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ABSTRACT  

Flexible fiber optic imaging systems including fiber optic confocal probes have found tremendous significance 
in the recent past for its applications in high resolution imaging. However, motorized stage is required for 
scanning the sample or tip of the fiber in fiber based confocal probes. In this context, we propose a fiber probe 
confocal system using digital spatial light modulator devoid of using a mechanical scanning stage. Each fiberlet 
in the image fiber acts not only as a light conduit but also as a confocal pinhole. The paper also introduces the 
variation in the contrast by varying the number of illuminated fiberlets which effectively implies variation in the 
effective pinhole size. This approach has enabled the probe to act as an imaging unit with resolution that can be 
controlled and varied from a wide-field to a confocal. 

Keywords: Fiber optic imaging bundle, confocal fiber imaging, pixelation, variable pinhole, DMD, quasi 
confocal 

1. INTRODUCTION  
Diagnostic and therapeutic endoscopic procedures for internal organs of the human body have become quite 
common in the recent past. Endoscopes are mainly of three types namely tip chip videoscope, rod lens 
endoscope and flexible fiberscope. Visual access for rod lens endoscopes are restricted by their rigid structure1. 
For tip chip videoscope, size is limited by external light source used to illuminate the sample2. Small size and 
flexibility facilitate fiberscope for visual inspection of narrow and complex passages of medical intra cavities, 
such as colon and Gastro-Intestinal (GI) tract3-6. Fiber Optic Imaging Bundle (FOIB) is the conduit for image 
transfer in fiberscopes. FOIB is widely used to improve the resolution of endoscopic systems4, 7-9. Additionally, 
FOIB is also utilized in Fiber Optic Confocal Scanning Microscopes2, 4, 10-15.  

However, most of the work in FOIB imaging is confined to either widefield imaging or focused on achieving 
confocality9, 10, 16-22. Confocal imaging involves scanning of very small laser beam over enface of FOIB 
proximal end adopting several reported scanning methods such as galvanometric mirror scanning, focusing lens 
scanning, rotating polygon mirror scanning, and rotating Nipkow disc7, 18, 23. There are few limitations with 
these techniques. The beam size in these methods cannot be changed with ease as the pinhole size is controlled 
by mechanical components. Further, the beam reaching the FOIB enface may not be collimated completely into 
the core of the fiberlet during scanning. This paper in this context, proposes and demonstrates the use of a 
digital spatial light modulator, known as Digital Micromirror Device (DMD), for selective illumination of 
fiberlets at the proximal enface of the FOIB. The paper also demonstrates the precise control of light 
collimation into the fiberlets core via DMD. This proposed fiber probe imaging system can effectively control 
the contrast as well as the resolution by selectively varying the effective pinhole size using DMD. 

 

2. IMPACT OF PINHOLE ON FOIB IMAGING 
FOIB is a collection of thousands of single mode fibers known as fiberlets2, 9.  A single mode fiberlet usually 
has a diameter of 2-4µm. Arrangement of the fiberlets in FOIB remains unchanged over the length of the FOIB. 
This coherent arrangement allows FOIB to transfer image from one end to the other end of fiber in an efficient 
manner. Each of these fiberlets act as a light conduit, which creates perfect excitation pinhole19. This facilitates, 
coupling of the illumination light into a single fiberlet at the proximal end to guide it through and emanate from 
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16μm and ROI size). These varying pinhole sizes classify imaging resolution that can be achievable by fully 
confocal, quasi confocal and wide-field imaging. It is evident from Figure 4 that improved contrast is observed 
with smaller pinhole size. With increase in pinhole diameter the intensity difference of the pixels showing 
bright region and dark region reduces. Intensity difference of bright and dark region reduces with increase in 
pinhole diameter and remains constant for d > 20μm, d is effective pinhole diameter. It also signify that in 
optical setup described, imaging system is not confocal or quasi-confocal but it is wide-field imaging system for 
d > 20μm.  

 
Figure 4. Illustration of glass bubble images with different pinhole sizes. Image a, c and e show proximal end image of 
FOIB illuminated through pinhole diameter size of one fiberlet, two fiberlet and four fiberlet respectively. Images b, d 
and f show the entire reconstructed glass bubble images corresponding to different pinhole sizes, one fiberlet, two 
fiberlet and four fiberlet respectively. Images g and h show the wide-field illumination and image reconstruction of 
glass bubble. 
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Further, quantitative evaluation of contrast value for imaging modalities with four different pinhole sizes was 
performed. To calculate contrast, two different regions of the image were selected. First region was chosen 
inside the region of glass bubble (non-fluorescing) Iglass and second region was outside the bubble (fluorescing 
area) Ifluoro. Contrast value is calculated as, = −+  

Calculated contrast values and respective pinhole diameter are listed in Table 1. The results show that the image 
contrast decreases with increase in the pinhole size, validating contrast dependency on pinhole diameter. 
 

Table 1. Contrast variation against pinhole diameter 
 
 
 
 
 
 
Further, the combination of DMD with FOIB was used for investigation into axial sectioning. To quantify the 
sectioning ability, sample was moved in Z direction in steps of 2μm and confocal images were captured at 
every location21. Figure 5 shows the Half Width Half Maximum (HWHM) of intensity for full fiber confocal 
imaging.  As evident from the graph, axial resolution of the system (FWHM) is ~4.5um. 
 

 
Figure 5. HWHM for full fiber confocal imaging modality 

 

5. CONCLUSION 

High resolution FOIB imaging system using DMD has been developed. The potential of the developed probe 
imaging system to collimate precise patterns of light beam in to FOIB is demonstrated. Additionally, single 
fiberlet illumination feature is shown. This paper also presented variable contrast imaging by selectively 
controlling the number of fiberlets illuminated. Further, using DMD for single fiberlet illumination, fiber 
confocality with axial sectioning is demonstrated.  

Pinhole diameter Contrast 
2.7μm,  0.312 
7.1μm 0.284 
16μm 0.259 

Wide-field 0.055 
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