site within the Rosa26 locus. However, 
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the PCR product is too large to be amplified when the transgene is inserted and instead, 

DNA is amplified between the mutant reverse primer (complimentary to a portion of the 

transgene) and the common forward primer. Exemplar images from genotyping NCE-YFP 

mice with these primers is shown in Figure 3.1. 

 

 

NCE-YFP mice aged 8-16 weeks-old were used for fate-mapping experiments. Although 

the NCE-YFP mouse line (progenies positive for Cre-recombinase) did not present any 

overt abnormalities, some degree of hydrocephaly was observed in some individuals 

(these were not used in the study) as reported previously [Forni et al, 2006]. 

All mice used in these studies were maintained and euthanized according to protocols 

approved by the Institutional Animal Care and Use Committee at the Biological Resource 

Centre, Agency for Science, Technology and Research (A*STAR). 

 

 

Figure 3.1 Exemplar gel electrophoresis images of PCR- genotyped NCE-YFP mice. A) 
Mice positive for the Nestin-CreERT2 transgene were identified by the presence of two bands 
at 199 bp and 324 bp (NCE-YFP 346, 348, 349), corresponding to PCR-amplified products 
from the separate sets of mutant and wildtype primers, respectively. Mice negative for the 
transgene only indicated 1 band at 324 bp (NCE-YFP 347). B) For the ROSA26-loxP-STOP-
loxP-YFP transgene, mice homozygous for the transgene indicated only 1 band at 320 bp 
(NCE-YFP 376, 377, 378, 379) and wild-type mice indicated 1 band at 600 bp (C57). 1000bp, 
500bp and 100bp have been labelled along the 1kb DNA ladder.  
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Tamoxifen & BrdU injection 

Tamoxifen (Sigma, T-5648) was dissolved in 90% cornoil (Sigma, C8267):10% ethanol 

at a concentration of 20mg/ml. To induce Cre-mediated recombination for induction of 

YFP expression, tamoxifen was injected into adult (8-12 weeks-old) mice intraperitoneally 

for 5 consecutive days at a daily dose of 100mg/kg of body weight. Following injections, 

mice were either perfused one day after or left to survive for different stated survival-

periods prior to perfusion-fixation. 

BrdU (Sigma, B5002) was dissolved in 0.9% saline at a concentration of 10mg/ml. BrdU 

was injected into adult mice intraperitoneally on the stated days at a dose of 50mg/kg 

body weight. 

Tissue processing 

Mice were anesthetized with a lethal dose of pentobarbital and intracardially perfused 

with 4% paraformaldehyde (PFA; Sigma, P-6148) in 0.1M phosphate buffer (PB). Brains 

were immediately post-fixated in 4% PFA solution overnight at 4 °C, and subsequently 

cryoprotected in 30% sucrose in 0.1M PB for at least 48 hours. Cryoprotected brains were 

sectioned coronally at a thickness of 40μm using a freezing microtome at -30°C (Microm 

HM430, Thermo Scientific, USA). Serial coronal sections were collected along the 

anteroposterior axis (approx. from Bregma 0 to -3.0mm) covering the hypothalamus and 

stored in cryoprotective solution (20% Glycerin, 30% Ethylene Glycol in 0.1M PB) at -20 

°C.  

Immunohistochemistry 

For immunohistochemisty, a total of 8 sections were used (1 every 4 serial sections). This 

was appropriate to capture the majority of the hypothalamus. The free-floating method 

[Bachman, 2013] was used; sections were rinsed 3 times for 10 minutes in 0.1M Tris-

buffered saline (TBS), incubated in blocking buffer, TBS++ (3% Donkey serum, 0.25% 

Triton-X100 in 0.1M TBS) for 60min, prior to incubation with primary antibody in TBS++ 

at 4°C for 36 hours (two nights). Following primary antibody incubation, sections were 

rinsed with TBS 2 times for 10min, blocked in TBS++ for 20 min, and incubated in 

secondary antibody in TBS++ for 4 hours at room temperature. Nuclear staining was 
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performed with incubation with 4’,6-Diamidino-2-phenylindole-dihydrochloride (DAPI; 

0.5µg/mL; Sigma, 28718-90-3) for 10 mins. Immunostained sections were rinsed with 

TBS 3 times for 10 minutes and mounted on glass slides with mounting medium 

containing polyvinyl alcohol and 1,4-diazabicyclo[2.2.2]octane (DABCO). Primary 

antibodies used: rabbit anti-GFP (to detect YFP) (1:400; Life Technologies, A11122), 

rabbit anti-Sox2 (1:1500; Millipore, AB5603), mouse anti-NeuN (1:1200; Millipore, 

MAB377), mouse anti-nestin (1:400; BD Pharmingen, 556309), chicken anti-vimentin 

(1:1200; Millipore, AB5733), rat anti-BrdU (1:400; AbD Serotec, OBT0030G). Secondary 

antibodies used: donkey Anti-Rat Cy3 (1:250; Jackson Immuno., 712-165-153), donkey 

Anti-Rabbit Alexa Fluor488 (1:250; Jackson Immuno., 711-545-152), donkey Anti-Rabbit 

Cy3 (Jackson Immuno, 711-165-152), donkey anti-mouse Alexa Fluor647 (1:250; 

Jackson Immuno., 705-605-147), donkey Anti-Mouse Cy3 (Jackson Iummuno, 715-165-

151), donkey Anti-Chicken Alexa Fluor 647 (Jackson Immuno, 703-605-155). 

Statistics 

Results are expressed as the mean ± SEM. Comparison between two groups was done 

by performing a two-tailed independent samples Mann-Whitney test. The Kruskal-Wallis 

one-way analysis of variance was used, followed by post-hoc Dunn’s for pairwise 

comparisons within multiple groups. Significance was only established when p ≤ 0.05 and 

satisfied a post-hoc false-discovery test [Curran-Everett, 2000]. 

Results 

YFP expression is not restricted to tanycytes 

A genetic inducible fate-mapping approach was employed using the nestin promotor to 

target CreERT2 expression to putative neural stem/progenitor cells and thus, permanently 

label these cells (with YFP) in the hypothalamus. Of these cells, tanycytes were expected 

to be labelled given their strong expression profile for neural stem/progenitor genes 

[Bennett et al, 2009; Haan et al, 2013], and their successful fate-mapping in postnatal 

mice [Lee et al, 2012]. Following the generation of Nestin-CreERT2:ROSA26-loxP-

STOP-loxP-YFP (referred to as NCE-YFP) mice, tamoxifen was injected (daily for 5 days) 
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into the mice to induce Cre-recombination and initiate permanent YFP expression in 

nestin-expressing cells.  

Firstly, the identity, location and distribution of YFP+ cells were assessed after tamoxifen-

induced recombination. 1 day after the last tamoxifen injection, brains were PFA-fixed 

and analysed for YFP expression using an anti-GFP antibody (Fig. 3.2). Several cell-

types were labelled with YFP expression, characterized by their differential morphologies. 

In addition to tanycytes (Fig. 3.2Ai) ventricular cuboidal ependymocytes (Fig. 3.2Aii) and 

parenchymal cells (Fig. 3.2A; denoted ‘P’) were also labelled. Of the parenchymal cells 

labelled, different morphologies were observed, suggesting that these may represent 

different cell-types; some cells indicated long and bifurcated/bipolar projections 

suggestive of a typical neuronal morphology (Fig. 3.2Aiii), whilst others indicated short, 

heavily branched projections (Fig. 3.2Aiv), reminiscent of glial cells. The observation of 

potential YFP+ neurons shortly after Cre-recombination was unexpected since this 

mouse model was intended to label solely neural stem/progenitor cells at such short 

survival periods (6 days after the first tamoxifen injection). 

The extent of leaky Cre-activation was assessed in NCE-YFP mice that were not injected 

with tamoxifen. When analysed for YFP expression, NCE-YFP mice not injected with 

tamoxifen still indicated the presence of YFP+ cells throughout the brain, including in the 

hypothalamus, both at the ventricular interface and within the parenchyma, indicating 

some leaky Cre-activation and recombination (Fig. 3.2B, C). No sex-specific differences 

were seen in NCE-YFP mice not injected with tamoxifen (p > 0.05, two-tailed Mann-

Whitney test; Fig. 3.2C). Quantification and comparison of YFP+ cells between NCE-YFP 

mice injected (TAM+) and not injected (TAM-) with tamoxifen indicated a significant 

increase in YFP+ cells at the 3rd ventricle and in the parenchyma (p=0.01 and 0.038, 

respectively; two-tailed Mann-Whitney test) of NCE-YFP (+TAM) mice, indicating that 

recombination at both regions occurs significantly more upon on tamoxifen administration. 

However, due to leaky Cre-activation, YFP+ cells might not be limited to nestin-

expressing cells. YFP+ cells were predominantly found along the 3rd ventricle, at an 

average of 80.4±3.5 cells/section (97.3% of total hypothalamic YFP+ cells), in comparison 

to 2.25±0.5 cells/section (2.7%) within the hypothalamic parenchyma (Fig. 3.2D). 
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Ventricular YFP+ cells exhibited sustained neural stem/progenitor marker expression, 

whilst parenchymal YFP+ cells exhibited heterogeneity in marker expression 

The expression of nestin, Sox-2, vimentin and NeuN was assessed in YFP+ cells at 

different survival periods (short; 7 days, long; 30-60 days after the last tamoxifen injection) 

to characterize the phenotype and identity of recombined YFP+ cells. 

Nestin was predominantly expressed in the mediobasal hypothalamus, from the 

mediolateral regions of the 3rd ventricle down to the median eminence (Fig. 3.3). Some 

nestin+ cells were found residing in the parenchyma, although less abundantly (Fig. 3.3A, 

white arrow). It is interesting to note that in the median eminence, which exhibited robust 

relative expression levels, no YFP+ β2 tanycytes (and hence no recombination) was 

observed. In NCE-YFP mice sacrificed 7 days after tamoxifen injections, nestin co-

expression was observed in 72±8% YFP+ ependymocytes (Fig. 3.3B, n= 2 animals; 55 

cells counted) and in 96±2% tanycytes (Fig 3.3C, n= 2 animals; 52 cells counted). In both 

cases, all (100% of) YFP+ tanycytes (Fig. 3.4A, B; n= 2 animals; 31 cells counted) and 

YFP+ ependymocytes (Fig. 3.5A, n= 2 animals; 39 cells counted) were positive for 

expression of the radial glial/ependymal marker, vimentin [Schnitzer et al, 1981; Pixley et 

al, 1984; Sancho-Tello et al, 1995] and the canonical neural stem cell marker, Sox-2 (Fig. 

3.4C, D, Fig. 3.5B; white arrowheads), but negative for the neuronal marker, NeuN (Fig. 

3.4 E, F; images not shown for YFP+ ependymocytes). 

Figure 3.2 Location, morphology and distribution of YFP+ recombined cells in the 
hypothalamus. In NCE-YFP mice that were sacrificed 1 day after tamoxifen injection 
(injected daily for 5 days). A) Analysis of YFP (immunostaining for YFP with anti-GFP 
antibody) expression revealed recombination occurring predominantly in tanycytes (labelled 
T; and i) and ependymocytes (labelled E; and ii) at the 3rd ventricle, and to a lesser extent in 
parenchymal cells that exhibit neuronal (labelled P(n) and iii) or glial (labelled P(g) and iv) 
morphologies. B) Immunohistochemical analysis of YFP expression in NCE-YFP mice not 
injected with tamoxifen. Inset reveals a zoom-in image of a YFP+ tanycyte. C) Comparison 
of Cre-recombination in male and female NCE-YFP mice not injected with tamoxifen reveals 
no difference (n=3). D) Comparison of YFP+ cell count (per section) in NCE-YFP mice 
injected (+TAM) and not injected (-TAM) indicates a significant increase in recombination at 
both hypothalamic regions after tamoxifen injection (n=4). 	
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On the other hand, no nestin expression was seen in any of the YFP+ parenchymal cells 

visualized at any survival period. An exemplar parenchymal YFP+ cell indicating no nestin 

expression 7 days after the last tamoxifen injection is indicated (Fig. 3.3D). Parenchymal 

YFP+ cells exhibited expressional heterogeneity, whereby some cells were negative for 

Sox-2 (30 days after tamoxifen; Fig 3.5B, yellow arrowheads), whilst others were positive 

(60 days after tamoxifen; Fig. 3.5C, white arrowheads). Similarly, only a small proportion 

of YFP+ parenchymal cells were positive for NeuN (Fig. 3.5D), even at 60 days after the 

last tamoxifen injection (NeuN-negative cells were not shown). 

 

 

 

 

Figure 3.3 Ventricular but not parenchymal YFP+ cells exhibited continuous nestin 
expression. In NCE-YFP mice that were sacrificed 7 days after tamoxifen injection (injected 
daily for 5 days). A) Immunohistochemical analysis of YFP and nestin co-expression in the 
hypothalamus. Strong nestin expression is predominantly restricted to the medio-basal 
ventricular regions and the median eminence..Co-expression of YFP and Nestin (white 
arrowheads) is seen in B) tanycytes and C) ependymocytes, but D) not in neuron-like 
parenchymal YFP+ cells.	

Figure 3.4 YFP+ Tanycytes express other neural stem/progenitor markers and do not 
express a neuronal marker. In NCE-YFP mice that were sacrificed 7 days (n=2) after 
tamoxifen injection, the expression profile of YFP+ tanycytes was assessed. YFP+ tanycytes 
expressed A-B) the radial glial marker, vimentin, the C-D) neural stem cell marker, Sox-2, 
but did not express E-F) the mature neuronal marker, NeuN. This gene-expression is 
indicative of a neural stem/progenitor-like phenotype.	

Figure 3.5 YFP+ ependymocytes also express neural stem/progenitor markers, whilst 
parenchymal YFP+ cells exhibit phenotypic heterogeneity. In NCE-YFP mice that were 
sacrificed A) 7 (n=2) (B-C) 30 (n=1) and (D) 60 (n=1) days after tamoxifen injection, the 
expression profile of YFP+ ependymoctes and parenchymal cells was assessed. YFP+ 
ependymocytes expressed A) the radial glial marker, vimentin, and retained expression of 
the B) neural stem cell marker, Sox-2 (white arrowheads) after 30 days. Interestingly, 
parenchymal YFP+ cells indicated expressional heterogeneity whereby some B) were 
negative for Sox-2 (at 30 days; yellow arrowheads) whilst C) others expressed Sox-2 (after 
60 days). Further heterogeneity was seen by YFP+ parenchymal cells, where D) NeuN co-
expression was seen in some cells, where as other YFP+ cells were negative (not shown) 
after 60 days. White and yellow arrowheads indicate positive and negative co-localization, 
respectively.  	
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Figure 3.3
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Figure 3.4
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 Figure 3.5
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YFP+ tanycytes do not take up BrdU and their numbers are maintained over time 

The proliferative state of YFP+ tanycytes under basal conditions was assessed with BrdU-

labelling. BrdU was injected on the same days as tamoxifen (daily for 5 days, 2 hours 

after tamoxifen) in order to identify any dividing tanycytes within the closest time-window 

during/just after the induction of recombination with tamoxifen. NCE-YFP mice were then 

sacrificed 1 day after the last injection for analysis.  

Many BrdU+ cells were found in the hypothalamic parenchyma, but none were found 

along the ependymal layer. Thus, no YFP+/BrdU+ tanycytes were seen (Fig. 3.6A). 

However, it is interesting to note that a substantial proportion of BrdU+ cells were found 

in the periventricular region and/or in the mediobasal region of the hypothalamus (arcuate 

nucleus and median eminence), to where YFP+ tanycytes were mostly seen projecting 

into. At higher magnification, some of these BrdU+ cells can be found in very close 

proximity or even contacting tanycyte cell bodies or their basal processes (Fig 3.6Bi-iii, 

white arrowheads). 

YFP+ tanycytes were quantified over time in order to assess any change in YFP+ tanycyte 

numbers under basal conditions. Here, all NCE-YFP mice were injected with tamoxifen 

for 5 days, followed by sacrifice at one of the following survival periods- 1, 10, 30 or 60 

days (n=4-5 mice/survival period; Fig. 3.7A). Comparison of quantified YFP+ tanycyte cell 

densities at different survival periods indicated no significant change over time (Fig. 3.7B, 

C; p=0.592, Kruskal-Wallis one-way ANOVA).  

Comparison of quantified parenchymal YFP+ cells indicated an increasing trend over 

time, although these changes were not significant (Fig. 3.7D, black bars; p=0.0745, 

Kruskal-Wallis one-way ANOVA). Interestingly, when these YFP+ parenchymal cells 

were subdivided based on their morphologies (neuronal-like or glia-like), a significant 

increase was seen with neuronal-like YFP+ cells over time (Fig. 3.7D, white bars; 

p=0.0261, Kruskal-Wallis one-way ANOVA). Nevertheless, post-hoc analysis indicated 

no significant difference in YFP+ neuronal-like cells between any survival period, 

including between 1 day and 60 days post-tamoxifen (p=0.0663, Dunn’s multiple	
comparison). YFP+ glia-like cell numbers did not appear to increase much over time and 
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any change seen was not significant (Fig. 3.7D, grey bars; p=0.1729, Kruskal-Wallis one-

way ANOVA).  

 

 

Figure 3.6 YFP+ tanycytes do not take up BrdU. In NCE-YFP mice that were sacrificed 1 
day after 5 daily tamoxifen and BrdU injections, YFP+ tanycyte proliferation was assessed 
(n=2). A) Immunohistochemical analysis indicated no YFP+/BrdU+ co-localization. BrdU+ 
cells were mostly localized to the mediobasal hypothalamus. B) At higher magnification, 
several BrdU+ cells within the mediobasal hypothalamus indicated were in close proximity 
or in contact with tanycyte basal processes. 	
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Discussion 

A range of cell-types were labelled upon induced-recombination in NCE-YFP mice 

Nestin-driven CreERT2 expression and subsequent activation by tamoxifen was used and 

intended to selectively identify and label (with permanent YFP expression) putative 

nestin-expressing neural stem/progenitor cells in the hypothalamus.  

Tanycytes 

It is not surprising to have labelled tanycytes in this model, given their previously indicated 

expression for nestin and suggested role in hypothalamic neurogenesis [Bennett et al, 

2009; Lee et al, 2012; Haan et al, 2013; Robins et al, 2013a]. However, whilst tanycytes 

Figure 3.7 No significant change in YFP+ cell numbers was observed over time. A) 
NCE-YFP mice were sacrificed at varying (1, 10, 31, 60) days after tamoxifen injection. B) 
YFP+ tanycytes and parenchymal cells at different time points. Exemplar immunostained 
sections of the mid-portion of the hypothalamus are indicated. C) YFP+ tanycytes and D) 
YFP+ parenchymal cells (divided into neuron-like and glia-like cells based on their 
morphologies) were quantified and compared between different suvival times. No significant 
differences were observed in any case. 1/10-day survival, n=4; 30/60-day survival, n=5.	
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of the mediolateral 3rd ventricle walls were labelled, no YFP expression was seen along 

the ventral ependymal layer of the 3rd ventricle, at the median eminence interface (Fig. 

3.7), where β-tanycytes are seen to reside [Rodriguez et al, 2005]. This is a surprising 

observation given the high/strong expression of nestin observed in the median eminence 

and a previous study having successfully labelled β-tanycytes using the same nestin 

promoter-based fate mapping strategy, albeit at postnatal ages [Lee et al, 2012]. Indeed, 

it could be hypothesized that tamoxifen may not be accessible to β-tanycytes in adults 

due to their exclusive expression of impermeable tight junction complexes, which are 

absent in postnatal mice [Peruzzo et al, 2000; Mullier et al, 2010]. However this is unlikely 

due to the successful labelling of in β-tanycytes in FGF10-CreER/Rosa26-lox-STOP-lox-

(reporter) adult mice [Haan et al, 2013] administered with Tamoxifen using the same 

injection protocol as in our experiments. 

 

From our study, it is currently unknown as to why there is a lack of observed YFP 

expression in the median eminence. Cre-expression was confirmed in the median 

eminence via immunostaining (Fig. 3.8), reflecting that the transgenic nestin promoter 

sequence (although incomplete in comparison to the endogenous sequence) was able to 

Figure 3.8 CreERT2 is expressed in the median eminence, but no apparent 
recombination/YFP expression is seen here upon tamoxifen administration. A lack of 
YFP expression was seen at the median eminence of NCE-YFP mice, which could not be 
explained. Due to the high expression of Nestin in this domain, it was expected that 
recombination and hence, YFP expression would have been induced here. However, the 
lack of YFP expression was not due to a lack of CreERT2 expression, as positive Cre-
expression was detected with a polyclonal anti-cre antibody. This indicates that the lack of 
detectable YFP expression may be due to another factor specific to the median eminence.	
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drive cre-expression. Thus, upon exposure to tamoxifen it cannot be conceived as to why 

YFP fluorescence (and supposedly, expression) was not visualized in the median 

eminence. Of note, it has been previously reported that ventral tanycytes exhibit 

heterogeneity in gene expression profiles, in which some tanycytes were seen without 

nestin expression [Haan et al, 2013]. However, this does not entirely account for why 

there was almost exclusively no YFP expression in ME tanycytes, especially given that 

robust nestin immunolabelling was observed (unless this indeed, was an artifact of non-

specific labelling). In order to assess whether recombination did occur in this region, it 

would be of interest to evaluate recombination in the genomic sequence of ME tanycytes 

via PCR; by using PCR primers designed to flank the loxP sites on either side of the 

STOP cassette, the occurrence of recombination could be confirmed (Fig. 3.9); if 

recombination has occurred, a smaller DNA-amplified band would be detected due to the 

excision of the STOP cassette, compared to the larger band produced when no cre-

mediated excision/recombination has occurred. If recombination was successful in the 

ME, it is possible that YFP expression could be silenced (by unknown mechanisms). On 

the other hand, if recombination was confirmed to not occur, It could be concluded that 

cre-recombinase may be inhibited by unknown mechanisms from inducing recombination 

in the ME (note Cre-expression levels were highest as shown in Fig. 3.8).  

 

 

Figure 3.9 Schematic showing how recombination could be assessed in the median 
eminence using PCR. PCR primers (blue arrows) could be designed to flank the LoxP 
sequences outside of the STOP cassette (red). The forward primer (F. Primer) would overlap 
with the end of the ROSA26 promoter sequence, whilst the reverse primer (R. Primer) would 
overlap with the initial segment of the YFP transgene sequence. PCR-amplification of 
recombined transgenic constructs (lacking the STOP cassette) would yield a smaller PCR 
product than non-recombined constructs. This experiment would require genomic DNA to be 
extracted only from the median eminence (beta-2) tanycytes in order to avoid any false-positive 
identification of recombination. 
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Ependymocytes  

In addition to tanycytes, ependymocytes were labelled with YFP expression, indicating 

they express nestin. Interestingly, nestin expression in ependymocytes has not been 

clearly described [Bruni, 1998; Didier-Bazès et al, 2001; Jiménez et al, 2014], and the few 

instances of reported nestin expression are circumstantial due to the lack of absolute 

distinction between, or specific labelling of ependymocytes versus tanycytes or 

subependymal astrocytes [Chouaf-Lakdar et al, 2003; Coskun et al, 2008; Chojnacki et 

al, 2009; Hendrickson et al, 2011]. However, our observation of positive YFP expression 

(confirmed by positive nestin and vimentin immunostaining) in a vast number of 

ependymocytes opens the question of whether these cells may also represent a 

hypothalamic neural stem/progenitor cell population, previously overlooked. 

Subependymal astrocytes 

Subependymal astrocytes have been strongly suggested as neural stem/progenitor cells, 

with strong resemblance to B1 cells in the subventricular neurogenic niche of the lateral 

ventricles [Perez-Martin et al, 2010; Rojczyk-Gołębiewska et al 2014]. Although it has yet 

to be clearly demonstrated in the hypothalamus, these cells may likely express nestin 

(since their cellular equivalent in the SVZ; B1 cells do [Doetsch et al, 1997]) and thus may 

also be labelled in our transgenic fate-mapping model. However, due to their overlapping 

localization with tanycytes, it cannot be determined if these cells were truly labelled. 

Furthermore, positive identification of these cells is exacerbated due to their overlapping 

expression of GFAP with (α) tanycytes [Robins et al, 2013a]. 

Potential parenchymal cell-types 

In the parenchyma, several cells were noted with YFP expression and were classed into 

two main groups; cells that possessed highly branched processes were classed as glial-

like cells, whilst those that had a relatively big cell body and very long processes (uni, bi 

or multipolar) were classed as neuron-like cells. Whilst the identity of these cells were not 

confirmed several candidates could have been labelled, based on their expression of 

nestin.  
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Glial-like 

Some parenchymal YFP+ cells in our mouse model were Sox-2+. Interestingly, the 

majority of proliferative parenchymal cells were seen to be NG2+ glia, a large fraction of 

which (37%) demonstrated Sox-2 expression [Robins et al, 2013b]. Thus, it is possible 

that at least a proportion of parenchymal YFP+ cells may be NG2+ glia. Indeed, cultured 

oligodendrocytes have been reported to express nestin [Almazán et al, 2001], whilst some 

nestin+ cells have been seen to express oligodendrocyte markers such as NG2 and 

PDGFRα [Kronenberg, 2005; Koch et al, 2008]. However, the most convincing data arises 

from a genetic labelling study in mice using nestin to drive eGFP expression (nestin-

eGFP), in which oligodendrocytes were also positively identified [Walker et al, 2010].  

Astrocytes [Clarke et al, 1994; Lin et al, 1995] and microglia [Yokoyama et al, 2004; 

Takamori et al, 2009] have been debatably reported to express nestin although primarily 

upon brain injury or ischaemia [Duggal et al, 1997; Sahin et al, 1999; Yokoyama et al, 

2004; Ernst & Christie, 2006; Götz et al, 2015]. One study even reported nestin 

expression in microglia under basal conditions [Takamori et al, 2009]. However, another 

study suggested that microglial progenitors, and not mature microglia expressed nestin 

[Elmore et al, 2014]. Similarly to microglia, whilst nestin+ pericytes and endothelial cells 

were reported in vitro [Dore-Duffy et al, 2006], it is not known whether these were nestin+ 

(peri)endothelial progenitor cells, and not mature (peri)endothelial cells [Suzuki et al, 

2010]. Other studies assessing nestin expression in the adult CNS (either through nestin-

reporter or immunodetection methods) failed to identify Nestin+ microglia or astrocytes 

under basal/normal conditions [Walker et al, 2010; Hendrickson et al, 2011]. Thus, it is 

unclear whether these cell-types may have been labelled in our study. 

Neuron-like 

Parenchymal YFP+ neuron-like cells were unexpected at early time points after tamoxifen 

injection as it was initially presumed that nestin-driven Cre-expression (and thus 

subsequent recombination/YFP expression) would have been limited only to neural 

stem/progenitor cells. However, a study has indeed reported nestin-expressing neurons, 

which may be a result of transient cytoskeletal remodelling as part of a neural plasticity 

event [Hendrickson et al, 2011]. This could potentially explain the (low) incidence of YFP+ 



			

	 73	

neurons appearing as early as 1 day post-tamoxifen. Furthermore, the lack of nestin 

expression in YFP+ neuron-like cells might further corroborate the transience of nestin 

expression in neurons such as those identified by Hendrickson et al (2011).  

Interestingly, another study identified nestin-expressing neuroblasts characterised by 

DCX expression [Batailler et al, 2014]. These DCX+ cells were seen exhibiting a unipolar 

or bipolar morphology with long neurites, somewhat similar to the morphology used to 

classify YFP+ neuron-like cells in our study. Thus, it is also possible that migrating 

neuroblasts may have retained nestin expression during tamoxifen-induced 

recombination in our Nestin-CreER mouse model and thereby were labelled with YFP 

expression. Indeed, as these cells matured into Hu+ neurons, DCX (and presumably 

nestin) expression was seen to decrease [Batailler et al, 2014], potentially substantiating 

the absence of nestin expression in these YFP+ cells when analysed 6 and 12 days after 

the first instance of induced recombination (1 and 7 day survival periods, respectively). In 

order to further confirm the neuronal identity and elucidate the developmental stage of 

YFP+ neuron-like cells (whether they are predominantly neuroblasts or mature neurons), 

further phenotypic analysis would be required. 

Finally, the possibility that these YFP+ neuronal-like cells may be the progeny of neural 

stem/progenitor cells previously labelled via tamoxifen-independent recombination (prior 

to tamoxifen injections) or neurons exhibiting leaky Cre-expression might also be 

possible. 

Overall, these results indicate that Cre-expression under the control of the nestin 

promoter and subsequently, YFP-labelling is not specific to tanycytes, as YFP+ 

ependymocytes and other parenchymal YFP+ cells were also seen immediately upon 

induced recombination. It is not clear what lineage (glial or neuronal) and cell-type(s) are 

comprised in this parenchymal YFP+ cell population. Thus, the possibility that any of the 

aforementioned cell-types may have been labelled with YFP expression in our study 

cannot be ruled out and would require confirmation by phenotypic characterization (co-

expression analysis) with molecular markers for the respective lineages (for example, Iba-

1 to identify microglia, NG2 for oligodendrocyte progenitors, GFAP for astrocytes, DCX 

for neuroblasts and NeuN or Hu for neurons). 
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Increased parenchymal YFP+ cells may not solely originate from YFP+ tanycytes    

Over time an increasing trend was observed with YFP+ parenchymal cells (an 

approximate two-fold increase in both YFP+ neuron-like and glial-like cells after a 60-day 

survival period, in comparison to 1 day post-tamoxifen). This temporal increase may be 

suggestive of hypothalamic neurogenesis, as suggested previously [Pencea et al, 2001; 

Kokoeva et al, 2007; Robins et al, 2013a; Sousa-Ferreira et al, 2014a]. Furthermore, at 

longer survival-times (60 days), some YFP+ neuronal-like cells co-expressed NeuN, 

confirming their neuronal identity. It is tempting to hypothesize that this gradual increase 

in YFP+ neurons may, in part, be due to the migration of YFP+ tanycyte progeny into the 

parenchyma. Indeed, with YFP+ tanycytes numbers maintained over time, it could be 

further speculated that YFP+ tanycytes may potentially divide asymmetrically to generate 

YFP+ migrating neuroblasts (which, similarly to some YFP+ cells in our study, have also 

been seen to express Sox-2 [Batailler et al, 2014]) and contribute towards the increasing 

number of YFP+ new-born neurons, as suggested by other fate-mapping studies [Lee et 

al, 2012; Haan et al, 2013; Robins et al, 2013a]. Similarly, the increase in YFP+ glia may 

potentially be attributable to YFP+ tanycytes, as previously shown [Robins et al, 2013a]. 

However, although the observation of YFP+/NeuN+ cells (at 60 days post-tamoxifen) 

confirms that some of these YFP+ neuron-like cells are indeed mature neurons, it is not 

known whether these cells were derived from YFP+ tanycytes or YFP+ 

neuroblasts/neurons labelled upon induced recombination. Thus, these results do not 

unequivocally demonstrate that these YFP+ neurons were derived from tanycytes. 

YFP+ tanycytes may not serve as the only source of YFP+ neurons, as other cell-types 

have been shown to demonstrate neurogenic capacities as well. One study indicated that 

NG2+ oligodendrocyte progenitor cells (OPCs) are highly proliferative under basal 

conditions and can generate neurons and oligodendrocytes in the adult hypothalamus 

[Robins et al, 2013b]. Given that NG2+ OPCs were previously seen to express nestin 

[Walker et al, 2010], the contribution of these cells to the increase in parenchymal YFP+ 

neuron-like and glial-like cells cannot be overlooked. Indeed, a subpopulation of NG2+ 

glia were also positive for Sox-2 expression [Robins et al, 2013b], potentially explaining 

the heterogeneous population of YFP+/Sox-2ˉ and YFP+/Sox-2+ cells in our study. 

However, it should be noted that whilst NG2+ OPCs were capable of neurogenesis, they 
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were predominantly gliogenic towards the oligodendrocyte lineage and not able to 

generate astrocytes [Robins et al, 2013b]. Having observed higher numbers of YFP+ 

neuron-like cells compared to YFP+ glial-like cells, and YFP+ cells morphologically similar 

to astrocytes, it is possible that both tanycytes and NG2+ glia may contribute toward adult 

neurogenesis under basal conditions. However, using our fate-mapping approach, the 

two populations (and their progeny) cannot be distinguished and therefore their separate 

progeny cannot be distinguished from each other either. Finally, whilst reactive astrocytes 

and microglia have been described to play supportive roles in adult neurogenesis, any 

capacity as multipotent neural stem/progenitor cells are only adopted under brain injury 

conditions [Sato, 2015; Götz et al 2015]. Considering that adult neurogenesis was 

assessed under basal/normal conditions (with tamoxifen not having any positive 

neuroinflammatory nor neurogenic effect [Sun et al, 2013; Rotheneichner et al, 2017]), 

the contribution of these cells is unlikely. However as previously described, 

subependymal astrocytes have been previously suggested as candidate neural 

stem/progenitor cells in the hypothalamus [Perez-Martin et al, 2010; Rojczyk-

Gołębiewska et al 2014], although no studies have provided any direct evidence yet for a 

role in adult hypothalamic neurogenesis. 

A clear limitation of using the NCE-YFP mouse to selectively label and fate-map tanycytes 

comprises the fact that nestin expression and subsequent YFP-labelling upon inducible 

recombination is seen in several cell-types in addition to tanycytes. Similarly to nestin, 

Sox-2 expression is not restricted to ventricular cells as seen in both, our study and in a 

similar fate-mapping mouse model [Li et al, 2012]. Thus, the use of generic neural 

progenitor promoters such as Sox-2 or nestin to drive Cre-expression is not sufficiently 

specific in this fate-mapping approach. Instead, it could be suggested to use other radial 

glial-specific promoters such as FGF10 [Hajihosseini et al, 2008; Haan et al, 2013] or Rax 

[Miranda-Angulo et al, 2014; Pak et al, 2014] to drive Cre-expression in tanycytes. Whilst 

the FGF10-CreER mouse only allowed for fate-mapping of ventral β-tanycytes [Haan et 

al, 2013], it is possible that the Rax-CreER mouse may prove more useful in labelling 

more subpopulations (α- and β- subtypes) of tanycytes and providing results that could 

further clarify our speculations from the current study. 
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On the other hand, an alternative fate-mapping approach could be adopted using nestin 

to drive Cre-expression and hence specificity of labelling. The Brainbow approach is a 

relatively recent development that allows for the multicolour-labelling of a cellular 

population specified by a single promoter, in which each cell is differentially labelled with 

different fluorescent protein (XFP) expression [Livet et al, 2007; Weissman et al, 2011]. 

In this approach, the Cre/lox system is used to induce stochastic recombination of the 

Brainbow construct, comprising of 3-4 XFPs sequentially flanked with different lox-

sequence variants (only recognizable by Cre in identical pairs). Upon Cre-mediated 

recombination, differential XFP expression can be stochastically triggered whereby each 

individual cell will randomly express a single XFP from the Brainbow construct and adopt 

a colour [Weissman et al, 2011]. The diversity of colours adopted by each cell can be 

greatly expanded by using multiple copies of the Brainbow construct to generate 

combinatorial XFP expression. Here, each Brainbow construct will express an XFP 

independently of each other, and the differential combinations (and ratios) of XFPs 

expressed together will determine different hues/colours [Weissman & Pan, 2015]. As a 

result, the Brainbow approach allows for detailed visualization of the morphologies of 

closely associated/densely packed cells and their interactions. Furthermore, given that 

these multicolour labels are inheritable, the progeny of labelled cells can be tracked 

according to their unique ‘colour barcode’ [Weissman & Pan, 2015]. Thus, although this 

method was classically applied to label neurons and investigate their network connectivity 

[Livet et al, 2007], more recent studies have made use of this method to fate-map stem 

cells and their progeny in the brain as well as in other organs [Snippert et al, 2010; 

Calzolari et al, 2015]. Similarly, the Nestin-CreER driver construct could be used in 

conjunction with the Brainbow construct to label putative hypothalamic neural 

stem/progenitor cells with different colours and allow for the fate-mapping of individual 

cells (including, parenchymal and ependymal cell-types) within the entire cell population. 

Furthermore, by being able to distinguish between adjacent cells, this approach may even 

help determine if subependymal astrocytes are also labelled and if there is any interaction 

between these cells and tanycytes during neurogenesis. 
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YFP+ Tanycytes do not actively proliferate 

No BrdU uptake was seen in any YFP+ tanycyte (or YFP-negative tanycytes) after 5 days 

of injection. This is consistent with a failure to label with BrdU tanycytes in other studies 

(injecting up to 7-8 days) [Hajihosseini et al, 2008; Haan et al, 2013]. Furthermore, when 

tracked over time, YFP+ tanycyte numbers/densities did not change significantly. In 

contrast, a majority (80%) of BrdU+ cells were identified as NG2+ glia by another study 

[Robins et al, 2013b]. These results are suggestive that tanycytes may not have the 

capacity to proliferate. Whilst, other studies were able to identify BrdU+ tanycytes albeit 

with increased survival periods (after 9-15 days of BrdU administration) [Haan et al, 2013], 

it could be argued that this increased survival period may also increase the possibility that 

the actively dividing cell may have given rise to daughter (progenitor) cells that may later 

differentiate into tanycytes.  

It should also be highlighted that the aforementioned studies administered BrdU via 

peripheral delivery methods (either intraperitoneally and/or via drinking water), which 

preferentially label proliferative cells in the parenchyma [Kokoeva et al, 2007; Sousa-

Ferreira et al, 2014a]. A previous study has indicated the stark difference in BrdU-labelling 

preference in the hypothalamus using peripheral versus central delivery methods, 

whereby the latter delivery method preferentially labelled ventricular and periventricular 

proliferative cells [Kokoeva et al, 2007]. Indeed, using central delivery methods (such as 

intracerebroventricular infusion) BrdU+ tanycytes have been successfully reported (in 

survival periods as early as 2 days after BrdU administration) [Chouaf-Lakdar, et al, 2003; 

Cifuentes et al, 2011]. Thus, it would be recommendable to use central-delivery methods 

when investigating the basal proliferative capacity of tanycytes in the future. 

It is possible that tanycytes may represent a quiescent or rarely-dividing adult neural 

stem/progenitor pool under basal conditions [Li & Clevers, 2010; Wang et al, 2011b] that 

may require stimulation from external stimuli/growth factors, as seen for hippocampal 

quiescent neural stem cells [Lugert et al, 2010]. Whilst BrdU+ tanycytes have been 

reported under basal conditions, the frequency of such observations is low [Xu et al, 

2005]. Indeed, increased tanycyte proliferation (BrdU uptake) has been demonstrated 

with FGF-2 and IGF-1 [Xu et al, 2005; Robins et al, 2013a; Perez-Martin et al, 2010]. 
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Quiescent NSCs may re-enter their cell cycles less frequently than active NSCs and thus, 

when BrdU is administered briefly, actively proliferating cells (such as NG2+ glia) are 

more likely to take up available BrdU [Li & Clevers, 2010; Wang et al, 2011b; Sousa-

Ferreira et al, 2014a].  

Studies on other stem cell niches have suggested the presence of separate pools of 

quiescent and ‘active’ (proliferative) stem cells. Using BrdU-labelling and/or histone2B-

labelling (with GFP) to label hematopoietic stem cells (HSCs), a biphasic dilution of these 

labels was seen, whereby rapid-proliferating HSCs exhibited fast label-dilution whilst 

quiescent HSCs retained these labels over extended periods [Wilson et al, 2008; Foudi 

et al, 2009]. These quiescent HSCs were predominantly located near the vasculature 

(arterioles) of the bone marrow endosteum, but upon activation by, for example injury 

[Wilson et al, 2008], would migrate to the sinusoidal region where they are induced to 

proliferate [Kunisaki et al, 2013]. It is interesting to note the parallel between this stem 

cell niche and that of tanycytes; both populations are located in close proximity to the 

blood circulation and exhibit reactive proliferative capacity (in response to injury or growth 

factors, respectively). Thus, the possibility that tanycytes may represent a quiescent 

population of hypothalamic neural stem cells that exhibit a reactive neurogenic potential 

(activated only by external stimuli/growth factors) cannot be ruled out.  

Summary 

Using the nestin promoter sequence to drive Cre-expression in a fate-mapping mouse 

model, tanycytes were successfully labelled. However, this labelling method is not 

specific to tanycytes, as other cell-types were also labelled shortly following tamoxifen-

induced recombination. Thus, any changes in YFP+ cell numbers and their phenotype 

over time cannot be indisputable evidence for tanycytes’ role in neurogenesis using this 

mouse model. Nevertheless, it could be argued that since the vast majority of YFP+ cells 

were limited to the ependymal layer, it may be possible to use the Nestin-CreER driver 

mouse in manipulation experiments and attribute an effect to tanycytes and ependymal 

cells. 
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Chapter 4: Optogenetic stimulation of nestin-expressing cells induced 
an increase in newly-generated cells  

Background 

Purinergic signalling in Tanycytes 

Tanycytes can sense and respond to nutrients in the CSF, such as glucose [Frayling et 

al, 2011; Orellana et al, 2012; Benford et al, 2017]. This is mediated by a purinergic 

signalling mechanism, driven by changes in intracellular calcium [Dale, 2011]. When 

glucose, amino acids or other molecules associated with the drive to feed (such as ATP, 

histamine or acetylcholine), bind to their respective receptors on tanycytes, a large 

increase in intracellular calcium is observed [Frayling et al, 2011; Lazutkaite et al, 2017]. 

This calcium signal is then seen to propagate along the tanycyte layer through both, short- 

and long-range feedforward signalling mechanisms [Bolborea & Dale, 2013]; increased 

intracellular calcium in stimulated tanycytes can diffuse into adjoining tanycytes via gap 

junctions [Orellana et al, 2012], whilst simultaneously, the increase in intracellular calcium 

concentration triggers the extracellular release of ATP, which in turn can activate P2Y1 

receptors (hereon referred to as P2Y1R) and stimulate further increases in intracellular 

calcium in surrounding tanycytes [Frayling et al, 2011; Benford et al, 2017]. As a result of 

the propagating calcium signal, a wave of extracellular ATP release ensues [Dale, 2011; 

Bolborea & Dale, 2013]. Initiation and propagation of the calcium signal and ATP in 

tanycytes is illustrated in Fig 4.1. 
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Purinergic signalling in neural stem/progenitor cells 

Interestingly, intracellular calcium waves, ATP release and purinergic activation of the 

P2Y1 receptor have been previously implicated in neural stem/progenitor cell 

proliferation, migration and/or differentiation and thus, neurogenesis [Weissman et al, 

2004; Lecca et al, 2016; Tang & Illes, 2017]. 

SVZ-derived neural progenitor cells cultured as neurospheres expressed purinergic 

receptors, including P2Y1R, and exhibited transient calcium waves upon stimulation by 

ATP [Mishra et al, 2006; Lin et al, 2007]. When P2Y1R agonists were applied, cell 

Figure 4.1. Initiation and propagation of calcium and ATP signalling in tanycytes. A) 
Suggested mechanism by Dale (2011): Stimulation by agonists, such as glucose (1), leads 
to the release of calcium from intracellular stores, resulting in an increased cytosolic 
concentration (2). This leads to the extracellular release of ATP whilst, simultaneously, 
increased calcium can diffuse into neighbouring tanycytes via gap junctions (3). Extracellular 
ATP binds to and activates P2Y1 receptors on surrounding tanycytes to stimulate (further) 
calcium influx (4). The resulting increased intracellular calcium in neighbouring and 
surrounding tanycytes again leads to ATP release (5) and reiteration of the described 
signalling pathway. B) As highlighted, the resulting feed-forward signalling cascade, leads 
to the propagation of extracellular ATP along the tanycyte layer and amplification of the 
response (above). In addition, the ATP signal may also be propagated along its basal 
projections into the parenchyma (below). Adapted from Dale, 2011.	
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proliferation was seen to be enhanced [Mishra, et al, 2006; Lin et al, 2007; Boccazzi et 

al, 2014]. Concurrently, injection of ATP into the murine lateral ventricle yielded increased 

proliferation of neural progenitors and transit-amplifying cells [Suyama et al, 2012]. 

Indeed, upon application of the P2Y1R antagonist, MRS2179, cell proliferation decreased 

[Mishra et al, 2006; Suyama et al, 2012]. Similarly, inhibition of the calcium wave with 

inhibitors or calcium chelators negated any ATP-induced cell proliferation [Ryu et al, 

2003; Heo & Han, 2006]. Further corroboration of the proliferative role of ATP is seen in 

mice deficient for the ectoenzyme, NTPDase (responsible for extracellular nucleoside 

triphosphate degradation) whereby increased cell proliferation was observed in the 

classical neurogenic niches, the SGZ and SVZ [Gampe et al, 2015]. It has been indicated 

that the source of extracellular ATP (and other nucleotide bi/triphosphates) are neural 

stem/progenitor cells themselves, including NSC niche astrocytes [Lin et al, 2007; Cao et 

al, 2013].  

In addition to cell proliferation, P2Y1R activation was also associated with increased cell 

migration and differential cell fate. An increase in the cortical actin cytoskeleton and in 

cell-spreading was observed in cultured adult murine neural stem cells when nucleotides 

(ATP) and EGF were applied [Grimm et al, 2010]. Furthermore, in another study, 

blockade of P2Y1R in cultured neurospheres from embryonic striata resulted in 

decreased proliferation and migratory distances [Scemes et al, 2003]. Indeed, in the 

embryonic brain, radial glial cells have been suggested to release ATP to coordinate 

proliferation and cell migration [Weissman et al, 2004]. With regards to cell fate 

determination, sustained P2Y1R activation has been reported to lead to astrogliosis, 

yielding increased parenchymal astrocytes [Boccazzi et al, 2014], whilst the loss of 

purinergic signalling led to the onset of neuronal differentiation and maturation [Lin et al, 

2007]. 

Using optogenetics to stimulate intracellular calcium waves and ATP release 

Whilst electrophysiology was classically used as one of the principal methods used to 

study neurons and neural networks, the development of genetically encoded light-

sensitive tools and thus the prevalence of the optogenetics field has revolutionized 

neuroscience [Fenno et al, 2011; Zeng & Madisen, 2012; Hausser, 2014]. A key feature 
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of optogenetics comprises the ability to target expression of these light-sensitive tools in 

specific cell types and even sub-cellular compartments, enabling high-resolution 

investigation of the nervous system at several levels, from the synaptic level to intact 

neural circuits underlying complex behaviours [Hausser, 2014]. Whilst optogenetic tools 

include optical indicators such as genetically encoded calcium or voltage sensors, and 

optical actuators such as light-sensitive membrane channels or pumps, the latter has the 

capacity to manipulate neuronal activity, including in live animals [Zeng & Madisen, 2012]. 

Indeed, studies have demonstrated the ability to activate [Nagel et al, 2003; Boyden et 

al, 2005] as well as silence [Han & Boyden, 2007; Chow et al, 2010] neurons with high 

spatiotemporal precision using different engineered microbial opsins and/or pumps [Zeng 

& Madisen, 2012]. Two widely-used microbial opsins are the channelrhodopsin variants, 

Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2), isolated from an algal 

species, Chlamydomonas reinhardtii [Nagel et al, 2002; Nagel et al, 2003]. Both are non-

selective for cations such as sodium, potassium and calcium, and allow their flux across 

the cell membrane when illuminated with blue light at 470nm [Lin et al, 2009; Kato et al, 

2012]. Indeed, being encoded by a single gene and possessing rapid on/off kinetics in 

response to blue light makes these ideal optogenetic actuators for neuronal 

depolarization/activation [Repina et al, 2017]. 

Although optogenetics was originally applied to control neuronal activity, it is now being 

used in order to manipulate additional cell-types and biological systems [Yawo et al, 

2013]. More recently, optogenetic activation of astrocytes has been pursued in order to 

demonstrate their role in synaptic modulation and plasticity [Gradinaru et al, 2009; 

Gourine et al, 2010; Sasaki et al, 2012; Chen et al, 2013; Li et al, 2013b; Perea et al, 

2014]. Optogenetic stimulation of astrocytes in the brainstem induced increased 

intracellular calcium, leading to the release of ATP, which in turn triggered depolarization 

of retrotrapezoid nucleus (RTN) neurons, increasing respiratory activity [Gourine et al, 

2010]. Similarly, in another study, photo-activated brainstem astroglia released ATP, 

activating rostral ventrolateral medulla neurons resulting in increased sympathetic nerve 

activity and arterial blood pressure and heart rate [Marina et al, 2013]. Interestingly, 

optogenetic activation of (other) glia and/or the elevation of intracellular calcium was also 
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associated with glutamate release, which has been implicated in glia-to-neuron signalling 

and neuronal excitotoxicity [Sasaki et al, 2012; Beppu et al, 2014]. 

Aim  

Since tanycytes exhibit a chemosensory role via purinergic signalling and P2Y1R 

activation, and is suggested to have a role as a neural stem/progenitor cells in adult 

hypothalamic neurogenesis, I hypothesized that these functions are associated. Indeed, 

given that the optogenetic stimulation of glia/astrocytes triggers intracellular calcium 

waves and ATP release (similarly to tanycytes upon chemosensory stimulation), this 

study aims to assess whether optogenetic stimulation of tanycytes can induce the same 

effect, and whether this in turn may affect cell proliferation and neurogenesis in the adult 

hypothalamus. 

Methods 

Animals 

The following transgenic mice were purchased from Jackson Laboratory (Bar Harbour, 

ME, U.S.A) and bred in the animal facility at Biopolis (Singapore): Nestin-CreERT2 

[C57BL/6-Tg(Nes-creERT2)KEisc/J], ROSA26loxP-STOP-LoxP-ChR2-YFP [B6.Cg-

Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J]. Nestin-CreERT2:ROSA26-

loxP-STOP-LoxP-ChR2-YFP mice were obtained by breeding Nestin-CreERT2 mice with 

ROSA26loxP-STOP-LoxP-ChR2-YFP. Only offspring positive for Cre-recombinase (Nestin-

CreERT2+/-:	 ROSA26-loxP-STOP-LoxP-ChR2-YFP+/+, hereon referred to as NCE-

ChR2Y) mouse colonies were selected for experiments based on genotyping results. 

Mice were genotyped as described in the previous chapter (same primers). Genotyping 

was carried out by animal facility staff of Biological Research Centre (BRC), A*STAR, 

Singapore and/or by animal facility staff at the University of Warwick, UK. 

All mice used in these studies were maintained and euthanized according to protocols 

either approved by the Institutional Animal Care and Use Committee at the Biological 

Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 

or by the Animal Welfare and Ethical Review Board of the University of Warwick and the 

UK Home Office. 
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In vitro validation 

Tamoxifen injection 

Tamoxifen (Sigma, T-5648) was dissolved in 90% corn oil (Sigma, C8267):10% ethanol 

at a concentration of 20mg/ml. To induce Cre-mediated recombination for induction of 

ChR2-YFP expression, tamoxifen was injected into adult (8-12 weeks-old) mice 

intraperitoneally for 5 consecutive days at a daily dose of 100mg/kg of body weight. 

Acute slice preparation  

1-4 days after tamoxifen injection, mice (of either sex) were humanely sacrificed by 

cervical dislocation in accordance with schedule 1 of the Animals (scientific procedures) 

act 1986. The brain was rapidly dissected and placed in ice-cold artificial cerebrospinal 

fluid (aCSF; 124mM NaCl, 26mM NaHCO3, 1.25mM NaH2PO4, 3mM KCl, 2mM CaCl2, 

3mM MgSO4, 10mM glucose saturated with 95% O2/5% CO2) with additional 10mM 

MgSO4. Coronal sections 300μm thick were prepared from the hypothalamus using a 

vibrating microtome (Microm HM650). Each section was subsequently dissected along 

the midline separating the third ventricle and incubated in 35-6oC aCSF for 30-60 minutes 

to allow for recovery of adenine nucleotide levels [zur Nedden et al, 2011]. Slices were 

then transferred and stored in 1mM glucose aCSF at room temperature for the remainder 

of the experiment. 

Calcium imaging and optogenetic stimulation 

Hypothalamic slices were loaded with the ratiometric Ca2+ indicator Fura-8 AM (12.5 

μg/mL in 0.125% DMSO and 0.025% pluronic) for 90 minutes in 10mM glucose aCSF. 

Fura-8-loaded slices were transferred to a flow chamber with circulating 1mM glucose 

aCSF (at 37oC) and imaged under a Scientifica Slicescope via an Olympus 60x water 

immersion objective (NA 1.0). Images were captured with a Hamamatsu ImageEM EM-

CCD camera. A ratiometric image of Fura-8 fluorescence was achieved by illumination at 

350nm and 415nm via LEDs of the appropriate wavelength and suitable bandpass filters 

(Cairn Research).  
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Optogenetic stimulation was performed by flashing blue light (470nm at 0.5Amps on the 

OptoLED light source module, Cain Research; 20/50 millisecond cycle of ON/OFF) for 29 

iterations followed by image acquisition of Fura-8 fluorescence. The duration of 

stimulation varied from 5-20 cycles of the described algorithm. 

Metafluor imaging was used to control illumination (all wavelengths) and acquisition of 

images. Recordings were made at room temperature (25-28oC), and the flow chamber 

was perfused at 3-4 ml/minute. 

Data analysis & statistics 

Analysis was performed using ImajeJ. Fura-8-loaded tanycytes and/or other 

(parenchymal) cells of interest were outlined as regions of interest (ROI) and the mean 

pixel intensity at 365nm and 415nm of each ROI calculated. The emission ratios for 

F365/F415 (no units) were then calculated. Peak response magnitudes were calculated by 

subtracting the average baseline value (from at least 5 images) from the maximum 

change in relative fluorescence intensity. Only ROIs that indicated a change from baseline 

of >0.015 was considered a minimum value at which a response was observed. The mean 

value from each brain slice was produced and used for statistical analysis.  

Results are expressed using box plots (median and interquartile range with whiskers 

representing the min/max range). The Kruskal-Wallis one-way analysis of variance was 

used, followed by post-hoc Dunn’s for pairwise comparisons within multiple groups. For 

comparisons between two groups, two-tailed independent samples Mann-Whitney test 

was used. Significance was only established when p ≤ 0.05 (*) and satisfied a post-hoc 

false-discovery test [Curran-Everett, 2000].  

In vivo opto-stimulation experiment 

Fibre optic stub implantation  

All surgeries were performed by Dr Paul Anderson. Mice were anaesthetised with 3% 

isoflurane (1L/min O2 flow rate), their heads shaved and secured on a stereotaxic rig. 

Local anaesthetic (lignocain; 2.5mg/ml, 0.4ml/kg body weight subcutaneous) and 

analgesic (buprenorphine; 0.03mg/ml, 1.7ml/kg body weight subcutaneous) was applied 
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under the skin. Eye lubricant cream was applied and incision site sterilized with 70% 

ethanol and iodine wipes. An incision was made through the midline of the scalp and the 

cranium exposed by holding back the skin with clamps. The skull surface was cleaned 

with sterile saline and allowed to dry. A small hole (< 1 mm diameter) was drilled at 1.5 

mm posterior to bregma and 0.25 mm lateral (right) of bregma. A fiber optic stub (245 µm 

diameter, 0.37 NA, 5.2 mm long with 1.25 mm diameter Zirconia ferrule: Doric Lenses, 

part no: MFC_200/245-0.37_5.2mm_ZF1.25_FLT) was inserted slowly (~1 mm/min) into 

the first hole made using a stereotaxic arm, finally allowing the ferrule to rest on the 

cranium. Finally, dental cement was applied across the cranium (covering the anchoring 

screws) and onto the lower portion of the implant, avoiding any contact with the skin, to 

result in a small pyramidal mound over the cranium with 3-5 mm of the ferrule clean of 

cement for unobstructed connection with the light cable. Once the dental cement was 

dried, the scalp was sutured around the implant and the animal allowed to recover in its 

housing cage whilst kept warm with a heat lamp. Animals were allowed to recover from 

surgery and given antibiotics and analgesia in drinking water for 3 days following surgery, 

whilst monitoring body weight and animal condition closely to ensure health of the animal. 

Tamoxifen & BrdU injection 

Tamoxifen (Sigma, T-5648) was dissolved in 90% corn oil (Sigma, C8267):10% ethanol 

at a concentration of 20mg/ml. To induce Cre-mediated recombination for induction of 

YFP expression, tamoxifen was injected into adult (8-12 weeks-old) mice intraperitoneally 

for 5 consecutive days at a daily dose of 100mg/kg of body weight. BrdU (Sigma, B5002) 

was dissolved in 0.9% saline at a concentration of 10mg/ml. BrdU was injected into adult 

mice intraperitoneally on the stated days at a dose of 50 or 100 mg/kg body weight (see 

below).  

Tamoxifen and BrdU injections were performed distinctly according to two different 

optogenetic-stimulation experiments (refer to Figures 4.7A and 4.9A). 

Short term opto-stimulation: Tamoxifen was injected for 5 consecutive days. Mice were 

then opto-stimulated and injected with BrdU (100 mg/kg body weight, after the last opto-

stimulation each day) daily for the next 7 days. 
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Long term opto-stimulation: Tamoxifen and BrdU (50 mg/kg body weight) injections were 

performed on the same days for 5 consecutive days. Mice were opto-stimulated daily for 

the next 28 days. 

Optogenetic stimulation 

Mice with fiber optic stubs implanted were connected to an optic fibre cable and opto-

stimulated with blue light (470nm, LED) twice a day (gap of 4-6 hours) with the following 

protocol: 20ms/50ms ON/OFF cycle for 70s every 15minutes for a total of 3 times. The 

duration of opto-stimulation (days) varied according to two different opto-stimulation 

experiments (refer to Figures 4.7A and 4.9A); short-term opto-stimulation was performed 

for 7 days, whilst long-term opto-stimulation was performed for 28 days. 

A light intensity of 15.9 milliwatts was used to deliver an estimated light intensity of 3-5 

milliwatts (at a depth range of 0.75-0.9mm) to the lateral 3rd ventricle walls, according to 

the the brain tissue light transmission calculator (Stanford Optogenetics Resource centre; 

http://web.stanford.edu/group/dlab/cgi-bin/graph/chart.php). 

Tissue processing 

Mice were anesthetized with a lethal dose of pentobarbital and intracardially perfused 

with 4% paraformaldehyde (PFA; Sigma, P-6148) in 0.1M phosphate buffer (PB). Brains 

were immediately post-fixated in 4% PFA in 0.1M PB overnight at 4 °C, and subsequently 

cryoprotected in 30% sucrose in 0.1M PB for at least 48 hours. Cryoprotected brains were 

sectioned coronally at a thickness of 40μm using a freezing microtome at -30°C (Microm 

HM430, Thermo Scientific, USA). Serial coronal sections were collected along the 

anteroposterior axis covering the hypothalamus and stored in cryoprotective solution 

(20% Glycerin, 30% Ethylene Glycol in 0.1M PB) at -20 °C.  

Immunohistochemistry 

For multiple immunohistochemistry, 8 sections were used (1 every 4 serial sections). This 

was appropriate to capture the majority of the hypothalamus. The free-floating method 

[Bachman, 2013] was used; sections were rinsed 3 times for 10 minutes in 0.1M Tris-

buffered saline (TBS), incubated in blocking buffer, TBS++ (3% Donkey serum, 0.25% 
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Triton-X100 in TBS) for 60min, prior to incubation with primary antibody in TBS++ at 4°C 

for 36 hours (two nights). Following primary antibody incubation, sections were rinsed 

with TBS 2 times for 10min, blocked in TBS++ for 20 min, and incubated in secondary 

antibody in TBS++ for 4 hours at room temperature. Nuclear staining was performed with 

incubation with 4’,6-Diamidino-2-phenylindole-dihydrochloride (DAPI; 0.5µg/mL; Sigma, 

28718-90-3) for 10 mins. Immunostained sections were rinsed with TBS 3 times for 10 

minutes and mounted on glass slides with mounting medium, polyvinyl alcohol (PVA)-

DABCO. Primary antibodies used: rabbit anti-GFP (1:400; Life Technologies, A11122), 

mouse anti-NeuN (1:1200; Millipore, MAB377), rat anti-BrdU (1:400; AbD Serotec, 

OBT0030G). Secondary antibodies used: donkey Anti-Rat Cy3 (1:250; Jackson Immuno., 

712-165-153), donkey Anti-Rabbit 488 (1:250; Jackson Immuno., 711-545-152), donkey 

anti-mouse 647 (1:250; Jackson Immuno., 705-605-147). 

Statistics 

From immunostained slides, 6-8 sections were selected based on their location (mid-

caudal hypothalamus), from Bregma -1.22mm to -2.18mm, and analysed for BrdU+ and 

YFP+ cell quantification. Selected sections were imaged/viewed under the 

epifluorescence microscope (Zeis Axio Imager 2) to count BrdU+ and YFP+ cells (under 

a 20x objective). Hypothalamic regions were outlined as described previously; using 

NeuN immunostaining the ventromedial nucleus was used to predict hypothalamic nuclei 

boundaries according to the ‘Mouse Brain in Sterotaxic co-ordinates’ (Paxinos & Franklin, 

2012). BrdU+ and YFP+ cell counts were quantified as a function of cell density (per mm2 

or mm3 of hypothalamic tissue). 

Results are expressed either using box plots (median and interquartile range with 

whiskers representing the min/max range) or bar charts (mean with whiskers representing 

standard error of the mean). For comparisons between two groups, two-tailed 

independent samples Mann-Whitney test was used. Significance was only established 

when p ≤ 0.05 (*) and satisfied a post-hoc false-discovery test [Curran-Everett, 2000].  
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Results 

An optogenetic approach was used to stimulate tanycytes. Similarly to the NCE-YFP 

mice, a Cre-inducible double-transgenic mouse model was used to conditionally express 

a channelrhodopsin-2 variant, ChR2(H134R) [Nagel et al, 2005] and YFP (as a fusion 

protein) under the constitutive, CMV early enhancer/chicken β-actin (CAG) promoter in 

Nestin-expressing tanycytes. CreERT2 expression was driven under the nestin promoter. 

Thus, when tamoxifen is injected into Nestin-CreERT2:ROSA26-loxP-STOP-loxP-CAG-

ChR2-EYFP (referred to as NCE-ChR2Y) mice, CreERT2 is allowed to excise the lox-

STOP-lox codon upstream of ChR2-YFP and initiate permanent expression in tanycytes. 

ChR2-YFP expression in NCE-ChR2Y mice is not exclusively restricted to tanycytes. 

Given the observation that YFP expression in a parallel fate-mapping transgenic mouse 

(NCE-YFP; chapter 2) was not exclusively restricted to tanycytes in the hypothalamus, 

the specificity of ChR2-YFP expression was assessed shortly after tamoxifen-induced 

recombination. 

NCE-ChR2Y mice exhibited a similar YFP expression pattern to that seen in NCE-YFP 

mice; additional cell-types other than tanycytes were found to be YFP+. 3 days after 

tamoxifen injection, YFP immunofluorescence was predominantly observed at the 

ependymal layer, specifically in many ependymocytes and tanycytes lining the lateral 

walls of the 3rd ventricle (Fig. 4.2A). YFP+ cells were also identified in the parenchyma 

exhibiting both, neuronal- and glial-like morphologies, albeit at much lower numbers than 

ependymal YFP+ cells (Fig. 4.2A, C, D; yellow asterisk/arrows). Over a prolonged survival 

period (30 days after tamoxifen), YFP expression is still predominantly observed at the 

ependymal layer (Fig. 4.2B). Interestingly, some tanycytes at the ventral wall of the 3rd 

ventricle were also seen to express YFP (Fig. 4.2B, E; green arrows). 
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Figure 4.2 
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In vitro validation 

Tanycytes expressing Chr2-YFP are responsive to optogenetic stimulation 

Firstly, the ability of ChR2-expressing tanycytes to respond to optic stimulation and induce 

increases in intracellular calcium was validated in tamoxifen-injected (TAM+) NCE-

ChR2Y brain slices using calcium imaging. This was achieved by measuring changes in 

intracellular calcium concentration with a calcium-sensitive fluorescent ratiometric dye, 

Fura-8 AM [AAT Bioquest, 2017]. This dye, like Fura-2 AM [Martinez et al, 2016, 2017], 

is membrane permeable and able to cross the cell membrane, and once intracellular, is 

de-esterified to membrane-impermeable Fura-8 (referred to as dye-loading). Calcium-

bound fura-8 has an excitation wavelength of 354 nm, whilst calcium-free fura-8 has an 

excitation wavelength of 415 nm. By measuring the intensity of fluorescence emitted by 

calcium-bound and calcium-free FURA-8, a ratiometric image and value can be 

generated (354nm/415nm; Figure 4.3B). Indeed, changes in cytosolic calcium are 

indicated by fluctuations of this ratio. Thus, changes in cytosolic calcium was measured 

in tanycytes in response to optogenetic (opto-) stimulation. 

Inspection of YFP fluorescence indicated that a heterogeneous population of ChR2-YFP+ 

and ChR2-YFP- tanycytes existed; not all tanycytes expressed ChR2-YFP (Fig 4.3A). 

Nevertheless, upon opto-stimulation, an immediate and robust increase in intracellular 

calcium was observed along the tanycyte layer (Fig 4.3C, D). The nature of this response 

was transient, as intracellular calcium levels were typically restored to baseline levels 

immediately after opto-stimulation. In response to 100µM ATP (applied through the 

perfusion medium), a delayed yet similar transient response was seen (Fig. 4.3E). Opto-

Figure 4.2. ChR2-YFP expression is not restricted to tanycytes. Analysis of ChR2 
expression was performed by immunostaining for YFP A) 3 days after tamoxifen injection, 
YFP+ cells were observed in the ependymal layer of the lateral 3rd ventricle walls and in the 
parenchyma (indicated by yellow). B) 30 days after tamoxifen injection, YFP expression is 
still predominantly observed at the ependymal layer, albeit also along the ventral 3rd ventricle 
wall (green arrows). C-D) Parenchymal YFP+ cells were identified morphologically as glial 
(C, , another example shown by yellow asterisk in A) or neuronal (D, yellow arrow in A). E) 
Magnified images of YFP+ tanycytes observed along the ventral 3rd ventricle wall 30 days 
after tamoxifen injection (green arrows in B). (n=2).	
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stimulation of ChR2+ ependymocytes did not appear to elicit an intracellular calcium 

response (data not shown). 

Quantification of the calcium response in acute brain slices of (TAM+) NCE-ChR2Y mice 

indicated that opto-stimulation yielded an increase in cytosolic calcium in 86±3% of 

recorded tanycytes (Fig. 4.4A), with an average peak response magnitude of 0.044±0.004 

(Fig. 4.4B). Indeed, calcium responses elicited in tanycytes were reproducible as there 

was no significant differences between average peak response magnitudes of the first, 

second or third instance of sequential opto-stimulation (given a 15-20min recovery 

interval) in the same brain slice (Kruskal-Wallis ANOVA, followed by post-hoc Dunn’s 

multiple comparisons test; Fig 4.4C). Interestingly however, the duration of the calcium 

response was seen to depend on the duration of light stimulation, with a significant 

increase in response duration observed between 5 to 20 (p=0.0043), and 10 to 20 

(p=0.0002) cycles of the optostimulation protocol (Kruskal-Wallis ANOVA, followed by 

post-hoc Dunn’s multiple comparisons test; Fig. 4.4D). 

Calcium responses induced by 100µM ATP (0.058±0.009) were comparable to those 

induced optogenetically (0.044±0.004); no significant difference was observed in average 

peak response magnitudes of either treatment (Two-tailed Mann-Whitney test; Fig 4.4B). 

Similarly, no significant difference was seen in the average percentage of tanycytes that 

responded to ATP or opto-stimulation (Two-tailed Mann-Whitney test; Fig 4.4A). 
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Figure 4.3. ChR2-expressing tanycytes evoked calcium responses to optogenetic 
stimulation. A) Representative image of YFP fluorescence observed, indicating the 
heterogeneity of ChR2-EYFP expression in the tanycyte population. B) Overlaying image 
indicating ratiometric Fura-8 in tanycytes (cell bodies outlined in black) under baseline 
conditions. Colour intensity (from low to high: Blue-green-yellow-red-white,) indicates the 
relative concentration of calcium-bound to calcium-free Fura-8. C) Overlaying image 
indicating ratiometric Fura-8 in tanycytes upon opto-stimulation (at a time-point where all 
tanycytes reached a peak response). D) Temporal graph indicating ratiometric Fura-8 
fluctuations in individual tanycytes (indicated by separate coloured traces) upon opto-
stimulation; a large transient increase in intracellular calcium was observed that lasts for the 
duration of optical stimulation. E) Temporal graph indicating ratiometric Fura-8 fluctuations 
upon application of 100μM ATP via the bath medium. A delayed but robust transient 
intracellular calcium response was seen. 	
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Figure 4.4 
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Parenchymal cells in close proximity to YFP+ tanycytes also responded to optogenetic 

stimulation	

Next, we tested if optogenetic stimulation of tanycytes and subsequent ATP release could 

affect the intracellular calcium levels of parenchymal cells loaded with Fura-8. This was 

done to test the hypothesis that tanycytes may be capable of propagating purinergic 

signalling to parenchymal cells in a similar manner as astrocytes [Cao et al, 2013], as this 

may indicate an additional role by which tanycytes may regulate parenchymal neural 

stem/progenitor cell proliferation, migration and hence, neurogenesis [Oliveira et al, 2016; 

Tang & Illes, 2017]. 

Parenchymal (ChR2-YFP-) cells loaded with Fura-8 were outlined and ratiometric 

changes in Fura-8 fluorescence intensity were measured. Upon opto-stimulation, some 

parenchymal cells in the vicinity of ChR2-YFP+ tanycytes exhibited a heterogeneous 

range of intracellular calcium responses (Fig. 4.5A-D); whilst some responses were 

almost immediate (Fig. 4.5C, D), others were delayed for as long as 400 seconds after 

opto-stimulation (Fig. 4.5B; red trace). In addition, the duration of these responses also 

varied greatly, with some requiring approximately 100 seconds or less to return to 

baseline (Fig. 4.5A, B, C; red traces), whilst others required 300 seconds or more (Fig. 

4.5B, C; yellow traces). Some calcium responses did not return to a clear baseline (Fig. 

4.5D). 

Figure 4.4. Quantification and measurement of calcium responses in tanycytes 
induced by optogenetic stimulation and 100μM ATP. Data is expressed as box (median 
and interquartile range) and whisker (min/max value) plots. Individual data points are also 
indicated A) The percentage of responsive tanycytes to opto-stimulation and ATP were 
quantified as a percentage of all tanycytes recorded. A similar percentage of tanycytes were 
seen to respond to both treatments. B) Average tanycyte peak response magnitudes in 
response to opto-stim and ATP were calculated for each brain slice and compared. A similar 
average peak magnitude was observed between both treatments. C) No significant 
difference was seen between average peak response magnitudes at the first, second or third 
instance of multiple opto-stimulations. D) The duration of the intracellular calcium response 
significantly increased with increasing duration of optostimulation. Each cycle of opto-
stimulation consisted of 29 flashes of blue light (470nm, at 20ms/50ms cycles of ON/OFF) 
followed by acquisition of Fura-8 fluorescence. Slices were thus stimulated for a minimum 
of 5 cycles and maximum of 20 cycles of opto-stimulation. Opto-stim slices: n=42 (Opto-1, 
n=29; Opto-2, n=10; Opto-3, n=3; 5X, n=5; 10X, n=26; 20X, n=11); ATP-infused slices: n=21. 



			

	 96	

This led to the speculation that the heterogeneity in calcium responses observed may be 

due to the stimulation of a range of different parenchymal cell-types (of neuronal and glial 

lineage) and/or due to varying distances from ChR2-YFP+ tanycytes.  

In order to determine whether the proximity of parenchymal cells to YFP+ tanycytes 

affected their response to optogenetic stimulation, the minimum distance from the cell-

edge of Fura-8 outlined parenchymal cell bodies (both, responsive and non-responsive 

to opto-stimulation) to the cell-edge of YFP+ tanycytes (including their basal projections) 

was measured in the XY plane of captured images (Fig. 4.6A, B, D). Indeed, the majority 

of parenchymal cells that were responsive to opto-stimulation were significantly closer on 

average (7±1µm; Mean ±SEM) to YFP+ tanycytes and/or the tanycyte layer, in 

comparison to non-responsive parenchymal cells (18±1µm; p<0.0001; Two-tailed Mann-

Whitney test; Fig 4.6D). Interestingly, in some instances, opto-responsive parenchymal 

cells were seen to exhibit different response latencies depending on their distance to 

YFP+ tanycyte cell bodies (Fig. 4.6A-C); a more immediate calcium response was 

generated in cells closer to, whereas a more delayed response was seen further away 

from the YFP+ tanycyte cell body. 

Finally, it has been generally postulated that neuronal soma are bigger than that of glial 

cells [Purves et al, 2001; von Bartheld et al, 2016]. Thus, in order to crudely classify 

whether the opto-responsive parenchymal cells were of a particular neural lineage 

(neuronal or glial), the cross-sectional area of Fura-8 loaded parenchymal cells were 

measured and compared. No statistical difference was detected between the mean cross-

sectional area of opto-responsive (89±7 µm2) and non-responsive (73±5 µm2) 

parenchymal cells (p=0.078, Two-tailed Mann-Whitney test; Fig. 4.6E). Indeed, the cross-

sectional areas of opto-responsive parenchymal cells were as diverse as those that did 

not respond to opto-stimulation. 
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Figure 4.5. Fura-8-loaded parenchymal cells exhibited heterogeneous intracellular 
calcium responses to opto-stimulation. A-D) Exemplar graphs indicate temporal fluctuations 
of Fura-8 fluorescence ratio in individual parenchymal cells (indicated by separate coloured 
traces) upon 10X (A, B) or 20X (C, D) opto-stimulation. Arrows indicate cells and fluctuations 
considered to be responsive and calcium responses, respectively. Heterogeneity in responses 
was seen whereby different latencies and durations of intracellular calcium responses were seen 
upon/after opto-stimulation. Some responses do not return to baseline levels. Due to the high 
variability in responses observed and small sample size (n=6), quantified analysis of responses 
was not possible.	
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Figure 4.6 

	



			

	 99	

	

In vivo characterization and experiments 

Given the demonstration that ChR2-expressing tanycytes can be optogenetically 

stimulated to generate intracellular calcium waves along the tanycyte layer to the same 

effect as agonists such as ATP, the effect of their opto-stimulation on neurogenesis was 

tested in vivo. This was achieved by the chronic implantation of an optic-fibre stub into 

the dorsal hypothalamus, allowing for illumination of blue light (470nm) on ChR2+ cells of 

the 3rd ventricle. It should be noted that all mice (control and opto-stimulated) were 

implanted with optic-fibre stubs to minimise any differential effect due to implantation 

surgery. Accordingly, experiments were devised to investigate the effect of tanycyte opto-

stimulation on cell proliferation, survival and differentiation in the adult hypothalamus. 

Short-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not alter cell 

proliferation or YFP+ cell numbers.  

We then proceeded to investigate whether opto-stimulation of ChR2-YFP+ cells affected 

cell proliferation in the hypothalamus. In order to assess an effect on cell proliferation, a 

short-term opto-stimulation experiment was designed, whereby BrdU was injected 

(100mg/kg) daily alongside optogenetic stimulation for 7 days (Fig. 4.7A). Cell 

proliferation was analysed by immunohistochemical quantification of BrdU+ cells in the 

whole hypothalamus as well as in distinct regions; at the ependymal layer of the 3rd 

ventricle, at the underlying subependymal layer and in the periventricular area (here, 

Figure 4.6. Parenchymal cells exhibited calcium responses and different response 
latencies depending on their proximity to ChR2-YFP+ tanycytes. A-B) Parenchymal 
cells loaded with Fura-8 (A) were measured for their cross-sectional area and minimum 
distance to ChR2-YFP+ tanycyte cell bodies and/or their basal processes (B). Opto-
responsive cells are outlined and numbered in green. Non-responsive cells are outlined in 
red. Overlaying images were used. C) Temporal graph indicating ratiometric Fura-8 
fluctuations in parenchymal cells upon opto-stimulation. Responsive cells are represented 
as green traces. Note that the parenchymal cell proximal (1) to the YFP+ tanycyte cell body 
exhibits an immediate calcium response, in comparison to the delayed calcium response by 
the distal parenchymal cell (2). D-E) Data is expressed as box (median and interquartile 
range) and whisker (min/max range) plots. Individual data points are also indicated D) Opto-
responsive parenchymal cells were significantly closer to YFP+ tanycytes than non-
responsive parenchymal cells. E) No significant difference was seen between the size of 
opto-responsive parenchymal cells and non-responsive parenchymal cells. Slices: n=5 
(Opto-responsive cells: n=26; non-responsive cells: n=39)	
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defined as parenchymal tissue immediately surrounding the ependymal and 

subependymal layers and extending out as far as 50 µm from the 3rd ventricle). YFP+ 

tanycytes were quantified as a cell density per area of the 3rd ventricle (multiplying the 

length of the ependymal layer by the thickness of the immunostained section), whilst 

YFP+ parenchymal (neuron- and glial-like) cells were quantified as a cell density per 

volume of parenchymal tissue throughout the hypothalamus. 

Upon opto-stimulation, no visual nor statistical difference in BrdU+ cell density was 

observed in the hypothalamic regions measured (3V; p=0.8182, Subepend; p=0.8182, 

PeA; p=0.5887, HYPO; p=0.8182, Two-tailed Mann-Whitney test; Fig. 4.7B, C). However, 

a significant increase was found in BrdU+ cells located in close proximity (within 10µm) 

to YFP+ tanycytes and their projections in opto-stimulated brains. (p=0.0087; Two-tailed 

Mann-Whitney test; Fig. 4.8A; white arrows, B). No BrdU uptake (co-localization) was 

seen in YFP+ tanycytes (data not shown) and no significant difference was seen in the 

densities of YFP+ tanycytes (p=0.132) or YFP+ parenchymal (neuron-like; p=0.4848, 

glial-like; p=0.5887) cells between control and opto-stimulated brains (Two-tailed Mann-

Whitney test; Fig. 4.8C, D). 

 

 

 

Figure 4.7. Short-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not 
change BrdU+ cell numbers. A) Following optic fibre-implantation surgery (day -3), NCE-
ChR2Y mice were given daily tamoxifen injections (day 0-4), followed by opto-stimulation 
(twice daily, 4-6 hour interval; day 5-11) and BrdU injections (100mg/kg ip; immediately after 
last opto-stimulation; day 5-11) daily for 7 days prior to perfusion-fixation (day 11; 2-4 hours 
after last BrdU injection) and subsequent immunohistochemical analysis. B) Representative 
immunostaining images indicated comparable BrdU uptake in control and opto-stimulated 
mice. BrdU+ cells were quantified in the following regions, as illustrated: 3rd ventricle 
ependymal layer (3V; orange single-cell layer in direct contact with the ventricle), 
subependymal layer (Subepend; blue single-cell layer immediately underlying the 3V 
ependymal layer), Periventricular area (PeA; defined here as 50µm of parenchyma 
immediately surrounding the perimeter of the 3rd ventricle; outlined in yellow). C) Data is 
expressed as box (median and interquartile range) and whisker (min/max range) plots. The 
mean (plus sign) and individual data points (black points) are also indicated. Horizontal 
labels on the graphs correspond to those regions illustrated in B. Total hypothalamus 
(HYPO) was also analyzed. Mice used: n=6 for either treatment. 
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Figure 4.7 
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Figure 4.8 
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Long-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not significantly 

increase cell survival or differentiation. 

We next proceeded to investigate whether opto-stimulation of ChR2-YFP+ cells affected 

cell survival and differentiation in the hypothalamus. Thus, a long-term opto-stimulation 

experiment was designed, whereby BrdU was injected daily (50mg/kg) alongside 

tamoxifen for 5 days prior to opto-stimulation. Tamoxifen-injected NCE-ChR2Y mice were 

then opto-stimulated for 28 days prior to analysis (Fig. 4.9A). In this experiment, BrdU 

was used to label post-mitotic cells at the onset of opto-stimulation. BrdU+ quantification 

was performed as previously described, albeit in additional hypothalamic regions/nuclei; 

the ependymal layer of the 3rd ventricle (3V), the median eminence (ME), the 

periventricular nucleus (Pe), the ventromedial nucleus (VMH) and dorsomedial nucleus 

(DMH). YFP+ cell quantification was performed as described previously. 

Upon opto-stimulation, an increasing trend in average BrdU+ cell densities was seen in 

some hypothalamic regions, most notably along the 3rd ventricle, in the periventricular 

and arcuate nuclei (Fig. 4.9B, C). However, these differences were not statistically 

significant (3V; p=0.7, Arc; p=0.4, Pe; p=0.4; two-tailed Mann-Whitney test). When BrdU+ 

cells in close proximity (within 10 µm) to YFP+ tanycytes were counted (Fig. 4.10A, B), 

almost a two-fold increase was seen in opto-stimulated brains, although this difference 

was not statistically significant (p=0.2; Two-tailed Mann-Whitney test). 

Quantification and comparison of YFP+ cells indicated an observable increase upon opto-

stimulation, albeit lacking statistical significance (two-tailed Mann-Whitney test). 

Approximately, a two-fold increase in the mean density of YFP+ tanycytes (p=0.2) was 

seen in opto-stimulated mice compared to control mice (Fig. 4.10C). Similarly, opto-

Figure 4.8. Short-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not 
change YFP+ cell numbers but increased BrdU+ cells in close proximity. A) 
Representative immunofluorescence images indicated visually comparable numbers of 
YFP+ tancytes (green) and BrdU+ cells (red). B) Upon opto-stimulation, a significant 
increase was seen in the number of BrdU+ cells in close proximity to YFP+ tanycytes 
(indicated with white arrows in A). No change was seen in quantified YFP+ cells, including 
C) tancytes or D) parenchymal cells. Data is expressed as box (median and interquartile 
range) and whisker (min/max values) plots. The mean (plus sign) and individual data points 
(black points) are also indicated. Mice used: n=6 for either treatment.	
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stimulation induced almost a three-fold increase in the mean density of YFP+ neuronal- 

(p=0.2) and glial-like (p=0.7) cells, respectively (Fig. 4.10D). 

When parenchymal YFP+ cells were assessed for expression of the neuronal marker, 

NeuN, the majority of neuronal-like YFP+ cells were positive for NeuN (Fig. 4.11A, B). 

Glial-like YFP+ cells did not express NeuN (Fig. 4.11C). Indeed, quantification of 

YFP+/NeuN+ and YFP+/NeuN- cells (Fig. 4.11D) indicated a similar magnitude of 

difference as seen for YPF+ neuronal-like and glial-like cell densities (Fig. 4.10D). 

However, these differences were not statistically significant (both,YFP+/NeuN- and 

YFP+/NeuN+; p=0.4, two-tailed Mann-Whitney test). 
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Figure 4.9. Long-term opto-stimulation of hypothalamic ChR2-YFP+ did not significantly 
increase hypothalamic BrdU+ cell numbers. A) Experimental plan: Following optic fibre-
implantation surgery (day -3), NCE-ChR2Y mice were given daily injections of tamoxifen 
(100mg/kg) and BrdU (50mg/kg) for 5 days (day 0-4; 6 hour interval between tamoxifen and 
BrdU injections). Mice were then opto-stimulated (twice daily, 4-6 hour interval; day 5-32) for 
28 days prior to perfusion-fixation (day 32; 2-4 hours after last optostimulation) and subsequent 
immunohistochemical analysis. B) Representative immunostaining images indicated 
increased BrdU uptake in opto-stimulated mice. C) Mean BrdU+ cell numbers are indicated as 
histograms (whiskers representing standard error of the mean). Individual data points (black 
points) are also indicated. Although an increasing trend in BrdU+ cells can be seen in opto-
stimulated brains, these differences were not statistically significant in any of the hypothalamic 
regions analysed (3V; 3rd ventricle ependymal layer, ME; median eminence, Pe; periventricular 
nucleus, Arc; arcuate nucleus, VMH; ventromedial nucleus, DMH; dorsomedial nucleus). Mice 
used: n=3 for either treatment.	



			

	 106	

 

Figure 4.10. Long-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not 
significantly increase YFP+ cell numbers or BrdU+ cells in close proximity. A) 
Representative immunofluorescence images indicated increased numbers of YFP+ tancytes 
(green) and close-proximity BrdU+ cells (white arrows) in optostimulated brains. However, 
upon quantification and statistical comparison, no significant increase was seen in the 
number of B) BrdU+ cells in close proximity to YFP+ tanycytes, C) YFP+ tanycytes or D) 
YFP+ parenchymal cells. Data is expressed as histograms indicating the mean with whiskers 
representing standard error of the mean. Individual data points (black points) are also 
indicated. Mice used: n=3 for either treatment.	
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Figure 4.11. Long-term opto-stimulation of hypothalamic ChR2-YFP+ cells did not 
significantly increase YFP+ neurons or non-neuronal YFP+ cells. Representative 
immunofluorescence images assessing parenchymal YFP+ cell co-localization with the pan 
neuronal marker, NeuN. A) Whilst the majority of YFP+ cells exhibiting neuronal morphologies 
co-expressed NeuN, B) some did not. C) glial-like YFP+ cells did not co-express NeuN. D) 
Quantification of YFP+/NeuN+ double-positive and YFP+/NeuN- cells indicated an increase in 
both populations in opto-stimulated brains. However, these differences were not statistically 
significant. Data is expressed as histograms indicating the mean with whiskers representing 
standard error of the mean. Individual data points (black points) are also indicated. Mice used: 
n=3 for either treatment.	
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To summarize the results from this chapter, in brain slices of NCE-ChR2Y mice optic 

stimulation of ChR2-expressing tanycytes elicited intracellular calcium waves that 

permeated the tanycyte layer in a similar intensity as 100µM ATP (when applied via the 

perfusion medium). In addition, opto-stimulation led to heterogeneous intracellular 

calcium responses in parenchymal cells, which was dependent on their close proximity 

(within 10µm) of ChR2-expressing tanycytes. Expression of ChR2 in NCE-ChR2Y mice 

was not restricted to tanycytes, indicating ChR2-expressing cells in the parenchyma as 

early as 3 days after tamoxifen injection. In vivo optogenetic stimulation of ChR2-

expressing cells in the hypothalamus for 7 days significantly increased the number of 

dividing (BrdU+) cells in the close vicinity of ChR2-expressing tanycytes, but did not alter 

overall hypothalamic cell proliferation. Finally, although long-term in vivo optogenetic 

stimulation (for 28 days) did not significantly increase the survival of (BrdU+) post-mitotic 

cells, the number of YFP+ tanycytes or YFP+ parenchymal (neuronal and non-

neuronal/glial) cells, an increasing trend (in all of the above) was observed, warranting 

further investigation/replication. 

Discussion 

Optogenetic stimulation in acute brain slices induced calcium responses in tanycytes 

reminiscent of those elicited by ATP  

In this study, we have demonstrated that (ChR2-expressing) tanycytes can be stimulated 

optogenetically to elicit reproducible intracellular calcium waves in the tanycyte layer, as 

previously shown with glucose or ATP [Frayling et al, 2011]. Indeed, since opto-

stimulation also led to the propagation of this intracellular calcium signal along the 

tanycyte layer, including in surrounding tanycytes that did not express ChR2, it can be 

inferred that optogenetic stimulation also led to the extracellular release of ATP. This 

interpretation can supported by assessing the effect of opto-stimulation on the calcium 

response and its propagation in the presence of P2Y1R inhibitors such as MRS2179 or 

MRS2500 [Frayling et al, 2011; Suyama et al, 2012], since propagation of the calcium 

response along the tanycyte layer is ATP-dependent [Frayling et al, 2011; Benford et al, 

2017]. 
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In order to confirm (and measure) ATP release from ChR2(YFP)+ tanycytes upon 

optostimulation, a range of imaging methods could be applied [Rajendran et al, 2016]. 

For example, fluorescent analogs of ATP, such as methylanthraniloyl-ATP could be used 

to assess vesicular ATP release from ChR2+ tanycytes in vitro (i.e. brain slices), as 

previously done for dopaminergic neurons [Ho et al, 2015]. For in vivo imaging, the 

luciferase-luciferin system has been used commonly as a genetically encoded ATP 

imaging assay [Manfredi et al, 2002] and has been successfully modified for extracellular 

ATP measurement [Praetorius & Leipziger, 2009]. However, some fallbacks include the 

requirement of administering exogenous substrate for detection, low signal 

(luminescence) yield and lack of absolute quantitation [Rajendran et al, 2016]. More 

recently, genetically encoded fluorescent protein-based ATP sensors such as ATeams 

[Imamura et al, 2009; Conely et al, 2017], QUEENs [Yaginuma et al, 2014] and 

PercevalHT [Berg et al, 2009; Tantama et al, 2013] have since been developed and/or 

re-engineered to overcome these fallbacks; these sensors primarily utilize fluorescence 

resonance energy transfer (FRET) to provide ratiometric measurements of changes in 

ATP levels and do not require addition of any substrate [Rajendran et al, 2016]. 

ChR2-expressing ependymocytes however, were not seen to respond to optostimulation. 

This is an unexpected result, as ChR2 stimulation should have allowed for calcium influx 

and thus a cytosolic change in intracellular calcium. However, it is possible that 

insufficient calcium influx may have occurred (partly due to the non-selective gating of 

ChR2 [Lin et al, 2009; Kato et al, 2012]) to trigger the feed-forward loop of purinergic 

signalling and amplification of the calcium response as seen in tanycytes. Indeed, such 

minimal changes in intracellular calcium may have either been undetected by Fura-8, or 

insufficient to classify as a response from the analysis (only ratiometric changes of ≥0.015 

were considered a calcium response). To date, studies have only detected P2X7 

expression in ependymocytes of the lateral ventricle and spinal cord, and predominantly 

mediate purinergic signaling via this receptor [Genzen et al, 2009; Gomez-Villafuertes et 

al, 2015; Marichal et al, 2016], however this has yet to be determined for hypothalamic 

ependymocytes. 

When 100µM ATP was applied to acute brain slices via perfusion, a delayed transient 

calcium response was observed, whereas when ATP was applied focally (via puffer 
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pipette) [Frayling et al, 2011], immediate calcium responses were observed. It is 

considered that the delay in response was due to the time-delay in the delivery of ATP to 

acute brain slices.  

Comparison of calcium responses generated by optogenetic (opto-) stimulation and ATP 

in tanycytes indicated a similar transient nature, further suggesting that the signalling 

mechanisms underlying these responses in both treatments are alike. Indeed, opto-

stimulation also generated relatively similar (peak) response magnitudes (75% as high in 

amplitude as) to 100µM ATP. This may suggest that opto-stimulation of ChR2-expressing 

tanycytes in NCE-ChR2Y mice may induce a similar magnitude of an effect/extracellular 

ATP release to 100uM ATP. However, it could be argued that the magnitude of opto-

stimulated responses may be overestimated due to the following reasons. Firstly, the 

actual concentration of ATP that triggered calcium responses from our study is not known 

(but likely less than 100µM) due to dilution when applied into the flow chamber (already 

containing aCSF). Secondly, it is possible that application of excessive ATP 

concentrations may generate saturated calcium responses, given that a peak 

concentration of only ~5µM extracellular ATP was sufficient to trigger responses 

endogenously (by glucose application) [Frayling et al, 2011]. Thus, it cannot be claimed 

that optogenetic stimulation can induce comparable calcium responses to 100µM ATP. 

Thus, in order to accurately estimate the extracellular concentration of ATP released after 

opto-stimulation, it would be suggested to compare such responses with lower (more 

physiological) concentrations of ATP (5-10µM). This would give a more accurate measure 

of the relative potency of opto-generated responses in tanycytes. Indeed, intracellular 

calcium levels and extracellular ATP levels strongly determine NSC/progenitor behaviour 

[Glaser et al, 2013]. Thus, it would be essential as to not induce non-physiological levels 

of calcium influx in tanycytes and potentially induce a different signalling pathway from 

endogenous activation [Frayling et al, 2011]. 

Optogenetic stimulation of tanycytes could induce downstream signalling in parenchymal 

cells 

In addition to tanycytes, intracellular calcium responses were also detected in some 

parenchymal cells of unknown cellular identity (Fig. 4.6). Although ChR2 expression was 
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absent in these cells, the proximity of these cells to ChR2-expressing tanycytes greatly 

modulated their capability to respond to opto-stimulation, suggesting that ChR2+ 

tanycytes may be capable of signalling to parenchymal cells in the close vicinity via ATP 

release. In support of this theory, another unpublished study indicated that selective 

optogenetic stimulation of tanycytes with a calcium-permeable channelrhodopsin 

(CaTCh) induced ATP-dependent depolarization and increased spontaneous synaptic 

firing of arcuate orexigenic and anorexigenic neurons [Bolborea et al, unpublished data]. 

Furthermore, several studies have indicated that tanycytes signal to peptidergic neurons 

in the arcuate nucleus via lactate release [Cortes-Campos et al, 2011; Elizondo-Vega et 

al, 2016; Uranga et al, 2017; Barahona et al, 2018]. In addition to neurons, tanycytes may 

also signal to act on parenchymal glia (including astrocytes and oligodendroglia) via 

purinergic signalling to regulate a host of processes, including glial-neuron 

communication and/or neurogenesis [Lohr et al, 2014; Rivera et al, 2016; Lecca et al, 

2016; Tang & Illes, 2017].  

Calcium responses generated by parenchymal cells were heterogeneous, exhibiting 

different response latencies and durations. These differential response dynamics may be 

indicative of the heterogeneity in cell-types (both neurons and glia) that tanycytes may 

potentially signal to. This interpretation (albeit highly speculative) is supported by the 

variability in the cell soma sizes of responsive parenchymal cells. On the other hand, the 

distance of these opto-responsive parenchymal cells from the tanycyte layer may also 

play a contributing factor to the heterogeneity in responses latencies; in some instances, 

parenchymal cells located at increased distances from the cell bodies of ChR2-

expressing tanycytes indicated increasing response latencies. However, due to the lack 

of quantitative analysis to demonstrate this relationship and the lack of any cell-type 

(morphological or gene-expression) characterization of these parenchymal cells, the 

factors underlying their heterogeneity in calcium responses and their cellular identity 

cannot be determined from the results of this study.  

The possibility that the blue light may have had a direct (aberrant) effect on these ChR2Y-

negative parenchymal cells is unlikely since in control brain slices (in which no tamoxifen 

was injected and ChR2 expressed) no intracellular calcium changes were seen (data not 

shown). 
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Tanycytes represent the majority of opto-responsive hypothalamic cells, albeit non-

specific ChR2 expression 

Upon, inducible cre-recombination, ChR2 expression (represented by YFP visualization) 

was seen in tanycytes of the lateral 3rd ventricle walls, indicating successful ChR2 

expression in subpopulations of all tanycyte sub-types (α1, α2 and β1) except β2 

tanycytes. However, YFP expression was not exclusively restricted to tanycytes, with 

additional positive cells being identified in the parenchyma (resembling neurons and glia) 

as early as 3 days after inducible cre-recombination. As with NCE-YFP mice, Cre-

recombinase expression was driven under the control of the nestin promoter. In addition 

to tanycytes [Rodriguez et al, 2005; Lee et al, 2012; Haan et al, 2013], nestin-expression 

(transient or sustained) has been reported in a range of cell-types, including 

ependymocytes [Chouaf-Lakdar et al, 2003; Hendrickson et al, 2011], some neurons 

[Hendrickson et al, 2011] and more debatably, in oligodendrocytes (and/or their 

progenitors), microglia and (reactive) astrocytes [Clarke et al, 1994; Takamori et al, 2009; 

Walker et al, 2010; Hendrickson et al, 2011; Elmore et al, 2014]. Thus, it is possible that 

upon inducible cre-recombination, in addition to tanycytes, these cells may have attained 

ChR2 expression and potentially have had an effect on neurogenesis upon optogenetic 

stimulation. Indeed, due to leaky cre-expression and/or activity, non-nestin-expressing 

cells have been seen in NCE-YFP (without tamoxifen). Therefore, leakiness in Cre-

activity prior to tamoxifen-induced recombination may have potentially caused additional 

hypothalamic cells to express ChR2, although this is likely minimal (based on our 

observations of very few YFP+ cells in NCE-YFP mice that were not injected with 

tamoxifen).   

Although the effects of optogenetic stimulation might not be solely attributed to ChR2+ 

tanycyte stimulation, the vast majority (98.2%) of light-responsive ChR2-YFP+ cells 

(excluding ependymocytes) were seen to be tanycytes; an average of 3162±248 YFP+ 

tanycytes (per mm2) were estimated along the surface area of the 3rd ventricle in 

comparison to 21±7 neuronal-like and 11±2 glial-like YFP+ cells (per mm3) of the 

hypothalamic parenchyma 7 days after tamoxifen injection (n=6; Fig. 4.8C, D). 

Ependymocytes were excluded from this calculation since they were not seen to elicit 

clear responses (if any) to opto-stimulation in acute brain slices. Since the ChR2+ 
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tanycyte population represents an overwhelming proportion to ChR2+ parenchymal cells, 

it could be speculated/argued that the effects seen upon in vivo optogenetic stimulation 

could have been mostly a result of tanycyte stimulation. 

Short-term in vivo optogenetic stimulation of nestin-expressing hypothalamic cells 

Opto-stimulation of nestin+ cells in the hypothalamus for 7 days did not significantly 

change the overall number of BrdU+ cells, nor the number of YFP+ cells (tanycytes or 

parenchymal). This may suggest that short-term opto-stimulation and consequently, 

short-term purinergic signalling was not sufficient to induce any apparent change in 

hypothalamic cell proliferation overall. However, a significant increase in BrdU+ cells in 

the close vicinity of YFP+ tanycytes (and/or their basal processes) was seen in opto-

stimulated brains. The contradicting observations of no overall change in BrdU+ cells but 

an increase in BrdU+ cells near YFP+ tanycytes may be explained by 2 possibilities that 

are not mutually exclusive. Firstly, opto-stimulation may have induced a spatial 

redistribution of BrdU+ cells within the hypothalamus, which may be suggestive of an 

effect on newborn (BrdU+) cell migration. Secondly, this increase in BrdU+ cells may 

simply represent an increase in cell proliferation (and survival during the 7-day period). 

However, it should be noted that the increase in BrdU+ cells near YFP+ tanycytes in opto-

stimulated brains (~50 cells/mm3, Fig. 4.8B) was comparatively miniscule to the total 

number of BrdU+ cells quantified in the whole hypothalamus (~1250-1300 cells/mm3, Fig. 

4.7C, HYPO histogram). Thus, it could be argued that this small (yet clear) effect may 

have been shadowed by collective quantification and comparison of all BrdU+ cells in the 

whole hypothalamus. 

ATP release and purinergic signalling have been shown to regulate neural 

stem/progenitor cell proliferation, migration and survival by a multitude of studies 

[reviewed in Lecca et al, 2016 & Tang & Illes, 2017]. ATP has particularly been seen to 

act on P2Y1 receptors to induce cell proliferation and migration in neural stem/progenitor 

cell populations [Weissman et al, 2004; Suyama et al, 2012; Santiago & Scemes, 2012; 

Cao et al, 2013; Boccazzi et al, 2014]. In the case that the increase in BrdU+ cells near 

YFP+ tanycytes may have been predominantly due to increased cell proliferation (and 

survival), the cell-type from which these newborn cells arose from is not known, but 
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several candidate progenitor populations can be proposed. Firstly, the expression of 

P2Y1 receptors in tanycytes might imply their opto-induced proliferation and migration of 

newborn cells along YFP+ tanycytes, in a similar fashion seen by radial glia during cortical 

development [Weissman et al, 2004; Ulrich et al, 2012]. Given that these BrdU+ cells 

were not YFP+, it can be inferred that they may not be the progeny of YFP+ tanycytes, 

but potentially of YFP-negative tanycytes. However, this is unlikely as no change in BrdU+ 

tanycytes (at the 3rd ventricle) was seen. Alternatively, the source of these BrdU+ cells 

could arise from subependymal astrocytes, which have been previously suggested to 

represent a potential subpopulation of hypothalamic neural stem/progenitor cells [Perez-

Martin et al, 2010; Rojczyk-Gołębiewska et al, 2014], although their expression profile of 

purinergic (P2Y1) receptors has yet to be investigated. Finally, opto-stimulation may have 

resulted in the purinergic activation of parenchymal progenitor populations such as NG2+ 

oligodendrocyte precursor cells (OPCs), which also express P2Y1 receptors and have 

previously shown to exhibit modest neurogenic potential under basal conditions [Agresti 

et al, 2005; Robins et al, 2013b]. 

On the other hand, if the increase in BrdU+ cells near YFP+ tanycytes was more due to 

a spatial redistribution of (and not necessarily an increase in) hypothalamic BrdU+ cells, 

this might be explained by the recruitment of reactive cells (such as astrocytes and/or 

OPCs). Such cells are recruited along increasing gradients of extracellular ATP 

concentrations in response to neuroinflammatory/ischaemic conditions [Di Virgilio et al, 

2009; Feng et al, 2015, Ulrich et al, 2012]. Indeed, it could be speculated that opto-

stimulation of ChR2(YFP)+ tanycytes in particular could have potentially led to the 

excessive release of ATP, and recruitment of such reactive cells to mediate/regulate 

neurogenesis [Robel et al, 2011; Ulrich et al, 2012; Lecca et al, 2016]. The effect of opto-

stimulation on OPC/astrocyte recruitment could be confirmed by assessing for co-

localization of BrdU with oligodendrocytic (NG2) and astrocytic (S100b) markers. An 

increase in the proportion of double-labelled cells would reflective this. 

Of note, BrdU+ cells in close proximity to YFP+ tanycytes were not quantified in specific 

hypothalamic regions/nuclei (but just as a density within the hypothalamic parenchyma). 

Given the possibility that optogenetic stimulation may induce recruitment and/or 

proliferation of reactive cells such as subependymal astrocytes and/or OPCs, it would be 
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interesting to assess any change in these BrdU+ cell (near-YFP+-tanycytes) numbers in 

particular hypothalamic regions such as the subependymal layer, the periventricular area 

and parenchymal nuclei between opto-stimulated and control mice. Similarly, (all) BrdU+ 

cells could be quantified in specific (arcuate, ventromedial, dorsomedial, lateral) 

hypothalamic nuclei in order to provide a higher-resolution analysis of the effect of short-

term opto-stimulation on parenchymal cell proliferation. In conjunction with co-localization 

analysis of OPC and astroglial markers (NG2 and GFAP, respectively), the source of 

these BrdU+ cells could be further determined. To conclude, optogenetic stimulation of 

ChR2+ cells may have increased parenchymal cell proliferation and/or migration near 

tanycytes, although the identity of these cells has yet to be determined.  

Long-term in vivo optogenetic stimulation of nestin-expressing hypothalamic cells 

Due to a small sample size (n=3 mice per treatment), the observations made from long-

term opto-stimulation experiments can only be considered as preliminary and speculative. 

Understandably, as data variance was high for the small sample size, any differences 

observed could not be reliably assessed for statistical significance. Nevertheless, visual 

and quantitative analysis indicated noteworthy differences in BrdU+ and YFP+ cells 

between opto-stimulated and control (non-stimulated) mice.  

A trend of increase in BrdU+ cells was seen at the 3rd ventricle ependymal layer, the 

periventricular and arcuate nuclei, suggesting a potential increase in cell survival and/or 

proliferation in these regions. Concurrently, a two-fold increase in YFP+ tanycytes 

numbers in opto-stimulated brains may also reflect increased longevity and/or 

proliferation of these cells during the 4 weeks. Indeed, BrdU was administered prior to 

opto-stimulation, thus labelling post-mitotic cells at the onset of opto-stimulation. 

However, whilst BrdU+ numbers may reflect an increase in cell survival, further 

proliferation of these cells could also result in an increase in BrdU+ cell numbers. 

Therefore, it cannot be specified whether an increase in BrdU+ cells, if any, was due to 

increased cell proliferation or survival of BrdU-labelled cells. The identity of these BrdU+ 

cells has yet to be elucidated. Furthermore, it has yet to be determined if the increase in 

parenchymal BrdU+ cell proliferation/survival was also accompanied by increased 

differentiation into neuronal or glial cell fates. 
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As with short-term opto-stimulation, the number of BrdU+ cells which were close to YFP+ 

tanycytes increased. Whilst the reason(s) underlying this increase is not known (whether 

it is due to increased cell proliferation, survival and/or migration, or whether, the increase 

in YFP+ tanycytes may simply increase the probability for BrdU+ cells to be located 

nearby), it suggests that opto-stimulation of ChR2+ tanycytes may be responsible for the 

observed effect. Thus, the (optogenetic) induction of purinergic signalling (ATP release) 

in tanycytes to induce an increase in cell proliferation, survival and/or migration is 

indicative of a potential role tanycytes may play in neurogenesis.  

Cross-comparison of BrdU+ cells (in close proximity to YFP+ cells) between short- and 

long-term opto-stimulation experiments would have given further indication as to whether 

an increase in cell proliferation and/or survival is seen over time. However comparisons 

between these experiments cannot be made due to differences in BrdU administration 

concentrations, timing (before or during opto-stimulation) and durations; in short-term 

experiments, double the BrdU concentration (100mg/kg) was applied for 7 days, in 

comparison to long-term (50mg/kg for 5 days). Thus, for instance, although it may appear 

that fewer BrdU+ cells near YFP+ tanycytes were seen in the long-term (compared to 

short-term) opto-stimulated brains (Fig. 4.9C, Fig. 4.10B), this may not be the case. 

The increases in YFP+ neurons and non-neuronal (likely a heterogeneous population of 

glia and migrating neuroblasts) cells upon opto-stimulation may potentially reflect 

tanycytes’ reported involvement in neurogenesis (and gliogenesis), whereby tanycytes 

and/or their progeny were suggested to migrate and differentiate into neurons and 

astroglia [Lee et al, 2012; Haan et al, 2013; Robins et al, 2013a]. Although it has been 

argued that tanycytes represent the vast majority of light-responsive ChR2+ cells in the 

hypothalamus, the possibility that the increase in YFP+ parenchymal cells may have been 

in part due to opto-stimulation of other ChR2+ cell-populations cannot be ignored. Indeed, 

parenchymal NG2+ OPCs have previously been identified with nestin expression [Walker 

et al, 2010] and reported to retain modest neuro- and gliogenic capacity in the 

hypothalamus [Robins et al, 2013b], potentially mediated by purinergic signalling [Agresti 

et al, 2005; Lecca et al, 2016], although no nestin+ parenchymal YFP+ cells were 

identified in NCE-YFP mice (Chapter 2) Since subependymal cells have been reported to 

express nestin [Holmin, 1997], hypothalamic subependymal astrocytes (another potential 
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neural stem/progenitor population), may have also expressed ChR2-YFP+ and thus, their 

contribution to YFP+ neurons and/or glia cannot be overlooked. Finally, studies have 

shown that optogenetic stimulation of neuronal activity can modulate/induce neurogenic 

activity in different brain/neurogenic regions [Paez-Gonzalez P, 2014; Song et al, 2012; 

2013; 2017]. This raises a similar possibility with optogenetic stimulation of (the few) 

ChR2+ neurons in the hypothalamus. Further work needs to be performed to test whether 

selective opto-stimulation of tanycytes and of these separate parenchymal cell 

populations could independently affect cell proliferation and neurogenesis. 

Summary  

An optogenetic approach was used to investigate the mechanistic link between tanycytes’ 

chemosensory and neurogenic roles by assessing the effect of tanycyte stimulation on 

adult hypothalamic neurogenesis; ChR2 was used to induce intracellular calcium 

responses as seen upon endogenous tanycyte stimulation. Using calcium imaging on 

brain slices in vitro, we demonstrated that ChR2-expressing tanycytes could elicit robust 

calcium responses and interestingly, signal to proximal parenchymal cells, presumably 

via ATP release. Whilst short-term opto-stimulation of cells under the transgenic nestin 

promoter (predominantly tanycytes) was able to induce cell 

proliferation/survival/migration, we found a trend that long-term opto-stimulation was able 

to induce an increase in labelled neurons and glia derived from putative hypothalamic 

neural stem/progenitor cells. Thus hypothalamic neurogenesis may potentially be 

stimulated by optically inducing calcium signalling. 
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General summary of discussion 

Given that the results obtained in this project have been thoroughly discussed in their 

respective chapters, this section will focus on the potential impact of this project’s findings 

on our current understanding of adult hypothalamic neurogenesis, the major 

methodological caveats of our experiments and future studies that can address these 

issues and build on our findings further. 

Regulation of adult hypothalamic neurogenesis by extrinsic stimuli 

In this project, we first investigated the effect of three external factors (physical exercise, 

fluoxetine and acesulfame-K; Ace-K) on hypothalamic cell proliferation and survival with 

the intention of identifying/elucidating potential (external) regulatory factors of adult 

hypothalamic neurogenesis. Our results indicated no change in hypothalamic cell 

proliferation and/or survival upon short/mid-term exposure (2-3 weeks) to physical 

exercise or fluoxetine. In the case of Ace-K exposure (2 weeks), some mixed effects on 

cell proliferation and/or survival were seen (decrease in the DMH, increase in the VMH), 

although these changes were relatively miniscule. Thus, our data suggests that short/mid-

term exposure to these extrinsic factors may not induce a substantial change in cell 

proliferation, which in turn may not be sufficient to alter neurogenesis levels. 

The levels of basal cell proliferation and neurogenesis in the hypothalamus has been 

noted to be lower than that of the canonical neurogenic niches for the hippocampus (SGZ) 

and the olfactory bulb (SVZ) [Kokoeva et al, 2007; Lee & Blackshaw, 2012; Robins et al, 

2013a]. This may indicate the level to which these regions exhibit constitutive plasticity 

and require modification of the neuronal circuitry underlying their respective physiological 

functions. Indeed, it has been previously suggested that neurogenesis in the 

hippocampus and olfactory bulb may serve as an adaptive mechanism for discriminating 

between similar or ambiguous stimuli to allow for dynamic refinement of the contextual 

and perceptual (olfactory) memory to these stimuli in a complex environment [Sahay et 

al, 2011; Migaud et al, 2016]. Thus, it is understandable that a high rate of neurogenesis 

and neuronal turnover is required to fulfil this demand. However, the hypothalamus, being 

a major regulatory centre for several (basic yet crucial) homeostatic functions may not 

require such constant and dynamic refinement/modification of the neuronal networks 
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regulating these processes. Instead it would be more plausible that these neuronal 

networks, for example of feeding, are established prenatally [Bouret & Simerly, 2006; 

Padilla et al, 2010] and mostly modified/adjusted during postnatal periods, during which, 

high levels of neurogenesis and turnover are seen [Lee et al, 2012; McNay et al, 2012; 

Haan et al, 2013]. Adult neurogenesis may thus serve to gradually/slowly refine these 

neuronal networks upon long-term changes in the environment. This may explain why 

some studies, using long exposure periods, were able to see an increase in cell 

proliferation in response to physical exercise and fluoxetine [Sachs & Caron, 2014, Niwa 

et al, 2015]. 

In contrast to our results however, other reports have been published indicating that the 

adult hypothalamus is malleable enough to exhibit short-term changes in cell proliferation 

upon exposure to several different external stimuli, including physical exercise, dietary 

changes (to HFD) and heat exposure [Matsuzaki et al, 2009; Li et al, 2013a; Borg et al, 

2014; Gouaze et al, 2013]. Indeed, an absence of an observed effect in our study might 

reflect an ineffective BrdU-labelling methodology. Whilst a single pulse of BrdU delivered 

peripherally has proven sufficient for detecting and assessing cell proliferation in the 

canonical neurogenic niches, the use of this method in the hypothalamus appears to have 

some limitations. Peripheral and central BrdU delivery methods have shown to 

differentially label proliferative cells in the hypothalamus, reflecting a potential variability 

in BrdU permeability throughout the hypothalamus [Kokoeva et al, 2007; Cifuentes et al, 

2011; Lee et al, 2012; Sousa-Ferreira et al, 2014a]. Thus, it is possible that in our studies, 

a single peripheral pulse of BrdU may have proven insufficient to label a high number of 

proliferative cells to detect a change in cell proliferation. It would be suggested to use 

multiple peripheral (intraperitoneal) and central (intracerebroventricular) injections in 

future studies to label parenchymal and ventricular proliferative cells more effectively. 

In relation to the concern of insufficient BrdU-labelling with a single BrdU-pulse, this also 

raises the possibility of high variance in the number of BrdU+ cells in the respective 

nuclei/regions between mice (of the same experimental treatment). Indeed, one way to 

assess for the extent of variance would be to separately quantify and assess the variance 

in BrdU+ cell numbers between left and right brain hemispheres. 
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Increased cell proliferation induced upon short-term exposure however, may not 

necessarily reflect increased neurogenesis; some of these studies indicated no significant 

change in adult-born (BrdU+/NeuN+) neurons generated immediately after short-term (6-

13 days) exposure to physical exercise or heat [Matsuzaki et al, 2009; Li et al, 2013a]. 

Similarly, upon short/mid-term exposure to HFD (15-21 days), an initial/transient increase 

in cell proliferation was seen (after 3 days), but there was no increase in neuronal fate 

rate (BrdU+/NeuN+ cell number) [Gouaze et al, 2013]. Interestingly, the cell-types that 

were seen to proliferate upon HFD onset were of astroglial (GFAP+) and microglial (Iba-

1+) lineage. Indeed, it was suggested that amplification of these cell-types was required 

for the shift in the maturation/specification of newborn neurons to anorectic POMC 

neurons as an adaptive mechanism to regulate food/energy intake upon the onset of HFD 

[Gouaze et al, 2013].  

On the other hand, prolonged exposure to these external stimuli has indeed demonstrated 

a regulatory effect on hypothalamic neurogenesis. Heat and physical activity, both 

increased the number of adult-born (BrdU+/Neun+) neurons after 33-53 days of exposure 

[Matsuzaki et al, 2009; Li et al, 2013a], whilst HFD induced a divalent effect: increasing 

the number of adult-born (BrdU+/Hu+) neurons in the median eminence (of female mice), 

whilst decreasing these numbers in arcuate nucleus (of both sexes) after 33 days of 

exposure [Lee et al, 2014]. Interestingly, some studies did not see any change in adult-

born neurons even after exposure to external stimuli such as physical activity (for 33 days) 

or fluoxetine (for 28 days) [Borg et al, 2014; Sachs & Caron, 2014], potentially suggesting 

that longer periods of exposure/treatment may be required to reliably increase the number 

and/or survival of adult-born neurons. Thus, it seems that short-term exposure to external 

stimuli may induce changes in the maturation and integration of newborn neurons to 

adapt to these external/environmental changes and that increased generation and/or 

survival of these newborn neurons may require longer exposure. 

Genetic labelling of putative hypothalamic neural stem/progenitor cells 

We used an inducible genetic labelling approach (Nestin-CreER:Rosa-lox-STOP-lox-

YFP) that has been used previously to study the canonical neurogenic niches [Carlen et 

al, 2006; Lagace et al, 2007; Burns et al, 2007; Imayoshi et al, 2006; Chen et al, 2009; 
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Giachino & Taylor, 2009] to identify and characterize adult neural stem/progenitor cells in 

the hypothalamus. Whilst tanycytes and ependymocytes were predominantly labelled, 

other reporter-positive cells were also seen in the parenchyma shortly after induced-

recombination, reinforcing the notion that several putative neural stem/progenitor cell 

populations may exist in the hypothalamus [Li et al, 2012; Lee & Blackshaw, 2012; Sousa-

Ferreira et al, 2014a]. Indeed, temporal analysis indicated an increasing trend in reporter-

labelled cells in the parenchyma, supporting previous literature reporting the migration of 

neural progenitors into the hypothalamic parenchyma [Xu et al, 2005; Haan et al, 2013; 

Robins et al, 2013a]. However, potential amplification of labelled parenchymal neural 

stem/progenitor cells cannot be ruled out. 

However, it remains to be determined what cell-types may comprise these parenchymal 

reporter-labelled cells following induced-recombination. To that effect, it has yet to be 

clearly demonstrated if this genetic labelling approach exclusively labels for hypothalamic 

neural progenitor cells. Thus, further phenotypic analysis (co-expression studies) would 

help to elucidate the identity of these labelled cells and their potential as neural 

progenitors. In the case that the labelled parenchymal cells may represent neural stem 

cells and/or progenitors, such as NG2+ glia [Robins et al, 2013b] or Dcx+ neuroblasts 

[Batailler et al, 2014], this model may be of further use in allowing the investigation of the 

effects of external factors and genetic manipulation (deletion) on hypothalamic neural 

stem/progenitor cell behaviour (migration, proliferation, self-renewal and cell fate), as 

recently reported in a similar mouse model (Nestin-CreERT2;CAG-tdTomato) [Chaker et 

al, 2016]. Given that hypothalamic neural stem/progenitor cells may likely constitute a 

heterogeneous population, it would also be interesting to assess if there is a difference in 

effects seen between those labelled under the control of other regulatory (promoter) 

sequences of generic neural stem/progenitor genes, such as Sox-2. 

Optogenetic stimulation of putative hypothalamic neural stem/progenitor cells 

We used a similar genetically inducible mouse model (Nestin-CreER:Rosa-lox-STOP-lox-

ChR2-YFP) with the aim to induce expression of channelrhodopsin in tanycytes and 

investigate the effect of their optogenetic stimulation on hypothalamic neurogenesis. 

However, as with the previous mouse model, given that the Nestin-CreER driver construct 
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did not label tanycytes exclusively, the effects observed cannot be unequivocally 

attributed to tanycyte stimulation, especially if parenchymal cells expressing ChR2 may 

be neural stem/progenitor cells. Upon short-term optogenetic stimulation, we observed 

an increase in cell proliferation in the close vicinity of ChR2-expressing tanycytes, 

potentially suggesting that tanycytes may regulate parenchymal progenitor cell 

proliferation or migration. Interestingly, long-term stimulation indicated an increasing 

trend in YFP-labelled tanycytes and parenchymal (neuron-like and glia-like) cells, 

potentially indicative of increased tanycyte proliferation and neurogenesis. These results 

may thus support the notion above that long-term and not short-term stimulation (by 

changes in the external environment/stimuli) may upregulate neurogenesis. 

Although these results are not conclusive, our results provide interesting preliminary data 

for future investigation and corroboration. It would be of particular interest to assess 

whether selective optogenetic stimulation of tanycytes could indeed reiterate our results 

and induce increased cell proliferation and neurogenesis. Other studies have reported 

the development and use of Cre-driver mice under the expression of radial glia-specific 

promoters, such as FGF10 or Rax, that confer substantial specificity to tanycytes 

[Hajohosseini et al, 2008; Haan et al, 2013; Miranda-Angulo et al, 2014; Pak et al, 2014]. 

Accordingly, promoter sequences of these, or other tanycyte-specific genes such as 

Raldh1 [Shearer et al, 2012; Stoney et al, 2016], could be used to drive CreER-

expression. Following from this, similar optogenetic experiments could be carried out to 

address whether β-tanycytes or α-tanycytes may differentially contribute towards adult 

neurogenesis using CreER driver lines	 to label the respective subpopulations. Whilst 

FGF10-CreER has proven specific for β-tanycytes [Haan et al, 2013], Raldh1 may present 

a more suitable candidate to specify Cre-expression in α-tanycytes [Shearer et al, 2012]. 

Indeed, whilst optogenetic stimulation with ChR2 was shown to induce modest calcium 

responses in tanycytes from our in vitro validation experiments, a more robust calcium 

response could potentially be elicited by the use of a more calcium-permeable 

channelrhodopsin variant, such as CatCh [Kleinlogel et al, 2011]. Finally, it would be of 

great interest in further investigating the functional consequences of tanycyte-mediated 

neurogenesis on hypothalamic functions in addition to feeding and energy metabolism 

[Lee et al, 2012; Haan et al, 2013; Goodman & Hajihosseini, 2015] through behavioural 
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studies. Thus, it may also be of use to consider other less invasive strategies, such as 

chemogenetic approaches that make use of designer receptors exclusively activated by 

designer drugs (DREADDs), to stimulate tanycytes for long and sustained periods of time 

[Roth, 2016; Smith et al, 2016]. 

We rationalized using an optogenetic strategy for tanycyte stimulation based on the notion 

that neurogenic induction may comprise of a common mechanism to tanycyte 

chemosensation; optogenetic stimulation may elicit intracellular calcium waves/signalling 

similarly to that elicited by purinergic stimulation of P2Y1 receptors upon chemosensation 

of ATP and other nutritional signals [Frayling et al, 2011; Benford et al, 2017]. Indeed, 

whilst purinergic signalling has been implicated in progenitor cell proliferation in 

neurogenic niches such as the SGZ and SVZ [Gampe et al, 2015], it is not clear if 

optogenetic stimulation may have induced neurogenesis via purinergic signalling in our 

experiments. Thus, it would be of interest in assessing whether tanycyte (and the 

collectively, hypothalamic neural stem/progenitor cell) proliferation and hypothalamic 

neurogenesis might be regulated by purinergic signalling through gene silencing (shRNA 

mediated RNA interference of P2Y1 receptors to inhibit purinergic signalling) or gene 

deletion (of NTDPase 2 to induce overstimulation of purinergic signalling) studies. 
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Concluding remarks 

In this thesis, I first identified acesulfame-K as a novel external factor regulating the 

number of newly-generated cells in the adult hypothalamus, which may potentially affect 

neurogenesis in the long-term. Second, I developed and characterized a mouse model 

(NCE-YFP) predominantly labeling ependymal cells of the 3rd ventricle, including 

tanycytes. This model may serve useful in visualizing the effect of external factors/stimuli 

or genetic manipulation on putative hypothalamic neural stem/progenitor cell behaviour. 

Finally, based on the NCE-YFP mouse model, I have generated a optogenetic mouse 

model (NCE-ChR2Y) and successfully validated its application to stimulate tanycytes. 

Furthermore, I provided preliminary evidence to suggest that optogenetic stimulation of 

putative hypothalamic neural stem cells and/or progenitors can modulate adult 

neurogenesis. This novel optogenetic strategy may prove useful in future studies aiming 

to elucidate the differential contribution of distinct neural progenitor populations to adult 

hypothalamic neurogenesis and the functional/behavioural consequences of their 

manipulation. To conclude, our findings suggest that adult hypothalamic neurogenesis is 

regulated slowly, on a long-term basis to reliably adapt to fluctuating stimuli in the external 

environment. 
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