
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

A comparison of Android reverse engineering
tools via program behaviors validation based on
intermediate languages transformation

Arnatovich, Yauhen Leanidavich; Wang, Lipo.; Ngo, Ngoc Minh; Soh, Charlie

2018

Arnatovich, Y. L., Wang, L., Ngo, N. M., & Soh, C. (2018). A comparison of Android reverse
engineering tools via program behaviors validation based on intermediate languages
transformation. IEEE Access, 6, 12382‑12394.

https://hdl.handle.net/10356/87780

https://doi.org/10.1109/ACCESS.2018.2808340

© 2018 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

Downloaded on 13 Mar 2024 16:53:06 SGT



Received November 18, 2017, accepted February 8, 2018, date of publication February 21, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808340

A Comparison of Android Reverse Engineering
Tools via Program Behaviors Validation Based
on Intermediate Languages Transformation
YAUHEN LEANIDAVICH ARNATOVICH 1, LIPO WANG 1,
NGOC MINH NGO2, AND CHARLIE SOH1
1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
2Global Outreach & Extended Education, Arizona State University, Ho Chi Minh City, Vietnam

Corresponding author: Lipo Wang (elpwang@ntu.edu.sg)

ABSTRACT In Android, performing a program analysis directly on an executable source is usually
inconvenient. Therefore, a reverse engineering technique has been adapted to enable a user to perform
a program analysis on a textual form of the executable source which is represented by an intermediate
language (IL). For Android, Smali, Jasmin, and Jimple ILs have been introduced to represent applications
executable Dalvik bytecode in a human-readable form. To use these ILs, we downloaded three of the most
popular Android reversing tools, including Apktool, dex2jar, and Soot, which perform transformation of the
executable source into Smali, Jasmin, and Jimple ILs, respectively. However, the main concern here is that
inaccurate transformation of the executable source may severely degrade the program analysis performance,
and obscure the results. To the best of our knowledge, it is still unknownwhich tool most accurately performs
a transformation of the executable source so that the re-assembled Android applications can be executed,
and their original behaviors remain intact. Therefore, in this paper, we conduct an experiment to identify the
tool which most accurately performs the transformation. We designed a statistical event-based comparative
scheme, and conducted a comprehensive empirical study on a set of 1,300 Android applications. Using the
designed scheme, we compare Apktool, dex2jar, and Soot via random-event-based and statistical tests to
determine the tool which allows the re-assembled applications to be executed, and evaluate how closely
they preserve their original behaviors. Our experimental results show that Apktool, using Smali IL, perform
the most accurate transformation of the executable source since the applications, which are assembled from
Smali, exhibit their behaviours closest to the original ones.

INDEX TERMS Event-based testing, intermediate languages, program behaviours, reliability, reverse
engineering, statistics.

I. INTRODUCTION
Nowadays, Android is no doubt the most popular smartphone
operating system. Android dominated the market with 85.0%
share in 2017Q1.1 In fact, due to the high market share, many
Android applications (usually called ‘‘apps’’) are being devel-
oped and published without performing an adequate program
analysis. In fact, the program analysis helps an app devel-
oper to automate the process of analysing the behaviours
of the program regarding the correctness, robustness, and
safety before it reaches the end-user. Unfortunately, after
publishing the app, the source code is usually not publicly
available, and performing a program analysis directly on an
executable source may be inconvenient which may be

1http://idc.com/smartphone-os-market-share

hindered by various code optimization, and obfuscation
techniques. Therefore, a transformation of the Android
apps executables (i.e., Dalvik bytecode) into intermediate
languages (ILs) is desired [1]. The IL is the lowest-level
human-readable programming language which is automat-
ically generated by reversing tools using transformation
of the executable source into its corresponding textual
representation [2].

In this paper, we use three of the most popular Android
apps reversing tools including Apktool,2 dex2jar,3 and Soot,4

which perform transformation of the executable source into

2http://github.io/apktool
3http://github.com/dex2jar
4http://github/soot

12382
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

Smali (Dalvik Assembler), Jasmin (Java Assembler), and
Jimple (Java Simplified) ILs, respectively. Other than these,
another tools have also been developed for reversing Android
apps executables. For example, Dexpler5 [3] which is built
on the top of Dedexer,6 and Androguard7 which is built to
support transformation from Dalvik bytecode into Java-like
code for existing frameworksWALA8 [4] and Soot [5]. How-
ever, an inaccurate transformation of the executable source
may decrease a program analysis performance, and obscure
the results if the analysis was performed using the IL with
inadequate quality and reliability [6]–[8]. In fact, a ‘‘good’’
IL must be capable of representing the source code without
loss of information [9], and independent of any particular
source or target language.9

The recent research works suggest that Smali [10]–[13],
Jasmin,10 [14]–[16], and Jimple [3], [17]–[20] ILs represent
a source code so that they all can be used to carry out various
program analyses. For example, in static program analysis,
the ILs can be used to perform mutation and metamorphic
testing, clones, ‘‘bad smells’’, data and privacy leaks detec-
tion, ‘‘points-to’’ analysis, and others. In dynamic program
analysis, the ILs can be used for code instrumentation to inject
the user-defined probes into the code. The instrumentation
technique is usually used for an automatic collection of the
interesting to the test data, e.g., collecting symbolic con-
straints while performing concolic testing (dynamic symbolic
execution).

In fact, a program analysis is fundamentally based on
Control- and/or Data-flow graphs. However, extracting the
flow graphs from an executable source is not a trivial task. For
example, the executable source lacks many useful properties
of high-level languages, and thus introduces various chal-
lenges to the program analysis tools. Furthermore, various
code optimization and obfuscation techniques can further
obscure the program flows. For example, an inaccurate trans-
formation of the executable source may not adequately reflect
the original program behaviours in the respective program
structures, so the corresponding Control- and/or Data-flow
graphs could be imprecise.

In this paper, we are inspired to conduct a study to iden-
tify the tool which performs the most accurate transforma-
tion of the Android apps executables into its respective IL.
We downloaded 1,300 Android apps from Google Play
(by 50 top free apps from 26 different categories), and pro-
cessed them as follows. With the aid of Apktool, dex2jar, and
Soot tools, we disassemble the downloaded apps to obtain
Smali, Jasmin, and Jimple ILs, respectively, and assemble
the apps from the obtained ILs without making any mod-
ifications to the ILs content. We install the downloaded
(original), and re-assembled apps on Android emulators, and

5http://abartel.net/dexpler/
6http://sourceforge.net/dedexer
7http://code.google.com/androguard
8http://sourceforge.net/wala
9http://cs.lmu.edu/ir
10http://sourceforge.net/jasmin

perform the functional GUI testing using an event-based
Monkey test. We analyze the obtained Monkey test results
(the number of successfully injected events) by performing
one-sample and two-sample statistical t-tests. As a result,
we identify the tool which performs the most accurate trans-
formation. Our experimental results show that the apps which
are assembled from Smali behave closest to the original
ones. Therefore, we suggest Apktool as a tool which per-
forms the most accurate transformation of the Android apps
executables.

In this work, we made the following contributions:
1) We develop the statistical event-based comparative

scheme using the parametric statistical tests, and func-
tional GUI testing to evaluate an accuracy of the
Android ILs transformation via an automated program
behaviours validation.

2) We apply our scheme on 1,300 closed-source Android
apps, and compare the program behaviours of the
Android apps which are assembled from Smali, Jasmin,
and Jimple ILs with original ones.

3) We identify a reversing tool which most accurately per-
forms a transformation of the Android apps executables
into its respective IL.

The rest of the paper is organized by the following sections.
Section II introduces the Dalvik virtual machine, Dalvik exe-
cutable, and shows differences between Java virtual machine
and Java executable (bytecode). Section III provides details
of our experiment design. Section IV presents our experi-
mental results. Section V discusses related work. Section VI
concludes our paper.

II. Dalvik VIRTUAL MACHINE AND Dalvik EXECUTABLE
In this section, we describe the special features of Dalvik
VM and stress its differences from standard Java VM.
We also show that Java bytecode structure is different from
Dalvik bytecode (executable), even most Android apps are
being developed in Java.

A. Dalvik VIRTUAL MACHINE
The Dalvik VM is not a Java VM. The Dalvik is a register-
based VM in which Android apps are executed. Since both
apps and system services on the Android OS are, generally,
implemented in Java, the Dalvik VM has been developed
so that an Android device can run multiple VMs efficiently.
Every Android app runs in its own process, with its own
instance of the Dalvik VM and it is referred to as sand-
boxing apps. When an Android device is started, a single
virtual machine process, called Zygote is created, which pre-
loads and pre-initializes core library classes (.libc). Once the
Zygote has been initialized, it will reside and listen for socket
requests coming from the runtime process, which indicates
that it should generate new VM instances based on the exist-
ing Zygote VM instance. Thus, by spawning new VM pro-
cesses from the Zygote, the boot time of Dalvik VM is highly
minimized. All other Java programs or services are originated
from this process, and run as their own process or threads in
their own address space.

VOLUME 6, 2018 12383



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

FIGURE 1. Dalvik virtual machine: creation and usage.

The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory man-
agement. The core library classes (.libc) that are shared across
the Dalvik VM instances are, commonly, only read by apps.
When the (.libc) classes are needed, the memory from the
shared Zygote VM process is simply copied to the forked
child process of the app’sDalvikVM. Such behaviour allows
it to maximize the total amount of shared memory while
still restricting apps from overlapping with each other and
providing security across apps, and sandboxing individual
processes. In Fig. 1, we show the overall process how the
Dalvik VM is created and used in the Android system.

Traditionally, the Java VM (stack-based architecture)
design is the instance of the VM which has an entire copy
of the core library class files and any associated heap,
thus memory is not shared across multiple instances of
Java VM. Since the Dalvik VM is register-based architec-
ture, it requires, on average, 47% less executed VM instruc-
tions than the stack-based. However, the register-based
code is, on average, 25% larger than the corresponding
stack-based code, and this increases the cost of fetching
VM instructions per unit of time. Notwithstanding, the overall
performance of the register-based VM takes, on average,
32.3% less time than stack-based VM to execute standard
benchmarks [21]–[23].

With the above-mentioned assumptions, Dalvik VM was
developed to meet the following criteria [21], [22]:

1) Limited CPU speed.
2) Limited RAM amount.
3) No swap space.
4) Battery powered.
5) Diverse set of Android devices.
6) Sandboxed application runtime.

B. Dalvik EXECUTABLE
The Dalvik executable (.dex) file format is designed to meet
the requirements of systems that are constrained in terms of
memory (RAM) and processor (CPU) speed. Since Android
apps are, usually, written in Java, Java classes (.java) are

FIGURE 2. Difference in process of transformation Java source code
(.java) into Java bytecode (.class), and Dalvik executable (.dex).

FIGURE 3. Difference in internal structure of Java bytecode (.class), and
Dalvik executable (.dex).

compiled by a Java compiler (javac tool) that have been
further transformed into the single file classes.dex by a stan-
dard dex compiler (dx tool which is, by default, included into
Android SDK). After applying the dx tool, the classes.dex
file has had only distant relationship with the Java bytecode
(.class). In Fig. 2, we show the difference in the process of
translation original Java source code into the Java bytecode
and Dalvik executable.

The Dalvik executable file design is primarily driven by
sharing of data between running processes. The main differ-
ence between the Java bytecode (.class) andDalvik bytecode
(.dex) is that all the classes of the Android app (.class) are
packed into one single file classes.dex. Note that this is not
simply packing, all the classes in the same Dalvik bytecode
(.dex) file share the same field, method, tables and other
resources. In particular, Constant Pool stores all literal con-
stant values used within the class such as string constants
used in code as well as field, variable, class, interface, and
method names [21], [23]. In Fig. 3, we show the difference in
the internal structure of the Java bytecode (.class files) and
Dalvik executable (.dex) file.

III. EXPERIMENT DESIGN
In our experiment, we use four Android emulators with pre-
installed Android 6.0 (Marshmallow, API Level 23), Apktool,
dex2jar, and Soot Android apps reversing tools, Monkey
tool which is an automated GUI exerciser,11 and, by default,
included in Android SDK, one-sample and two-sample t-test

11http://developer.android.com/monkey

12384 VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

TABLE 1. Android emulator device specifications.

statistics from MINITAB.12 The experiment was conducted
on a 4-core CPU @ 3.10GHz with 32GB RAM machine
running Windows 10 (64-bit).

A. EXPERIMENTAL ENVIRONMENT
To communicate with Android emulators, we use Android
Debug Bridge (adb).13 The adb is a versatile Command Line
tool from Android SDK, which permits communication with
a running Android instance [24]. The detailed Android emu-
lator device specifications are shown in Table 1. To prepare
the testing environment, we performed the following steps:

1) We installed the apps on the emulators with the aid of
adb. Each emulator is for original apps, and assembled
from Smali, Jasmin, and Jimple ILs.

2) For the first time, we manually ran the apps to provide
the required information (if any), e.g., login/password,
email, server port, and other normal means of access.
Such manual efforts are required to mitigate a threat
to the validity of our results since, by nature, Monkey
is not able to automatically generate such user inputs.
However, we could not provide the information for
two-step authentication (e.g., one-time password, ver-
ification code), since it is usually required during the
app runtime, and cannot be stored by the app for the
future use.

3) On every emulator, we uploaded a gallery of the most
popular audio/video files, pictures and office docu-
ments (see Table 1), in case if the testing apps require
them. So, the testing process will not be interrupted due
to the app exception ‘‘file not found’’, or similar.

B. TOOLS
1) Apktool: Dalvik DISASSEMBLER
To conduct experiment on Smali, we chose the tool named
Apktool. The next two commands are used to disassemble and
assemble Android package (.apk), respectively:
1) apktool d <apk_name>

12http://minitab.com/products/minitab
13http://developer.android.com/adb

2) apktool b <directory_with_decompiled_apk>
When an Android app is assembled, the tool automatically
creates build/ and dist/ sub-directories in the root
directory_with_decompiled_apk/. The dist/
sub-directory contains the fully assembled an Android
package.

2) Dex2jar: JAVA DISASSEMBLER
The dex2jar is another tool which provides Jasmin. The
dex2jar consists of four basic components:
1) dex-reader is designed to read the Dalvik executable

(.dex) file.
2) dex-translator is designed to convertDalvik executable

instructions to a dex-ir format.
3) dex-ir is the format used by dex-translator, and

designed to represent the Dalvik executable
instructions.

4) dex-tools are developed to work with Java bytecode
(.class) files.

The dex2jar tool uses its internal algorithms to manipulate
classes.dex file. To run disassembling/assembling process,
the following code can be used:
1) d2j-dex2jar –f –o <jar_name1> <apk_name>
2) d2j-jar2jasmin –f –o<directory1> <jar_name1>
3) d2j-jasmin2jar –f –o<jar_name2> <directory1>
4) d2j-jar2dex –f –o classes.dex <jar_name2>
The first 2 instructions are used to reverse classes.dex file
from an Android package into Jasmin. The last 2 instruc-
tions are used to re-assemble the obtained Jasmin code into
classes.dex. For all these commands, the first parameter
serves as an output, and the second one serves as an input
for file/folder. As dex2jar assembles only the classes.dex file
from Jasmin code, we need to directly replace it in an Android
package. Note that Android package has the same structure as
a standard (.zip) archive, thus, we can replace classes.dex in
Android package without corrupting its internal structure. For
that reason, we renamed the extension of Android package
from .apk to .zip, and ran 7-Zip14 archiver as follows:

7z a <zip_name> classes.dex

Once the replacement process is finished, we renamed the file
extension from .zip to .apk.

3) SOOT: JAVA OPTIMIZATION FRAMEWORK
The Soot is a language manipulation and optimization frame-
work for Java. Soot is capable of generating four ILs for
Java code: .baf, .jimple, .shimple and .grimp [19], [20].
In this work, we focus on Jimple since only transforma-
tion from Dalvik bytecode into Jimple is currently sup-
ported. Soot automatically checks an appropriate API level
specified in AndroidManifest.xml file, and uses the corre-
sponding Android framework (i.e., android.jar) for reversing
and assembling. We run Soot with specified arguments as
follows:

–src-prec, <[jimple|apk]>

14http://7-zip.org

VOLUME 6, 2018 12385



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

–process-dir, <apk_folder>
–android-jars, <android_api_jar_folder>

Since Soot assembles only classes.dex file from Jimple,
it requires replacing the classes.dex file directly in
the Android package. Thus, similarly as discussed in
Section III-B.2, we replaced the assembled classes.dex file
in each Android package without corrupting its internal
structure.

4) MONKEY: AUTOMATED GUI EXERCISER
In our experiment, we use Monkey tool from Android SDK
to automatically generate, and inject pseudo-random user and
system events into the testing Android apps. In fact, Monkey
does not know anything about the software which is being
tested, and thus it simply performs random actions at random
positions on the app GUI. For example, it randomly generates
clicks, touches, or gestures, as well as a number of system-
level events which are formed using a uniform probabil-
ity distribution or Infinite Monkey Theorem [25]. However,
in practice, Monkey shows high performance results in terms
of the achieved code coverage, and failures detection rate.
According to Choudhary et al. [26] Monkey appears most
effective and efficient automated GUI-testing tool comparing
to other relevant ones. In particular, the authors conducted
a comprehensive study using 68 Android apps which were
obtained from various app categories, and compared Monkey
with other state-of-the-art tools.

To further justify a choice of Monkey test, we list the
following critical quality risks which Monkey test addresses
as suggested by Nyman [27]:

1) Input validation.
2) Functionality of GUI.
3) Transformation completeness and reliability.

In particular, after reversing the apps, their original
behaviours may be changed during the transformation pro-
cess causing them to crash or hang. So, to expose any
of the above-mentioned risks, we perform the functional
GUI-testing of the re-assembled apps. However, it is prac-
tically impossible, within a reasonable time, to manu-
ally perform tests involving human user on a large set
of 1,300 apps. Thus, we decided to perform our testing
by (1) choosing Monkey as the best option for an auto-
mated GUI-testing which is suggested by Choudhary et al.
[26] and by (2) choosing Monkey as a sufficient test to
reveal the above-mentioned quality risks as suggested by
Nyman [27].

We use Monkey from the Android SDK. Default Monkey
generally looks for the following conditions:

1) If Monkey is restricted to run in one or more specific
packages, it disallows any attempts to navigate to any
other packages, and blocks them.

2) If a particular app crashes or receives any sort of
unhandled exception, Monkey will stop and report the
exception.

3) If a particular app does not respond, Monkey will stop
and report the exception.

To automate Monkey tests, we created a batch script file
(.bat). For each app, our batch script includes the following
command:
adb shell monkey –p<package> –v<events_count>

In our experiment, <package> parameter is used to iden-
tify a single app package accessible to Monkey without any
dependencies from other packages. The <events_count>
parameter value was manually set to be 10,000 pseudo-
random events (i.e., maximum number of events to be
injected).

C. DATA TRANSFORMATION
In our experiment, we use parametric statistics. One challenge
to use parametric analytic techniques is the requirement that
the population from where samples are taken must be nor-
mally or approximately normally distributed. In fact, for a
number of non-normal distributions, there is a possibility to
transform the experimental data by applying a mathematical
transformation. After transformation, the data may be more
similar to a normal distribution. For instance, a positively
skewed distributionwith a long positive tail (e.g., log-normal)
may be transformed into a near normal distribution by taking
the logarithm of the data values. Logarithmic transformation
is also a convenient to transform a highly skewed variable into
normal or approximately normal distribution [28].

FIGURE 4. Monkey tests results before log-transformation: log-normal
distribution of data values.

Fig. 4 shows the cumulative histogram of data distribution
of the results obtained from Monkey tests for original apps,
and the apps which are assembled from Smali, Jasmin, and
Jimple. Analogously, Fig. 5 shows the histogram of logarith-
mic transformation of Monkey tests results. It is important
to note that, in our experiment, Monkey tests results are
referred to as a number of successfully injected events for each
app tested.

From Fig. 4, we can see that the distribution of Monkey
tests results is log-normal. From Fig. 5, we can see that
the log-transformed data values of Monkey tests results are
approximately normally distributed. Therefore, we are able
to use parametric tests on the log-transformed data values of

12386 VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

FIGURE 5. Monkey tests results after log-transformation: approximately
normally distributed data values.

Monkey tests results. Importantly, we performed a logarith-
mic transformation of Monkey tests results in order to use
parametric statistical tests since they have the following valu-
able advantages compared to non-parametric ones according
to [29]–[31]:

1) Easier to use and interpret.
2) More efficient and accurate than their non-parametric

counterpart.

D. EXPERIMENTAL SCHEME
For our experiment, we downloaded 1,300Android apps from
Google Play, and disassembled them using Apktool, dex2jar,
and Soot to obtain Smali, Jasmin, and Jimple ILs, respec-
tively. Afterwards, without making any modifications to the
generated ILs content, we assembled Android apps using the
generated ILs as a source. Next, we installed the re-assembled
apps on Android emulators, ran Monkey tests with the long
sequences of pseudo-random UI and system events, and per-
formed parametric statistical tests, i.e., one-sample and two-
sample t-tests. We use Monkey tests results (the number of
successfully injected events before the app hangs or crashes)
as input for our statistical tests. We apply statistics to identify
if there are any differences in program behaviours between
the re-assembled and original apps.One-sample t-test helps to
conclude whether a particular Android app has passed Mon-
key test. Two-sample t-test helps to identify whether the apps,
which are assembled from Smali, Jasmin, and Jimple ILs
have introduced any notable differences in their behaviours
comparing to the original ones, e.g., crashes or hangs which
are not observed in the original apps for the same Monkey
tests.

In our experiment, every Monkey test contains 5 trials
(replications) for every app category. Every trial contains the
same set of 50 apps from a particular category, which are
assembled from Smali, Jasmin, Jimple, and original ones.
Note that Monkey generates a sequence of pseudo-random
events based on a manually specified seed value, i.e., for
the same seed value, Monkey generates the same sequence

of pseudo-random events. So, to fairly compare the program
behaviours, within a trial, we run Monkey with the same seed
value for the same set of 50 apps from a particular category.
Therefore, performing 5 trials, we are able to statistically
analyse, and compare the behaviours of the apps which are
assembled from ILs, and the original ones in terms of the
number of successfully injected events. When Monkey test is
finished, we perform one-sample t-test to conclude whether
Monkey test has passed successfully for a particular app,
and next perform two-sample t-test to identify how close a
particular re-assembled app preserves its original behaviours.

For our experiment, we designed and applied the following
statistical event-based comparative scheme:

1) Disassemble Android apps using Apktool, dex2jar, and
Soot tools to obtain Smali, Jasmin, and Jimple ILs,
respectively.

2) Assemble Android apps from the unmodified source of
the obtained ILs using corresponding Apktool, dex2jar,
and Soot tools.

3) Install Android apps on four Android emulators. Each
emulator for original apps, and assembled from Smali,
Jasmin, and Jimple ILs. Note that, to be installed on an
Android device, the Android apps must be signed with
a developer private key (it may be from a self-generated
key pair). Optionally, the Android packages can be
aligned using the default Android zipalign tool for a
more efficient RAM access during the app execution.

4) Run Monkey tests for original apps, and those which
are assembled from Smali, Jasmin, and Jimple ILs.
After every Monkey test, we wipe the Android emula-
tors reverting them into the initial state. For every trial,
we set a unique seed value for Monkey.

5) Perform parametric one-sample and two-sample statis-
tical t-tests.

IV. EMPIRICAL EVALUATION
In our experiment, we apply statistics since we cannot solely
rely on the raw results from Monkey tests since an app may
crash or hang for any other reason which is not originated
from Monkey test itself. Therefore, to identify a tool which
performs the most accurate transformation of the Android
executables, we carry out parametric one-sample and two-
sample t-tests on the log-transformed data of Monkey tests
results.

A. ONE-SAMPLE PARAMETRIC T-TEST
We perform one-sample t-test to identify whether a particular
app has passed or failed Monkey test. For that purpose,
we choose the following criteria to verify [32]–[34]:

Hypothesis:

H0 : µ = µ0

H1 : µ < µ0

Test Statistic:

t0 =
ȳ− µ0

S/
√
n

VOLUME 6, 2018 12387



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

where ȳ is the sample mean;µ0 is the true mean value; S is the
sample standard deviation; n is the sample size. The statement
H0 : µ = µ0 is called the null hypothesis andH1 : µ < µ0 is
called the alternative hypothesis. The alternative hypothesis
specified here is called a one-sided alternative hypothesis
because it would be true only if µ < µ0. To test a hypothesis,
we compute test statistic, and then reject or fail to reject
the null hypothesis H0 based on the computed value of the
test statistic. Also, we specify the set of values for the test
statistic that leads to rejection of H0. This set of values is
called the critical region or rejection region for the test. Two
kinds of errors may be used when testing hypotheses. If the
null hypothesis is rejected when it is true, a type I error has
occurred. If the null hypothesis is not rejected when it is false,
a type II error has been made. The probabilities of these two
errors are given special symbols:

α = P(type I error) = P(reject H0|H0 is true)

β = P(type II error) = P(fail to reject H0|H0 is false)

The general procedure in hypothesis testing is to specify a
value of the probability of type I error α, often called the sig-
nificance level of the test, and then design the test procedure
so that the probability of type II error β has a suitably small
value.

In our experiment, if H0 is true, we conclude that the
testing app has passed Monkey test successfully. If H0 is
not true, we accept alternative hypothesis H1, i.e., the testing
app has failedMonkey test. Note that we calculated µ0 based
on the log-transformed data values obtained from Monkey
tests. In practice, the value of the mean µ0 specified in the
null hypothesis is usually determined in one of three ways.
It may result from past evidence, knowledge, or experimen-
tation. It may also be the result of some theory or model
describing the situation under study, or result of contractual
specifications.

Parameters ȳ and S are evaluated according to [32]–[34] as
follows:

ȳ =

n∑
i=1

yi

n

S =


n∑
i=1

(yi − ȳ)2

n− 1


1/2

where yi represents a sample, i = 1, n.
To interpret one-sample t-test results, we use the P-value

approach with the following assumptions [32]–[34]:
1) If P-value is less than 5% level of significance (α),

we would reject the null hypothesis H0 in favour of
alternative hypothesis H1.

2) If P-value is greater than 5% level of significance,
we would not reject the null hypothesis H0 because

there is no evidence that the treatment median is less
than µ0.

The P-value approach has been adopted widely in practice.
It is used to state that the null hypothesis was or was not
rejected at a specified α-value (level of significance). This
is often called fixed significance level testing. P-value is
the probability that the test statistic will take on a value that
is at least as extreme as the observed value of the statistic
when the null hypothesis H0 is true. Thus, P-value conveys
much information about the weight of evidence against H0,
and so we can draw a conclusion at any specified level of
significance (α). More formally, we define P-value as the
smallest level of significance that would lead to rejection of
the null hypothesis H0. It is common to call the test statistic
(and the data) significant when the null hypothesis H0 is
rejected. Therefore, we may think of P-value as the small-
est level at which the data are significant. Once P-value is
known, we can determine how significant the data are without
the data analyst formally imposing a pre-selected level of
significance.

In Table 2, for each category, we show the number
of app which failed Monkey test. To explain the values
in Table 2, let us assume that we have an original Google
Chrome app from Communication category. After perform-
ing Monkey test, and applying log-normal transformation to
Monkey test results, we obtain data as shown in Table 3. Next,
after performing one-sample t-test on the log-transformed
data values of Monkey test results, we obtain another results
as shown in Table 4. Afterwards, using the P-value approach,
from Table 4 we conclude thatGoogle Chrome app has failed
Monkey test since the obtained P-value (P = 0.007) is
less than the required level of significance (α = 0.05).
Therefore, we increment the value in the cell (in Table 2,
column ‘‘Original’’ and row ‘‘Communication’’) by adding
‘‘1’’ to the current number of apps which are failed Monkey
test. Analogously, we test every app from 26 categories for
Smali, Jasmin, Jimple, and original ones, and calculate the
number of apps failing Monkey test.

After performing one-sample t-test for all Smali, Jasmin,
Jimple, and original apps, in Table 2, we calculate the total
number of failures for apps which are assembled from Smali,
Jasmin, and Jimple, and original ones. Using these val-
ues, we are able to compute a percentage, analytic values,
to determine if there are any notable differences in pro-
gram behaviours between the re-assembled apps and original
ones in terms of the number of successfully injected events.
We compute the percentage for each tool as follows:

PTool =
(
1−

Tool_failures− Original_failures
Total_apps

)
× 100%

where Tool_failures is the total number of failures for the
apps which are assembled from Smali, Jasmin, and Jimple;
Original_failures is the total number of failures for the
original apps, i.e., apps without any transformation of their
executables; Total_apps is the total number of apps tested.
Note that since we use 1,300 Android apps in our study,

12388 VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

TABLE 2. Number of apps failing Monkey test for 26 categories tested.

the latter parameter is constant, i.e., Total_apps = 1, 300.
In particular, if we compute the percentage, for example, for
Smali, we define the values of the parameters as follows:

Tool_failures = 157 (see Table 2, intersection
of row ‘‘Total number of failures’’ and column
‘‘Apktool–Smali’’).
Original_failures = 119 (see Table 2, intersec-
tion of row ‘‘Total number of failures’’ and column
‘‘Original’’).

Therefore, we compute the percentage for Apktool as
follows: PApktool = (1 − 157−119

1,300 ) × 100% ≈ 97%. Anal-
ogously, we compute the percentage for dex2jar, and Soot.
For dex2jar, PDex2jar = (1 − 526−119

1,300 ) × 100% ≈ 69%, and
for Soot, PSoot = (1− 470−119

1,300 )× 100% ≈ 73%.
To verify the above-mentioned computations, in Fig. 6,

we graphically interpret the results from Table 2. There
are four areas in Fig. 6, which are referred to as SMALI,
JASMIN, JIMPLE, and ORIGINAL. Vertical axis represents
100% STACKED FAILING AREA for every category. The
horizontal axis represents APPLICATION CATEGORIES.

TABLE 3. Statistic of original Google Chrome app for 5 replications
(Monkey tests).

TABLE 4. One-sample t-test results for original Google Chrome app.

To calculate the areas values, for example, for Book Ref-
erence, we obtained a number of apps which have failed
Monkey test from Table 2. That is, 4 apps for SMALI, 15 for
JASMIN, 16 for JIMPLE, and 3 for ORIGINAL. By summing

VOLUME 6, 2018 12389



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

FIGURE 6. Number of apps failing Monkey tests for 26 categories tested.

all these values, it gives us 38 apps in total. Since Fig. 6 rep-
resents 100% STACKED FAILING AREA, we assume that
38 apps are 100%, and distribute the failing apps accordingly
in their respective areas. Analogously, for other categories,
we obtain failing areas for SMALI, JASMIN, JIMPLE, and
ORIGINAL. As a result, in Fig. 6, we obtain the visual
representation of differences in failing areas between SMALI,
JASMIN, JIMPLE, and ORIGINAL. Comparing the failing
areas, we can see that SMALI failing area is the closest
to ORIGINAL, from which we hypothetically conclude that
the apps, which are assembled from Smali, most accurately
preserve their original behaviours in terms of the number of
successfully injected events, comparing to those which are
assembled from Jasmin, and Jimple. As a result, we identify a
candidate tool which performs the most accurate transforma-
tion of the Android apps executables, i.e., Apktool. To exper-
imentally verify our hypothetical conclusions, we perform
two-sample t-test.

B. TWO-SAMPLE PARAMETRIC T-TEST
We perform two-sample t-test to identify whether the apps,
which are assembled from Smali, Jasmin, and Jimple ILs
have introduced any notable differences in their behaviours
comparing to the original ones. In this section, we experimen-
tally verify our hypothesis about the candidate tool which has
been identified in Section IV-A, and hypothetical conclusions
about Smali, Jasmin, and Jimple ILs are indeed valid.

For that purpose, we choose the following criteria to
verify [32]–[34]:

Hypothesis:

H0 : µ1 = µ2

H1 : µ1 6= µ2

Assumption:

σ 2
1 6= σ

2
2

Test Statistic:

t0 =
ȳ1 − ȳ2(

S21
n1
+

S22
n2

)1/2

where ȳ1 and ȳ2 are the sample means of the first and second
samples, respectively; S21 and S22 are the sample variances of
the first and second samples, respectively; n1 and n2 are the
sizes of the first and second samples, respectively; σ 2

1 and σ 2
2

are unknown and unequal variances of the first and second
samples, respectively.

In our experiment, if H0 is true, we conclude that a par-
ticular tool performs the most accurate transformation of the
Android apps executables into its respective IL, and the apps
which are assembled from such IL, exhibit their behaviours
closest to the original ones. If H0 is not true, we accept alter-
native hypothesisH1 which implies that a particular tool does
not perform the most accurate transformation of the Android
apps executables into its respective IL, and the apps which
are assembled from such IL, do not exhibit their behaviours
closest to the original ones.

12390 VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

TABLE 5. Two-sample t-test results for Apktool, Dex2jar, and Soot.

Parameters ȳ1, ȳ2 and S21 , S
2
2 are evaluated according

to [32]–[34] as follows:

ȳk =

nk∑
i=1

yik

nk

S2k =

nk∑
i=1

(yik − ȳk )
2

nk − 1

where yik represents a sample, ik = 1, nk , k = {1, 2}.
To interpret the obtained results, we use the P-value

approach with the following assumptions [32]–[34]:
1) If P-value is less than 5% level of significance, the null

hypothesisH0 would be rejected in favour of alternative
hypothesis H1.

2) If P-value is greater than 5% level of significance,
the null hypothesis H0 would not be rejected.

For two-sample t-test, we use data values for Apktool–
Smali, Dex2jar–Jasmin, Soot–Jimple, and Original which
we obtained from one-sample t-test (see Table 2). However,
we found that one-sample t-test results are log-normally
distributed. Therefore, to use parametric test, we need to
have data values which are normally distributed or approx-
imately normally distributed. So, similarly as described in
Section III-C, we first apply the logarithmic transformation
method to obtain approximately normally distributed data
values. Afterwards, using the log-transformed data values,
we perform parametric paired two-sample t-test on Apktool–
Smali, Dex2jar–Jasmin, and Soot–Jimple with Original.
In Table 5, we show the results of two-sample t-tests for

Apktool–Smali, Dex2jar–Jasmin, and Soot–Jimple. Compar-
ing the obtained P-values for each tool with the significance
level, we can see that the obtained P-value (P = 0.093)
for Apktool is greater than required level of significance
(α = 0.05). Therefore, we conclude that Apktool performs
the most accurate transformation of the apps executables
since the apps, which are assembled from Smali, are indeed
most closely preserve their original behaviours in terms of the
number of successfully injected events.

V. RELATED WORK
Multiple techniques can be used to facilitate researches,
and practitioners in the challenging task of program
comprehension. One of these techniques is reverse
engineering [35]–[37], the process of extracting and consoli-
dating the high-level design information from an executable
source. A reverse engineering helps to analyse the executable

source of a software system or program in order to identify
its components and inter-relationships, and generate corre-
sponding reports or intermediate representations of the source
in the textual or graphical forms, usually at a higher level of
abstraction [38]–[40].

Multiple studies have been conducted in the field, which
perform comparison and evaluation of various reverse engi-
neering tools and approaches. Cutting and Noppen [41] intro-
duce the benchmark, namely RED-BM (Reverse Engineering
to Design BenchMark), which consists of a large set of Java
sources for reversing, and a set of measures to evaluate and
compare tools performance and effectiveness in a systematic
manner. The benchmark facilitates the analysis of the reverse
engineering tools based on their ability to reconstruct class
diagrams. Also, it provides a set of measures which facilitate
the comparison and ranking of the tools. To evaluate the per-
formance of the benchmark, the authors used 12 commercial
and open source reverse engineering tools. The performance
results vary from 8.82% to 100% demonstrating the ability of
the benchmark to differentiate between tools.

Fülöp [42] and Fülöp et al. [43]perform the evaluation
of reverse engineering tools using the proposed benchmark,
namely BEFRIEND (BEnchmark For Reverse engInEering
tools workiNg on source coDe), the benchmark which sup-
ports different types of the reversing tools, programming
languages, software systems, and also enables the users to
define their own evaluation criteria. The authors suggest that
using their benchmark, the reverse engineering tools results
can be evaluated and compared effectively and efficiently. For
example, with BEFRIEND, the results of the tools from dif-
ferent domains recognizing arbitrary characteristics of source
code, and can be subjectively evaluated and compared with
each other. The results could be from tools such as ‘‘design
pattern’’ or ‘‘bad code smell’’ miners, ‘‘duplicated code’’
detectors, ‘‘coding standard violation’’ checkers, and others.
Using this benchmark as a fundamental basis, the authors plan
to create a universal, and generally applicable benchmark
that can facilitate the evaluation, and comparison of various
reverse engineering tools.

Lamprier et al. [44] propose CARE, a uniform platform
for comprehensive evaluation of behaviour miners (reversing
tools). The CARE is approach-independent, and only requires
a set of artificial data (programs and execution traces) as
input to produce a behaviour model such as Finite State
Automata (FSA) which uses states to represent the execution
flow of the program. The authors designed CARE platform
with an ultimate goal to (1) provide a benchmark mechanism
for reverse engineering tools comparison, (2) allow compari-
son of the tools based on a type of programs and behavioural
patterns, and (3) help users in choosing the most accurate
reversing tool for their objectives.

Gueheneuc et al. [45] present a comprehensive com-
parative framework for design recovery tools. The frame-
work is built upon the authors’ experience, and also extends
existing frameworks. The authors evaluated the framework
on two design recovery tools, namely Ptidej and LiCoR.

VOLUME 6, 2018 12391



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

The obtained results show that the comparative framework
is well-defined, comprehensive, and universal. However, fur-
ther validation is required to verify whether the framework
enables an objective comparison of tools.

Arcelli et al. [46] perform a comparison of reverse engi-
neering tools based on the design pattern decomposition. The
authors suggest that in reverse engineering, the recognition
of design patterns provides additional information related to
the rationale behind the implemented system design. In par-
ticular, the design patterns do not only provide information
about how the architecture has been built, but also why it
has been built in a such specific way. In their experiment,
the authors formalize the design patterns according to the
drawbacks they may represent. In turn, such formalization
leads to the identification of the sub-patterns which are recur-
ring fundamental elements of the design patterns. So, using
the sub-patterns, the authors analyse the role of sub-patterns
by evaluating two reverse engineering tools FUJABA and
SPQR. During the evaluation process, the main focus was on
how sub-patterns are exploited by the system to define and
detect the implemented design patterns. In order to emphasize
the similarities and differences between the tools, in the case-
study, the authors used a Composite Design Pattern.

Arnatovich et al. [47] evaluate reversing capabilities of
three reverse engineering tools based on the quality assess-
ment of the untransformed apps’ semantics preservation in
the generated intermediate representations. For their evalua-
tion, the authors use Smali, Jasmin, and Jimple intermediate
representations. They obtained a set of 520 Android apps,
re-assembled them with reversing tools using the interme-
diate representations, and applied randomized event-based
testing with statistical analysis of the test results. Based on
the obtained results, the authors suggest that Smali most
accurately preserves the untransformed apps’ semantics.

Bellay and Gall [48] performed an evaluation of four
commercial reverse engineering tools. They used Refine/C,
Imagix4D, SNiFF+, and Rigi tools which analyse C-code.
The main focus was on the tools capabilities to generate
graphical reports such as Call-graphs, Control- and Data-
flow graphs. The authors investigated the capabilities of the
tools by applying them to a real-world embedded software
system. In their experiment, they used various assessment
criteria for tools evaluation, e.g., the capabilities of parsing
techniques, capabilities of generation of intermediate repre-
sentations via analysis of properties of textual and graphical
reports, capabilities of browsing and editing source code
facilities, and general capabilities such as supported plat-
forms, extensibility, and searching features.

Armstrong and Trudeau [49] evaluated five reverse engi-
neering tools SNiFF+, Rigi, CIA, Dali, and Bookshelf. The
main focus was on the tools capabilities to extract an architec-
tural design from the source code. In particular, they focused
on the abstraction and visualization of the software system
components and their inter-relationships. Their study reports
that Dali has the same visualization capabilities as Rigi since
it uses Rigi’s graph editor, SNiFF+ has limited visualization

capabilities, and the Bookshelf and CIA tools have a perfor-
mance issue while displaying large graphs so they should not
be used for medium-to-large sized systems.

Koskinen and Lehmonen [50] identified a necessity
to analyse systematically, and in detail the information
retrieval capabilities provided by the reverse engineering
tools. For that purpose, the authors compare ten the most
popular reverse engineering tools Eclipse Java Develop-
ment Tools (JDT), Wind River Workbench (WRW), Under-
stand, Imagix4D, Creole, Javadoc, Javasrc, SourceNavigator,
Doxygen, and HyperSoft. They evaluate the reverse engineer-
ing tools capabilities in terms of four aspects including the
data structures, visualization and information request spec-
ification mechanisms, and navigation features. The authors
report that, for data structures, 80% of the tools can gen-
erate Call-graph, Class diagram is provided by 70% of
the tools, and only 30% of the tools are able to do an
automated re-documentation. For visualization mechanisms,
90% of the tools are able to view the executable source in a
readable form, while 80% of the tools mainly focus on Call-
graph visualizations. For information request specification
mechanisms, 80% of the tools implement a basic filtering,
and expansion of the Call-graph contents. Majority of the
tools provide traditional text search mechanisms, and regular
expressions are supported only by 40% of the tools. And, for
navigation features, navigation capabilities among methods,
any kinds of data elements, and browsing history are sup-
ported by 80–90% of the tools.

VI. CONCLUSION
In this paper, we developed a novel, statistical event-based
comparative approach to examine an accuracy of the Android
ILs transformation via an automated program behaviours
validation. For our evaluation, we use Monkey to automati-
cally generate the sequences of GUI pseudo-random user and
system events. We apply one-sample and two-sample t-tests
to empirically identify a reversing tool which performs the
most accurate transformation of theAndroid apps executables
into its respective IL.

We evaluated our approach performance on 1,300 real-
worldAndroid appswhichwere obtained from 26 distinct cat-
egories on Google Play. We used Apktool, dex2jar, and Soot
reversing tools to perform transformation of the Android apps
executables into their respective ILs, i.e., Smali, Jasmin, and
Jimple.We identify the program behaviours differences in the
apps, which are assembled from Smali, Jasmin, Jimple, and
original ones, based on the number of successfully injected
events. We found that Apktool performs the most accurate
transformation of the Android apps executables since the
apps, which are assembled from Smali, most closely pre-
serve their original behaviours. Our results show that the
apps which are re-assembled by Apktool, using Smali IL,
preserve ∼97%, while dex2jar, and Soot using Jasmin,
and Jimple, preserve ∼69%, and ∼73% of their original
behaviours, respectively.

12392 VOLUME 6, 2018



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

REFERENCES
[1] T. Systä andK. Väänänen-Vainio-Mattila, ‘‘On empirical studies to analyze

the usefulness and usability of reverse engineering tools,’’ in Proc. IEEE
Int. Workshop Softw. Technol. Eng. Pract. (STEP), Budapest, Hungary,
Sep. 2005. [Online]. Available: http://post.queensu.ca/ zouy/files/preproc-
step-2005.pdf

[2] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and
K.Wong, ‘‘Reverse engineering: A roadmap,’’ in Proc. Conf. Future Softw.
Eng. (ICSE), New York, NY, USA, 2000, pp. 47–60.

[3] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, ‘‘Dexpler: Con-
verting Android dalvik bytecode to jimple for static analysis with
soot,’’ in Proc. ACM SIGPLAN Int. Workshop State Art Java Program
Anal. (SOAP), New York, NY, USA, 2012, pp. 27–38. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259056

[4] J. Dolby, ‘‘Program analysis for mobile: How and why to run
WALA on your phone,’’ in Proc. 3rd Int. Workshop Mobile Develop.
Lifecycle (MobileDeLi), New York, NY, USA, 2015, pp. 47–48. [Online].
Available: http://doi.acm.org/10.1145/2846661.2846673

[5] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, ‘‘The Soot frame-
work for Java program analysis: A retrospective,’’ in Proc. Cetus
Users Compiler Infrastruct. Workshop, Galveston, TX, USA, Oct. 2011,
pp. 1–43.

[6] C. Linn and S. Debray, ‘‘Obfuscation of executable code to improve
resistance to static disassembly,’’ in Proc. 10th ACM Conf. Comput.
Commun. Secur. (CCS), NewYork, NY,USA, 2003, pp. 290–299. [Online].
Available: http://doi.acm.org/10.1145/948109.948149

[7] T. Kistler and M. Franz, ‘‘A tree-based alternative to Java byte-codes,’’ Int.
J. Parallel Programm., vol. 27, no. 1, pp. 21–33, 1999. [Online]. Available:
http://dx.doi.org/10.1023/A:1018740018601

[8] T. Dullien and S. Porst, ‘‘REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,’’ in Proc.
CanSecWest, 2009, pp. 1–7.

[9] D. Chisnall, ‘‘The challenge of cross-language interoperability,’’
Commun. ACM, vol. 56, no. 12, pp. 50–56, Dec. 2013. [Online].
Available: http://doi.acm.org/10.1145/2534706.2534719

[10] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A. D. Schmidt, and
S. Albayrak, ‘‘Using static analysis for automatic assessment and mitiga-
tion of unwanted and malicious activities within Android applications,’’ in
Proc. 6th Int. Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2011,
pp. 66–72.

[11] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, ‘‘Slicing droids:
Program slicing for smali code,’’ in Proc. 28th Annu. ACM Symp. Appl.
Comput. (SAC), New York, NY, USA, 2013, pp. 1844–1851. [Online].
Available: http://doi.acm.org/10.1145/2480362.2480706

[12] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, ‘‘Analysis of Android
applications’ permissions,’’ in Proc. IEEE 6th Int. Conf. Softw. Secur. Rel.
Companion (SERE-C), Jun. 2012, pp. 45–46.

[13] V. Rastogi, Y. Chen, and X. Jiang, ‘‘DroidChameleon: Evaluating
Android anti-malware against transformation attacks,’’ in Proc. 8th ACM
SIGSAC Symp. Inf., Comput. Commun. Secur. (ASIA CCS), New York,
NY, USA, 2013, pp. 329–334. [Online]. Available: http://doi.acm.org/
10.1145/2484313.2484355

[14] J. Meyer, T. Downing, and A. Shulmann, Java Virtual Machine.
Sebastopol, CA, USA: O’Reilly & Associates, Apr. 1997.

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification. Boston, MA, USA: Pearson, 2014.

[16] J. Gosling, ‘‘Java intermediate bytecodes: ACM SIGPLAN workshop on
intermediate representations (IR’95),’’ ACM SIGPLAN Notice, vol. 30,
no. 3, pp. 111–118, Mar. 1995.

[17] R. Vallee-Rai, ‘‘The jimple framework,’’ School Comput.
Sci., Sable Res. Group, McGill Univ., Montreal, QC,
Canada, Sable Tech. Rep. 1, Feb. 1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2166&
rep=rep1&type=pdf

[18] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, ‘‘Optimizing Java bytecode using the Soot framework:
Is it feasible?’’ in Compiler Construction. Berlin, Germany: Springer,
Jun. 2000, pp. 18–34. [Online]. Available: http://dx.doi.org/10.1007/3-
540-46423-9_2

[19] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
‘‘Soot: A Java bytecode optimization framework,’’ in Proc. Conf. Adv.
Stud. Collaborative Res. (CASCON), 1999, pp. 214–224. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=781995.782008

[20] R. Vallee-Rai and L. J. Hendren, ‘‘Jimple: Simplifying Java bytecode for
analyses and transformations,’’ Sable Res. Group, McGill Univ., Montreal,
QC, Canada, Sable Tech. Rep. 1998-4, Jul. 1998.

[21] D. Bornstein, ‘‘Dalvik VM internals,’’ in Proc. Google I/O Develop. Conf.,
vol. 23. 2008, pp. 17–30.

[22] D. Ehringer, ‘‘The Dalvik virtual machine architecture,’’
Tech. Rep., Mar. 2010, vol. 4, no. 8. [Online]. Available:
http://show.docjava.com/posterous/file/2012/12/10222640-
The_Dalvik_Virtual_Machine.pdf

[23] J. Huang, ‘‘Understanding the Dalvik virtual machine,’’ Google Technol.
User Groups, Taipei, Taiwan, Tech. Rep., 2012. [Online]. Available:
https://www.slideshare.net/jserv/understanding-the-dalvik-virtual-
machine

[24] M. Gargenta, Learning Android. Sebastopol, CA, USA: O’Reilly Media,
2011.

[25] S. Christey, The Infinite Monkey Protocol Suite (IMPS),
document RFC 2795, 2000.

[26] S. R. Choudhary, A. Gorla, and A. Orso, ‘‘Automated test input generation
for Android: Are we there yet?’’ inProc. 30th IEEE/ACM Int. Conf. Autom.
Softw. Eng. (ASE), Nov. 2015, pp. 429–440.

[27] N. Nyman, ‘‘Using monkey test tools,’’ Softw. Test. Quality Eng., vol. 29,
no. 2, pp. 18–21, 2000.

[28] K. Benoit, ‘‘Linear regression models with logarithmic transformations,’’
London School Econ., Methodol. Inst., London, U.K., Tech. Rep.,
2011. [Online]. Available: https://pdfs.semanticscholar.org/169c/
c9bbbd77cb7cec23481f6ecb2ce071e4e94e.pdf

[29] D. Hull, ‘‘Using statistical testing in the evaluation of retrieval experi-
ments,’’ in Proc. 16th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr. (SIGIR), New York, NY, USA, 1993, pp. 329–338. [Online]. Avail-
able: http://doi.acm.org/10.1145/160688.160758

[30] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Boca Raton, FL, USA: CRC Press, 2003.

[31] C. Davis, SPSS for Applied Sciences: Basic Statistical Testing. Melbourne,
VIC, Australia: CSIRO, 2013.

[32] D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ,
USA: Wiley, 2017.

[33] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis
of Experiments: With Applications to Engineering and Science, vol. 474.
Hoboken, NJ, USA: Wiley, 2003.

[34] C. Davis, Statistical Testing in Practice With StatsDirect. Tamarac, FL,
USA Llumina Press, 2010.

[35] A. Mishra, ‘‘Reverse engineering: The promising technology,’’ in Proc.
Covenant Univ. Conf. (SEIS), 2010, pp. 1–25.

[36] W. Wang, Reverse Engineering: Technology of Reinvention. Boca Raton,
FL, USA: CRC Press, 2010.

[37] E. Eilam, Reversing: Secrets of Reverse Engineering. Hoboken, NJ, USA:
Wiley, 2011.

[38] C. Raibulet, F. A. Fontana, and M. Zanoni, ‘‘Model-driven reverse engi-
neering approaches: A systematic literature review,’’ IEEE Access, vol. 5,
pp. 14516–14542, 2017.

[39] H. Washizaki, Y.-G. Guéhéneuc, and F. Khomh, ‘‘A taxonomy for program
metamodels in program reverse engineering,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Oct. 2016, pp. 44–55.

[40] E. J. Chikofsky and J. H. Cross, II, ‘‘Reverse engineering and design
recovery: A taxonomy,’’ IEEE Softw., vol. 7, no. 1, pp. 13–17,
Jan. 1990.

[41] D. Cutting and J. Noppen, ‘‘An extensible benchmark and tooling for
comparing reverse engineering approaches,’’ Int. J. Adv. Softw., vol. 8,
nos. 1–2, pp. 115–124, 2015.

[42] L. J. Fülöp, ‘‘Evaluating and improving reverse engineering tools,’’
Ph.D. dissertation, Univ. Szeged, Szeged, Hungary, 2011.

[43] L. J. Fülöp, P. Hegedus, R. Ferenc, and T. Gyimóthy, ‘‘Towards a bench-
mark for evaluating reverse engineering tools,’’ in Proc. 15th Work. Conf.
Reverse Eng., Oct. 2008, pp. 335–336.

[44] S. Lamprier, N. Baskiotis, T. Ziadi, and L. M. Hillah, ‘‘CARE: A plat-
form for reliable comparison and analysis of reverse-engineering tech-
niques,’’ in Proc. 18th Int. Conf. Eng. Complex Comput. Syst., Jul. 2013,
pp. 252–255.

[45] Y. G. Gueheneuc, K. Mens, and R. Wuyts, ‘‘A comparative framework for
design recovery tools,’’ in Proc. Conf. Softw. Maintenance Reeng. (CSMR),
Mar. 2006, pp. 1–10.

[46] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, ‘‘A comparison of
reverse engineering tools based on design pattern decomposition,’’ in Proc.
Austral. Softw. Eng. Conf., Mar. 2005, pp. 262–269.

VOLUME 6, 2018 12393



Y. L. Arnatovich et al.: Comparison of Android Reverse Engineering Tools via Program Behaviors Validation

[47] Y. Arnatovich, H. B. K. Tan, S. Ding, K. Liu, and L. K. Shar, ‘‘Empirical
comparison of intermediate representations for Android applications,’’ in
Proc. SEKE, 2014, pp. 205–210.

[48] B. Bellay and H. Gall, ‘‘A comparison of four reverse engineering tools,’’
in Proc. 4th Work. Conf. Reverse Eng., Oct. 1997, pp. 2–11.

[49] M. N. Armstrong and C. Trudeau, ‘‘Evaluating architectural
extractors,’’ in Proc. 5th Work. Conf. Reverse Eng., Oct. 1998,
pp. 30–39.

[50] J. Koskinen and T. Lehmonen, ‘‘Analysis of ten reverse engineering tools,’’
in Advanced Techniques in Computing Sciences and Software Engineer-
ing. Dordrecht: The Netherlands, Springer, 2010, pp. 389–394. [Online].
Available: https://doi.org/10.1007/978-90-481-3660-5_67

YAUHEN LEANIDAVICH ARNATOVICH received
the bachelor’s and master’s degrees from the
Belarusian State University of Informatics and
Radioelectronics, Belarus. He is currently pursu-
ing the Ph.D. degree with Nanyang Technologi-
cal University, Singapore. His research interests
include program analysis with a focus on how an
automated software testing helps to improve the
quality of the mobile apps. He is a (co-)author of
six papers, of which two are in journals, and four

on the international conferences as full papers. His current research interests
include vulnerabilities and faults detection using formal and statistical
approaches with their applications to the mobile security. He is currently
involved in a project concerning automatic generation of the tests with
high coverage, vulnerabilities, and faults detection rate via an automated
exercising of the Android apps GUI components, and user input generation
via dynamic symbolic execution.

LIPO WANG received the bachelor’s degree from
the National University of Defense Technology,
China, and the Ph.D. from Louisiana State Univer-
sity, Baton Rouge, LA, USA. He has (co-)authored
300 papers, of which 100 are in journals. He holds
a U.S. patent in neural networks and a patent
in systems. He has co-authored two monographs
and (co-)edited 15 books. His research interests
include intelligent techniques with applications to
optimization, communications, image/video pro-

cessing, biomedical engineering, and data mining. He was a member of
the Board of Governors of the International Neural Network Society (for
two terms), the IEEE Computational Intelligence Society (for two terms),
and the IEEE Biometrics Council. He served as the CIS Vice President
for Technical Activities. He was the President of the Asia-Pacific Neural
Network Assembly (APNNA). He received the APNNA Excellent Service
Award. He served as the Chair of Emergent Technologies Technical Com-
mittee and the Chair of Education Committee of the IEEE Engineering in
Medicine and Biology Society (EMBS). He was the founding Chair of the
EMBS Singapore Chapter and CIS Singapore Chapter. He serves/served
as chair/committee members for over 200 international conferences. He
was/will be a keynote/panel speaker for 30 international conferences. He
is/was an Associate Editor/Editorial Board Member of 30 international jour-
nals, including three IEEE TRANSACTIONS, and a Guest Editor for 10 journal
special issues.

NGOC MINH NGO received the bachelor’s and
Ph.D. degrees from Nanyang Technological Uni-
versity, Singapore. She was with the National Uni-
versity of Singapore as a Post-Doctoral Research
Fellow, where she studied different approaches to
automatically locate various software failures. She
was with the Singapore Institute of Management
as a Lecturer. She is currently an Instructional
Designer with Arizona State University, Vietnam,
and has been an Associate Faculty with the Singa-

pore Institute of Technology since 2014, where she teaches in information
technology. She has (co-)authored 17 papers, of which seven are in journals,
and six on the international conferences as full papers. Her research interests
include software quality, and how the software design, program analysis,
and automated software testing help to improve the quality of the software
systems.

CHARLIE SOH received the bachelor’s degree
from Nanyang Technological University,
Singapore, where he is currently pursuing the
Ph.D. degree. He has (co-)authored five papers,
of which two are in journals, and three on the inter-
national conferences as full papers. His research
interests include machine learning, deep learning,
and natural language processing (NLP) with a
focus on their applications to the mobile security
for Android. His current research interests include

the versatile representations of Android apps, which can be leveraged for
variousmobile security tasks. He is currently involved in a project concerning
the identification of potential insider threats using NLP techniques.

12394 VOLUME 6, 2018


