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After �ring ti(b[i]) , let�7 denote the time instant when �ring
t(iC1)0 ends. Then, we have�7� �4 D 5�  2

(iC1)0 D �(iC1)0�
 2

(iC1)0 D ��
i(b[i]) . By (4.4), we have5 � ��

(iC1)0 � ��
i(b[i]) ,

or �5 � �4 � �7 � �4, leading to�5 � �7. This implies
that wheneverui(b[i]) andt(iC1)0 are scheduled to �re, they are
enabled. Hence, the buffer does not affect the realization of
a cyclic schedule for Ci and CiC1. Similarly, if b[i] 2 3R

i ,
we can show that if (4.5) holds, the buffer does not affect the
realization of a cyclic schedule for Ci and CiC1.

Necessity:If b[i] 2 3P
i , let �8 denote the time instant

when �ring ti(b[i]) ends and �ring u(iC1)0 starts, and�9
the time instant when �ringui(b[i]) starts. Then, from the
`̀ Suf�ciency'', we have�9 � �8 D 5 � ��

(iC1)0. After �ring
ti(b[i]) , let�10 denote the time instant when �ringt(iC1)0 ends.
Then, we have�10 � �8 D ��

i(b[i]) . Assume that (4.4) is not
satis�ed, or�9 � �8 < �10 � �8. Then,�9 < �10, which
implies that whenRi comes topi(b[i]) for unloading a wafer by
�ring ui(b[i]) , transitionui(b[i]) is not enabled yet. Hence,ui(b[i])
can �re only at time instant�10 but not�9, and the time taken
for completing a wafer atSi(b[i]) is2 D (�10� �8)C��

(iC1)0 >
(�9 � �8) C ��

(iC1)0 D 5. This implies that the cycle time is
greater than5, which shows the necessity of (4.4). Similarly,
if b[i] 2 3R

i , we can show the necessity of (4.5). �
With Theorem 4, we can �rst allocate the robot waiting

time for CK . Then, check if Condition (4.4) or (4.5) is satis-
�ed for the buffer connecting CK and CK� 1. If not, there is no
OSLB; otherwise, allocate the robot waiting time for CK� 1.
Thereafter, test if Condition (4.4) or (4.5) is satis�ed for the
buffer linking CK� 1 and CK� 2. If not, there is no OSLB;
otherwise, allocate the robot waiting time for CK� 2. In such
a way, the robot waiting time for CK� 3, CK� 4; : : :, and C1 is
set sequentially. We next derive a fast algorithm to test if there
is an OSLB.

B. SCHEDULING OF K-CLUSTER TOOLS
By Theorem 4 and (3.3)�(3.4), for the buffer linking Ci and
CiC1, i 2 NNNK � 1, one can regulate the robot waiting time!ij 's
to make Condition (4.4) (or 4.5) satis�ed whenb[i] 2 3P

i
(or b[i] 2 3R

i ) such that an OSLB is found. Next, we discuss
how to determine!ij 's to �nd an OSLB.

Let !�
ij D !ij � �ij , j 2 3R

i nf0;b[i]}, and !�
ij D !ij ,

j 2 3R
i \ f 0, b[i]}. Then, with �ij known, !�

ij is known
when!ij is determined. It follows from (3.6) that there is an
expression

P
k2I ij nfjg!ik in �ij for Stepj denoted bySij , which

means that, during the process for completing a wafer atSij ,
Ri needs to wait at each stepk, k 2 I ij nfjgfor !ik (!ik D 0
may occur) time units. We de�ne Z(�ij ) D f kj!ik appears
in �ij }. Meanwhile,!ik may be contained in more than one
�ij , j 2 �n[i] . We de�ne S(!ik ) D f jj!ik appears in�ij
andj 2 �n[i]}.

Taking �i D (Ai0Ai1Ai4Ai3Ai2) as an example, we have
Z(�i0) D I i0nf0g D f1;4g. As!i0 appears in both�i1 and�i2,
we haveS(!i0) D f 1;2g. Similarly, we haveZ(�i1) D f 0, 2,
3, 4} andS(!i1) D f 0, 2}; Z(�i2) D f 0, 1} andS(!i2) D
f1, 3}; Z(�i3) D f 2gandS(!i3) D f 1, 4}; andZ(�i4) D f 3g

andS(!i4) D f 0, 1}. Next, we de�ne function 3
ik :

 3
ik D

(
!ik ; if k 2 3P

i

!�
ik ; if k 2 3R

i
(4.6)

By (4.6), we have!ik D  3
ik C �ik , k 2 3R

i , and
!ik D  3

ik , k 2 3P
i . Hence, to determine!ik is to deter-

mine 3
ik . According to (3.8) and (4.6),

P
k2�n[i]

 3
ik D 5 �

( 0i C �ih C
P

n2Qih
�in) D �, which means that we need

assign� time units to 3
ik 's such that each step owns a cycle

time5.
For b[i] 2 3P

i , to satisfy (4.4), we need setP
k2I i(b[i])nfb[i]g!ik in ��

(iC1)0 and
P

k2I(iC1)0nf0g!(iC1)k in
��

i(b[i]) such that they are as small as possible. This implies that
!ik (or  3

ik ), k =2 I i(b[i])nfb[i]}, and !(iC1)k (or  3
(iC1)k), k =2

I (iC1)0nf0g, should be set as large as possible. Forb[i] 2 3R
i ,

to make (4.5) satis�ed, we need set!i(b[i]) (or  3
i(b[i])), the left

side of (4.5), as large as possible, while
P

k2I(iC1)0nf0g!(iC1)k

(or
P

k2I(iC1)0nf0g
3
(iC1)k) in ��

i(b[i]) as small as possible.
We use& to represent the current available remaining time

for allocation with its initial value being set as�. With (3.9)
and (4.2), we present how to set 3

ik 's next.
Given Ci , i 2 NNNK , initially we set 3

ik D 0,k 2 �n[i] . Then,
 3

ik 's are modi�ed for each Ci from i D K to i D 1 as follows.
For Ci , i D K, with  3

ik , k 2 �n[K ] , being initialized as 0,
 3

ik , k =2 IK0nf0g, is modi�ed one by one in an ascending
order ofk. We modify 3

ik D Minf5 � �ij �
P

l 6Dk 
3
il , &},

j 2 S(!ik ) andl 2 Z(�ij ). Note that 3
ik (or !ik ) may appear

in more than one�ij , and�ij may contain more than one 3
il

(or !il ). Hence, by 3
ik D Minf5 � �ij �

P
l 6Dk 

3
il , &}, j 2

S(!ik ), l 2 Z(�ij ), we ensure that the cycle time for any step is
not more than5. After 3

ik is modi�ed, & is updated as& �  3
ik .

In this way, we claim that 3
ik is set as large as possi-

ble such that!Kk, k 2 IK0nf0g, can be as small as
possible.

Next, for CK� 1, if b[K � 1] 2 3P
K� 1, we check if

(4.4) holds. If so, similarly, fork =2 (I (K � 1)0nf0g) [
(I (K � 1)(b[K � 1])nfb[K � 1]g), in an ascending order ofk,
!(K � 1)k is set as large as possible. Then, fork 2
(I (K � 1)(b[K � 1])nfb[K � 1]g)n(I (K � 1)0nf0g), in an ascending
order, set!(K � 1)k as large as possible while ensuring the
satisfaction of (4.4). This can be realized by modifying 3

ik
such that it is less than (5 � (4�i C 3�i C 2� (jI i(b[i]) j � 2) �
(�i C �i) � j Qi(b[i]) j � �i)) � ��

i(b[i]) �
P

p2I i(b[i])nfb[i];kg
3
ip).

Hence, we have 3
ik D Minf5 � �ij �

P
l 6Dk 

3
il , & , (5 �

(4�i C 3�i C 2� (jI i(b[i]) j � 2)� (�i C�i) � j Qi(b[i]) j � �i)) �
��

i(b[i]) �
P

p2I i(b[i])nfb[i];kg
3
ip}, j 2 S(!ik ) andl 2 Z(�ij ).

Next, fork 2 (I (K � 1)(b[K � 1])nfb[K � 1]g) \ (I (K � 1)0nf0g),
in an ascending order, set!(K � 1)k as large as pos-
sible while satisfying (4.4). At last, in an ascending
order, set!(K � 1)k, k 2 (I (K � 1)0nf0g)n(I (K � 1)(b[K � 1])n
fb[K � 1]g), as large as possible. In this way,!(K � 1)k,
k 2 I (K � 1)0nf0g, can be as small as possible. However,
if (4.4) does not hold, we must conclude that there is no OSLB
for this multi-cluster tool.
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If b[K � 1] 2 3R
K� 1, we set 3

i(b[i]) D ��
i(b[i]) and,

for eachj 2 S(!i(b[i])), check if  3
i(b[i]) > Minf5 � �ij ,

5 � ( 0i C �ih C
P

k2Qih
�ik )jh 2 3R

i } holds. If so, there
is no OSLB, since the cycle time of Stepj is longer than5,
which violates (4.2). Otherwise, fork =2 I (K � 1)0nf0g, in an
ascending order, set!(K � 1)k as large as possible. In this way,
!(K � 1)k, k 2 I (K � 1)0nf0g, can be as small as possible. In a
similar way, the robot waiting time for CK� 2;CK� 3; : : :, and
C1 is set sequentially. In such a way, we can check if there
is an OSLB. De�ne1i D 5 � (4�i C 3�i C 2 � (jI i(b[i]) j �
2) � (�i C �i) � j Qi(b[i]) j � �i) andr iC1 D ��

i(b[i]) . Then,
Algorithm 5 is presented.

Algorithm 5:Check if an OSLB exists
Step1: For i 2 NNNK andj 2 �n[i] , calculate 0i , �ij , 5i ,

and5, and letQ D 1.
Step2: Determine!Kk, k 2 �n[K ]

2.1 i  K and 3
ik  0, k 2 �n[i] ;

2.2 For (k D 0; k � n[i]; kCC), if k =2 I i0nf0g, update
 3

ik D Minf5 � �ij �
P

l 6Dk 
3
il , 5 � ( 0i C �ih C

P
n2Qih

�in) �
Pn[i]

qD0 
3
iq}, j 2 S(!ik ), l 2 Z(�ij ), and

h 2 3R
i ;

2.3 For (k D 0; k � n[i]; kCC), if k 2 I i0nf0g, update 3
ik

as Step 2.2;
2.4 Fork 2 �n[i] , !ik D  3

ik C �ik if k 2 3R
i , !ik D  3

ik ,
otherwise;

2.5 i  i � 1;
2.6 In Ci , if b[i] 2 3P

i , go to Step 3; otherwise Step 4.
Step3: Determine!ik , i 2 NNNK � 1 andk 2 �n[i] , with b[i] 2

3P
i
3.1  3

ik  0, k 2 �n[i] ;
3.2 If r iC1 > 1i , Q  0 and go to Step 5; for (k D 0; k �

n[i]; kCC), if k =2 (I i0nf0g)[ (I i(b[i])nfb[i]}), update 3
ik

as Step 2.2, otherwise;
3.3 For (k D 0; k � n[i]; kCC), if k 2

(I i(b[i])nfb[i]g)n(I i0nf0g), update as 3
ik D Minf5� �ij �P

l 6Dk 
3
il , 5 � ( 0i C �ih C

P
n2Qih

�in) �
Pn[i]

qD0 
3
iq,

1i �r iC1�
P

p2I i(b[i])nfb[i];kg
3
ip}, j 2 S(!ik ), l 2 Z(�ij ),

andh 2 3R
i ;

3.4 For (k D 0; k � n[i]; kCC), if k 2 (I i(b[i])nfb[i]g) \
(I i0nf0g), update 3

ik as Step 3.3;
3.5 For (k D 0; k � n[i]; kCC), if k 2

(I i0nf0g)n(I i(b[i])nfb[i]}), update 3
ik as Step 2.2;

3.6 Fork 2 �n[i] , while k 2 3R
i , !ik D  3

ik C �ik ; !ik D
 3

ik , otherwise;
3.7 i  i � 1;
3.8 In Ci , if b[i] 2 3P

i , go to Step 3; otherwise Step 4.
Step4: Determine!ik , i 2 NNNK � 1 andk 2 �n[i] , with b[i] 2

3R
i
4.1  3

i(b[i])  ��
i(b[i]) and 3

ik  0, k 2 �n[i]nfb[i]g;
4.2 If  3

i(b[i]) > Minf5 � �ij ,5 � ( 0i C�ih C
P

k2Qih
�ik )},

j 2 S(!i(b[i])) andh 2 3R
i , Q  0 and go to Step 5,

otherwise Step 4.3;
4.3 For (k D 0; k � n[i];kCC), if k =2 I i0nf0g, update

 3
ik as Step 2.2. Note that ifb[i] =2 I i0nf0g, we have

 3
i(b[i]) D Minf5 � �ij �

P
l 6Db[i] 

3
il ,5 � ( 0i C �ih C

P
n2Qih

�in) �
P 3

iq
q2�n[i]nfb[i]g}, j 2 S(!i(b[i])), l 2 Z(�ij )

andh 2 3R
i ;

4.4 For (k D 0; k � n[i]; kCC), if k 2 I i0n{0}, update
 3

ik as Step 2.2. Note that ifb[i] 2 I i0n{0}, the value of
 3

i(b[i]) is set as Step 4.3;
4.5 For k 2 �n[i] , while k 2 3R

i , !ik D  3
ik C �ik ,

otherwise,!ik D  3
ik ;

4.6 i  i � 1;
4.7 In Ci , if b[i] 2 3P

i , go to Step 3; otherwise Step 4.

Step5: ReturnQ and end.
By Algorithm 5, for a TD single-armK-cluster tool, if it

returnsQ D 1, an OSLB is obtained by setting the robot
waiting time; otherwise, ifQ D 0, there is no OSLB. For
theQ D 0 case, there is a question that if there is still a one-
wafer cyclic schedule for a TD single-armK-cluster tool and
how to �nd such a schedule if it exists. It remains open.

In Step 2 of Algorithm 5, we initialize 3
ik  0, k 2 �n[i] .

Then, in Step 2.2, set 3
ik as large as possible, fork =2 I i0n{0},

in an ascending order. As5 � �ij �
P

l 6Dk 
3
il � 0 and

5 � ( 0i C �ih C
P

n2Qih
�in) �

Pn[i]
qD0 

3
iq � 0,  3

ik is
nonnegative. Let 3

iq denote the last one to be set, it must
have 3

iq D 5 � ( 0i C �ih C
P

n2Qih
�in) �

P
k2�n[i]nfqg

3
ik ,

such that
Pn[i]

kD0!ik D 5 �  0i , where!ik D  3
ik C �ik if

k 2 3R
i , and!ik D  3

ik if k 2 3P
i . In this way, we make the

cycle time of Ci equal to5 as required and the robot waiting
time set in Step 2 is nonnegative. Similarly, we can set the
robot waiting time in Steps 3 and 4 to be nonnegative and
we have

Pn[i]
kD0!ik D 5 �  0i , where!ik D  3

ik C �ik if
k 2 3R

i , and!ik D  3
ik if k 2 3P

i . Note that in Step 3.3,
1i � r iC1 �

P
p2I i(b[i])nfb[i];kg

3
ip is used to satisfy (4.4).

For Algorithm 5, we have the following result.
Theorem 6:Algorithm 5 is of polynomial complexity.

Proof: In Algorithm 5, if Q D 1, an OSLB can be
obtained and otherwise, ifQ D 0 is returned, there is no
such a schedule. To test the existence of such a schedule,
by Algorithm 5, we have to set the robot waiting time from
CK to C1 one by one. In the worst case, we have to do so for
all of the individual cluster tools once and meanwhile check
whether Condition (4.4) or (4.5) is met or not for each buffer.
Let H D Max(n[i] C 1), i 2 NNNK . For each Stepj in Ci , we
initialize  3

ik D 0, k 2 �n[i] . Thereafter, determine the value
of  3

ik , k 2 �n[i] , one by one. At last, we set!ik D  3
ik C �ik

for k 2 3R
i , and!ik D  3

ik for k 2 3P
i . Hence, at most

2H C 1 operations are needed in setting the robot waiting
time for Ci , i 2 NNNK . Also, there areK � 1 buffers for
checking Condition (4.4) or (4.5). Thus, at most (2H C 1) �
K C K � 1 D 2(H C 1)� K � 1 operations are needed in total,
implying that the computational complexity of Algorithm 5
is polynomial. �

V. ILLUSTRATIVE EXAMPLES
We use two industrial examples to show the application of the
proposed approach.
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Example 1:A 2-cluster tool with activity time as follows:
for C1, �10 D 0 (the loadlocks),�11 D 45, �12 D 0
(the buffer),�13 D 5, �14 D 5, �1 D 5, and�1 D 6; for
C2, �20 D 0, �21 D 50, �22 D 80, �23 D 69, �24 D 77,
�2 D 3, and�2 D 4.

We �rst calculate the FPs of C1 and C2, and we have
FP1 D 110 and FP2 D 104. As C1 is the bottleneck tool
and it is transport-bound. The method in [5] is used to �nd an
optimal strategy�1 D (A10A13A14A11A12) with cycle time
51 D 103 for C1. Since FP2 > 51 and C2 is process-
bound. Thus, a backward strategy�2 D (A20A24A23A22A21)
is applied to C2 and the LB of the system is5 D 52 D 104.

By applying�1 to C1, we have

�10 D �10 C �14 C 6�1 C 4�1 D 59;
�11 D �11 C �12 C 6�1 C 4�1 D 99;
�12 D �12 C �14 C 10�1 C 8�1 D 103; and
�13 D �13 C �14 C �12 C 8�1 C 5�1 D 80:

As 4 2 3R
1 , we have�14 D �12 C �14 C 10�1 C 8�1 D

 01 C �14 C
P

k2Q14
�1k D 51 D 103. With�2 for C2, we

have�20 D 24, �21 D 74, �22 D 104,�23 D 93, �24 D 101,
 02 C �2j C

P
k2Q2j

�2k D  02 D 70 (because for8j 2 �4,
there is noj 2 3R

2), and52 D 104. Thus, we set�1 D �2 D
5 D maxf51;52g D 104s:

By Algorithm 5, for C2, we initialize 3
2k D 0, k 2 �n[2] .

Then, modify 3
20 D Minf5 � �2j �

P
l 6D0 

3
2l , 5 � ( 02 C

�2h C
P

k2Q2h
�2k) �

Pn[2]
qD0 

3
2q}, j 2 S(!20), l 2 Z(�2j), and

h 2 3R
2 , to obtain!20 D  3

20 D Minf104� 74;104� 70g D
30; similarly, we modify 3

21 and 3
22 to obtain!21 D  3

21 D
Minf104� 104;104� 70� 30g D 0,!22 D  3

22 D Min{104
- 93, 104 - 70 - 30}D 4, and!23 D !24 D 0. For C1, b[1] D
2 2 3R

1 . By Step 4 in Algorithm 5, we have 3
i(b[i]) D  3

12 D
��

1(b[1]) D 4�2 C 3�2 C !24 D 24. Since 3
12 > Min{104 -

�11, 104 -�13, 104 -�14,5 � ( 01 C �12 C
P

k2Q12
�1k)g D

Min{104 - 99, 104 - 80, 104 - 103, 104 - 103}D 1.Thus
Q D 0 is returned, or an OSLB cannot be found.

Example 2:A 3-cluster tool has the following activity time:
for C1, �11 D 5,�12 D 0 (the buffer),�13 D 35,�1 D 5, and
�1 D 10; for C2, �21 D 41,�22 D 0 (the buffer),�23 D 60,
�2 D 1, and�2 D 1; for C3, �31 D 100,�32 D 60,�33 D 50,
�3 D 3, and�3 D 2.

With a backward strategy for each tool, we have that
FP1 D 120, FP2 D 67, and FP3 D 118. Thus, C1 is
the bottleneck individual tool and it can be found that it is
transport-bound. By following [5], we �nd an optimal strat-
egy�1 D (A10A13A11A12) with cycle time51 D 110 for C1.
Since FP3 > 51 and C3 is process-bound, both C2 and C3
adopt a backward strategy, or we have�2 D (A20A23A22A21)
and�3 D (A30A33A32A31).

For C1, we have�10 D 4�1 C 3�1 D 50, �11 D �11 C
�12 C 6�1 C 4�1 D 70, �12 D �12 C 8�1 C 7�1 D 110,
�13 D �13 C �12 C 6�1 C 4�1 D 105, { 01 C (�1j CP

k2Q1j
�1k)jj 2 3R

1g D �12 D 110. Hence,51 D �12 D 110.
Similarly, we can get that�20 D 7, �21 D 48, �22 D 7,

�23 D 67, { 02 C (�2j C
P

k2Q2j
�2k)jj 2 3R

2g D  02 D

FIGURE 4. The Gantt chart for the optimal schedule of Example 2.

8 � (�2 C �2) D 8 � 2 D 16, and52 D �23 D 67.
For C3, we have that�30 D 18, �31 D 118, �32 D 78,
�33 D 68, { 03 C (�3j C

P
k2Q3j

�3k)jj 2 3R
3g D  03 D

8 � (�3 C �3) D 8 � 5 D 40, and53 D 118. Since
53 D 118> 51 > 52,5 D 118s.

Based on Algorithm 5, we �rst determine!3k, k 2 �n[3] ,
for C3 as follows. Initialize 3

3k D 0, k 2 �n[3] . Thereafter,
modify 3

30 and get that!30 D  3
30 D Minf5 � �31,5 �  31}

D Min{118 - 118, 118 - 40}D 0. Similarly, we can obtain
that!31 D  3

31 D 40,!32 D  3
32 D 38, and!33 D  3

33 D 0.
For C2, b[2] D 2 2 3P

2 , we have12 D 5 � 4�2 � 3�2 D
118� 7 D 111> ��

2(b[2]) D 4�3C 3�3C!33 D 18. Then, for
k =2 (I20nf0g) [ (I2(b[2]) n{ b[2]}), or k =2 f 1;3g, or k D 0, 2,
we have!20 D  3

20 D 70 and!22 D  3
22 D 32. At last, for

k D 1 and 3, we have!21 D  3
21 D !23 D  3

23 D 0. For C1,
b[1] D 2 2 3R

1 , according to Algorithm 5, we initialize 3
1k D

0, k 2 �n[1] . Then, 3
12 D ��

12 D 4�2 C 3�2 C !23 D 7.
Since 3

12 D 7 < Minf5 � �11, 5 � �13, 5 � f  01 C
(�1j C

P
k2Q1j

�1k)jj 2 3R
1gg DMin{118 - 75, 118 - 105,

118 - 110} D 8, Q D 1 is returned, implying an OSLB's
existence. Then, fork =2 I i0nf0g, or k D 0, 1, and 2, update
 3

10 and we have 3
10 D Minf5 � �11 �  3

12, 5 � �12, 5 �
f 01C(�1j C

P
k2Q1j

�1k)jj 2 3R
1g�  3

12g D Min{118 - 70 - 7,
118 - 110, 118 - 110 - 7}D 1. Thereafter, since the remaining
robot waiting time is zero, we have 3

11 D 0,  3
12 D 7, and

 3
13 D 0. At last, we have!10 D  3

10 D 1, !11 D  3
11 D 0,

!12 D  3
12 D 7, and!13 D  3

13 D 0. Such a schedule's
optimality can be veri�ed through its Gantt chart as shown in
Fig. 4.

VI. CONCLUSIONS
The wafer residency time of ak-wafer cyclic schedule
�uctuates and repeats a sequence ofk different values.
It leads to a higher risk of violating the wafer resi-
dency time constraints. Hence, a one-wafer cyclic sched-
ule remains to be the favorite in industrial practice. To
obtain it, the existing work has established the condi-
tions for process-dominant multi-cluster tools to check if
an optimal one-wafer cyclic schedule can be found. How-
ever, for transport-dominant single-arm multi-cluster tools,
it is an open problem. This work successfully answers it.
It develops a Petri net model to reveal the properties of the
entire system. By using this model, it derives the conditions
under which an optimal one-wafer cyclic schedule can be
found. It then proposes a polynomial algorithm to check
its existence and �nd it if it exists. A scheduling problem
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