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Abstract. A construction of a pair of strongly regular graphs Fn and Fin of type L2~-1 (4n - 1) 
from a pair of skew-symmetric association schemes W, W t of order 4n - 1 is presented. Examples 
of graphs with the same parameters as Fn and F~, i.e., of type L2n-1 (4n - 1), were known only 
if 4n - 1 = pS, where p is a prime. The first new graph appearing in the series has parameters 
(v, k, A) = (225, 98, 45). A 4-vertex condition for relations of a skew-symmetric association scheme 
(very similar to one for the strongly regular graphs) is introduced and is proved to hold in any 
case. This has allowed us to check the 4-vertex condition for Fn and Fin, thus to prove that Fn 
and F~ are not rank three graphs if n > 2. 

0. Introduction 

The main  a im of this paper  is to describe a construct ion of s trongly regular  graphs  
(SRG, for short)  of type  L : n - l ( 4 n  - 1) from a pa i r  of skew-symmetr ic  H a d a m a r d  
matr ices  of order  4n (Theorem 1 and Corollary 1). Examples  of such graphs  were 
known only if 4n - 1 = pS, p is a prime.  But it is well-known that  skew-symmetr ic  
H a d a m a r d  matr ices  exist for a much wider range of n, cf., e.g., Hall [9]. In fact, the 
first new SRG, which appears  in our series, has parameters  (v, k, A) = (225, 98, 45). 
In the cata log of SRGs with small  v due to Brouwer [2] there  are no examples  of 
graphs  wi th  the  l a t t e r  set of parameters .  Some s ta tements  equivalent to Theorem 1 
and Corol lary 1 were announced by the au thor  in [6]. 

Quest ions concerning some further  symmet ry  of our SRG are considered in the 
paper  as well. There  is the classification of rank three graphs  due to Kan to r  and 
Liebler [13] and Liebeck [14], which uses the classification of finite simple groups. 
But we are able to prove (Theorem 2) using the so-called 4-vertex condit ion for 
an SRG, ( see, e.g., Hestenes and Higman [10]) tha t  our graphs are not  rank  three 
graphs  if n ) 2. 

Among the many  different combinator ia l  objects  associated with a skew-sym- 
metr ic  H a d a m a r d  ma t r ix  H of order  4n (see Reid and Brown [17], Delsar te  [4], 
Szekeres [18], Hall  [9]) there  is a 2-class associat ion scheme W = W ( H )  which we 

*Present address: Department of Mathematics, University of Western Australia, Nedlands 6009 
WA, Australia 

Mathematics Subject Classification (1991). 05E30. 



130 D.V. PASECHNIK 

prefer to use for our purposes. To calculate 4-constants for our SRGs, we first 
introduce a 4-vertex condition for relations of W ( H )  and prove that  it holds for 
any W(H) .  It seems that  this fact (Theorem 3) is of some independent value. 

The content of this paper is as follows. In Sect. 1 we give the terminology and 
our theorems. Section 2 contains proofs of Theorem 1 and Corollary 1. Section 3 
contains a proof of Theorem 3, and Sect. 4 contains a proof of Theorem 2. 

1. Terminology and Statement of Results 

The terminology concerning association schemes is fairly standard,  see, e.g., Bannai 
and Ito [1]. For an association scheme A = (V, {Ri}0~<i~<r), kl and pikj denote the 
valencies and the intersection numbers respectively. Any relation Ri of A forms 
a graph (or digraph) with vertex set V and edge set Ri. This allows us to speak 
about the graph Ri. 

A strongly regular graph (SRG) is an irreflexive relation F in a symmetric asso- 
ciation scheme A = (V, {I, F, A}). As usual, v = IYl, k = kl, A = P]I,  # = P~I form 
the set of parameters (v, k, A, #) of F. See [1], [10], [11], and [3] for constructions 
and further properties of SRGs. 

A Hadamard matrix H is a 4n x 4n matrix, whose entries are -t-1, such that  
H H  T = 4h i  ( I  denotes the identity n x n matrix). It is skew-symmetric or skew 
if H + H T -- 21. Any Hadamard matrix H can be converted to a normalized 
one, for which hli = 1 for 1 ~< i ~ 4n. We assume below that  an Hadamard  
matrix H is skew and normalized. We define the relation T = T(H)  on the set 
V = { 2 , . . . , 4 n }  of nnmbers of H-lines by the following rule. For 2 ~< i , j  <~ 4n, 
let ( i , j )  e T if hij = 1 and i 7~ j. Notice that  T is a tournament  on V. In fact, 
W = W ( H )  = (V, { I ,T ,  Tt}) is an association scheme. It is easy to show, see 
Lemma 1 in Sect. 2, that  the intersection numbers of W depend only on n. It is 
worth stressing that,  starting from such T, we can obtain a skew Hadamard  matrix. 
For further s tudy of relations of W see, e.g., Ito [15]. 

Let X = (V, {Ri}o<~i<~r) be a commutative association scheme. The symmetriza- 
tion of X (see [1]) is the association scheme )(  = (V, {Ri }05i4s), where/~ = R kJ R '  

for any pair R, R '  of mutually paired relations of X,  and R = R if R = Rq 
The tensor product of two association schemes A = (X, {Ri}o<<.i<<.s) and B = 

(Y, {Qi}0~<i<r) is the association scheme A ® B = (X  x I1", {Fij }O<~i<~s,O<~j<r), where 
the relations are defined by 

Fq =- {((a,c),(b,d)) [a, b e X,  c, d E Y, (a,b) e Ri, (c,d) E Qj }. 

This notion appeared in [16]. We can find in [16] the following formulae for the 
intersection numbers of A ® B: 

(cj) = Pbcqij, 

where P~c and q~j are the intersection numbers of A and B, respectively. 
An amorpb_Jc cell is an association scheme A = (V, {Ri}) such that  any (possibly, 

trivial) fusion of irrefiexive relations is an SRG. This notion was introduced by 
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Gol ' fand and Klin [7]. For fur ther  results  concerning this object  see Ivanov [12] and 
a survey by Farad~ev et al. [5]. The most  remarkable  theorems due to Ivanov [12] 
say tha t  [V[ -- m 2 and all irrefiexive Ri are graphs of Lat in  square type  Lk,(m) or 
of negative Lat in  square type  NLk, (m) ,  (series K.1 or K.5 from [11]). 

We are now able to s ta te  our  first result .  

T H E O R E M  1. Let H and H'  be skew-symmetric Hadamard matrices of order 4n, 
S = T ( H )  ® T(H') .  Then S = (V, {F/}o~<i~<4) (the symmetrization of S) is an 
amorphic cell with the following intersection numbers: 

kl = k 2 = 4 n - 2 ,  ks = k 4  = 8 n  2 - 8 n + 2 ,  

4n i 3 0 0 
0 2n - 1 

(P)J)= 2 n - 1  4n2 - 6 n + 2  

2 n - 1  4n 2 - 4 n - 1  

o) 
2n - 1 

4n 2 - 4n - 
4n 2 - 6n + 

0 2 n -  1 
0 4n - 3 0 

(P~J)= 2 n - 1  0 4 n 2 - 6 n + 2  

2n - 1 0 4n 2 - 4n - 1 
4n 2 - 4n - 
4n 2 - 6n + 

1 2n - 2 
1 0 2n - 2 

(P:A= 2 . - 2  2 -2 4 2-6.+3 
2 n - 1  2 n - 1  4n 2 - 6 n + 2  

2 n -  1 
4n 2 - 6n + ' 
4n 2 - 6n + 

0 2 n -  1 
0 1 2 n -  1 

( P S ) =  2 n - 1  2 n - 1  4 n ~ - 6 n + 2  
2 n - 2  2 n - 2  4 n 2 - 6 n + 2  

2n - 2 
4n 2 - 6n + 
4n 2 - 6n T 

1<~i, j<~4. 

For the  number ing  of the relat ions of S see Sect. 2. 
This theorem immedia te ly  implies 

COROLLARY 1. The graphs F3 and  1~4 Of S are strongly regular  of type L2n-1 
(4n-  1). 

Remark 1. All the other  graphs and fusions of graphs of S are known. These 
are graphs of type  Lg(4n - 1), where g = 1, 2 or 2n. In the former two cases such 
graphs  are uniquely de termined by parameters ,  cf. [3]. In the la t te r  case there is a 
const ruct ion for such graphs  s ta r t ing  from a skew H a d a m a r d  ma t r ix  of order  4n, 
see [3] and  [8]. 

Remark 2. The  referee has pointed out  tha t  Corol lary  1 can be proved by use 
of the so-called ( - 1 ,  + l , 0 ) - a d j a c e n c y  matr ices  very quickly along the lines of the  
proof  of Theorem 4.1 in [8]. However, we prefer our own way, which goes back to 
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the initial discover of our new SRGs and which makes it possible to obtain further 
results, as well. 

Our further aim is to settle the following question. Are the graphs in Corollary 1 
rank 3 graphs? We use the approach due to [10], involving calculation of the 
following two parameters: 

(1) the parameter a(u, v) for any edge (u, v) of an SaG F, which is equal to the 
number of distinct complete 4-vertex subgraphs through (u, v); 

(2) the parameter fl(u, v) for any non-edge (u, v), which is equal to the number 
o o - -  

of distinct subgraphs of the shape | ~ | .  

If a(u, v) depends on the particular choice of the edge (u, v) or fl(u, v) depends 
on the particular choice of the non-edge (u,v) then, of course, F is not a rank 3 
graph. If it is not so, then we say that F satisfies the 4-vertex condition. 

THEOREM 2. The graphs F3 and F4 of S satisfy the 4-vertex condition iff n = 1. 

The proof of this theorem involves counting certain 4-vertex configurations pass- 
ing through an arc of each tournament of T(H) and T(H'). Namely, let A = 
(V, {I, T, Tt}) be the above-mentioned 2-class association scheme, IVI = 4n - 1. 
Fix an arc (x, y) e T. Define the partition of V\{x, y) into the following sets: 

A1 = {z • V l ( x , z ) , ( y , z )  • T}, 

A2 = {z • V l (x  , z ) , ( z , y )  • T}, 

A3 = {z ¢ Y l ( z , x ) , ( y , z )  • T},  

A4 = {z • V l ( z , x ) , ( z , y )  • T}. 

Each 4-vertex subgraph Y/of T through (x, Y) is uniquely determined by a sub- 
set {a, b} C V\{x, y}. We denote ~ by E(a, b) if(a,  b) E T and by E(b, a) otherwise. 
Choose (a, b) • A i x A j, a # b. Then E(a, b) and E(c,d), {c,d} C V\{x,y} ,  are 
isomorphic (as digraphs with one distinguished arc) iff (c, d) • Ai x Aj. Thus 
any E(a, b), (a, b) E Ai x Aj, is isomorphic to a digraph Eij with one distinguished 
arc. Note that Eij and Ekt are isomorphic iff i = k, j : I. Therefore we can 
define eij(x, y) to be the number of 4-vertex subgraphs through (x, y) which are 
isomorphic (in the afor-mentioned sense) to Eij. 

If for any 1 ~< i , j  ~< 4, the parameter eli(x, y) does not depend on the particular 
choice of the arc (x, y), then we say that the 4-vertex condition holds for A. The 
idea of this condition seems to be very close to the 4-vertex condition for SRG, see 
e.g., [10]. But, contrary to the SRG case, we have 
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T H E O R E M  3. For any A = (V, {I, T, Tt})  the 4-vertex condition holds. Moreover, 
the eij are as follows. 

( n -  1)(n - 2) 
1 ( . -  1 ) ( n - 2 )  

( ~ i ) = ~  ~(~ -2 )  
(n - 1)(n - 2) 

(~  - 1 ) (n  - 2) ~ ( .  - 1) 
n ( n  - 1) n ( n  - -  1) 

( n - 1 ) ( n - 2 )  n(n-1) 

n(n- 1) ) 
n(~ - 1) 
~(.  - 1) " 

( n -  1)(n-2)  

2. Proof  of  Th eorem 1 

We shall calculate the intersection numbers  of S. Using these, we verify tha t  S is 
an amorphic cell. 

Before using the formulae for the intersection numbers  of the tensor product  
and the formulae for the intersection numbers  of symmetr izat ion,  we need the 
intersection numbers  of T ( H ) ,  where H is a skew Hadamard  matr ix  of order 4n. 
We have 

LEMMA 1. The intersection numbers  of  T(H) are as follows. 

(i 0 0) (p°i) = 0 2n - 1 
2n - 1 0 0) 

_ _(P~j)= n - 1  n - 1  
n - 1  n 

(! 0 111 ) 
= n n -  . 

n - 1  n 

Proof. Using well-known relations between intersection numbers  of an associ- 
ation scheme, see, e.g. [1], it is easy to produce a system of equations, in which 
the intersection numbers  play the role of unknowns. In our case this system has a 
unique solution in non-negative integers. [] 

Let S = T(H) ® T(H'),  where 

T(H) = (V, {I, T, Tt}) = (V, {R0, R1, R2}), 

T(H') = (V, {I, T', T 't }) = (V, {Q0, Q1, Q2 }). 

This allows us to number  the relations of S by the pairs (i ,j) ,  i , j  E {0, 1,2}. The  
pairing of the relations of S is s ta ted in the following 

L E M M A  2. 5'oo = S~o, So2 = '--~01, $20 ~- S~o, $22 = S~1, $21 - S~2- 
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Proof. The argument  consists of direct use of the definitions of the tensor product  
and S. Let us prove, e.g., that  S02 = S~1. Indeed, S01 = {((x, a), (y, b)) I x  = y, 
(a, b) • Q1 }. Then 

S~I = {((y, b), (x, a)) [ x = y, (a,b) • Q1} 

= {((y, b), (x, a)) I x = y, (b,a) e Q2} = S02. [ ]  

The above l emma enables us to number  the relations of S as follows: F0 = S00, 
F1 = S01 U S02, F2 = SlO U $20, F3 =-- $12 U $21, F4 = SH U $22. 

LEMMA 3. The intersection numbers of  S are as stated in Theorem 1. 

Proof. Using the formulae for the intersection numbers of the tensor product  
(see Sect. 1) and the formulae for the intersection numbers of the symmetr iza t ion 
(see [1]), we obtain the following formulae for these numbers of 

ab a b P~d,e$ = P c e q d f  -}- 5(e, d)p]eq~ f 4- 5(e, f)Pcfqdea b + 5(C, d)5(e, f)padfq~e, 

where 5(x, y) = 0 if S~y = S~y and 5(x, y) = 1 otherwise; pa and qcbe are intersection df 
nmnbers  of T ( H )  and T(H') .  

Using this formulae, we perform direct computat ions.  Lemma 1 gives us p~j = qk. 
For example,  P3 2 1 1 1 1 1 1 1 1 = Po~Plo + PolP2o + Po2Plo + Po2P2o = 1. 

LEMMA 4. S is an amorphic ce11. 

Proof. First, let us prove that  any Pi is an SRG. It is sufficient to check that  for 
j • {1 , . . .  ,4}\{i}  the paramete r  # = #(Fi)  = P!i is independent oi1 the part icular  
choice of j .  We see that  it is so for any i. Next, we must prove that  any r i  U Pj,  
i ~ j, 1 ~ i , j  ~ 4, is an SRG. It is sufficient to check the following two conditions: 

i J J J holds, (2) for (1) the equality A = 1( r i  U r j )  = Pli + 2plj + Pjj = Pii + 2p~j + pjj 
k • { 1 , . . . ,  4}\{i ,  j}  the paramete r  # = #(Fi U r j )  = pk i + 2pkj +p~j is independent 
on the part icular  choice of k. The  observation that  the complement  of an SRG is 
an SRG completes the proof. [] 

The  proof of Theorem 1 is complete. We turn to 
Proof of Corollary 1. It is sufficient to check (see [11]) series K.1, that  the pa- 

rameters  of F3 and F 4 are as follows for g = 2n - 1: 

v - -  - 1 )  2 ,  k = g ( 4 n  - 2 ) ,  

= - 1 ) ( a  - 2 )  + - 3 ,  , = g ( g  - 1 ) .  
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3.  P r o o f  o f  T h e o r e m  3 

We present the adjacency matrix A of the digraph T in the following form (Fig. 1), 
where (x, y) E T and Ai are the sets mentioned in Sect. 1. 

0 
0 

0 
0 

A =  

0 
0 

0 
1 

0 1 
1 0 
: : 

1 0 

11 . . . . . .  1 11 . . . . . .  1 00 . . . . . .  0 00 . . . . . .  0 
11 . . . . . .  1 00 . . . . . .  0 11 . . . . . .  1 00 . . . . . .  0 

A ,  A12 Ala A14 

A21 A22 A2a A24 

Aal Aa2 Aaa Aa4 

A41 A42 A43 A44 

X y A 1 A 2 A 3 A 4 
1 1 n - 1  n - 1  n n - 1  

x 
y 

A1 

A2 

Aa 

A4 

F i g u r e  1. 

The last line in this figure presents sizes of the blocks. By Lemma 1 these sizes 
are independent of the particular choice of (x, y). Observe that  eij(x, y) = eij is 
equal to the number of l ' s  in the block Aij. Since T is a tournament ,  we have the 
following equalities: 

( n - I )  ( 2 )  e l l  ----- e22 --~ @44 ~ 2 ~ ~:33 ~ , 

e l 2  + e21 = e l 4  + e41 = e24 + e42 = ( n  - -  1) 2, 

e l 3  71- Ca1 = e23 + e32 = e34 + e43 = n ( n  - -  1). 

Since any line of A contains exactly 2n - 1 units, we obtain 

E e l i  = (2n  -- 1)(rt  -- 1), E e2i = (2n - 1)(n - 1) - n + 1, 
i i 

E eai = n(2n - 1) - n ,  
i 

E e 4 1  -- (2n - 1 ) ( n -  1 ) -  2n + 2. 
i 

Denoting e12 = d, e13 = b, e2a = c, we have 
( n 2 1 )  d 

(n - 1) 2 - d (n~-l)  

(eij) = n(n -- 1) -- b n(n - 1) - c 
d --l- b - (n21)  ( n ~ l )  _ d -}- c 

b 
c 3(i)  + c / 

3( i )  - b - c  
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Let us denote by Yk the vector of length k all of whose entries are equal to y. 
Observe that  A is the 6 x 6 block matrix, whose blocks are shown in Fig. 1 by thin 
lines. Let us calculate (A2)~,~t. Lemma 1 gives 

A 2 = p l I A  +p21,A* = ( n  - 1)A + n A  ¢ = ( n  - 1)Y + A*. 

Hence we have (A2)x,al = (n - 1)n- 1. Oil the other hand, (A2) , ,a l  = l n - ,  + 
l n -1 (Al l  + A21). Therefore, (n - 2 ) n - 1  = ln- l (A11 + A21), i.e., for any column j 
of the matrix All  + A21 we have ~i(A11 + A21)ij = n - 2. This allows us to obtain 

Z(All + A21)ij = Z (A l l ) i j  + Z(A21)ij = e l l  -F e l 2  = ( n  - -  1 ) ( r ~  - -  2 ) .  

i,j i,j i,j 

Hence e:2 = (n - 1) 2 - d = (~), i.e., d = (~). 
Calculating (A 2)v,~x2 and (A 2)y,Lx3, we similarly obtain c and b, respectively. The 

proof is complete. 

4. Proof  of Theorem 2 

First, let us observe that  if n = 1 then each of the graphs Pa and F4 are isomorphic 
to a disjoint union of complete subgraphs. Such SRGs are, of course, rank 3 graphs. 
Hence the 4-vertex condition holds in this case. In what follows we will prove that  
the 4-vertex condition does not hold in the case n > 1. 

Let us start  with a general observation. For an association scheme A -- (X, {RI}) 
let E = (a, b) E RI, where RI is a relation of A. We denote by MA(E; i1 , . . . ,  is) the 
number of distinct (unordered) pairs {c, d} C V such that  (a, c) E Ril,  (a, d) E Ri2, 
(b,c) E Ri3, (b,d) E Rid, (c,d) E Ri~. For association schemes A = (X,{Ri})  
and B = (Y,{Qi}) let C = A ® B = (X x Y,{Fij}) be their tensor product.  
As above, for E = ((a, p), (b, q)) E FIj ,  where FI j  is a relation of C, we denote 
by Me(E;  i i j l , . . . ,  i5j5) the number of distinct (unordered) pairs {(c, s), (d, t)} C_ 
X x Y such that  ((a,p), (c, s)) • Fi,jl,  etc., as is depicted on the following Fig. 2. 

ix J1 

(c,s) ihj~ (d,t) 

h \  
\ 
iaja , /  \ 

\ 
\ 

i2 j2  

/ 
0 

(a,p) IJ 

\ 

/ 
iaj4 

\ 
\ 

\ 
) 

(b,q) 

Figure 2. 
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Note that in this figure we can see source configurations `4 and B with the vertex 
sets {a, b, c, d} C Z and {p, q, s, t} C Y, respectively. In general, .4 and (or) 13 may 
have <~ 3 vertices, e.g., if a = b. The following lemma is a direct consequence of the 
definition of the tensor product. 

LEMMA 5. For E = ((a, p), (b, q))) we have 

Mc(E;  i , j , , . . . ,  ibjs) = MA((a, b); i , , . . . ,  i5)" MB((p, q); J l , . . .  ,Jb). 

By the latter lemma the calculation of the 4-vertex constants a and/3 for F3 and 
1"4 can be reduced to corresponding calculations in the relations of T(H) and T(H').  
Much of the results of the latter calculations are contained in Theorem 3. The next 
lemma, in fact, completes this calculations. For W = T(H) = (V, { I ,T ,  Tt}) = 
(V, {R0, R1,R2}) let us denote 

m, =- M w  ((x, x); 1, 1, 1, 1, 1), 

m3 = M w  ((x, x); 2, 1, 2, 1,1), 

m2 = M w ( ( x , x ) ;  1 ,2 ,  1,2, 1), 

m ,  = M w ( ( x , z ) ; 2 , 2 , 2 , 2 , 1 )  

LEMMA 6. ml = m3 = m4 = ( n -  1 ) ( 2 n -  1), m2 = n ( 2 n -  1). 

Proof. For example, we calculate ml. Observe that ml denotes the number of 
the following configurations through x. 

x o ~ o p  

qo  

(Note that T is a tournament, p, q c V). 

Fix p E V. The number of such vertices q that {x, p, q} forms a configuration we 
are looking for is P]2 = n - 1 (cf. Lemma 1). The number of different appropriate 
ver t icesp is p° 2 = 2 n -  1. Hence ml = ( n -  1 ) ( 2 n -  1). Another m/ can be 
determined by the same way. [] 

We can now turn to the calculation of/3(x, y) for F3 and F4. Recall that S is the 
symmetrization of S = (V x V, {Si/}) (we use the same numbering of the relations 
of S as in Sect. 2). In these terms the graphs complementary to F3 and F4 can be 
described as the fusions USij ,  where 0 ~< i , j  <~ 2, (ij) 7~ (00) and for F3 we must 
take i # j ,  whereas for F4 we must take { i , j}  # {1,2}. 

Consider the graph F3. Suppose first that E = ((a,p), (b,p)) E Sao. It is easy to 
check that 

fl(E) = Ms(E;  12, 12,12, 12, 12) + Ms(E; 12, 12, 21, 21, 12) 

+ Ms(E; 21, 21, 12, 12, 12) + Ms(E; 21,21,21,21, 12). 
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Using Lemmas  5, 6, and Theorem 3, we determine 

~ ( E )  -- e l l m  4 --~ ~14,-t2 -~- e41Tn3 -~- e44m 1 = ( n  -- 1 ) (2n  -- 1 ) ( 4 n  2 -- 9n  -k 6 ) / 2 .  

Next, we fix E '  = ( (a ,p ) ,  (b, q)) e $11. In this case we obtain 3 ( E ' )  = ( n - 1 ) 2 ( 4 n  2 -  
6n + 3). Since/3(E) ~ / ~ ( E ' )  for n > 1, the 4-vertex condition for F3 does not hold. 

We consider the nonedges of F4. Similarly, we find that  f l(E) = (n - 1)(2n - 
1)(4n 2 - 9n + 6)/2 for E = ( (a ,p) ,  (b,p)) C $10 a n d / 3 ( E ' )  = (n - 1)2(4n 2 - 6n q- 3) 
for E '  = ((a ,p) ,  (b, q)) e $12. Since j3(E) ~ j3(E'), this completes the proof. 

R e m a r k  2. Using this technique, we can obtain the paramete r  a for both  F3 
and F4. It is equal to 2(n - 1)2(2n 2 - 3n + 3). 

A c k n o w l e d g e m e n t .  The  author  thanks Andrei V. Ivanov for useful discussions 
and Mikhail H. Klin for careful editing. 
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