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Modeling Spatio-Temporal Extreme Events
using Graphical Models

Hang Yu, Student Member, IEEE, and Justin Dauwels, Senior Member, IEEE

Abstract—We propose a novel statistical model to describe
spatio-temporal extreme events. The model can be used, for
instance, to estimate extreme-value temporal pattern such as
seasonality and trend, and further to predict the distribution
of extreme events in the future. Such model usually involves
thousands or even millions of variables in the spatio-temporal
domain, whereas only one single observation is available for
each location and time point. To address this challenge, previous
works usually employ learning and inference methods that are
computationally burdensome, and therefore are prohibitive for
large-scale data. Moreover, they assume that the shape and
scale parameters of the extreme-value distributions are constant
across the spatio-temporal domain, which is often too restrictive
in practice. In this paper, we break through these limitations
by exploring graphical models to capture the highly structured
dependencies among the parameters of extreme-value distribu-
tions. Furthermore, we develop an efficient stochastic variational
inference (SVI) algorithm to learn the parameters of the resulting
non-Gaussian graphical model. The computational complexity of
the SVI algorithm is sublinear in the number of variables, thus
enabling the proposed model to tackle large-scale spatio-temporal
data in real-life applications. Results of both synthetic and real
data demonstrate the effectiveness of the proposed approach.

Index Terms—extreme events, spatio-temporal, graphical mod-
els, thin-plate models, variational inference, expectation maxi-
mization, stochastic optimization, Kronecker product

I. INTRODUCTION

ANALYSIS of multiple extreme-value time series has
found applications and permeated the literature in a

wide variety of domains, ranging from finance to climatology.
For example, extreme precipitation can characterize climate
change [2] and cause flood or flash-flood related hazards [3].
Therefore, assessing the spatial and temporal pattern of such
events and making reliable predictions of future trends is
crucial for risk management and disaster prevention.

For stationary data, one of the most common approaches
for describing their extreme events is the block maximum ap-
proach, which models the maxima of a set of contiguous tem-
poral blocks of observations using the Generalized Extreme
Value (GEV) distribution [4]. It has been shown that block
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maxima of stationary time series that are sufficiently separated
(e.g., annual maxima) are almost independent [4]. However,
increasing the block size to well separate the block maxima
often leads to a small sample size, and thus, the resulting
estimates of GEV parameters are unreliable. The problem can
be alleviated by considering the dependence between multiple
GEV distributed variables (e.g., annual maximum precipitation
at multiple locations) [5], [6]. As an alternative, instead of
using one single sample (i.e., the maximum) in a large block,
we can shrink the size of the blocks and introduce temporal
dependence to the extreme-value samples so as to utilize the
data more effectively. Combination of both approaches leads to
GEV distributions whose parameters varying smoothly across
both space and time. Apart from stationary time series, non-
stationarity in the underlying process such as seasonality,
trend, regime changes and dependence on external factors
are often the rule rather than the exception. Hence, when
modeling block maxima of this process, such covariate effects
also need to be taken into account, and this again results in
a spatio-temporal model. Unfortunately, under both settings,
only one sample is available at each measuring site and time
point, whereas the corresponding GEV distribution has three
parameters to be estimated.

Due to the abovementioned challenge, there is only a hand-
ful of spatio-temporal models for extreme events at present.
In the following, we review the literature on spatio-temporal
extreme events. A clear account of temporal dependence is
presented in [4], which defines the temporal changes of GEV
parameters through deterministic functions, such as linear,
log-linear and quadratic functions. However, the restrictive
functional forms pose a serious limitation in practice. A more
satisfactory approach is to replace the deterministic function
with a linear combination of suitable basis functions, such as
splines, and add a penalty to guard against overfitting [7]. The
smoothness parameters (i.e., penalty parameters) are chosen
through cross validation or Akaike Information Criterion.
The tuning process is usually computationally burdensome
since numerous candidate values of the smoothness parameters
have to be tested before the proper amount of smoothness is
determined. Moreover, the computational complexity increases
exponentially with the number of smoothness parameters. To
overcome this deficiency, a Bayesian approach is proposed
in [8], where the smoothness parameters are regarded as
random variables and Gamma priors are imposed on them.
Such Bayesian models are often inferred by the Monte Carlo
Markov chain (MCMC) algorithm, and the algorithm can
be unacceptably slow for large-scale problems. On the other
hand, Neville et al. [9] apply the mean field variational Bayes
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method to learn the model. Similarly as in [10], the GEV
distributions are approximated by Gaussian mixtures for a
fixed set of shape parameters, in order to avoid the complex
functional form of the GEV distributions. Closed-form update
rules for the parameters of the variational distributions are
derived. As a consequence, the algorithm needs to be run
once for each possible value of the shape parameter in the
predefined set (which may be large) before the one associated
with the largest likelihood is selected.

Another line of research investigates the application of
dynamic linear models (DLM) to extreme-value time series,
cf. [11]-[15]. DLMs relate the present GEV parameters to the
historical estimates while embedding the spatial dependence
implicitly in the evolution matrix. Such models are often esti-
mated via MCMC methods [11]-[13], [15] or generalized ex-
pectation maximization [14]. Unfortunately, the computational
cost of learning a DLM is O(NP 3), where P is the number
of measuring stations and N is the number of block maxima
observed at each station (i.e., length of time series). As a result,
such models are prohibitive for the cases where P is large.
Furthermore, DLMs use directed acyclic graphs to represent
the dependence from past to present, and hence, the estimates
of GEV parameters at time t only depend on extreme-value
samples up to t. Obviously, it is more tempting to take full
advantage of all the observed samples, both before and after
t, to yield more reliable estimates of GEV parameters. This
indicates that GEV parameters at different time points depend
on each other, thus constituting an undirected cyclic graph.

Apart from the above mentioned issues, the previous
works [7]-[14] often restrict the shape and scale parameters of
the GEV distributions to be constant across the spatio-temporal
domain, and only allow the location parameters to vary so as
to capture the non-stationarity in the data. This assumption
stems from the analysis on spatial extremes in [16], which
shows that varying the shape parameter across the space only
slightly improves the model fitting, but the resulting score of
the deviance information criterion (DIC) [17] is larger than that
with a constant shape parameter. Moreover, it also simplifies
the corresponding learning algorithms. However, as pointed
out in [15], treating the shape and scale parameter as a constant
is inappropriate for modeling monthly maxima. This point is
also demonstrated by our numerical results on both synthetic
and real data.

In this paper, we propose to exploit undirected graphical
models (i.e., Markov random fields) [18] to capture the highly
structured spatial and temporal dependencies among GEV pa-
rameters. We aim to estimate the temporal pattern of extreme
events, such as the trend or seasonality of the data in time.
Furthermore, we intend to predict the distribution of extreme
events in the future based on the current trend. In the example
of extreme rainfall, forecasting whether the size of extremes
will increase in the future is the key for flood warning and
strategic planning.

To move forward to this goal, we first assume that the
single block maximum at each site and time position (i.e.,
each month) follows a GEV distribution. We further stipulate
that each of the three GEV parameters (the shape, scale, and
location parameter) corresponding one site and time point can

be decomposed into the sum of two components: a spatial
and a temporal component. The proposed model is therefore
similar in spirit to the generalized additive models that are
popular in the literature of extreme events modeling [7],
[9], [19]. Next, we impose Gaussian graphical model priors,
particularly, thin-plate model priors, respectively on the spatial
components across space and the time components across time.
The amount of dependence is then determined by the smooth-
ness parameters of the thin-plate models. In order to infer all
the parameters, we follow the empirical Bayes approach; we
generate point estimates of the smoothness parameters while
inferring the posterior distribution of the GEV parameters.
Specifically, we approximate the posterior distribution of the
GEV parameters by a multivariate Gaussian distribution with
a diagonal covariance matrix, and exploit efficient stochastic
optimization methods [20], [21] to learn both the smoothness
parameters and the parameters of the variational distribution.
As only noisy gradients (rather than the exact ones) are
required in each iteration of the stochastic variational inference
algorithm, the computational complexity can be reduced to
be sublinear in the number of variables. Numerical results
show that the proposed model can automatically recover the
underlying pattern of GEV parameters across both space and
time, given one single sample observed at each location and
time point. Moreover, it also provides an effective tool to
predict the future distribution of extreme events.

The rest of the paper is organized as follows. In Section II,
we review thin-plate models, since those models play a
central role in our approach. In Section III, we present the
proposed spatio-temporal model for extreme events in detail.
The efficient stochastic variational inference algorithm is then
developed in Section IV. We also explain how to predict the
distribution of extreme events in the future in this section. In
Section V, we assess the proposed model and benchmark it
with other models by means of synthetic and real data. We
conclude in Section VI with a discussion and an outlook.

II. THIN-PLATE MODELS

In this section, we first give a short description of graphical
models, and then we discuss the special case of thin-plate
models. In particular, we introduce thin-plate models with zero
curvature and zero gradient boundary conditions respectively.
The former is useful to predict future trend while the latter
can deal with multi-dimensional data. As a result, we utilize
the former to capture temporal dependence among GEV
parameters and the latter for modeling spatial dependence.

In an undirected graphical model (i.e., a Markov random
field), the probability distribution is represented by an undi-
rected graph G which consists of P nodes V and edges
E ⊂ V ×V . Each node i is associated with a random variable
zi. An edge (i, j) is absent if the corresponding two variables
zi and zj are conditionally independent: P (zi, zj |zV|i,j) =
P (zi|zV|i,j)P (zj |zV|i,j), where V|i, j denotes all the nodes
in the set V except i and j.

In particular, for Gaussian distributed z = [zi]
T , the result-

ing graphical model is called a Gaussian graphical model or a
Gauss-Markov random field (GMRF). Let z ∼ N (m,Σ) with
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mean vector m and positive-definite covariance matrix Σ. The
Gaussian graphical model can be equivalently parameterized
as N (K−1h,K−1) with a precision matrix K = Σ−1 and a
potential vector h = Km. The resulting PDF can be expressed
as:

p(z) ∝ exp

{
−1

2
zTKz + hTz

}
. (1)

Interestingly, the graph G is characterized by the precision
matrix (the inverse covariance) K, i.e., Kij 6= 0 if and only
if the edge (i, j) ∈ E [22].

The thin-plate model [23], [24] is a GMRF that is com-
monly used as smoothness prior as it penalizes the second-
order difference. In other words, we model the second-order
differences as a Gaussian distribution:

∆2zi ∼ N (0, α−1z ). (2)

For a one-dimensional problem where the variables zi’s are
evenly located on a chain, the second-order difference at zi
can be defined as ∆2zi = zi−1 − 2zi + zi+1. As a result, the
density function of a thin-plate model with a chain structure
can be written as [23]:

p(z) ∝ exp

{
−αz

2

P−1∑
i=2

(zi−1 − 2zi + zi+1)2

}
(3)

= exp
{
−αz

2
zTKtpz

}
, (4)

where the smoothness parameter αz controls the curvature,
and Ktp has the following form:

Ktp = ATA, (5)

A =


1 −2 1

. . . . . . . . .

1 −2 1

 . (6)

Note that A is a P−2×P matrix. Apparently, the precision of a
thin-plate model K = αzKtp. It is easy to tell from (3) that the
thin-plate model is invariant to the addition of a constant, and
more importantly, a linear function along the Markov chain.
In other words, Ktp1 = 0 and Ktps1 = 0, where 1 is a
column vector of all ones, and s1 = [1, 2, ..., P ]T . As such,
this prior can accommodate the linear trends without penalty.
We can also conclude that Ktp is rank deficient with two zero
eigenvalues. As a result, the improper density is often used in
practice [23], [25], that is,

p(z) ∝ |K|0.5+ exp

{
−1

2
zTKz

}
, (7)

where |K|+ denotes the product of the positive eigenvalues
of the precision matrix K. We can also read from (5) that
the conditional mean of one variable zi conditioned on other
variables zV|i is [23]:

E(zi|zV|i) =
4

6
(zi+1 + zi−1)− 1

6
(zi+2 + zi−2), (8)

which can be regarded as second-order polynomial interpola-
tion based on four nearby variables zi−2, zi−1, zi+1, and zi+2

without an overall level. Therefore, the thin-plate model allows
the deviation from any overall mean level without having to

specify the overall mean level itself. Such property is often
favored in practice. Furthermore, the zero curvature boundary
condition of (3) (i.e., ∆2z1 = ∆2zP = 0) aids in predicting
(or extrapolating) future values [23], i.e.,

E(zP+1|z1, · · · , zP ;αz) = zP + (zP − zP−1). (9)

Therefore, the conditional mean of zP+1 is simply the linear
extrapolation based on the last two observations zP−1 and
zP . Such models will be exploited to model temporal trend of
GEV parameters.

A zero gradient boundary condition is also often applied in
thin-plat models, i.e., z0 = z1 and zP+1 = zP . Consequently,
we can simplify the second-order difference at the boundary
variable z1 and zP respectively as:

∆2z1 = z0 − 2z1 + z2 = z2 − z1, (10)

∆2zP = zP−1 − 2zP + zP+1 = zP−1 − zP . (11)

Hence, the resulting thin-plate model with constant boundary
condition is [24]:

p(z) ∝ exp

−α2
P∑
i=1

(|N(i)|zi −
∑

j∈N(i)

zj)
2

 , (12)

where N(i) denotes the neighboring nodes of zi and |N(i)|
is the number of neighbors zi have. In (12), each node is
modeled to be close to the average of its neighbors. Note that
the resulting Ktp has rank P − 1. This model can be easily
extended to the case of multiple dimensions, and coincides
with the boundary conditions proposed in [26] to address the
problem of extending (3) to a two-dimensional spatial domain.
Moreover, it is shown in [27] that such models perform better
when modeling spatial dependence of spatial data than thin-
membrane models [28] that penalize gradient. As a result, we
will employ this type of thin-plate models to capture spatial
dependence among GEV parameters in the sequel.

III. SPATIO-TEMPORAL MODELS FOR EXTREME EVENTS

In this section, we present the proposed spatio-temporal
graphical model for extreme events. Suppose that we have
N block maxima xij at each of the P locations, where
i = 1, · · · , N and j = 1, · · · , P . The resulting number of
dimensions of the spatio-temporal model is D = NP . We
further assume the observations are missing at random, in
order to demonstrate that the proposed model is capable of
dealing with missing data. The set of observed spatio-temporal
indices is denoted as VO.

A. Likelihood: Generalized Extreme Value Distributions

Motivated by the extreme value theory, we assume that each
observed xij follows a Generalized Extreme Value (GEV)
distribution with cumulative distribution function (CDF) [4]:

F (xij |ξij , σij , µij) = exp

{
−
[
1 + ξij

(
xij − µij
σij

)]− 1
ξij

}
,

(13)

where µij ∈ R is the location parameter, σij > 0 is the scale
parameter and ξij 6= 0 is the shape parameter. We further use
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Fig. 1: Neighborhood structure of the graphical model for
spatial components.

ζij = log σij to parameterize the GEV distribution such that
ζij ∈ R and a Gaussian prior can be imposed on ζij . Taking
derivatives of (13) with regard to xij yields the probability
density function (PDF):

f(xij |ξij , ζij , µij) =
1

exp (ζij)

[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij
−1

· exp

{
−
[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij

}
.

(14)

Note that the support of both (13) and (14) is {xij : 1 +
ξij(xij−µij)/ exp(ζij) > 0}. For ξij = 0, the above functions
are undefined, and thus are replaced by the results obtained
by taking the limit as ξij → 0. In this case, the resulting CDF
and PDF are:

F (xij |0, ζij , µij) = exp

[
− exp

(
−xij − µij

exp (ζij)

)]
, (15)

f(xij |0, ζij , µij) =
1

exp (ζij)
exp

(
−xij − µij

exp (ζij)

)
· exp

{
− exp

(
−xij − µij

exp (ζij)

)}
, (16)

where xij is defined in R.
Note that the key parameter of GEV distributions is the

shape parameter, which determines the subfamily. Specifically,
ξij = 0 yields Gumbel distributions with light upper tails,
ξij > 0 corresponds to Fréchet distributions with heavy upper
tails, while ξij < 0 corresponds to Weibull distributions with
bounded upper tails.

B. Prior: Thin-plate Models

We now turn our attention to the prior distributions of the
GEV parameters. Since the three parameters share the same
dependence structure, we present them in a unified form.
Let zij denote either ξij , ζij or µij . We assume that each
parameter zij at time instant i and site j can be decomposed as
zij = zTi+zSj , where zTi is the temporal component at time
instant i and zSj is the spatial component at site j. Note that
we construct the model in a similar fashion to the generalized
additive models that have seen broad applications in the
literature of extreme value analysis due to their simplicity,
flexibility and utility, cf. [7], [9], [19] and references therein.
However, different from the generalized additive models that
are often decomposed as the deterministic (spline) functions
for the spatial and the temporal component plus a noise term,
we only put smoothness priors on the spatial and temporal

(a) (b) (c)

Fig. 2: Neighborhood structure of the graphical model for
temporal components: (a) cycle graph; (b) chain graph; (c)
neighborhood structure for temporal dependence.

component without specifying their functional form. Thus, the
resulting model can be more flexible. In addition, we include
the noise term implicity in zS and zT .

In the following, we describe the priors on zS =
[zS1, · · · , zSP ]T and zT = [zT1, · · · , zTN ]T individually.
Such priors are constructed according to the highly structured
dependence between the GEV parameters.

Without loss of generality, we assume that the measuring
stations are deployed on a regular lattice as shown in Fig. 1.
As a result, we employ the thin-plate model with zero gradient
boundary condition (12) to capture the spatial dependence
among the sites (variables) in the spatial component zS :

p(zS |αz) ∝ exp

−αz2
P∑
i=1

(|N(i)|zSi −
∑

j∈N(i)

zSj)
2


∝ |αzKS |0.5+ exp

{
−αz

2
zTSKSzS

}
. (17)

Here, N(i) typically includes four neighbors (two vertical and
two horizontal) of node i.

Next, we consider the temporal dependence. We first deal
with the periodicity and the trend separately, and then integrate
them together to construct the temporal graphical model.
More specifically, we partition zT according to the period as
(zT1, zT2, · · · , zTτ ), (zTτ+1, zTτ+2, · · · , zT2τ ), · · · , where τ
is the period. Since we focus on block maxima, τ is automati-
cally determined by the block size. For example, if we analyze
monthly maxima, τ = 12, whereas for seasonal maxima,
τ = 4. For variables in each group, e.g., (zT1, zT2, · · · , zTτ ),
we couple them together via a cycle graph as shown in
Fig. 2a to accommodate the periodicity in the time series.
In this case, the thin-plate model with zero curvature and
zero gradient boundary condition takes on the same form; we
use βzKpr to denote the precision matrix of the thin-plate
model, where βz is the smoothness parameter. On the other
hand, we capture the trend by coupling zTi, zTi+τ , zTi+2τ , · · ·
together via a chain graph (see Fig. 2b), for i = 1, · · · , τ . Here,
we utilize the thin-plate model with zero curvature boundary
condition for the sake of future forecast, and represent the
corresponding precision matrix as γzKtr. As a consequence,
the neighborhood structure of the temporal model can be
specified as in Fig. 2c, and the overall precision matrix is
given by:

KT = (γzKtr)⊕ (βzKpr) (18)
= γzKtr ⊗ Ipr + βzItr ⊗Kpr (19)
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= γzK̃tr + βzK̃pr, (20)

where ⊕ and ⊗ denote the Kronecker sum and Kronecker
product respectively, I∗ is an identity matrix with the same
dimension as K∗, K̃pr = Ipr ⊗Kpr characterizes the depen-
dence within each period (corresponding to the blue edges in
Fig. 2c), and K̃tr = Ktr ⊗ Itr characterizes the dependence
between contiguous periods (corresponding to the green edges
in Fig. 2c).

As mentioned in Section II, thin-plate models do not specify
the overall mean level for zS and zT , and thus, there can
be an infinite number of combinations (zTi, zSj) with zij =
zTi + zSj unchanged. To remedy the problem, we explicitly
add a constraint in the prior of zT that

∑
i zTi = 0. Taken

together, the prior density of zT can be written as:

p(zT |βz, γz) ∝
(
N |γzK̃tr + βzK̃pr|+

)0.5
· exp

{
−1

2
zTT

(
γzK̃tr + βzK̃pr + 11T

)
zT

}
, (21)

where 1 is a column vector of all ones. Recall that the
eigenvalue of KT corresponding to eigenvector 1 is 0 (see
Section II). By adding 11T to KT , we only modify the
eigenvalue to N with other eigenvalues unchanged. Therefore,
|γzK̃tr + βzK̃pr + 11T |+ = N |γzK̃tr + βzK̃pr|+.

C. Spatio-Temporal Graphical Models for Extreme Values

The joint PDF of the overall spatio-temporal model can be
written as:

p(x, ξS , ξT , ζS , ζT ,µS ,µT |αξ, βξ, γξ, αζ , βζ , γζ , αµ, βµ, γµ)

=
∏

{i,j}∈VO

f(xij |ξTi + ξSj , ζTi + ζSj , µTi + µSj)

·
∏

z∈{ξ,ζ,µ}

p(zS |αz)p(zT |βz, γz), (22)

where f(xij |ξTi+ξSj , ζTi+ζSj , µTi+µSj) is the GEV density
function (i.e., the likelihood of the GEV parameters, cf. (14)
and (16)) introduced in Subsection III-A.

Since the GEV densities are non-Gaussian, the resulting
overall graphical model is non-Gaussian as well. Therefore, we
exploit variational inference methods to estimate both the GEV
parameters and the smoothness parameters given observed
extreme values x = [xij ]

T , which is explained in the next
section.

IV. LEARNING AND INFERENCE

In this section, we first elaborate on how to learn both
the GEV and smoothness parameters given the extreme-value
observations. We then employ the model to predict future GEV
distributions.

A. Learning GEV and Smoothness Parameters

As mentioned in Section I, we estimate all the parameters
through an empirical Bayes approach [29]. Specifically, we

infer the smoothness parameters by maximum likelihood es-
timation. Let y = [ξS ; ξT ; ζS ; ζT ;µS ;µT ] and θ = [αξ;βξ;
γξ;αζ ;βζ ; γζ ;αµ;βµ; γµ]. The likelihood is given by:

p(x|θ) =

∫
y

p(x,y|θ)dy =

∫
y

p(x|y)p(y|θ)dy, (23)

where p(x|y) are the GEV densities, and p(y|θ) are the thin-
plate model priors. Since maximizing p(x|θ) (23) directly is
intractable, we instead find q(y) and θ to maximize the lower
bound of log p(x|θ):

L =

∫
y

q(y) log
p(x|y)p(y|θ)

q(y)
dy ≤ log p(x|θ). (24)

Ideally, we choose q(y) = p(y|x,θ) such that the lower
bound L is maximized. However, in our case, we cannot
obtain the closed-form expression of the posterior distribution
p(y|x,θ) due to the complicated functional form of the GEV
densities. Alternatively, we resort to the variational inference
algorithm [30], in which we find the variational distribution
q(y) with a fixed but tractable functional form that maxi-
mizes L. More precisely, we set q(y) to be a multivariate
Gaussian distribution with a diagonal covariance matrix. Spec-
ifying q(y) to such a simple function can dramatically speed
up the learning process. At the same time, each factor q(yi)
can reliably approximate the corresponding marginal posterior
distribution p(yi|x,θ) given by Gibbs sampling, especially the
mean, as shown in our numerical experiments.

We estimate both the smoothness parameters and the pa-
rameters of q(y) via stochastic optimization [32], which is
discussed below at length. Since the variational distribution
q(y) is given by N (y;m, CCT ), wherem is the mean vector,
and C is a diagonal matrix with the standard deviation vector ν
on the diagonal, y can be equivalently parameterized as [20]:

y = Cye +m, (25)
ye ∼ φ(ye), (26)

where φ(ye) = N (ye;0, I) is a multivariate Gaussian dis-
tribution with zero mean and unit variance. By changing
variables according to ye = C−1(y−m), L can be expressed
as [20]:

L =

∫
ye

φ(ye) log
p(x|Cye +m)p(Cye +m|θ)|C|

φ(ye)
dye

=Eφ(ye) [log p(x|Cye +m)] + Eφ(ye) [log p(Cye +m|θ)]

+ log |C|+ c, (27)

where c is a constant that summarizes all irrelevant terms.
Since p(Cye + m|θ) corresponds to a Gaussian graphical
model, we can obtain the closed-form expression of the second
term in (27):

Eφ(ye) [log p(Cye +m|θ)]

=
∑

z∈{ξ,ζ,µ}

Eφ(zSe) [log p(zS |αz)] + Eφ(zTe) [log p(zT |βz, γz)] ,

(28)

and

Eφ(zSe) [log p(zS |αz)] =
1

2
log |αzKS |+
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− αz
2
mT
zSKSmzS −

αz
2
νTzSdiag(KS)νzS , (29)

Eφ(zTe) [log p(zT |βz, γz)] =
1

2

(
log |βzK̃pr + γzK̃tr|+ + logN

)
− 1

2
mT
zT

(
KT + 11T

)
mzT −

1

2
νTzT diag

(
KT + 11T

)
νzT ,

(30)

where diag(K) is a diagonal matrix whose diagonal equals
that of K.

Our objective is to find the smoothness parameters θ and
the variational parameters m and ν to maximize the lower
bound L (27). To this end, we consider the gradients with
respect to those parameters. For the spatial smoothness pa-
rameter αz , the gradient is given by:

∂L

∂αz
=
P − 1

2αz
− 1

2
mT
zSKSmzS −

1

2
νTzSdiag(KS)νzS .

(31)

For the smoothness parameters βz and γz that characterize the
temporal dependence, the gradient appears to be complicated
because of the log-determinant term. However, recall that
βzK̃pr + γzK̃tr = KT = (γzKtr) ⊕ (βzKpr) (18). Due to
the properties of Kronecker sum [31, Ch. 13], the eigenvalue
matrix ΛT of KT boils down to:

ΛT = (γzΛtr)⊕ (βzΛpr) = βzΛ̃pr + γzΛ̃tr, (32)

where Λtr and Λpr are the eigenvalue matrices corresponding
respectively to Ktr and Kpr, Λ̃pr = Itr ⊗ Λpr, and Λ̃tr =
Λtr⊗ Ipr. Consequently, the log-determinant term in (30) can
be simplified as:

log |βzK̃pr + γzK̃tr|+ = log |βzΛ̃pr + γzΛ̃tr|+ (33)

=
∑

{i:λ̃pri+λ̃tri>0}

log(βzλ̃pri + γzλ̃tri),

(34)

and therefore the gradient of L with regard to βz and γz equals:

∂L

∂βz
=

1

2

∑
{i:λ̃pri+λ̃tri>0}

λ̃pri

βzλ̃pri + γzλ̃tri

− 1

2
mT
zT K̃prmzT −

1

2
νTzT diag(K̃pr)νzT , (35)

∂L

∂γz
=

1

2

∑
{i:λ̃pri+λ̃tri>0}

λ̃tri

βzλ̃pri + γzλ̃tri

− 1

2
mT
zT K̃trmzT −

1

2
νTzT diag(K̃tr)νzT . (36)

On the other hand, the gradient w.r.t the variational mean
and standard deviation corresponding to the spatial compo-
nents zS of the GEV parameters can be computed as:

∇mzS
L =Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f
(
xij |ξTi + ξSj , ζTi

+ ζSj , µTi + µSj
)]}
− αzKSmzS , (37)

∇νzSL =Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f
(
xij |ξTi + ξSj , ζTi

+ ζSj , µTi + µSj
)]
� zSe

}
− αzdiag(KS)νzS

+ 1� νzS , (38)

where � and � denote componentwise product and division
respectively, and φ(ye) =

∏
z∈{ξ,ζ,µ} φ(zSe)φ(zTe). The

detailed derivation is presented in Appendix A. Similarly, for
the temporal components,

∇mzT
L =Eφ(ye)

{
∇zT

[ ∑
{i,j}∈VO

log f
(
xij |ξTi + ξSj , ζTi

+ ζSj , µTi + µSj
)]}
−KTmzT −

(∑
mzT

)
1,

(39)

∇νzT L =Eφ(ye)

{
∇zT

[ ∑
{i,j}∈VO

log f
(
xij |ξTi + ξSj , ζTi

+ ζSj , µTi + µSj
)]
� zTe

}
− diag

(
KT + 11T

)
· νzT + 1� νzT . (40)

The gradient of the logarithm of the GEV densities
log f(xij |ξTi + ξSj , ζTi + ζSj , µTi + µSj) in the above ex-
pressions is listed in Appendix B.

Since the expectations in (37)-(40) are intractable, we
approximate them stochastically using Monte Carlo integra-
tion. The resulting unbiased stochastic approximation of the
gradients are called stochastic gradient. Replacing the exact
gradients in (37)-(40) leads to a stochastic optimization al-
gorithm for inferring the optimal variational parameters [32].
Concretely, in each iteration κ, we use one realization of the
exact gradients, namely, we draw one sample ŷe from φ(ye)
and evaluate the gradients at ŷ(κ) = ν(κ)� ŷe +m(κ), where
a(κ) denotes the value of parameter a in iteration κ. Therefore,

∇̃mL|m=m(κ) =∇y log p(x|y)
∣∣
y=ŷ(κ)

+∇mEφ(ye)
[

log p(y|θ)
]∣∣
m=m(κ) , (41)

∇̃νL|ν=ν(κ) =∇y log p(x|y)
∣∣
y=ŷ(κ) � ŷe

+∇νEφ(ye)
[

log p(y|θ)
]∣∣
ν=ν(κ) + 1� ν(κ),

(42)

where ∇̃mL and ∇̃νL represent the stochastic gradients. Only
the first terms on the right hand side of the above two equations
are approximated stochastically, whereas the other terms can
be computed in closed form. We then update all the parameters
following a gradient ascent approach:

m(κ+1) = m(κ) + ρ(κ)∇̃mL|m=m(κ) , (43)

ν(κ+1) = ν(κ) + ρ(κ)∇̃νL|ν=ν(κ) , (44)

θ(κ+1) = θ(κ) + ρ(κ)∇θL|θ=θ(κ) , (45)

where ρ(κ) is the learning rate (or step size) in iteration κ.
When the learning rate schedule follows the Robbins-Monro

conditions [32]:
∞∑
κ=1

ρ(κ) =∞,
∞∑
κ=1

(
ρ(κ)

)2
<∞, (46)

the stochastic optimization algorithm converges to a local
maximum of L. Due to the noisy gradient used in each itera-
tion, the SVI algorithm can easily escape from shallow local
maxima of the complex objective function, and converges to
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at least a significant local maximum. The proposed algorithm
can be viewed as a stochastic variational extension of the
expectation conjugate gradient algorithm proposed in [33].

The computational complexity of the SVI algorithm is now
linear in |VO|, where |VO| denotes the number of nodes in VO,
and it equals O(D) when there is no missing data. As pointed
out in [21], the stochastic gradient can be obtained using
a mini-batch of M ≤ |VO| factors of the joint distribution
p(x,y|θ) (22). The resulting computational cost can be further
reduced to be sublinear. As an example, let us focus on the
stochastic gradient of mzSj (j = 1, · · · , P ):

∂L

∂mzSj

=

N∑
i=1

∂ log f
(
xij |ξTi + ξSj , ζTi + ζSj , µTi + µSj

)
∂zSj

− αz[KS ]j,:mzS , (47)

where [KS ]j,: is the jth row of matrix KS . The first term on
the right hand side of the above equation can be equivalently
expressed as:

NEp(i)

[
∂ log f

(
xij |ξTi + ξSj , ζTi + ζSj , µTi + µSj

)
∂zSj

]
,

(48)

where p(i) is a discrete uniform distribution on the set
{1, · · · , N}. Thus, we randomly draw a mini-batch of i from
the set, compute the corresponding partial derivatives, and
approximate the expectation in (48) by the mean value of
the partial derivatives. The stochastic gradients w.r.t other
parameters can be computed in a similar fashion. In the most
extreme case, to compute all the required stochastic gradients,
we only need to draw M = max(N,P ) samples xij uniformly
without replacement from VO such that all the indices i
(i = 1, · · · , N) and j (j = 1, · · · , P ) appear at least once.
Then the computational complexity is only O(max(N,P )).
Our numerical experiments demonstrate that using a mini-
batch of VO can greatly accelerate the algorithm, reducing
the computational time from hours to minutes.

1) Selecting the Step Size: One challenge with stochastic
optimization methods is setting the learning rate. As the
parameters in our problem have completely different scales,
if we use a unified step size to update all the parameters,
the step size has to be small enough to tackle the smallest
scale. The resulting algorithm would converge slowly. To
address this concern, we exploit the ADADELTA method [34],
which adaptively sets individual dynamic step size for each
component of the parameter vector. Specifically, ADADELTA
defines the step size as:

ρ(κ) = ρ0 �
√
Ẽ[(∇L)2](κ) + ε, (49)

where ε is a small constant that servers the purpose to better
condition the denominator, and Ẽ[(∇L)2] is an exponentially
decaying moving average of the squared gradients which can
be updated as:

Ẽ[(∇L)2](κ) = ηẼ[(∇L)2](κ−1) + (1− η)(∇L(κ))2, (50)

where (∇L(κ))2 denotes componentwise square of ∇L(κ).
Since the denominator employs the squared gradient informa-
tion, large gradients have smaller learning rates and vice versa.

The ADADELTA method has the nice property as in second-
order methods (e.g., Newton’s method) that the progress along
each dimension evens out over time. On the other hand, as
shown in [35], [36], the moving average of squared gradient
Ẽ[(∇L)2] is a good approximation to E[(∇L)2], which can
be further decomposed as:

E[(∇L)2] = E[∇L]2 + V [∇L], (51)

where V [∇L] is the variance of the gradient. As a result, the
step size decreases with the growing of the variance of the
gradient, thus mitigating the risk of taking a large step in a
wrong direction.

In our experiments, we follow [34] to set η = 0.95 and
ε = 10−6. Additionally, we initialize ρ0 = 10−3 and scale it
every 1000 iterations by a factor of 0.99 in a similar manner
as in [20], so as to guarantee the convergence of the algorithm.

2) Reducing the Variance of the Gradient: In order to
increase the step size and improve the convergence rate,
one has to design methods that can reduce the variance of
the stochastic gradient. It has been demonstrated in [37]-
[39], both empirically and theoretically, that utilizing a fixed-
window moving average of stochastic gradients can effectively
reduce the variance and highly speed up the stochastic gradient
algorithm both empirically and theoretically. Here, we further
extend the idea and employ an exponentially decaying moving
average in which the decaying rate depends on the variance of
the gradient. As in [39], we only compute the moving average
of the Monte Carlo approximation part of the stochastic
gradient (e.g., the first terms in Eq. (37)-(40)), since other
terms are deterministic values that have no influence on the
variance. Specifically, let E[g] denote the exact value of the
first terms in Eq. (37)-(40), g the Monte Carlo approximation
of E[g], and Ẽ[g] the exponentially decaying moving average.
Ẽ[g] can be updated as:

Ẽ[g](κ) =

(
1− 1

τ
(κ)
g

)
Ẽ[g](κ−1) +

1

τ
(κ)
g

g(κ), (52)

where τ (κ)g can be viewed as the window size of the moving
average in iteration κ. We want the window size to increase
when the variance is large, and to decay if the variance
becomes small. Note that a good measure of the variance given
the stochastic gradients in each iteration is:

ω =

∑
Ẽ[∇L]2∑
Ẽ[(∇L)2]

≈
∑
E[∇L]2∑

E[∇L]2 +
∑
V [∇L]

, (53)

where Ẽ[∇L] and Ẽ[(∇L)2] are the exponentially decaying
moving average of the gradient and the squared gradient
respectively with the decaying rate η as defined in (50). It is
evident that ω grows with the inverse of the variance. Given the
current measure of the variance ω(κ), we update the window
size τ (κ+1)

g for the next iteration as:

τ (κ+1)
g = (1− ω(κ))τ (κ)g + 1. (54)

As such, τg ≥ 1 as the algorithm proceeds, and it changes
with the variance of the gradient as desired. Interestingly, it
can be observed that the length of the moving window will
decrease if we take a big step (i.e., ∇L is large and E[∇L]
increases) in the current iteration. In this case, the gradients in
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the previous iterations are unreliable, and we can see that they
will contribute less to Ẽ[g] in the next iteration according to
the proposed method. Therefore, such mechanism makes Ẽ[g]
approximate E[g] more accurately. Note that similar methods
are applied in [35], [36] for step size selection. We find that
this method works as well for variance reduction. Moreover,
it is straightforward to combine the method with ADADELTA
to achieve better performance. The method can be further
extended to yield different τg for different sets of parameters,
cf. [35]. Here we only compute a unified τg for simplicity. In
our experiments, we initialize τ (1)g = 1. We then replace g(κ)

by Ẽ[g](κ) when computing the stochastic gradient in each
iteration.

3) Bounding the GEV Parameters: Note that when the
shape parameter ξij = 0, the expression of the PDF (16)
does not involve ξij . In order to obtain the partial derivatives
with respect to ξij , we approximate it by a small value, e.g.,
ξij = 10−6, and use the PDF in (14) instead. Additionally,
given an observation xij , the GEV parameters must satisfy the
constraint 1 + ξij(xij −µij)/ exp(ζij) > 0, so as to guarantee
that the log-likelihood and the corresponding gradient are well
defined. However, the variational distribution q(y) is defined
in R. To address this issue, we borrow the idea of Lagrangian
multipliers, and extend the domain of the likelihood of the
GEV parameters to R as follows:

f̃(xij |ξij , ζij , µij)

=

f(xij |ξij , ζij , µij) if 1 + ξij

(
xij−µij
exp(ζij)

)
> 0,

exp
{
c1

[
1 + ξij

(
xij−µij
exp(ζij)

)]
− c2

}
otherwise,

(55)

where c1 and c2 are sufficiently large positive constants.
According to the above definition, when a sample ŷ from the
variational distribution q(y) fails to satisfy the constraint, the
corresponding stochastic gradient will move the mean vector
of q(y) in the direction where the constraints can be satisfied,
since in this case the gradient of f̃(xij) always points to the
direction in which the value of 1 + ξij(xij − µij)/ exp(ζij)
increases. Moreover, when the constraint is not satisfied,
f̃(xij) is close to zero due to the large positive constant
c2. Therefore, the shape of the original and the extended
likelihood are almost the same.

After replacing f(xij) with f̃(xij) in (22), the value y∗ that
maximizes log p̃(x,y|θ) is the same as before, as indicated by
the following proposition:

Proposition 1. Let y∗ correspond to a local maximum
of log p̃(x,y|θ). If the positive constant c1 is sufficiently
large, then y∗ satisfies the constraint that 1 + ξij(xij −
µij)/ exp(ζij) > 0, ∀{i, j} ∈ VO, and log p(x,y|θ) also
attains a local maximum at y∗.

Proof. See Appendix C.

As a result, we can safely replace log p(x,y|θ) with
log p̃(x,y|θ) during the learning process. Although the exact
value of c1 cannot be predicted in advance, we find that
c1 = 1010 is sufficiently large in our experiments. We
summarize the overall algorithm in Table I.

TABLE I: Stochastic variational inference of the spatio-
temporal model.

Initialize E[∇θL2](0) = 0, E[∆θ2](0) = 0. Iterate the following steps until
m and ν converge.

1) Draw one sample ŷ(κ) from the multivariate Gaussian distribution
N (y;m(κ), C(κ)(C(κ))T ):

ŷe ∼φ(ye), ŷ(κ) = ν(κ) � ŷe +m(κ).

2) Compute the gradient w.r.t the smoothness parameters ∇θL|θ=θ(κ)
(cf. Eq. (31), (35) and (36)) and the stochastic gradients w.r.t the
variational parameters(cf. Eq. (37)-(40)):

∇̃mL|m=m(κ) =∇y log p(x|y)
∣∣
y=ŷ(κ)

+∇mEφ(ye)
[

log p(y|θ)
]∣∣
m=m(κ) ,

∇̃νL|ν=ν(κ) =∇y log p(x|y)
∣∣
y=ŷ(κ) � ŷe

+∇νEφ(ye)
[

log p(y|θ)
]∣∣
ν=ν(κ) + 1� ν(κ).

3) Compute the moving average the first terms of the above two equations
to reduce the variance of the stochastic gradients, as described in
Section IV-A2.

4) Set the componentwise step size ρ(κ) as described in Section IV-A1.
5) Update m, ν, θ as follows:

m(κ+1) = m(κ) + ρ(κ) � ∇̃mL|m=m(κ) ,

ν(κ+1) = ν(κ) + ρ(κ) � ∇̃νL|ν=ν(κ) ,

θ(κ+1) = θ(κ) + ρ(κ) �∇θL|θ=θ(κ) .

B. Prediction of Future GEV Parameters

A primary goal of the spatio-temporal model is to predict
future GEV distributions. Since the spatial component of each
GEV parameter is time invariant, we only need to extrapolate
the temporal component to time points N + 1, N + 2, · · · .
Recall that the thin-plate model with the zero curvature
boundary condition serves as a natural tool to predict the
future by means of the current trend (cf. Section II). We
thus incorporate the future temporal components of GEV
parameters at the right end of the neighborhood structure
of the temporal model (see Fig. 2c). As a result, the future
parameters zTf and the observed parameters zTo together
form a Gaussian graphical model with precision matrix K̃T .
According to Schur complement, we can obtain the MAP
estimates:

zTf = −[K̃T ]−1ff [K̃T ]fozTo. (56)

Note that zTo denotes the posterior estimates of the GEV
parameters inferred by the SVI methods presented in the last
subsection. Due to the special structure of the temporal thin-
plate model, the expression (56) boils down to:

zT N+(i−1)τ+1:N+iτ = γz (βzKpr + γzIpr)
−1

·
(
2zT N+(i−2)τ+1:N+(i−1)τ − zT N+(i−3)τ+1:N+(i−2)τ

)
,

(57)

for i = 1, 2, · · · . Since (βzKpr+γzIpr) is a sparse matrix, the
computational complexity of solving the linear system is linear
in τ , when applying algorithms such as belief propagation [40]
and embedded subgraphs algorithm [41]. Therefore, the pro-
posed model provides an efficient tool for forecasting future
GEV distributions. The final estimation of GEV parameters at
time point N + i and site j is zN+i,j = zT N+i + zSj .



9

V. NUMERICAL RESULTS

In this section, we apply our model to synthetic and real
data. We first show the sublinear computational complexity
of the proposed SVI algorithm. We then compare the SVI
algorithm with Gibbs sampling when learning the spatio-
temporal model. In addition, we also benchmark the proposed
spatio-temporal model (STM) against a spatial model (SM;
without considering the temporal variation) [5], [6], a temporal
model (TM; without considering the spatial variation) [7],
and a model with the same shape and scale parameter for
all locations and time points (SSSM) [9]. The proposed SVI
algorithm is employed to learn the parameters of all four
models. We compare the four models using the deviance
information criterion (DIC) [17]:

DIC = D̄ + p. (58)

The first term is defined as the posterior expectation of the
deviance:

D̄ = Eq(y)[−2 log p(x|y)]. (59)

It can be regarded as a Bayesian measure of model fit, which
attains smaller values for better models. The second term
measures the model complexity by the effective number of
parameters:

p = Eq(y)[−2 log p(x|y)] + 2 log p(x|Eq(y)[y]). (60)

The DIC is a hierarchical model generalization of the Akaike
information criterion and the Bayesian information criterion,
and it is particularly useful in Bayesian model selection
problems [12], [13], [16]. In addition, for synthetic data, we
compute mean squared error (MSE) between the estimated
GEV parameter and the ground truth for both observed time
series and future GEV distributions in the next year. For real
data, we assess the predictive performance by evaluating the
averaged absolute fractional prediction errors (AAFPE) [15].
More concretely, let x̂N+i,j be the median of the estimated
future GEV distribution at time instant N + i and location j.
Then, the AAFPE is given by [15]:

AAFPE =
1

NfP

Nf∑
i=1

P∑
j=1

∥∥∥∥ x̂N+i,j − xN+i,j

xN+i,j

∥∥∥∥ , (61)

where xN+i,j is the observed block maximum at time point
N + i and location j, and ‖ · ‖ denotes the absolute value.

A. Synthetic Data

We generate synthetic data by first specifying the GEV
parameters in the spatio-temporal domain and then drawing
one single sample at each location and time instant. The GEV
parameters are defined as quadratic Legendre polynomials
of the latitude and longitude of the measuring stations. We
then specify the temporal variation by means of trigonometric
functions with period τ = 12. Finally, we add an overall poly-
nomial trend to the GEV parameters across time. Concretely,
we consider 256 sites arranged on a 16 × 16 regular lattice
with 360 monthly maximum observations for each site. We
use the data of the first 348 months to learn the model, and
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Fig. 3: Estimates of the spatial component of a scale parameter
w.r.t. number of iterations using a proportion of all the
observations.

TABLE II: Performance of the SVI algorithm when the size
of the mini-batch changes.

Size of

mini-batch

MSE Computational

time (s)

No. of

iterationsξ ζ µ

1% 6.08×10−4 1.98×10−3 1.24×10−1 4.93×102 80000

2% 6.71×10−4 2.00×10−3 1.25×10−1 7.09×102 75000

5% 6.22×10−4 1.95×10−3 1.25×10−1 1.23×103 55000

10% 6.01×10−4 1.93×10−3 1.25×10−1 2.45×103 55000

30% 5.97×10−4 1.92×10−3 1.25×10−1 6.11×103 55000

50% 6.07×10−4 1.92×10−3 1.25×10−1 1.09×104 60000

70% 6.03×10−4 1.91×10−3 1.25×10−1 1.51×104 65000

90% 6.21×10−4 1.92×10−3 1.25×10−1 1.94×104 65000

retain the rest 12-month data to test the prediction algorithm.
Therefore, D = 89, 088 in this case.

We first explore how the performance of the SVI algorithm
changes when using a smaller mini-batch of samples from
VO to compute the stochastic gradient. Concretely, we use
1%, 2%, 5%, 10%, 30%, 50%, 70%, and 90% of all the
samples sequentially. We show how the spatial component of a
randomly selected scale parameter ζSj varies as the algorithm
proceeds in Fig 3. Other related information, such as the
accuracy of estimation, the computational time, and the total
number of iterations, is listed in Table II. It can be seen that the
SVI algorithm converges to the same optimal point regardless
of the size of the mini-batch. More importantly, although
gradients resulting from a very small minibatch (i.e., 1% and
2%) are very noisy and therefore it takes more iterations
before the algorithm can converge, the small computational
complexity in each iteration successfully shortens the overall
computational time, from hours to minutes. Therefore, unless
otherwise stated, we only use 1% of observations to compute
the stochastic gradient in the following simulations.

Next, we compare the proposed SVI algorithm with Gibbs
sampling to investigate how well the variational distribution
can approximate the simulated true posterior distribution. The
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Fig. 4: Comparison the results from the MCMC method and the SVI method: the distribution of the spatial component of a
shape (a), a scale (b), and a location parameter (c) and the distribution of the temporal component of a shape (d), a scale (e),
and a location parameter (f).

longitude

la
tti

tu
de

5 10 15

5

10

15

(a) True value.
longitude

la
tti

tu
de

5 10 15

5

10

15

(b) SM.
longitude

la
tti

tu
de

5 10 15

5

10

15

(c) TM.
longitude

la
tti

tu
de

5 10 15

5

10

15

(d) SSSM.
longitude

la
tti

tu
de

 

 

5 10 15

5

10

15 1.4

1.6

1.8

2

2.2

2.4

(e) STM.

Fig. 5: Estimates of scale parameter σ across all sites at one time point.
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Fig. 6: Estimates of location parameter µ across all sites at one time point.

Gibbs sampling procedure is outlined in Appendix D. Similar
methods are employed in [8]. Here, we draw 500, 000 samples.
We discard the first 5000 samples as burn-in iterations, and
further thin the rest samples by a factor 20. We depict in Fig. 4
the estimated distributions of randomly selected spatial and
temporal components of GEV parameters resulting from the
two methods. As shown in the figure, although the variances

of the variational distributions are less consistent with those
of the simulated posterior distributions, the mean values are
almost identical. Indeed, the MSE between the mean value
of the Gibbs samples and the ground truth for the three
GEV parameters (ξ, ζ,µ) is 2.87 × 10−4, 1.45 × 10−3 and
1.10 × 10−1 respectively, while the corresponding MSE for
the SVI algorithm is 6.08×10−4, 1.98×10−3, and 1.24×10−1
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Fig. 7: Estimates of GEV parameters across time: (a) estimates of scale parameter σ across time; (b) estiamtes of location
parameter µ across time.

TABLE III: Quantitative comparison of different models for
spatio-temporal extreme-value data

Models
MSE (observed) MSE (predicted)

DIC
ξ ζ µ ξ ζ µ

SM 1.68×10−2 2.30×10−1 6.44×101 3.05×10−2 2.98×10−1 6.24×101 6.93×105

TM 2.76×10−2 2.70×10−1 5.23×101 2.29×10−2 3.31×10−1 5.22×101 7.11×105

SSSM 3.18×10−2 6.63×10−2 1.01 5.43×10−2 8.67×10−2 1.38 6.29×105

STM 6.08×10−4 1.98×10−3 1.24×10−1 2.51×10−3 3.22×10−3 6.93×10−1 6.15×105

respectively (see Table II), indicating that the SVI algorithm
performs comparably with the Gibbs sampling algorithm in
terms of MSE. However, it takes 4.09×105 seconds to generate
all the Gibbs samples, whereas the SVI algorithm only runs
for 4.93×102 seconds. The computational time of the proposed
SVI algorithm is three orders of magnitude shorter than that
of the Gibbs sampling.

Now we compare the proposed model with three other
models, including a SM, a TM, and a SSSM. The results are

summarized in Fig. 5 to Fig. 7 and in Table III. Specifically,
Fig. 5 and Fig. 6 shows the estimated scale and location
parameters respectively across space resulting from the four
models, while Fig. 7 shows the estimated scale and location
parameters across time. The results of the shape parameters
are qualitatively similar to that of the scale parameters, so we
omit them. Table III lists the DIC scores, and the MSE for
the estimated GEV parameters with respect to the observed
monthly maxima as well as for the predicted GEV parameters
in the next year.

As shown in Table III, the proposed STM outshines the
competing models in terms of the MSE and the DIC score, and
also provides a reliable tool to forecast the GEV distributions
in the future. Moreover, we can observe from Fig. 5e, Fig. 6e,
and Fig. 7 that the STM yields estimates that closely follow
the true temporal and spatial pattern. By contrast, the SM
mistakenly ignores the temporal variation (see Fig. 7), and
yields biased estimates of the scale and location parameters
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TABLE IV: Quantitative comparison of different models for data simulated from the SM, the TM, and the SSSM.

Models

Data simulated from the SM Data simulated from the TM Data simulated from the SSSM

MSE
DIC

MSE
DIC

MSE
DIC

ξ ζ µ ξ ζ µ ξ ζ µ

SM 1.68×10−4 2.98×10−4 5.01×10−2 6.07×105 1.28×10−2 2.22×10−1 6.42×101 6.88×105 2.64×10−2 2.13×10−1 6.16×101 7.00×105

TM 2.96×10−2 2.89×10−1 5.23×101 7.82×105 3.51×10−4 5.19×10−4 9.85×10−2 6.08×105 3.29×10−2 2.03×10−1 5.22×101 6.96×105

SSSM 1.51×10−2 3.64×10−2 6.03×10−1 6.15×105 1.71×10−2 2.32×10−2 2.49×10−1 6.15×105 4.21×10−5 6.90×10−6 1.02×10−1 6.36×105

STM 2.45×10−4 3.73×10−4 5.21×10−2 6.08×105 6.20×10−4 9.20×10−4 9.04×10−2 6.09×105 5.03×10−4 5.61×10−4 9.81×10−2 6.36×105

across space at the randomly selected time instant (see Fig. 5b
and Fig. 6b). Similarly, the TM fails to explain the spatial
variation of the GEV parameters (see Fig. 5c and Fig. 6c),
while wrongly estimating the location and scale parameters
in time domain (see Fig. 7). In addition, since the location
parameters are assumed to be the same across time and space
respectively in the SM and the TM, the observations are more
different from the corresponding location parameters in these
two models than in other models. In order to capture such large
deviance from the location parameters, the scale parameters
are overestimated, as demonstrated in Fig. 5 and Fig. 7a. The
SSSM, on the other hand, performs better than the above
mentioned two models when describing the spatio-temporal
dependence among the location parameters. Unfortunately, the
assumption that the shape and scale parameters are constant
seriously limits the modeling power, and therefore, the result-
ing DIC score is larger than that of the STM. In addition, the
assumption influences the estimation of the location parame-
ters as well. As a consequence, the corresponding estimates
are less accurate than that of the STM, which can be seen from
Fig. 6d, Fig. 7, and Table III. In summary, we can conclude
that it is essential to consider the spatio-temporal variation for
all the three GEV parameters when modeling the synthetic
data at hand.

In order to further compare the four models, we generate an-
other three synthetic data sets, respectively simulated from the
three benchmark models. The GEV parameters are predefined
in the same way as before. There are still 256 sites allocated
on a 16×16 lattice with 348 monthly maxima observed at
each site. Our objective is to show that the proposed model
performs as well as the other models, even for data generated
by these three models. We summarize the results in Table IV. It
is evident that the proposed STM can flexibly handle different
types of data, and achieves comparable performance to the
underlying true model. The SSSM performs the second best,
probably because the varying location parameters are able to
capture most of the variation in the data, but not as good as
the STM in terms of the MSE and the DIC score. The SM
and the TM, however, only yield good results when the data
are simulated from these models. From all these results, it
becomes clear that the proposed STM is a flexible model with
an efficient learning procedure.

Finally, we investigate whether the proposed SVI algorithm
can yield accurate estimates of GEV parameters when obser-
vations are missing at random. Here, we use the first data
set whose GEV parameters vary across both space and time.
In this case, |VO| < D. Fig. 8 shows the MSE for each GEV
parameter and for the observed variables ({i, j} ∈ VO) and the
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Fig. 8: MSE for varying proportion of missing data (averaged
over 100 trials). The MSE increases with growing proportion
of missing data, as expected.

unobserved ones ({i, j} 6∈ VO) respectively as a function of the
percentage of missing variables across 100 trials. We can see
that the MSE increases with the number of unmonitored sites
and time points, in agreement with our expectation. However,
the MSE is still small even when only 10% variables are
observed. In conclusion, the proposed model is applicable to
cases with missing data.

B. Real Data

1) Nigeria Precipitation Data: We now consider the ex-
treme precipitation in South Nigeria. The daily rainfall data
available at measuring stations from 1979-2005 is interpolated
onto a grid with resolution 0.1◦ in [43]. We choose 256 sites
arranged on a 16×16 lattice, and extract the monthly maxima
for each site. We fit the four models (i.e., the SM, the TM, the
SSSM, and the STM) to the first 26-year data, and retain the
monthly maxima in 2005 to check the predictive performance.

We first conduct an exploratory study on the data. Fig. 9 il-
lustrates the non-stationarity of the data across space and time.
We can see that the distribution of monthly maximum rainfall
amount varies significantly more across time than across space.
Additionally, Fig. 10 shows that there exists strong spatial
association in monthly maximum rainfall amount for pairs
of nearby sites, but less strong dependence for pairs of sites
situated at opposite points of the lattice. This indicates that
the GEV distributions, or equivalently the GEV parameters,
are similar at nearby sites.
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Fig. 9: Non-stationarity in extreme rainfall data: (a) Distribu-
tion of monthly maximum rainfall of all months in 26 years
at 12 randomly selected sites; (b) Distribution of monthly
maximum rainfall from January to December of all 26 years
at a random site. The distribution of extreme rainfall clearly
depends on the location and the month.
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Fig. 10: Scatter plots of monthly maximum rainfall at pairs of
sites: (a) two contiguous sites; (b) two distant sites.

We next estimate parameters of the four models using the
SVI algorithm described in Section IV. The DIC scores of
the four models are respectively 7.67 × 105, 5.61 × 105,
6.24 × 105, and 5.52 × 105. It is obvious that the proposed
STM fits the data the best. We further combine the estimated
shape parameters of all 26 years given by the STM and depict
in Fig. 11 the distribution of shape parameters for different
months at the same site as in Fig. 9b. It can be seen that shape
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Fig. 11: Estimated shape parameters in different months.

parameters tend to be larger than zero (i.e., the extreme values
follow Fréchet distributions) only in January, February, July,
August, and December, which happen to be the months with
heavy-tailed distributions in Fig. 9b. The remaining months are
more likely to have distributions with bounded upper tails. As
different months exhibit different tail behaviors, it is improper
to assume that the shape parameter is constant across time.
This results in the relatively large DIC score of the SSSM
in comparison with the STM. Moreover, since there is less
heterogeneity across space than across time as demonstrated
in Fig. 9, the TM that ignores the spatial variation performs the
second best. The spatial model, however, cannot capture the
temporal non-stationarity well, leading to the worst fitting. On
the other hand, the AAFPEs for the four models are 1.35 (SM),
0.83 (TM), 0.80 (SSSM), and 0.77 (STM). The proposed
model attains the smallest prediction error, suggesting that
it can forecast extreme-value distributions in the future more
reliably.

2) Japan Precipitation Data: We next analyze a real data
set of the monthly maximum rainfall amount in Japan. The
daily rainfall data from 1900-2011 is compiled and interpo-
lated onto a grid with resolution 0.05◦ [42]. We select one
32× 32 regular grid in central Japan, where heavy rainfall is
often the cause of floods. Once again, we extract the monthly
maxima from 1900 to 2009 to learn the model and hold out
the data in 2010 to 2011 for validation purpose. Note that
the number of dimensions in this case is D = 1024 sites
×110 years ×12 months = 1, 351, 680. The computational
time of the proposed SVI algorithm for such large-scale data
is only 2.22×104 seconds. Similar to the results of the Nigeria
data, the DIC scores of the four models are 1.22× 107 (SM),
1.18× 107 (TM), 1.07× 107 (SSSM), and 1.01× 107 (STM)
respectively, while the AAFPEs are 2.07, 2.02, 1.72, 1.68.
Hence, the proposed STM achieves the best performance.

VI. CONCLUSION

In this paper, a novel statistical model is proposed to
describe spatio-temporal extreme-value data. Such data are
modeled by GEV distributions. The proposed model allows
all the three GEV parameters (shape, location, and scale) to
change in the spatio-temporal domain, thus characterizing the
spatial and temporal dependence in a flexible manner. More
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explicitly, we assume each GEV parameter can be decomposed
as the sum of a spatial and a temporal component, as in a gen-
eralized additive model. Graphical models, particularly, thin-
plate models, are then imposed on the spatial and the temporal
components to capture the spatial and temporal dependence.
A stochastic variational inference algorithm is developed to
learn the model parameters. Due to the stochastic nature of
the algorithm, the computational complexity is sublinear in the
number of variables. Thus, as demonstrated in the numerical
experiments, the model can handle thousands or even millions
of variables in the spatio-temporal domain. Results of both
synthetic and real data show that the proposed model can
recover the underlying spatio-temporal pattern in an automated
manner, given one single observation at each site and time
point. Furthermore, it can reliably predict distributions of
extreme events in the future.

It is noteworthy that the proposed model can also be easily
extended to analyze extreme events with multiple covari-
ates [19], [28]. In future work, we would like to accommodate
the covariates of extreme events, and compare the proposed
model with existing models. Another interesting direction is
to employ graphical models to further capture the dependence
between extreme values rather than the GEV parameters [45],
[46], which may assist in prediction of the extreme events in
the future. Additionally, it is possible to replace the marginal
GEV distributions by other distribution families and then
apply the model to other types of data. Finally, we will
explore multiscale graphical models [47] to capture temporal
dependence, since such models are able to model long-range
dependence. Therefore, they may yield more reliable long-term
predictions.

APPENDIX A
DERIVATION OF THE GRADIENTS

The gradient of the lower bound L with respect to the
variational parametersmzS and νzS can be derived as follows:

∇mzS
L = ∇mzS

{
Eφ(ye) [log p(x|Cye +m)] +

Eφ(zSe) [log p(zS |αz)]
}

= Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f(xij |ξTi + ξSj , ζTi + ζSj , µTi

+ µSj)
]
∇mzS

zS

}
− αzKSmzS

= Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f(xij |ξTi + ξSj , ζTi + ζSj , µTi

+ µSj)
]}
− αzKSmzS (62)

∇νzSL = ∇νzS
{
Eφ(ye) [log p(x|Cye +m)] +

Eφ(zSe) [log p(zS |αz)]
}

+ 1� νzS

= Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f(xij |ξTi + ξSj , ζTi + ζSj , µTi

+ µSj)
]
∇νzS zS

}
− αzdiag(KS)νzS + 1� νzS

= Eφ(ye)

{
∇zS

[ ∑
{i,j}∈VO

log f(xij |ξTi + ξSj , ζTi + ζSj , µTi

+ µSj)
]
� zSe

}
− αzdiag(KS)νzS + 1� νzS . (63)

Note that φ(ye) =
∏
z∈{ξ,ζ,µ} φ(zSe)φ(zTe).

APPENDIX B
PARTIAL DERIVATIVES OF THE LOGARITHM OF GEV

DENSITIES

The logarithm of the PDF of a GEV distribution can be
written as:

log f(xij |ξTi + ξSj , ζTi + ζSj , µTi + µSj)

=− ζij −
(

1

ξij
+ 1

)
log

[
1 + ξij

(
xij − µij
exp (ζij)

)]
−
[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij

, (64)

where ξij = ξTi+ ξSj , ζij = ζTi+ ζSj , and µij = µTi+µSj .
As a result, the partial derivatives can be computed as:

∂ log f(xij)

∂ξTi
=
∂ log f(xij)

∂ξSj

=
1

ξ2ij
log

[
1 + ξij

(
xij − µij
exp (ζij)

)]
−
(

1

ξij
+ 1

)[
1 + ξij

(
xij − µij
exp (ζij)

)]−1(
xij − µij
exp (ζij)

)
−

1

ξ2ij

[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij

log

[
1 + ξij

(
xij − µij
exp (ζij)

)]
+

1

ξij

[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij
−1(

xij − µij
exp (ζij)

)
, (65)

∂ log f(xij)

∂ζTi
=
∂ log f(xij)

∂ζSj

=− 1 + (1 + ξij)

[
1 + ξij

(
xij − µij
exp (ζij)

)]−1(
xij − µij
exp (ζij)

)
−
[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij
−1(

xij − µij
exp (ζij)

)
, (66)

∂ log f(xij)

∂µTi
=
∂ log f(xij)

∂µSj

= (1 + ξij)

[
1 + ξij

(
xij − µij
exp (ζij)

)]−1(
1

exp(ζij)

)
−
[
1 + ξij

(
xij − µij
exp (ζij)

)]− 1
ξij
−1(

1

exp (ζij)

)
. (67)

APPENDIX C
PROOF OF PROPOSITION 1

We can prove Proposition 1 via contradiction. Let aij =
1 + ξij(xij − µij)/ exp(ζij).
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Suppose that there is a local maximizer ŷ of log p̃(x,y|θ)
that breaks the constraints that aij > 0 for all {i, j} in a set
V− ⊆ VO. According to the definition in (55), ∀{i, j} ∈ V−,

f̃(xij |ξij , ζij , µij) = exp

{
c1

[
1 + ξij

(
xij − µij
exp(ζij)

)]
− c2

}
.

(68)

Thus, we can obtain:

∂ log f̃(xij)

∂ẑTi
=
∂ log f̃(xij)

∂ẑSj
=
∂ log f̃(xij)

∂aij

∂aij
∂ẑij

= c1
∂aij
∂ẑij

,

(69)

where z ∈ {ξ, ζ, µ}. For scale parameters ζ̂ij , it follows from
the inequality 1 + ξ̂ij(xij − µ̂ij)/ exp(ζ̂ij) ≤ 0 that

∂aij

∂ζ̂ij
= −ξ̂ij

(
xij − µ̂ij
exp(ζ̂ij)

)
≥ 1. (70)

Therefore,

∂ log f̃(xij)

∂ζ̂Ti
=
∂ log f̃(xij)

∂ζ̂Sj
= c1

∂aij

∂ζ̂ij
≥ c1. (71)

As a result, if c1 is sufficiently large, for example,

c1 >

[(KT + 11T
)
ζ̂T

]
i
−

∑
{j:{i,j}∈VO|V−}

∂ log fij

∂ζ̂ij


+

,

(72)

for one i ∈ {i : {i, j} ∈ V−}, where t+ = max(t, 0), then

∂ log p̃(x,y|θ)

∂ζ̂Ti
=c1

∑
{j:{i,j}∈V−}

∂aij

∂ζ̂ij
+

∑
{j:{i,j}∈VO|V−}

∂ log fij

∂ζ̂ij

−
[(
KT + 11T

)
ζ̂T

]
i

≥c1 +
∑

{j:{i,j}∈VO|V−}

∂ log fij

∂ζ̂ij

−
[(
KT + 11T

)
ζ̂T

]
i

>0. (73)

The above inequality contradicts the assumption that ŷ is
a local maximizer of log p̃(x,y|θ). Therefore, ŷ can be a
maximum of log p̃(x,y|θ) only if it satisfies the constraint
that aij > 0 for all {i, j} ∈ VO. Furthermore, if the constraint
is satisfied, then f̃(xij) = f(xij) for all {i, j} ∈ VO,
and therefore, log p̃(x,y|θ) = log p(x,y|θ). As a result, a
local maximizer of log p̃(x,y|θ) is also a local maximizer of
log p(x,y|θ).

APPENDIX D
GIBBS SAMPLING METHOD TO LEARN THE

SPATIO-TEMPORAL MODEL

In order to employ Gibbs sampling, we construct a full
Bayesian model here by imposing Gamma priors on the
smoothness parameters. More specifically, we set the shape
and rate parameters (a, b) of the Gamma priors to be very
small (i.e., 10−6) such that the priors are non-informative. The
detailed steps of the Gibbs sampling algorithm are as follows:

1) Updating the spatial components of GEV parameters at
each site

Each component of zS = [zSj ]
T is updated individually

via the Metropolis-Hastings (MH) algorithm. Let us take
a location parameter µSj as an example. In iteration
κ, we first generate a proposal µ(p)

Sj from a Gaussian
distribution with mean value µ(κ−1)

Sj , and then compute
the acceptance probability:

r = min(1, α), (74)

where α is a ratio between GEV likelihoods times the
thin-plate model likelihood when µ(κ)

Sj = µ
(p)
Sj and when

µ
(κ)
Sj = µ

(κ−1)
Sj . Note that other parameters are set

to their most recent values. With probability r, µ(κ)
Sj

is set to µ
(p)
Sj ; otherwise it remains at µ(κ−1)

Sj . The
spatial components of the scale and shape parameters
are updated similarly.

2) Updating the temporal components of GEV parameters
at each site
Each component of zT = [zTi]

T is updated singly in a
similar vein as in the previous step.

3) Updating the smoothness parameters αz
The conditional distribution of αz conditioned on other
parameters has a closed form, that is, a Gamma distri-
bution Gamma(αz; a+ (P − 1)/2, b+zTSKSzS/2). We
therefore draw one sample from this distribution and set
α
(κ)
z to the value of this sample.

4) Updating the smoothness parameters βz and γz
We update βz and γz using the MH approach since the
Gamma priors are not conjugate to the likelihood of βz
and γz . Here, we specify the proposal distributions as
Gamma distributions. Due to its asymmetry, we need the
Hastings correction when computing the ratio.
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