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Abstract 

We consider a make-to-order manufacturing environment with fixed guaranteed delivery lead-times and 

multiple product families, each with a stochastic demand process. The primary challenge in this environ-

ment is how to meet the quoted delivery times subject to fluctuating workload and capacity limits. We 

consider the tactical planning parameters, namely the planning windows and planned lead-times. We 

model the planning process in which the demand represents a dynamic input into the master production 

schedule. A planning window for each product family controls how the schedule of each product family is 

translated into job release. The planning window is the slack that exists when the fixed quoted delivery 

lead-time is longer than the total planned production lead-time. Further, the planned lead-time of each 

station regulates the workflow within a multi-station shop. The model has underlying discrete time peri-

ods to allow the modeling of the planning process that is typically defined in time buckets; within each 

time period, we model the intra-period workflow that permits multiple job movements within the time 

period. Our model characterizes key performance measures for the shop as functions of the planning win-

dows and planned lead-times. We formulate an optimization model to determine the values of these plan-

ning parameters that minimize the relevant production-related costs.  

 

Supplementary materials are available for this article. Go to the publisher’s online edition of IIE 

Transactions for additional results of the simulation study in Section 6 of this manuscript. 

 

Keywords: Make-To-Order; Production Smoothing; Master Production Schedule; Material Requirements  

Planning; Planned Lead-time; Planning Window.  
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1. Introduction 

Managing customer lead-times in the face of demand uncertainty is a critical challenge faced by make-to-

order (MTO) firms that, unlike make-to-stock firms, cannot use finished goods inventory to buffer against 

demand variations. Some firms continually adjust the delivery times quoted to customers depending on 

capacity load; others quote fixed (or a tight range of) lead-times to their customers, while varying the pro-

duction rate in response to demand fluctuations. The fixed quoted delivery time represents a lead-time 

guarantee to customers that the manufacturer strives to meet with high likelihood. Rao et al. (2005) high-

light that the fixed lead-time strategy enables the firm “to set clear expectations to customers, and thereby 

improves customer satisfaction”. For example, Toyota’s mass customized Camry Solaras cars have a five-

day delivery lead-time after they are ordered by dealers (Robinson 1999). Weng (1999) reports an indus-

trial application in a make-to-order lighting fixture manufacturer wherein the use of a 10-day fixed lead-

time policy significantly improved the on-time performance of deliveries. The fixed lead-time strategy 

has been utilized in industries where lead-times are largely dictated by the market and when predictability 

is valued by customers, e.g. customized printed circuit boards, for which customers need to coordinate the 

concurrent availability of components to build an assembly.  

If the MTO manufacturer adopts a fixed lead-time strategy, it has to first set the fixed lead-time, 

which involves complex tradeoffs encompassing decisions at the strategic and tactical level. The manu-

facturer must consider its market position in terms of its pricing, competitors’ lead-times, market re-

quirements as well as its own production capability in meeting the lead-time. The setting of the fixed 

quoted delivery lead-time is a cross-functional decision, involving marketing, sales and production de-

partments. After determining the fixed lead-time, the manufacturer must make tactical and operational 

decisions on how best to meet this guaranteed fixed lead-time. The key tactical and operational planning 

decisions include how the firm should utilize its production resources to meet the fixed quoted delivery 

lead-time with high probability. In this paper we assume that the firm has adopted a fixed lead-time strat-

egy and has set the delivery lead-time, and we focus herein on the tactical production decisions needed to 

support such a strategy. To meet the fixed lead-time, the MTO manufacturer must be able to flex its pro-

duction capability. For instance, the manufacturer might utilize overtime or subcontracting in periods of 

high demand; alternatively, it might plan to operate at a lower capacity utilization level so as to have 

regular-time capacity available to meet high demand. In either case there is a cost for this flexibility, due 

to under-utilized capacity or premium production costs from overtime and subcontracting.  
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Typically, the two core functions at the tactical level needed to support a fixed lead-time policy are 

the material requirements planning (MRP) and master production scheduling (MPS).  We consider the 

two sets of planning parameters that have the most influence on regulating the flow of work in such an 

environment, namely the planned lead-times in the MRP and the planning window in the MPS. The 

planned lead-time (PLT) is a key input for MRP and is used to project how long each job will spend in 

each production step or workstation. There is a tradeoff involved in setting the PLT; a short PLT leads to 

a more variable workload at the workstation, while a long PLT results in more work-in-process (WIP) at 

the station.  

The planning window is the difference between the quoted delivery lead-time and the total planned 

production lead-time for a job. We assume the MPS is smoothed over the planning window (if a slack 

exists) while preserving the integrity of the fixed quoted delivery lead-time. There is prior evidence that 

regulating the release of work to a shop provides benefits. A longer planning window allows greater 

smoothing of the MPS, which leads to a less variable job release into the shop and subsequently fewer 

occurrences of “spikes” in capacity loading. The idea is to avoid releasing surges of customer orders that 

would otherwise cause capacity saturation with no significant increase in throughput. In addition, Voll-

mann et al. (2005, p. 321) highlight the growing importance of production smoothing in non-repetitive 

and make-to-order production, as firms increasingly need to respond to customer pressure for greater flex-

ibility in volume and product mix. It is also well documented in just-in-time literature that a stable MPS 

facilitates process and quality improvements. Without a stable production environment, resources tend to 

be channeled to react to changes in production output instead of achieving process improvements. Fur-

ther, a smoothed MPS leads to more stable requirements for raw materials or components, which results 

in lower component safety stock and/or a more stable delivery schedules for suppliers.  

The key challenge in developing the model is how to incorporate both the planning system deci-

sions and the workflow control decisions for a production network. On the one hand, most MPS and MRP 

systems use time buckets of equal intervals (e.g., a day, a week or a work shift) as the underlying time 

unit for the key manufacturing decisions; the planned production output, inventory levels and job releases 

are specified for each time bucket in the planning horizon. On the other hand, job flow occurs at much 

shorter time intervals (essentially in continuous time) and it is important to capture the dynamics of these 

intra-period job movements. The problem is further complicated by the presence of multiple products in 

the context of MTO manufacturing, where we need to capture the planning decisions and job routings of 

each individual product.    
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To connect the discrete-time planning system and the intra-period job flows, we extend the Tactical 

Planning Model (TPM) of Graves (1986). The TPM is a discrete-time model in which all transitions with-

in the model are governed by an underlying time period. The model assumes that all job movements from 

one station to another occur only at the start of each time period, which corresponds to the planning time 

bucket in the context of this paper. This assumption is restrictive in many situations where jobs can make 

multiple moves between stations within a single time bucket. We address this limitation and extend the 

model by allowing work to flow between workstations throughout each period, and not only at the start of 

the period. To our knowledge, work on intra-period job movement in multi-station systems has not been 

previously reported in literature. Due to the structure of the TPM-based workflow model, the workflow of 

each product family can be modeled separately. Hence the TPM extension is able to capture the key plan-

ning and workflow attributes of each product family, including the demand process, release planning, job 

routing, planning windows and planned lead-time at each station. 

We model how the stochastic demand process is translated into the MPS, where its smoothness is 

controlled with the length of the planning window. We then model the workflow in a multi-station pro-

duction network, in which the MPS determines the job release and the PLTs control the production at 

each station. In this fashion, we model the linkage between the MPS planning process and the workflow 

in the production network. Our model determines the variance of production requirements (a measure of 

capacity requirements) and the expected WIP level at each workstation. This allows us to characterize the 

tradeoff between the capacity requirements and WIP inventory as it depends on the planning windows 

and the PLTs. We embed the model in an optimization model to determine the PLTs and planning win-

dows.  

In the next section, we review related work. In Section 3, we describe the problem setting, and ex-

plain the roles of the planning window and PLT in production smoothing. In Section 4, we develop the 

model that permits multiple job movements in each discrete-time bucket, and subsequently develop a 

workflow model for a single product family. We then discuss how we can extend the model to character-

ize the production of multiple product families in Section 5. In Section 6, we discuss the results of a simu-

lation study to validate the model. In Section 7, we formulate an optimization model to set the planning 

windows and PLTs. Section 8 presents an example that illustrates how the model can be used to support 

tactical planning of a MTO production system. We conclude in Section 9 with a discussion of future re-

search opportunities.  
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2.  Related Work 

Much of the literature on managing customer lead-times in MTO manufacturing is on due date manage-

ment. Earlier work encompasses setting of due dates and sequencing of orders (see surveys in Cheng and 

Gupta 1980, and Baker 1984). The tradeoff in this problem is that tight due dates reflect better respon-

siveness to customer demand but may be difficult or costly to achieve due to conflicts with sequencing 

objectives. Subsequent work includes the additional consideration of order acceptance decisions, i.e., the 

effect of quoted due date towards customer orders. More recent work considers the additional dimension 

of how pricing affects customer demand, often together with order acceptance decisions. The reader is 

referred to the review by Keskinocak and Tayur (2004) for details of the various aspects of the due date 

management policies.  

The literature on due date setting focuses on a single-stage aggregated system, for which the firm 

has some flexibility to vary the quoted delivery lead-time. Our research differs in that we consider the 

production planning aspects of how best to satisfy a fixed quoted delivery lead-time for a multi-stage, 

multi-product system. The due date setting models support real-time operational decisions for the variable 

lead-time strategy. In contrast, our model is not intended for real-time decisions. Rather, we focus on the 

production-related tactics of setting the internal lead-times in order to support the fixed lead-time strategy.  

There is a limited amount of research that deals with MTO manufacturers who quote a fixed deliv-

ery lead-time. Cruickshanks et al. (1984) consider production smoothing in a single-stage manufacturing 

process and introduce the concept of the planning window. We also utilize the concept of the planning 

window to smooth the MPS; however, in addition, we model production smoothing over a multi-stage 

production network. So and Song (1998) consider a single product, single stage queueing system with a 

fixed quoted delivery lead-time. They characterize the lead-time, price and capacity expansion decisions 

with the objective to maximize profits subject to a service constraint.  Rao et al. (2005) also consider a 

single stage problem with a fixed quoted delivery lead-time with similar decision variables (except that it 

excludes capacity decisions). Rather than a service constraint, their model assumes a completely reliable 

delivery lead-time achieved by outsourcing in times of capacity shortfall. Our model is similar to theirs in 

that we also assume the delivery lead-time is always met through subcontracting or overtime, if neces-

sary. Both So and Song (1998) and Rao et al. (2005) focus on the strategic decision of determining the 

fixed delivery lead-time to maximize profits for a single-stage system that produces an aggregate product.  

In contrast, our model addresses the tactical decisions associated with master production scheduling, and 

setting the release process and workflow control policies in a multi-station, multi-product MTO environ-

ment.   
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Another related research area encompasses analytical models that determine the optimal PLTs. 

Weeks (1978), Kanet (1986), Matsuura and Tsubone (1993) and Matsuura et al. (1996) develop single-

stage models while Yano (1987) and Gong et al. (1994) formulate serial multi-echelon models. Our paper 

differs in that we model a general network of workstations with no restriction on process routes by focus-

ing on tactical planning rather than detailed scheduling, from which we achieve much tractability. The 

prior work assumes an exogenous job arrival process but we determine work releases that are generated 

from the demand process, and explicitly model how the discrete-time planning process affects workflow 

and behavior of individual workstations. For a job shop, Graves (1986) presents the Tactical Planning 

Model (TPM) that highlights the tradeoff between production smoothness and WIP in selecting the PLT 

at each workstation. Other work that is related to the TPM includes Graves (1988a, 1988b, 1988c), Fine 

and Graves (1989), Graves et al. (1998), Graves and Hollywood (2001), Hollywood (2005), Teo (2006) 

and Teo et al. (2009). In this paper, we extend the TPM in a number of ways. First, we explicitly model 

the release process for a multi-product MTO environment. Second, we model the dynamics of job flows 

within each time bucket, allowing us to characterize how the planning process affects workflow. Third, 

we use the model to formulate an optimization model to support the setting of planning windows and 

PLTs.  

Our extension of the TPM is an effort to address the gap between discrete-time planning models 

and continuous-time workflow models; Karmarkar (1993) states, “There is a need for an approach that 

will work at the planning level, so that facility loading under seasonal demand can be analyzed. The 

technical problem here is that planning models tend to be in discrete time while queuing and scheduling 

models are in continuous time.” Planning models involve dividing the planning horizon into discrete time 

periods that correspond to the time buckets; the models determine the optimal production quantities and 

capacity plans in each bucket that satisfy aggregate resource constraints. However, to characterize the 

specific shop workflow and capacity loading requires the capturing of the intra-period processing and 

movement of jobs.  

Work on clearing functions (see e.g., Karmarkar 1989, Asmundsson et al. 2006 and Selcuk et al. 

2008) is similar in intent to our TPM extension, since this work also attempts to connect discrete-time 

planning with continuous-time shop behavior. A nonlinear clearing function approximates the queue con-

gestion due to capacity loading by specifying the amount of work “cleared” in a given time period by a 

resource as a nonlinear function of WIP; the function is embedded in optimization models for aggregate 

production planning. Our model also assumes a WIP dependent production output (as will be seen) but 

differs in that the production output in each time period is to preserve the integrity of planned lead-times. 
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Further, our intent is more to determine the planning tactics (i.e., the PLTs and planning windows) rather 

than detailed production plans.  

3.  Problem Setting 

We begin with a summary of notations in Table 1. 

Table 1. Notations used in the paper.  

t :  index for time period (i.e., planning time bucket) 

i :  index for workstations, i = 1, 2, …, m. (i = 0 represents the dummy station) 

k :  index for product family  

si :  index for sub-period at workstation i, si = 1, 2, …, pi 

i :  length of each sub-period si at workstation i (i = 1/pi) 

DLTk :  fixed quoted delivery lead-time for product family k 

PPLTk : product planned lead-time for product family k 

Wk :  length of planning window for product family k 

ci :  penalty cost per hour of capacity shortfall at workstation i 

hik :  unit WIP inventory holding cost at workstation i for product family k 

nik :  station planned lead-time at workstation i for product family k 

ωik : number of times each job from product family k visits workstation i 

ij :   average amount of work input to station i generated by a unit of output at station j 

Pit :  production requirements (in workhours) at workstation i in period t 

Mi  :  nominal capacity at workstation i (in workhours) per period t 

Qikt :  queue length (in workhours) for product family k at workstation i at start of period t 

Ait :  amount of workload that arrives at workstation i in period t 

Dkt :  demand for product family k in period t 

it  : zero-mean noise term at workstation i in period t 

 ii sY ,  :  production requirement (in workhours) at workstation i in sub-period si of length i 

 ii sX , :  queue length (in workhours) at start of sub-period si of length i 

Pt :  column vector {P0t, P1t, …, Pmt}' 

Qt :  column vector {Q0t, Q1t, …, Qmt}' 

At :  column vector {A0t, A1t, …, Amt}' 

  :  square matrix with elements ij  

t  : column vector }',{ ,......,11 mtttD    

  : expectation of vector t  
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We consider a MTO production system that produces a variety of products. We assume that end items can 

be grouped into product families that consist of products with similar designs and production processes. 

We define the MPS at the product family level (see Vollmann et al. 2005 for defining a group of end 

items as the MPS unit). Each product family k has a fixed quoted delivery lead-time, denoted as DLTk; for 

instance, if a product family has a fixed DLTk of (say) one week, then the manufacturer would commit to 

deliver each order exactly one week after the receipt of the order. Each workstation is assigned a station 

planned lead-time for each product family, denoted as nik. It is the intended amount of time required for 

each job from product family k to complete its processing at the workstation, including both processing 

and waiting time. We associate a product planned lead-time PPLTk with each product family, which is the 

total planned time required for an item of product family k to be completed by the shop. Each product 

family has predetermined distinct routings that defines the sequence of workstations that a product must 

visit for processing; we permit re-entry in which a routing can re-visit any workstation.  If the product 

family k has a single routing, PPLTk is the planned time required for a job from product family k to move 

through the route, which we express as: 


i

ikikk nPPLT             (1) 

where ωik is the number of times each job from product family k visits workstation i. A product family 

may have multiple routings, e.g., if the end item requires assembly of multiple parts. In this case, each 

routing indexed by r(k) has to satisfy (1) and in addition, ωi,r(k) replaces ωik, which denotes the number of 

times each job in routing r(k) visits workstation i. 

3.1  Master Production Scheduling 

The MPS can be smoothed over the planning window. The relationship between DLTk, PPLTk and Wk is 

illustrated in Figure 1. 

 

Figure 1. Relationship between DLTk, PPLTk and Wk 

Time 

buckets 

t  t + PPLTk t + DLTk 

Wk PPLTk 

…… …… 

DLTk 

Jobs released in t are 

completed  

in t + PPLT 
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Jobs to be completed in period t + PPLTk need to be released in period t. In any period t, to determine the 

release quantity, the production level to be completed in t + PPLTk is set with knowledge of all contracted 

orders for delivery over the planning window encompassing period t + PPLTk to t + DLTk. We express 

the length of the planning window as: 

Wk = DLTk – PPLTk + 1.           (2) 

We assume the production over the planning window is leveled, where a larger Wk allows a greater extent 

of smoothing. We illustrate the MPS smoothing with an example in the Appendix. We note that if DLTk = 

PPLTk, then Wk = 1: this corresponds to no smoothing as the releases in each period t must correspond 

exactly to the orders due in time t + PPLTk.  

The smoothing of the MPS results in early production (and release) of some orders. We do not ex-

plicitly consider the inventory of finished products that result from the orders that are built ahead of time. 

There is very little risk in holding this inventory, as it has been made to order. Furthermore, orders that 

are built in advance can be delivered to customers who accept early deliveries. Alternatively, the built 

ahead inventory might be shipped by a more economical mode given the additional time for shipping be-

fore the due date. In both cases, there is an opportunity to provide additional value to the customer. There-

fore we argue that the finished goods inventory level is not a crucial planning consideration in this con-

text.  

3.2  Production at Workstations 

The workload at each workstation varies over time due to both varying job arrivals and inherent produc-

tion variability. Sources of the inherent production variability include dissimilar processing requirements 

of jobs, machine breakdowns, setups and yields. In face of the workload variability, a larger nik allows 

smoother production (as will be seen) and a higher likelihood for the workstation to meet the station 

planned lead-time. However, with a larger nik, jobs stay longer at the workstation, which leads to a higher 

WIP inventory.  

We let Pit be the production requirement in workhours at workstation i in time period t. We define 

production requirement Pit as the production output required at workstation i in period t in order to ensure 

that the work-in-queue satisties the station planned lead-times. The motivation for this specification is to 

model current planning practice. In MRP systems, the MPS for end items, after offsetting for the station 

planned lead-times, is translated into production requirements at each workstation. To achieve coordina-

tion of production with scheduled receipts of both produced and procured components, the station 
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planned lead-time is used to determine job start times at each workstation using the well known backward 

scheduling logic of MRP.  

We assume the production requirements at each workstation are controlled by its station planned 

lead-times. Specifically, the production schedule is regulated by the job start times whereby a job is not 

required to be produced earlier even if capacity is available. Effectively, each workstation produces a 

quantity sufficient to fulfill the station planned lead-time of each product family in each period. We do 

not consider the procured components in our model and assume the scheduled receipts of purchased com-

ponents are always reliable. Finally, we like to stress that our intent is to capture the tactical level issues, 

i.e., how best to set the internal lead-times to meet the fixed quoted delivery lead-time in normal operating 

circumstances. Thus we do not take into account the actual detailed operational decisions that might devi-

ate from the tactics deployed in the model, e.g., expediting of a particular order from an important cus-

tomer.  

3.3  Problems in Production Planning 

There are several planning decisions to make in the MTO environment:  

 For each product family, given the fixed DLTk and the constraint PPLTk ≤ DLTk, how does one as-

sign nik to each workstation? This decision must account for the tradeoff between capacity require-

ments in the face of variable workload and WIP level at each workstation.  

 The planner must consider the tradeoff between the smoothing of the MPS and the time allowed at 

the workstations. Increasing the PPLTk means longer nik for job completion at the workstations; 

however, a longer PPLTk results in a shorter planning window, yielding a more variable job release 

pattern over time and thus greater variability in job arrivals to the workstations. A larger PPLTk also 

leads to longer time spent at the workstations, and thus higher WIP levels.  

 The planner must consider the interdependence of workflow between the workstations. In addition, 

each station can process jobs from multiple product families and the production planner must take in-

to account the interactions between the various product families.  

Our model helps the planner in setting nik for each workstation, which determines the PPLTk and Wk. In 

considering the tradeoff between capacity requirements and WIP levels, we must consider the sum of ex-

pected total penalty cost due to capacity shortfall and expected WIP inventory holding cost.  

We let ci be the penalty cost per workhour of capacity shortfall for workstation i; hik be the  unit 

WIP inventory holding cost (per workhour per period) at workstation i for product family k; Mi denotes 



10 

 

the nominal capacity for workstation i in workhours per period; Qikt be the queue length in workhours for 

product family k at station i at start of t. We express the total cost as: 

     











i k

iktikiiti QEhMPEc .         (3) 

where 
x = )0 ,max(x . The term ciE[Pit – Mi]+ denotes the expected penalty cost incurred due to capaci-

ty shortfall, i.e., if Pit > Mi. A higher variability of Pit leads to a higher expected penalty cost and its varia-

bility is influenced by PPLTk, nik and Wk as described earlier.   

We interpret the expected penalty cost as follows. We assume that each workstation can always 

output the production requirement; that is, there are no rigid capacity constraints but a nominal capacity 

limit Mi. When Pit exceeds Mi, we assume that the workstation is able to accomplish the production re-

quirement but that it incurs an additional cost ci per hour for all production in excess of the nominal ca-

pacity. For instance, we might assume that in times of high workload, a workstation takes expediting ac-

tions, e.g., overtime and subcontracting, to produce the jobs within the station planned lead-time. The 

workstation would then incur an expediting or subcontracting cost ci(Pit – Mi) for its production that is 

beyond its nominal capacity. (Refer to Holt et al. 1960, which is one of the works that establishes the sim-

ilar approach of using convex cost functions in modeling production systems.)  

  The key to this research is to characterize Pit to enable us to compute the expected penalty cost. In 

essence, we determine the first two moments of Pit wherein the variance of Pit represents a measure of 

variability of the production requirements. By further assuming Pit is normally distributed, we are able to 

compute the capacity costs. In addition, we determine the expected WIP level E[Qit]. This allows us to 

develop an expression for (3) that we use as an objective function in an optimization model to support the 

setting of Wk and nik.  

4.  Single Family Model 

In this section, we develop the characterization of Pit for a single aggregate product family. We first ex-

tend the TPM of Graves (1986) to allow multiple work movements within a time period to characterize 

the intra-period transfer of production requirements. We then present how we convert the stochastic de-

mand for a single family into a smoother MPS and release. Next we model the workflow in a general 

network of workstations. In Section 5, we build upon this single family model to incorporate multiple 

families. 
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4.1  Multiple Job Movements in Discrete Time Bucket  

Since we are modeling a single product family, we drop the subscript k for notational convenience. We 

start with the discrete time period t with length of one time unit, corresponding to that for the planning 

time bucket (e.g., a day or a week). We sub-divide each period t into pi equal subintervals, and use index 

si, where si = 1, 2,…, pi, to denote the sub-periods at workstation i. We define the length of each sub-

period as Δi = 1/pi.  

We assume that work arrives at the start of each sub-period and the workflow is measured in units 

of work content at a station (e.g. hours) rather than jobs. We assume that the production requirement at 

workstation i in sub-period si of length i, denoted by Y(i, si), is a linear function of its queue length at 

the start of sub-period si, denoted by X(i, si); this is given by: 

       iiiiii sXnsY ,/,    for si = 1, 2, …, pi,        (4) 

where in Δi. Equation (4) is similar to the linear control rule of the TPM in Graves (1986) but differs in 

that (4) is expressed as a function of the size of the time grid; as such, we allow arrivals to the workstation 

throughout each period.  

We interpret (4) as follows: in order to realize the station planned lead-time, the workstation i must 

not allow work to wait for more than ni periods and thus we approximate that it must process close to 

 ii n/  of the work-in-queue in each sub-period. We note that the production requirements vary accord-

ing to the work-in-queue to assure that the actual lead-time for nearly all of jobs in queue matches the sta-

tion planned lead-time. Further, when a relatively high workload arrives to join the queue, the workload 

would be “spread” over the station planned lead-time. Thus a larger nik permits a relatively smoother pro-

duction requirement as it permits more workload leveling. (Note that the production-workload relation-

ship in (4) aligns with empirical findings in labor psychology that show that productivity, and thus pro-

duction rate, in some human operated production systems increases with workload because of the effect 

of work pressure on human performance; see Bertrand and Van Ooijen 2002 for a review.)  

We further assume that the arrival of work to the workstation in period t, which we denote as Ait, 

occurs uniformly over period t. In particular, we assume that the arrival amount at the start of each sub-

period is equal to Ait /pi. The validity of this assumption depends upon the characteristics of the arrival 

stream as well as the length of the time period. If the arrival stream is highly varying and consists of only 

a few arrivals in each period, then this assumption may be less reasonable. Similarly, this assumption will 

be more valid if the time period is long compared to the inter-arrival times, as this will result in a more 

even spread of the workload within each period. Nevertheless, although we recognize that the variability 
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of inter-arrival times affects the expected queuing time, we note that the purpose of our model is for tacti-

cal planning; therefore we are more concerned with the aggregate random arrivals {Ait} in each time 

bucket, rather than the detailed random variations within the time period.  

We define Qit as the queue length at the start of period t prior to any arrival. We have the boundary 

condition for the queue length at the first sub-period within each time period: 

X(i, si = 1) = Qit + Ait /pi.                  (5) 

For si = 2, …, pi, we model the queue length at the start of sub-period si by the balance equation: 

X(i, si)  = X(i, si - 1) – Y(i, si - 1) + Ait /pi.           (6) 

By substituting (4) into (6), we obtain for si = 2, …, pi: 

X(i, si)  = (1 – (i/ni)) X(i, si - 1) + Ait /pi.        (7) 

We express Pit as the sum of the production requirements over the sub-periods:  
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We use (5) and (7) to find 
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from which we find: 

     ),(/1),(/
1

iiiiitit

p

s

iiii pXnAQsXn
i

i

 


.       (9) 

We now substitute (9) into (8) to get 

   ),(/1 iiiiititit pXnAQP  .          (10) 

From (10), in order to get an expression for Pit, we need to find X(i, pi). From (7) and repeated substitu-

tion, we can write 

         
i

itp

iiiiit

p

iiii
p

A
nnQnpX ii 

 11
/1.../11/1),( .   (11) 

We can use (11) to re-write (10) as 

itiiitiiit AQP )()(  ,                    (12) 

where 

   ip

iiii n/11)(        

and 



13 

 

 
 

   ip

ii

i

ii
ii n

n

n
/11

/1

/1
1)( 







 
  

 
  







 


i

ii
ii

n

n

/1

/1
)(1 . 

Therefore the production in each time period is a linear function of both the work-in-queue at the start of 

the period and the arrivals during the period.  The coefficients for the linear function depend on the size of 

the subintervals.  

By letting the length of the sub-period go to zero, we obtain the continuous time limits for βi(Δi) 

and γi(Δi). In effect, we assume that (4) holds at every instant in time, which corresponds to a fluid-like 

workflow. Since Δi = 1/pi by definition, we obtain the continuous time limits of βi(Δi) and γ(Δi) as: 

in
i e

/1
1


  

and             iii n  1 . 

We can now restate (12) for the continuous-time function as: 

itiitiit AQP  ,            (13) 

where βi and γi are given above. The validity of the fluid flow assumption yielding (13) depends on the 

frequency of job movements in each time bucket; a higher frequency would suggest a more fluid work-

flow. However, in situations where job flow rates are low, we expect the sub-period coefficients βi(Δi) 

and γi(Δi) to be more appropriate. In such cases,  is set to a value on the order of the average inter-arrival 

time. For notational consistency, we will use 
i  and 

i  for the subsequent model development. 

The balance equation for workstation i at the start of each time period is given by 

1,1,1,   tititiit APQQ .           (14) 

We substitute (13) into (14) and perform repeated substitution to obtain    






 
0

1,)1()1(
r

itirti
r

iiiit AAP .        (15) 

If the arrival stream }{ itA to the workstation were independent and identically distributed (i.i.d.) with var-

iance σ2, then we find the variance of production requirements in (15) is  

222)1(
2

)( 












 ii

i

i
itPVar  .         (16) 

(The arrival stream to a station from upstream stations is generally not i.i.d. but correlated over time. We 

consider correlated arrivals in Section 4.3.) In Figure 2 we compare the standard deviation of Pit, denoted 
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by  itP , obtained using the coefficients 
i  and i  with that computed with the sub-period coefficients 

βi(Δi) and γi(Δi).  
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 Figure 2.  itP  computed for different sub-period lengths (with  = 1) 

We observe that the results are close over a reasonable range of flow rates; at  = 0.1 and  = 0.05 (i.e., 

corresponding to 10 and 20 arrivals per period, respectively), the percentage differences are 2.6%, and 

1.2% respectively. Thus we expect (13) to be a reasonable approximation. In Section 6, we discuss the 

suitability of the coefficients for different job flow rates based on a simulation study. 

We have expressed (13) in terms of the parameters i  and i , both of which are functions of ni. To 

see how (13) behaves for different values of ni, we graph  itPVar , 
i  and 

i as functions of ni in Figure 

3. We observe that  itPVar  decreases with larger values of ni, i.e., longer station planned lead-time leads 

to a smoother production.  

 itP  computed using 

βi(Δi) and γi(Δi) 

 itP  computed using 

i  and i  
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Figure 3: Var(Pit), βi and γi as functions of ni (with σ = 1) 

4.2  Model for MPS Smoothing 

We denote the demand in period t by Dt and assume that the demand process is i.i.d. over time with mean 

E[Dt]. As discussed in Section 3.1, the production planner smoothes the MPS by considering the orders 

not yet released into production as a demand queue, waiting to be released into the shop.  

To model the work release, we introduce a dummy workstation that is the first station that a job 

“visits” before it is released to the shop. The queue at the dummy station represents the order backlog of 

work waiting to be released. In each period, the job arrival to the dummy station is the demand Dt and the 

production output of the dummy station corresponds to the job release in that period. Denoting station 0 

as the dummy station, we model the MPS smoothing by 

W

Q
P t

t
0

0  ,              (17) 

where W ≥ 1. Equation (17) is equivalent to (4) and the linear control rule of the TPM. In (17), we assume 

that in order to ensure an order in the input queue does not wait for more than W periods, the shop at-

tempts to release 1/W of the on-hand orders in each period. Further, (17) models the smoothing of the re-

lease by spreading the on-hand orders evenly over the planning window.  

The material balance equation for the dummy station is  

11,01,00   tttt DPQQ .          (18)  

By substituting (17) into (18) to replace Q0t in (18), we obtain 

  11,00 )/1(/11   ttt DWPWP , 

Var(Pit) 

βi 

i 
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namely a first-order exponential smoothing model with 1/W as the smoothing parameter. A larger value of 

W results in a smoother job release into the shop. 

4.3  Workflow Model 

We model the work arrivals to workstation i by  


j

jtijit PA ,              (19) 

where ij  is a positive scalar. We assume that each time unit of production requirement at workstation j 

generates ij  time units of input to station i on average. When station j represents the dummy station, we 

assume that each order unit triggers ij  time units of work, on average, for station i. We note that 00  j  

for all j and that 0j  is the average amount of work that starts at workstation j for each new job. 

To analyze the workflow model, we combine the production functions in (13) and (17), and express 

the result in matrix notation as:  

         ttt GAFQP                (20) 

where Pt = {P0t, P1t, …, Pmt}', Qt = {Q0t, Q1t, …, Qmt}' and At = {A0t, A1t, …, Amt}' are column vectors and 

m is the number of workstations. F is a diagonal matrix with first diagonal element equal to 1/W and the 

remaining diagonal elements set to i  (i = 1, 2, …, m). G is a diagonal matrix with zero as the top ele-

ment and i  (i = 1, 2, …, m) as the next m diagonal elements.  

We express the work arrivals to the workstations given in (19) in matrix form as:  

tt PA  ,             (21) 

where   is a square matrix with elements ij . By substituting (21) into (20), we obtain 

tt PGIFQ )(1   ,           (22) 

where I is an identity matrix. Note that 1
F exists since it is a diagonal matrix, with each diagonal ele-

ment being positive. We combine the balance equations for the workstations in (14) and for the dummy 

stations in (18), and express them in matrix form as:  

ttttt APQQ   111 .           (23) 

The term t  is a column random vector that combines both demand arrivals to the dummy station 

and the noise arrivals to the workstations; it has Dt-1 in the first row and }{ ,......,1 mtt   in the next m rows. 

The term it  is a zero-mean noise term that represents any inherent production variability in the arrival 
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stream to station i. The noise signifies any deviation between actual and expected workload, based on the 

upstream production levels. We assume that the amount of noise is independent of the work arrivals. We 

can use it  to model the sources of variability due to machine failures, setups, production yields or any 

dissimilarity in processing requirements within the product family. Here we adopt the concept of effective 

processing time. The effective processing time is the adjusted processing time that incorporates the varia-

bility of processing requirements as well as the time that is unavailable for processing due to random 

events. See Hopp and Spearman (2000) for a more detailed explanation.  

Now by substituting (21) and (22) into (23), we have 

ttt HBPP  1 ,            (24) 

where H FGI
1)(    and B )(  IHI . We can show that the matrix )( GI  is invertible as 

long as the spectral radius of   is less than one, which is a necessary condition for the system to reach 

steady state, as will be seen. Assuming an infinite history for the system, we obtain by repeated iteration: 







0s

st
s

t HBP  .            (25) 

We denote the expectation of vector t  by the vector  , a column vector with E[Dt] in the first row as 

the only non-zero element, since by definition, the noise terms  it  have zero mean. From (25), we ob-

tain the expectation of the production requirements vector: 

           
 1)(][  IPE .            (26)

 

Note that  PE  does not depend on the planning parameters but depends only on the workflow matrix   

and the vector  . The variance of the production vector is given by 







0

'')()(
s

s
t

s
BHHVarBPVar  ,         (27) 

where )( tVar   is a covariance matrix that consists of the variance of Dt and the covariances of the noise 

terms it . We note that (27) provides the production variances for each station as well as the covariance 

for each pair of workstations. These covariances are useful for understanding the interdependence among 

workloads at different workstations. 

We can compute the power series in (27) using the methods in Graves (1986). We show in Teo 

(2006) that the series in (24) converges if and only if the spectral radius of   is less than one. This condi-

tion assures that a unit of work processed at one station cannot eventually generate more than one unit of 

work for the same workstation; otherwise the system will not reach a steady state.  
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Now we compute the expected queue length at each station from (22):  

       
111 )(
  IGIFPEGIFQE       (28) 

5.  Extension to Multi-Family Model 

The single family model assumes a single workflow matrix Φ and assumes a single planned lead-time for 

each workstation. In the multi-product setting, this implies each station has to have a common station 

planned lead-time across all product families and all product families have same workflow and routing 

through the shop. In this section we show how to relax these restrictions and extend the single family 

model for the multi-product setting.  

We consider a manufacturing system with multiple product families and where each workstation 

processes jobs from one or more families. We assume that each workstation i has a station planned lead-

time nik for each product family that visit the workstation. Furthermore, each product family is allowed to 

have its own DLTk, PPLTk and planning windows Wk.  

We first analyze the production for each individual product family. We model each product family 

as in the single-family model, i.e., each product family k has a dummy station and has column vector kt  

and matrix k  to model each family’s demand, noise levels and routing. Furthermore, we have to satisfy 

(1) and (2) for the DLTk, PPLTk and planning window Wk of each product family. We use the single-

family model to characterize the production requirements and queue lengths for product family k, 

i.e., ][ kPE , )( kPVar and ][ kQE . 

Similar to the single family model, we assume an infinite capacity (albeit with a finite nominal ca-

pacity Mi) at each workstation. Hence each workstation can always meet the production requirements for 

all product families processed at the station. By further assuming that demand is independent between the 

product families, we obtain the mean and variance of the total production requirements and the total 

queue lengths by aggregating across all product families:  


k

ktotal PEPE ][][
,               (29)

 


k

ktotal PVarPVar )()( ,             (30) 


k

kTotal QEQE ][][ .           (31) 

The above results require independence between the demands of the product families. We can relax this 

assumption to incorporate correlated demands by building a single linear-systems model in which the first 
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k terms of the noise vector kt correspond to the demand processes for the k product families.  We can 

then incorporate the demand correlations into the covariance matrix for the noise vector kt . See Teo 

(2006) for details. 

6.  Simulation Study  

We perform a simulation study to test the accuracy of (27). Specifically, we aim to validate the following 

workflow assumptions in deriving (27): 

 We permit the production requirements to vary within each period according to (4); thus, if jobs 

move instantly downstream upon completion, the arrival process to the downstream stations will 

also vary, which contradicts the uniform-arrival assumption.  

 We model flow of discrete jobs but assume workflow is measured in units of work content (e.g., 

hours).  

 In deriving the continuous-time coefficients i  and i , we assume that each job flows continu-

ously like a fluid and that the production output satisfies (4) at every instant of time. We assume 

that the sub-period coefficients ii) and ii) can depict job flow of lower frequencies. 

We simulate a six-station serial flow system with a stationary work input at the first station. Processing 

times are fixed and equal at all stations. The motive for such a simplified simulation model is to attain a 

controlled experiment and to test whether the accuracy of (27) deteriorates for the downstream work-

stations. In the simulation model, discrete jobs are processed and jobs move immediately to the next sta-

tion upon completion, instead of flowing downstream uniformly over each time period as assumed in the 

model. For the work input with mean of 80 workhours and standard deviation of 20 workhours, we exper-

iment with different processing times (1, 2, 4, 8 and 16 hours) to vary the fluidity of workflow; the longer 

the processing time, the less fluid (i.e., more lumpy) the workflow. In addition, we assume the station 

planned lead-times are equal for all stations, and we experiment with different values (1, 2 and 3 periods). 

Note that the utilization levels are not an experimental factor because we assume flexible capacity. A 

more detailed discussion of the simulation setup and results are presented in  the Online Appendix.  

The results are encouraging as the study shows that (27) computed using  and i is reasonably ac-

curate for a wide range of job fluidity. The average percentage error in the standard deviation of Pit for 

processing times 1, 2 4 and 8 hours is 2.3% and the maximum error is 6.5%. As expected, the errors com-

puted for the less fluid 16-hour jobs using  and i are relatively higher, with the largest percentage error 

at 17.6%. The sub-period coefficients  and ) yield a reasonably accurate approximation for the 
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16-hour jobs with a percentage error of 2%. We observe no obvious trends in percentage errors between 

the different stations and the station planned lead-times. We also test the model’s robustness to production 

variability by experimenting with different standard deviations of processing times, namely 0.4, 0.6, 0.8 

and 1.0 hour for a mean processing time of 4 hours. The average percentage error is 3.0% for all test 

problems. 

 The simulation model consists of a serial flow system that processes a single product family. We 

offer a few comments to how we can extend the simulation results to the multi-family, general network 

setting. Since the multi-family model involves modeling each product family independently using family 

specific parameters, the validity of the multi-family model depends on the model for each individual 

product family. Therefore, we focus our attention on the generalized routing of a single product family, 

wherein each workstation can receive job stream from multiple stations and its output can be dispatched 

to more than one workstation. One limitation arises if the arrival streams at a workstation (of the same 

product family) are of vastly different level of fluidity. For instance, a workstation receives two arrival 

streams, one with lumpy jobs at low frequencies and the other with high fluidity; as such, there is no ap-

propriate set of coefficients that is able to match the fluidity of both streams. We note that this limitation 

does not occur if the arrival streams are of suitably high fluidity, in which case the coefficients i  and 

i would match both streams. We expect this could be a probable scenario because as stated earlier, the 

simulation results show that i  and i give accurate computations for a reasonably wide range of job flu-

idity. Likewise, if the streams are from different product families, the limitation will not happen because a 

family-specific set of coefficients can be employed to match the fluidity of each product family.    

7.  Optimization  

We formulate a nonlinear optimization program for the multi-family model. Our objective is to minimize 

the total expected expediting cost (e.g., overtime and subcontracting) plus total WIP inventory holding 

cost. The decision variables are Wk and nik. We assume the delivery lead-time DLTk is exogenously de-

termined for each product family k.  
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The objective function is the total expected cost in (3), wherein Pit is a function of both Wk and nik, and 

Qikt is a function of nik. We assume that the production requirement Pit is normally distributed. We note 

that Pit is normally distributed if the demands and noise terms are normal random variables. We use the 

mean and variance of Pit from (29) and (30) to evaluate the first term of the objective function by the 

normal linear loss integral. 

The first set of constraints combines (1) and (2) for product family k, defining the relationship be-

tween the planning windows, station planned lead-times and DLTs for every routing rk. The second and 

third sets of constraints assure a lower bound of at least ak and bi on the planning windows and nik of each 

workstation i, respectively. A smaller nik would imply a need for frequent monitoring at the workstation to 

track the job progress. Likewise, a short planning window would require more efforts in monitoring the 

MPS. Hence both ak and bi are managerial inputs that must be set appropriately in order to avoid compli-

cations in production control.  

We have not established the convexity of the objective function. As a consequence we cannot assert 

that we obtain the global optimum to this nonlinear optimization program. Nevertheless, from our compu-

tational experience with test problems, we observe that standard nonlinear optimization algorithms per-

form very reliably on this problem: from a wide range of starting points, for each test problem we always 

obtain the same solution.  In the next section we report on one computational study. Teo et al. (2009) re-

port another computational study based on an application of the model to an oil-rig manufacturer.  

8. Numerical Example 

We use a real-world setting to illustrate the use of the model and to draw some insights. We consider a 

production shop that is part of a manufacturing facility of an oil-rig builder. Teo et al. (2009) present a 

case study on another larger facility of the same oil-rig builder in which the model’s predictive capability 

is validated. The data presented in this section has been altered to protect proprietary information. How-

ever the resulting qualitative relationships and insights drawn from this example are the same as they 

would be from using the actual data.  

The shop processes and cuts steel plates into required dimensions, which are then used for down-

stream production stages to construct the necessary steel assemblies. The shop operates in a MTO envi-

ronment because the internal customer orders are highly customized, resulting in numerous possible cut-

ting dimensions and plate thicknesses. The delivery lead-times for the internal orders are fixed to facilitate 

planning in the downstream processes. The production control is based on planned lead-times in which 

the production schedules synchronizes with the “scheduled receipts” of engineering drawings for the cut-
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ting dimensions. In addition, due to the large physical size of the plates (each weighing 0.5 to 10 tons) 

and the space constraints in the facilities, the stations usually produce a quantity that is just sufficient to 

meet the station planned lead-times, so as to avoid taking up the downstream shop space unnecessarily. 

As part of ongoing improvement efforts, management was examining how best to group the numer-

ous production options into product families and how to set planned lead-times appropriately. In this ex-

ample, we categorize the customer orders according to the plate thickness into two product families: Thick 

Plates and Thin Plates. The shop consists of 4 workstations, namely Blasting, NC (Numerical Control) 

Gas Cut, NC Plasma Cut and Manual Cut. The process flow map, including the dummy stations to model 

the MPS smoothing, is shown in Figure 4.  

Figure 4.  Process Flow Map 

Raw steel plates (both Thick Plates and Thin Plates) are first sent to the Blasting station where ball 

grids are splashed onto the plate surfaces to remove impurities, followed by an application of a corrosion 

preventive paint. The blasted Thick Plates are then transferred to the NC Gas Cut station, which is capa-

ble of cutting the Thick Plates. The blasted Thin Plates are moved to the NC Plasma Cut station, which 

can only cut the Thin Plates. The steel plates are then sent to the Manual Cut station where the final cut-

ting is done manually using hand-held tools. 

The demands for both product families have been found to be i.i.d. over time and are approximately 

normally distributed. The daily demand for the Thick Plates has a mean of 20 plates and standard devia-

tion of 10 plates, while the demand for Thin Plates has a mean of 26 plates and standard deviation of 12 

plates. The demands for the product families are uncorrelated. The fixed delivery lead-times for the Thick 

Plates and Thin Plates are 9 days and 8 days respectively. We show in Table 2 the expectation and stand-

ard deviation of the effective processing times at each workstation. The standard deviation of the effective 

processing time is mainly due to the different processing requirements for the different plates. Table 2 

shows the nominal capacity available per day in workhours. Each workstation has flexibility to expand its 
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capacity in each day by subcontracting its production to nearby shops. The subcontracting cost per hour 

for outstanding work at each workstation is also shown in the Table 2. 

Table 2. Data of workstations 

 

Processing time per plate (hour) 
Capacity 

(workhours 

per day) 

Subcontract 

Cost  

($ per 

workhour) 

Holding 

Cost  

($ per 

workhour 

per day) 

Mean  
Standard  

deviation  

 Thick  Thin  Thick  Thin  

Blasting1 0.55 0.55 0.35 0.35 28 550 0.72 

NC Gas Cut 1.69 - 1.96 - 43 368 0.61 

NC Plasma Cut - 1.34 - 1.46 49 441 0.77 

Manual Cut 3.50 1.07 2.55 0.86 128 788 0.74 
1The expectation and standard deviation of processing times at the Blasting station are identical for both product 

families 

We set up the workflow matrices for Thick Plates and Thin Plates, denoted by Thick  and Thin  

respectively, as: 


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




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080.00000

00043.200

000000

000055.00

000000

000000

Thin  

For example, each workhour at Blasting generates on average 1.69/0.55 = 3.08 workhours for the NC Gas 

Cut station, i.e. 08.343  . To set up the variance of the vector t, we note that the off-diagonal terms of 

the matrix are all equal zero as there is assumed to be no correlation between the demands or the random 

variability at the stations. We set the diagonal elements for the dummy stations (first two rows) equal to 

the variance of the daily demand; the diagonal elements for the workstations (bottom four rows) represent 

the variance of the noise terms )( itVar   due to the variability in the processing times, which we set to the 

variance of the workload for the mean number of jobs processed at the station per day.  For example, at 

the Blasting station, the mean number of Thick Plates processed per day is 20 and the standard deviation 

of the processing time is 0.35 hour, which )( itVar  = 20(0.35)2 = 2.45 hour2. We assume that the noise 

term at each station is normally distributed. The matrices for the variances of t for the two product fami-

lies are: 
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Base case 

In the base case, the raw plates are “pushed” into production with planning window Wk = 1 (i.e., no 

smoothing of the MPS). Each station has a common station planned lead-time nik for both product fami-

lies. The station planned lead-times assigned to the stations are roughly equal. Table 3 shows the values 

of Wk and ni. The table also shows the mean and standard deviation of the production requirement as well 

as the queue length at each station computed using the model. Due to the normality assumption for the 

demands and variability at each station, the production requirements at the stations are also normally dis-

tributed; this allows us to compute the probability of subcontracting. We also compute the expected sub-

contracting cost and holding cost per day, which are shown in the same table.  

Table 3. Base case 

 

Wk 

or  

ni 

 
Probabil-

ity of sub-

contract-

ing in a 

day 

Expected 

subcontract 

cost per 

day ($) 

Expected 

holding 

cost per 

day ($) 
E[Pit] σ(Pit) E[Qit] 

Release (Thick) 1 20.00 10.00 - - - - 

Release (Thin) 1 26.00 12.00 - - - - 

Blasting 3 25.30 3.38 75.90 0.21 223.4 55.20 

NC Gas Cut 3 33.84 6.14 101.6 0.07 68.31 62.49 

NC Plasma Cut 2 34.88 6.33 69.50 0.01 11.72 53.87 

Manual Cut 3 97.85 12.19 293.8 0.01 21.37 216.5 

    Total ($): 324.80 388.06 

     Total Cost ($) = 712.86 

The release into the production shop is highly variable as there is no smoothing of the MPS.  At 

the Blasting station, there is a relatively high probability of 0.21 that the shop has to subcontract the out-

standing work. The expected subcontracting cost of the Blasting station is $223.40 per day. The other 

workstations have much lower probabilities of insufficient nominal capacity. The queue length at the 
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Manual Cut station is the highest, with 293.8 hours of work-in-queue, resulting in a daily holding cost of 

$216.50.  

Smoothing of MPS 

We increase the planning windows of each product family to 3 days. To keep the delivery lead-time fixed, 

this increase in the planning window must be compensated by a reduction of the station planned lead-

times at the stations.  We observe in the base case that the Manual Cut station has the lowest expected 

subcontracting cost and the highest inventory holding cost. Hence we choose to reduce the station planned 

lead-time of the Manual Cut station from 3 days to 1 day.  

Table 4. Smoothing of the MPS 

 

Wk 

or  

ni 

 
Probabil-

ity of sub-

contract-

ing in a 

day 

Expected 

subcontract 

cost per 

day ($) 

Expected 

holding 

cost per 

day ($) 
E[Pit] σ(Pit) E[Qit] 

Release (Thick) 3 20.00 4.47 - - - - 

Release (Thin) 3 26.00 5.37 - - - - 

Blasting 3 25.30 2.76 75.90 0.16 119.6 55.20 

NC Gas Cut 3 33.84 5.77 101.6 0.06 48.36 62.49 

NC Plasma Cut 2 34.88 5.87 69.5 0.01 6.55 53.87 

Manual Cut 1 97.85 14.58 97.9 0.02 77.14 72.12 

    Total ($): 251.65 243.68 

     Total Cost ($) = 495.33 

Table 4 shows that the releases for both product families become less variable. The standard devia-

tion of the release for Thick Plates falls from 10 to 4.47 plates and that for the Thin Plates from 12 to 5.37 

plates. The smoother release results in less variable job arrivals at the workstations which in turn causes 

smoother production requirements. For example, the standard deviation of production requirements for 

the Blasting station decreases from 3.38 hours in the base case to 2.76 hours. This leads to a reduction in 

the probability of subcontracting at the Blasting station from 0.21 to 0.16, with a corresponding fall in 

expected subcontracting cost from $223.36 to $119.60. The NC Gas Cut and the NC Plasma Cut also un-

dergo a reduction in expected subcontracting costs due to the less variable work arrival from the Blasting 

station; this illustrates how production variability at an upstream station can affect the downstream sta-

tions.   
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The Manual Cut station experiences two opposite effects on its production variability. On the one 

hand, the longer planning windows lead to smoother job arrivals to the station, but it now has a shorter 

station planned lead-time to smooth the arrival variability. The combined effect causes an increase in pro-

duction variability at the workstation. We note that its expected subcontracting cost rises from $21.37 to 

$77.14. But its queue length decreases from 293.79 hours to 97.9 hours with a decline in expected holding 

cost from $216.53 to $72.12. Overall, the expected total cost for the shop falls from $712.86 in the base 

case to $495.33. 

Optimal solution 

We obtain the optimal planning windows and station planned lead-times using the optimization model in 

Section 7, where we set ak = 1 for all k and bi = 1 for all i. The optimal solution and associated results are 

shown in Table 5. The optimal solution involves further reducing the station planned lead-times of the 

Blasting station and NC Plasma Cut station, and to a lesser extent the NC Gas Cut station; in turn, the 

planning windows are increased. Even though the total expected subcontracting cost increases, the de-

crease in the total expected holding cost more than offsets this increase; thus, it leads to a reduction in the 

total cost. The minimum expected total cost is $464.09, which translates into a 34.9% cost savings over 

the base case.  

Table 5. Optimal solution. 

 

Wk 

or  

ni 

 Probability 

of Subcon-

tracting in a 

day 

Expected 

subcontract 

cost per 

day ($) 

Expected 

holding 

cost per 

day ($) 
E[Pit] σ(Pit) 

E[Qit

] 

Release (Thick) 4.16 20.00 3.70 - - - - 

Release (Thin) 5.06 26.00 3.97 - - - - 

Blasting 1.94 25.30 2.73 49.02 0.16 115.6 35.65 

NC Gas Cut 2.90 33.84 5.83 98.16 0.06 50.78 60.35 

NC Plasma Cut 1 34.88 6.84 34.88 0.02 20.59 27.04 

Manual Cut 1 97.85 14.71 97.85 0.02 81.96 72.12 

    Total ($): 268.93 195.16 

     Total Cost ($) = 464.09 

In addition, we can also use the model for various “what-if” analyses. For example: what if the delivery 

lead-time is reduced? What if the nominal capacity at a station is increased? We can also utilize the model 

to determine the impact of unplanned changes: what if the demand increases? If the subcontracting costs 
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are raised, should we acquire more capacity? The model can be employed to determine the impact of 

these changes on the expected total cost to support tactical planning. 

9.  Conclusions 

In this paper, we model a MTO manufacturing environment that has a fixed quoted delivery lead-time. 

We focus on the setting of the planning windows and station planned lead-times, which are two key tacti-

cal planning parameters. We develop for a single aggregate product a workflow model that allows intra-

period workflows. We show how to characterize the production requirements as well as the expected 

queue lengths for each workstation. We then extend the single-family model to systems with multiple 

families. We embed the model into a nonlinear optimization program to find the optimal values of the 

planning parameters. We illustrate the use of the model with a small case example from a shop that pro-

cesses steel panels for oil-rig construction.  

One possible extension to this research is to model the stability of the MPS when it is subject to 

changes in customer orders. In our model, we assume that there is no change to the order quantity after 

the customer order is received. However in many MTO firms, it is common for customers to adjust or 

modify their orders within the delivery lead-time. Thus an important enhancement to the model would be 

to incorporate the dynamics of the MPS and its impact on the production flow, especially in light of the 

techniques that are used to achieve a stable MPS, e.g., firm planned orders, frozen time periods and time 

fencing (see Vollmann et al. 2005). 

It would also be worthwhile to explore how the model can be employed to provide feedback in sup-

porting the setting of the fixed quoted delivery lead-time. The feedback mechanism would be equivalent 

to the approach in hierarchical planning, wherein our model serves as a disaggregation model that pro-

vides feedback to the more aggregate models (e.g., So and Song 1998 and Rao et al. 2005) that determine 

the fixed quoted delivery lead-time. It would facilitate the capturing of the problem at different detail lev-

els, i.e., aggregated data for setting the fixed lead-time and more detailed production data for determining 

the planning windows and station planned lead-times.  
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Appendix 

We consider a product family with DLTk = 4, PPLT = 2 and planning window of length = 4 – 2 + 1 = 3. 

The current period is t = 0. The production planner has to decide on the MPS and the planned releases 

over the planning horizon that ranges from t = 0 to t = 4. To simplify the example, there are no orders af-

ter period t = 4 and there is no planned inventory at t = 1. We illustrate the smoothing of the MPS in Ta-

ble A1.  

Table A1: Smoothing of the MPS 

Period t 0 1 2 3 4 

Orders - - 10 20 30 

MPS - - 20 20 20 

Planned Inventory - 0 10 10 0 

Planned Release 20 20 20 - - 

The second row shows orders contracted to be delivered in each period, from t = 2 to 4. We do not state 

the order quantities for period t = 0 and t = 1, as they are already in process and are thus inconsequential. 

In this example, we smooth the MPS by spreading the orders as evenly as possible over the planning win-

dow, which ranges from t = 2 to t = 4; in particular, we level the MPS at 20 units for each period of the 

planning window. Since the order quantity in t = 2 is only 10 units, the MPS results in a planned invento-

ry of 10 units in period t = 2 that is carried over to period t = 3 and is finally applied to the order in t = 4. 

Furthermore, since the PPLTk = 2, we release jobs two periods earlier to meet the corresponding MPS. 

For instance, we plan to release 20 units at t = 0 to meet the MPS in period t = 2.  
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