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Abstract 

Ensemble statistics describes the ability of the visual system to summarize the 

information provided by a group of objects. This thesis refines the theoretical 

framework of ensemble statistics of faces throughout four studies. 

Study 1 investigated involuntary ensemble statistics of facial expressions during 

rapid serial visual presentation (RSVP). Prolonged exposure to RSVP of faces led to 

significant facial expression adaptation aftereffects, which could be explained by 

ensemble statistics. Further testing clarified that this representation was only 

modulated by the mean information in that stream. In summary, Study 1 examined 

the involuntary ensemble coding of facial expressions and hinted at the potential 

mechanism behind the formation of face space. 

Comparing adaptation aftereffects, Study 2 showed that temporal and spatial 

ensemble statistics of faces arise from distinct mechanisms that produce qualitatively 



 

 xi 

different perceptual outcomes. The visual system extracts the low-level 

‘computational’ average from faces when faces are presented individually across 

time. However, the spatial ensemble statistics summarizes the higher-level gist. 

Study 2, for the first time, showed there are distinctive mechanisms for ensemble 

coding of the same facial charateristics. 

Studying facial attractiveness adaptation and the ‘cheerleader effect’ (i.e. faces 

are perceived as more attractive when surrounded by others rather than being alone), 

Study 3 linked these two important phenomena in facial attractiveness with ensemble 

statistics. The mean attractiveness of the crowd (determined by ensemble statistics) 

biased the perceived attractiveness of the subsequently viewed face (the adaptation 

aftereffect). Similarly, the levels of attractiveness in a simultaneously presented 

crowd could also affect a target face (the ‘cheerleader effect’). Both past and present 

experience (determined by ensemble statistics) therefore impact the perception of 

facial attractiveness. Study 3 showed that the ensemble coding is ubiquitous in face 



 

 xii 

perception and shapes two important phenomena in facial attractiveness. Also, the 

findings suggested how external factors, the previous and present exposures to faces, 

affect the attractiveness perception. 

Converging evidence from Study 4 emphasized the role of attention in both 

explicit and implicit ensemble statistics of facial expressions, and also suggested that 

the ensemble statistics is a weighted average of the visual input rather than the simple 

average. This study further clarified the averaging mechanism of ensemble coding 

and unveiled the relationship between ensemble coding of the face and attention. 

Taken together, the thesis examined the mechanisms involved in high-level 

ensemble statistics and the relationship among ensemble statistics, face perception, 

and attention. The results may shed light on a more comprehensive understanding of 

face perception and visual processing.  
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Chapter I: Introduction and Literature Review 

1.1. Overview 

Equipped with distributed neural systems for face perception, the human visual 

system is capable of obtaining valuable information from another individual’s face 

quickly and effortlessly (Bruce & Young 1986; Calder & Young, 2005; Haxby, 

Hoffman, & Gobbini, 2000; Hoffman & Haxby, 2000; Leopold & Rhodes, 2010; 

Little, Jones, & DeBruine, 2011; Willis & Todorov, 2006; Young & Bruce, 2011). 

Within the repertoire of face perception, facial expression and facial attractiveness, 

due to their social and evolutionary significance, are vital for social communications. 

Facial expression, as a changeable aspect of faces, reflects not only the current mood, 

but also an individual’s possible intentions (Elias, Dyer, & Sweeny, 2017; Jack & 

Schyns, 2017). On the other hand, facial attractiveness, as an invariant aspect of faces, 

is linked with other personality attributes and has a huge impact on mate choices as 
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well as decisions about social exchange (Little, Jones, & DeBruine, 2011; Rhodes, 

2006; Thornhill & Gangestad, 1999; Willis & Todorov, 2006).  

To better understand the perception of facial expressions and attractiveness, it 

is necessary to clarify how faces are perceived in the group context, because a face 

seldom appears alone in the real world (Elias et al., 2017). However, the current 

understanding of facial expressions and attractiveness is mainly based on 

experiments testing the perception of a single face. How do we interpret groups of 

faces we see every day? When individuals are exposed to a large amount of 

information, perception is narrowed down to a finite number of objects, possibly due 

to the limited capacity of visual processing and working memory (Brady & Alvarez, 

2015; Cohen, Dennett, & Kanwisher, 2016; Haberman & Whitney, 2012; 

Nieuwenstein & Potter, 2006). Therefore, there is a vast discrepancy between the 

perceived richness of the scene and our limited perceptual ability (Alvarez, 2011; 

Whitney & Leib, 2017). 
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Alternatively, the human visual system may process such a mass of information 

via ensemble statistics: obtaining the “gist” of the visual input (Alvarez & Oliva, 

2009; Haberman & Whitney, 2012). Such ensemble coding has been observed in 

low-level features like orientation and direction, and high-level features like facial 

expression, identity and gaze viewpoint (Alvarez, 2011; Alvarez & Oliva, 2008, 2009; 

Ariely, 2001; Elias et al., 2017; Haberman, Brady, & Alvarez, 2015; Haberman, Harp, 

& Whitney, 2009; Haberman & Whitney, 2007, 2012; Sweeny & Whitney, 2014; 

Leib et al., 2014; Qiu, Robertson, & Whitney, 2014). For instance, Haberman and 

Whitney (2007) showed that subjects could correctly report the mean expression of 

a crowd at the expense of perception of each component face. Studies in statistical 

averaging have concentrated mainly on spatial ensembles (Alvarez & Oliva, 2008; 

Ariely, 2001; Chong & Treisman, 2003; Haberman et al., 2015; Leib et al., 2014), 

but relatively less on temporal ensembles (e.g.., Haberman, Harp, & Whitney, 2009). 

Considering the fact that faces are always temporally adjacent to other faces, Chapter 
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II (Study 1) aims to study whether and how temporal ensemble coding explains the 

perception of facial expressions in Rapid Serial Visual Presentation (RSVP). 

The detailed mechanisms of ensemble statistics of faces are not clear at the 

moment. Despite the fact that researchers have described ensemble statistics as 

extracting the gist, it is still unclear what the gist actually represents in face 

perception (Whitney & Leib, 2017). For example, does ensemble coding extract a 

general representation, whereby a high-level judgment is made for each of the faces 

before summarizing the overall gist from these judgments? Or, does the brain 

compute the average of low-level visual properties of each face first and then judge 

the group average? Due to the limitation of the facial characteristics employed, 

previous studies were unable to clarify which hypothesis is correct. For instances, 

facial emotion predicts the same outcome for the two competing hypotheses (Figure 

1.1A). Here, Chapter III (Study 2) takes advantage of the fact that an averaged face 

created from the low-level properties of a group of faces is more attractive than the 
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gist of the underlying faces in the group (DeBruine, Jones, Unger, Little, & Feinberg, 

2007). By measuring the perceived facial attractiveness of temporally and spatially 

presented faces using an adaptation paradigm, Study 2 investigated for the first time 

what the possible computational mechanisms of ensemble statistics of faces are. 

 

Figure 1.1. The ‘Computational Average’ and ‘Gist’ hypotheses (the demonstrated faces are AF01NES, 

AF05NES, AF06NES and AF07NES from KDEF database). All the ratings are hypothetical and only for 

illustration purposes. (A) Ensemble coding for facial expressions: the ‘Computational Averaging’ and ‘Gist’ 

hypotheses predict the same perceptual outcome for emotion; i.e., happy intensity rating of 6.8. (B) Ensemble 

coding of facial attractiveness: the computational average face is more attractive than the mean attractiveness of 

its individual component faces, with the computational average not equal to the gist (i.e., attractiveness rating of 

3.8 versus 2).   

Recent evidence suggests that ensemble coding is actively involved in many 
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aspects of visual processing (Whitney & Leib, 2017). For instance, Fischer and 

Whitney (2011) have suggested that ensemble statistics underpin the visual crowding 

(Whitney & Levi, 2011). Therefore, it is reasonable to examine whether ensemble 

coding is involved in face perception, especially in facial attractiveness. Because of 

the distinctive neural systems for face perception, one should not assume that the 

ensemble statistics shape facial attractiveness in the same way as they shape facial 

expression. In Chapter IV (Study 3), four experiments were conducted to link 

ensemble statistics with essential phenomena in facial attractiveness. 

What is the relationship between attention and ensemble statistics of faces? So 

far, different researchers have found mixed results. It has been shown that ensemble 

coding can occur with reduced attention (Alvarez & Oliva, 2009). However, it might 

not be correct to assume that ensemble coding is immune to attention control. Recent 

evidence has revealed that attention modulates the ensemble coding of size (Chong 

& Treisman, 2005; de Fockert & Marchant, 2008; Li & Yeh, 2017). Furthermore, 
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Elias and colleagues (2017) showed that the averaging of facial emotions could be 

disrupted when attention was diverted by a secondary task. To clarify the relationship 

between attention and ensemble coding of faces, Chapter V (Study 4) tested the 

extent to which exogenous and endogenous attentional cues modulate the ensemble 

statistics of facial expressions. 

In summary, this thesis examines the spatial and temporal ensemble statistics of 

facial expressions and attractiveness and investigates the mechanisms of ensemble 

statistics as well as face perception. Four studies, including thirteen experiments, 

were conducted and detailed in the following four chapters (illustrated in Fig 1.2).  
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Figure 1.2. Illustration of the research framework. 

Chapter II (Study 1) investigated the processing of facial expression during 

rapid serial visual presentation (RSVP). After passively viewing streams of faces in 

rapid succession (42.5 Hz, each face for 23.5 ms only), subject’s perception of the 

subsequently viewed test face was biased, revealing a facial expression adaptation 

aftereffect (Experiment 1.1). The aftereffect could be explained by ensemble 

statistics (Experiment 1.2): the RSVP of faces and the computer-generated averaged 

faces of the RSVP stream evoked equivalent and correlated adaptation aftereffects. 

Controls in emotion variation, the temporal frequency of the stream, and the identity 
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of the testing stimuli further clarified that the representation of the stream is only 

subject to the mean of that stream (Experiment 1.3 & 1.4). These findings suggested 

that ensemble statistics are involuntarily used to interpret rapidly changing faces. 

Chapter III (Study 2) aimed to clarify the computational mechanism of 

ensemble statistics. Taking advantage of the fact that the average of unattractive faces 

is more attractive than a given component, Study 2 differentiated the ‘computational 

averaging’ (average the low-level features and then judge) and gist (perceive each 

face and then average the judgments) hypotheses. Results from Experiment 2.1 & 

2.2 showed that the visual system extracts the low-level ‘computational average’ 

from faces when faces are presented individually across time. However, the spatial 

ensemble statistics summarizes the higher level gist (Experiment 2.3). Temporal and 

spatial ensemble statistics of faces, therefore, arise from distinct mechanisms that 

produce qualitatively different perceptual outcomes. 

Chapter IV (Study 3) explored the relationship between ensemble statistics and 
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two important phenomena in facial attractiveness, the adaptation aftereffect and the 

"cheerleader effect", and the degree to which these two phenomena are associated. 

The data from Experiment 3.1 & 3.2 revealed that the mean attractiveness of the 

crowd biases the perceived attractiveness of subsequently viewed face, revealing the 

facial attractiveness aftereffect. Experiment 3.3 & 3.4 further showed that the 

ensemble statistics of facial attractiveness also affect the "cheerleader effect": the 

more unattractive the crowding faces are, the more attractive the central face is 

perceived. The findings from the study revealed that both past and present experience 

(determined by ensemble statistics) impact the perception of facial attractiveness. 

Chapter V (Study 4) investigated the impact of attention on the ensemble 

statistics of a crowd’s expressions. The results showed that the reported mean 

emotion of the same crowd is heavily influenced by the orientation of the exogenous 

cues (Experiment 4.1): the cued face has a significantly larger weight in ensemble 

statistics. Using endogenous cues and the adaptation paradigm, Experiment 4.2 
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replicated the finding. Thus, converging evidence from this study emphasized the 

role of attention in the ensemble statistics of facial expressions, and also suggested 

that the ensemble statistics stem from a weighted average of the visual input rather 

than simply from the arithmetic mean. 

The studies described in this thesis have examined the mechanisms of ensemble 

statistics of faces, linked the ensemble perception with important phenomena in face 

perception, and showed the ubiquity of ensemble statistics in face perception. The 

findings of the thesis could refine the theoretical frameworks of face perception and 

ensemble statistics. Moreover, this thesis directly targets the core concept of 

ensemble statistics: the definition and the formation of ‘averaging’ (i.e., ensemble 

representation). To the best of our knowledge, this thesis offers the first systematical 

analysis of the behavioral mechanisms of ensemble statistics of faces. 
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1.2. Literature Review 

1.2.1 Functional and Neural models for Face perception 

Our visual system has an impressive repertoire of face processing capabilties: 

individuals can derive identity, facial expression emotion, eye gaze direction, 

attractiveness, trustworthiness, kinship, age, sex dimorphism, and many other aspects 

by using slight physical differences among faces (Andrews & Ewbank, 2004; Bruce 

& Young, 1986; Buckingham et al., 2006; Welling, Conway, Tiddeman, & Jones, 

2006; Burton, Jeffery, Calder, & Rhodes, 2014; Little et al., 2011; Maloney & Dal 

Martello, 2006; Oosterhof & Todorov, 2008; Rhodes & Jeffery, 2006; Rossion, 2014; 

Schyns, Petro, & Smith, 2007; Sutherland et al., 2013; Towler, Burt, & Young, 2013; 

Young & Bruce, 2011). Based on the converging evidence from psychophysics and 

neural imaging studies, there is a framework presented by Bruce and Young (1986) 

and more recently studies in the field (Calder & Young, 2005; Haxby et al., 2000; 
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Hoffman & Haxby, 2000; Young & Bruce, 2011). Using this model (briefly 

illustrated in Figure 1.3), researchers categorized face perception into two different 

domains based upon the nature of facial information: (1) “changeable aspects” of 

faces, such as facial expressions; and (2) “invariant aspects” of faces, such as facial 

attractiveness.  

 

Figure 1.3. The framework of face perception. Based on the framework suggested by Bruce & Young, (1986) 

face perception can be categorized into two different domains by the nature of facial information: invariant 

aspects of the face (e.g. attractiveness), and changeable aspects of the face (e.g. facial expression). On the other 
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hand, both facial expression and facial attractiveness are vital for social communication and are the foci of this 

thesis. 

Furthermore, Haxby, Hoffman, and Gobbini (2002), combining findings from 

neuroscience, have suggested that there are sophisticated circuits of distributed 

neural systems activating fine-grained face perception (Behrman & Plaut, 2013; 

Hoffman & Haxby, 2000; Haxby & Gobbini, 2011). In this model (Figure 1.4), there 

is a core system with specialized (face-dedicated) structures in the occipital and 

temporal lobes coding facial information; and there is also an extended system 

consisting of other brain structures involved in other cognitive functions aiding face 

perception.  
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Figure 1.4. The model of distributed neural systems for face perception. Reprinted (with permission) from 

Haxby & Gobbini (2011). 

The core system analyzes the facial information of both variant aspects and 

invariant aspects (Calder & Young, 2005). In the core system, the superior temporal 

sulcus (STS) is involved in the network for the perception of facial expression and 

gaze (Hoffman & Haxby, 2000; Perrett, Hietanen, Oram, Benson, & Rolls, 1992; 

Todorov, Gobbini, Evans, & Haxby, 2007; Vuilleumier, Armony, Driver, & Dolan, 
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2001), whereas the lateral fusiform gyrus, namely the fusiform face area (FFA; 

Kanwisher, McDermott, & Chun, 1997; see also Gauthier & Tarr, 1997), is in charge 

of the unchangeable aspects, such as facial identity perception (Andrews & Ewbank 

2004; Liu, Harris, & Kanwisher, 2010). In contrast, the extended system helps to 

complete the face perception. For instance, Gobbini and colleagues (2011) suggested 

that the medial prefrontal cortex and the temporoparietal junction respond differently 

to a familiar person compared to a stranger. Moreover, the role of the anterior 

temporal lobe has recently been described as an important site for facial identity 

perception (Behrmann & Plaut, 2013; Collins & Olson, 2014). In the emotion 

perception domain, the amygdala and insula are involved in negative emotions like 

fear and disgust (Calder et al., 2007; van Ditzhuijzen, Keane, & Lawrence, 2007; 

Pessoa & Adolphs, 2010). Todorov and Engell (2008) also suggested that the 

amygdala, a subcortical structure that connects with the superior colliculus and 

pulvinar, provides continuous vigilance by evaluating faces and activates before 
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interacting with them (also see Vuilleumier et al., 2001; Engell et al., 2007). 

Interestingly, although both the amygdala and the STS are heavily involved in the 

perception of facial expressions, they represent expressions differently (Harris, 

Young, & Andrews, 2012): the STS represents facial expressions in a continuous 

way, as its activation is insensitive to emotional change, while the amygdala 

represents in a categorically way, as its activation is ‘sensitive to changes in 

expression that alter the perceived emotion’. Noticeably, some insightful research on 

the amygdala suggested that it might have a complicated role in the perception of 

facial expression. Patient SM, whose amygdala was lesioned, has been an important 

case for supporting the notion that the amygdala is vital in the perception of facial 

expression (Adolphs, 2006). However, a thorough study using the Bubble technique 

(Gosselin & Schyns, 2001) and eye tracking measurements has suggested that with 

proper instruction (e.g. ‘look at the eye region’), patient SM could successfully 

distinguish fear as well as neural typical controls (Adolphs et al., 2005; Tranel, 
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Schyns, & Damasio, 2005). Therefore, it is possible that the amygdala is the 

prerequisite (by guiding attention), rather than the processing hub for emotion 

perception.  

Within the repertoire of face perception, this thesis has specifically focused on 

the perception of facial expressions and facial attractiveness for several reasons. 

Firstly, both facial expressions and facial attractiveness are vital for social 

communication. Facial expression reflects not only the current mood, but also an 

individual’s possible intentions (Elias, Dyer, & Sweeny, 2017). On the other hand, 

facial attractiveness has a huge impact on mate choices as well as decisions about 

social exchange (Little, Jones, & DeBruine, 2011; Rhodes, 2006; Thornhill & 

Gangestad, 1999; Willis & Todorov, 2006). Studying ensemble coding of faces 

allows for a better understanding of face perception in a group context. Secondly, 

studying ensemble coding of faces could clarify whether ensemble statistics are 

prevalent in face perception. Are ensemble statistics ubiquitous in face perception? 



 

 19 

Or is it just a phenomenon in the invariant aspect of face perception? So far, 

researchers are not fully clear about how ensemble statistics shape the perception of 

temporally presented faces. Moreover, there is no current evidence for the existence 

of ensemble statistics of facial attractiveness. Thirdly, studying the perception of 

facial expressions and facial attractiveness allows for a better understanding of the 

mechanisms of face perception and ensemble statistics. As facial expressions and 

attractiveness require different kinds of facial information (facial expression requires 

both local and holistic information, while facial attractiveness relies on holistic 

information) and employs distinctive circuits of neural systems, studying them 

enables us to: (a) clarify whether the ensemble statistics of faces relies on local or 

holistic information; (b) examine whether the ensemble statistics of faces relies on 

specific neural systems to calculate them, or if it relies upon distributed neural 

systems for face processing. 
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1.2.2. Facial Expression 

Facial expression might be one of the most important elements in inter-person 

communication. Effective perception of facial expressions permits a direct 

recognition of others’ current mood and also allows accurate speculation of their 

intention (Jack & Schyns, 2017).  

Although there is an ongoing debate on what constitutes basic facial expressions 

(Ekman, 1993; Jack, Garrod, & Schyns, 2014; Jack & Schyns, 2017; Russell, 1994), 

there is more agreement among researchers as to the perception of facial expressions 

(Calder & Young, 2005). Similar to most facial characteristics, facial expressions 

require both feature and holistic processing. Holistic processing (Maurer, Le Grand, 

& Mondloch, 2002), sometimes termed global or configural processing, implies that 

the processing is not only on local features, but on the relationship among the features 

(the holistic information). Using a composite effect paradigm, Calder and colleagues 
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(2000) provided strong evidence for the ‘holistic’ claim. When two face-halves with 

different emotions were aligned, observers’ performances were severely impaired 

when reporting the accurate emotion of either half compared to the misaligned 

conditions. This is because in the aligned condition the emotion perception of one 

half face is heavily affected by the other half, i.e. because of the holistic processing. 

However, Tanaka and colleagues (2012) found no evidence in support of the holistic 

processing of congruent expressions of happy and angry faces (the two face-halves 

with the same emotion). They concluded that the perception of facial expression 

utilizes both holistic and local information. Moreover, evidence from adaptation 

studies (e.g. Xu, Dayan, Lipkin, & Qian, 2008) further suggested that, at least for 

certain facial expressions, such as happy and sad, local features (e.g. mouth shape) 

determine perception of facial expressions. 

Studies of the relationship between facial expression and other facial 

characteristics have produced mixed results. Several early studies in neuroimaging 



 

 22 

suggested that facial expression and facial identity are encoded in distinctive neural 

systems (e.g., Haxby et al., 2000; Kanwisher et al., 1997; Winston et al., 2004; see 

also Andrews & Ewbank, 2004). The ‘independent’ hypothesis was further supported 

by research in prosopagnosia: although prosopagnosics have difficulty in 

differentiating individual identity from faces, they have comparatively normal 

emotion perception (Humphreys, Avidan, & Behrmann, 2006 & Behrmann, 2006). 

However, recent evidence has suggested that the perception of facial expression and 

facial identity are interdependent (Calder & Young, 2005). For instance, Fox and 

Barton (2007) found adaptation to emotional faces generated significant aftereffects 

in test faces of another identity; however, the aftereffect was bigger with test faces 

with the same identity (not necessarily the same image) as the adapting face. 

However, the reverse is not true. In a follow-up experiment, they (Fox, Oruc, & 

Barton, 2008) suggested that identity adaptation is irrelevant to facial expression. 

Thus, there are both “identity-dependent” and “identity-independent” 
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representations of facial expression. Interestingly, the perception of facial 

trustworthiness and attractiveness are also intertwined with that of facial expression. 

Using an adaptation paradigm, Engell and colleagues (2007) showed there is a 

common neural mechanism for the perception of facial trustworthiness and facial 

expression. Adaptation to angry expression makes subsequently viewed faces appear 

more trustworthy, while adaptation to a happy expression makes subsequently 

viewed faces appear less trustworthy. Moreover, the orbital frontal cortex (OFC) is 

activated by both attractive faces and face smile (O’Doherty et al., 2003 Perrett, Burt, 

& Dolan, 2003). Therefore, the perception of facial expression is substantially linked 

to other aspects of face perception.  

 

 

1.2.3. Facial Attractiveness  
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Due to its social and evolutionary significance, facial attractiveness is one of 

the most important and widely studied facial traits (Little et al., 2011; Rhodes, 2006; 

Thornhill & Gangestad, 1999; Willis & Todorov, 2006). Research has uncovered 

numerous attributes that modulate facial attractiveness (Little et al., 2011; Rhodes, 

2006), including: symmetry (Grammer & Thornhill, 1994; Perrett et al., 1999; Lee, 

Rowland, & Edwards, 1999; Rhodes et al., 2001), masculinity/femininity (sexual 

dimorphism; Perrett, Lee, Penton-Voak, & Rowland, 1998; Perrett, May, & 

Yoshikawa, 1994) and averageness (DeBruine et al., 2007; Deffenbacher, Vetter, 

Johanson, & O'Toole, 1998; Grammer & Thornhill, 1994; O'Toole, Price, Vetter, 

Bartlett, & Blanz, 1999; Perrett, May, & Yoshikawa, 1994; Rhodes & Tremewan, 

1996; Rhodes et al., 2001; Valentine, Darling, & Donnelly, 2004). Moreover, such 

preference is universal (Cunningham, Roberts, Barbee, Druen, & al, 1995; Perrett et 

al., 1998; Rhodes et al., 2001). For instance, Perrett and colleagues (1994) showed 

that Japanese and UK subjects agree in regard to female attractiveness. 
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The facial attribute that appears to most determine facial attractiveness is the 

averageness. At the dawn of modern psychology, Galton (1878) reported that 

averaging leads to ‘…in every instance, a decided improvement of beauty’ (Valentine 

et al., 2004). Contrary to the meaning of ‘average’, a face with high averageness is 

actually highly typical in the group with few idiosyncratic features (Little et al., 2011). 

Studies using computer-generated faces and real faces both suggest that individuals 

are more likely to prefer average faces to atypical ones (DeBruine et al., 2007; 

Deffenbacher et al., 1998; Grammer & Thornhill, 1994; Langlois & Roggman, 1990; 

Light, Kayrastuart, & Hollander, 1979; Perrett et al., 1994; Rhodes & Tremewan, 

1996; Rhodes et al., 2001).  

The preference for averaged faces is partly due to the fact that the average face 

is close to the face norm (center of the face space), and therefore preferred in visual 

processing (Little et al., 2011; Valentine, 1991; Valentine et al., 2004). However, the 

preference for averageness is also due to evolutionary reasons. Namely, genetic 
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diversity, reflected by averageness, is itself appealing. Thornhill (1994) argued that 

the ‘owners’ of more average faces have more diverse sets of the genes and therefore 

more fitted for reproduction. Accumulated evidence also suggests that averageness 

is a good predictor of health (Rhodes, Maloney, Turner, & Ewing, 2007; Rhodes et 

al., 2001). Because of the importance of averageness, in an early work, Langlois 

(Langlois & Roggman, 1990) even (wrongly) claimed that “attractive faces are only 

average”. Apparently, facial attractiveness is not only about averageness (Langlois 

corrected her claim in her later papers). The earlier confusion is partly caused by the 

averaging algorithm used at that time: back then, controls in other facial attributes 

were always confounded with averageness. Using improved algorithms (Tiddeman, 

Burt, & Perrett, 2001), modern researchers have been able to differentiate the impact 

of symmetry and averageness on attractiveness (Burt & Perrett, 1997). 

Research on averageness has revealed several interesting findings. Using a 

computer technique, Langlois and Roggman (1990) showed that average faces are 
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more appealing than their components. Also, when more faces are averaged, the 

averaged face becomes more attractive: the average of 32 faces is much more 

attractive than the average of 2 faces. However, not all averaged faces are equally 

attractive (DeBruine et al., 2007; Perrett et al., 1994): the average of unattractive 

faces is still less attractive than that of attractive faces.  

In addition to these intrinsic qualities within a face, external factors such as 

context and experience may shape the perception of facial attractiveness (Anderson, 

Lindner, & Lopes, 1973; Ewing, Rhodes, & Pellicano, 2010; Hönekopp, 2006; Jones, 

DeBruine, Little, Burriss, & Feinberg, 2007; Little, Burt, Penton-Voak, & Perrett, 

2001; Little et al., 2011; Rhodes, 2006). For example, simply being viewed in the 

company of others helps us appear more attractive than when we are seen alone: the 

cheerleader effect (Walker & Vul, 2014). Recent exposure to an unattractive face also 

makes subsequently viewed faces more attractive: an attractiveness adaptation 

aftereffect (Rhodes, 2006).  
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1.2.4. Face Adaptation 

Face perception is not always robust: recent experience can change our 

perception of subsequently viewed faces dramatically (Leopold et al., 2011; Webster 

et al., 2004; Webster, 2011). For instance, prolonged exposure to an emotional face 

can predispose the perceived emotion of successive faces: this is the face adaptation 

aftereffect (Webster, Kaping, Mizokami, & Duhamel, 2004; Ying & Xu, 2017). 

Though face adaptation shares some fundamental features with simpler visual 

adaptation, it has been broadly judged as high-level. Unlike simpler visual adaptation, 

face adaptation does not solely rely on the early-stage perception system like the 

retina or primary visual cortex; it occurs later within the core system of face 

processing (Leopold, Rhodes, Muller, & Jeffery, 2005; Webster & MacLeod, 2011).  

Mechanisms of adaptation have been proposed according to different 

perspectives, neurally, psychologically and computationally. Two possible theories 
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of visual coding have been widely discussed. One is norm-based opponent coding. 

The theory posits that there exist anti-neurons that prefer two opponents of the same 

characteristic of particular visual stimuli (e.g., male vs. female, face gender). 

Evidence from expression, identity and gender adaptation supports this theory 

(Burton, Jeffery, Calder, & Rhodes, 2015; Susilo, McKone, & Edwards, 2010). The 

other theory of adaptation involves exemplar-based, multichannel coding, and posits 

that neuronal populations have multiple channels to the different aspects of the same 

stimulus (e.g., the direction of eye gaze). Evidence from eye gaze direction (Seyama 

& Nagayama, 2006), head orientation and face viewpoint (Fang & He, 2005) has 

supported this theory (Calder, Jenkins, Cassel, & Clifford, 2008; Lawson, Clifford, 

& Calder, 2011). Despite the differences between the two theories of adaptation, 

however, both suggest that the “consequence of adaptation is normalization of the 

responses across mechanisms (Webster, 2015)”. This normalization of the neural 

response will “calibrate for the mean stimulus level (Webster, 2014)”. Adaptation 
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processing stabilizes the visual system in changing surroundings by calibrating the 

coding mechanisms to maintain the optimized discriminative sensitivities (Yang, 

Shen, Chen, & Fang, 2011). We can thus predict that prolonged exposure to an 

extreme face, for example, a single happy face, will shift the face norm towards the 

adapting extreme face. 

Several lines of research have shown that facial adaptation aftereffects can be 

produced in different features from low-level to high-level, including: curvatures (Xu 

et al., 2008), sexual dimorphism (Little, DeBruine, & Jones, 2005), eye-spacing 

(Little et al., 2005), identity (Leopold, O’Toole, Vetter, & Blanz, 2001; Rhodes & 

Jeffery, 2006), emotional expression (Hsu & Young, 2007; Luo, Wang, Schyns, 

Kingdom, & Xu, 2015; Webster et al., 2004; Xu et al., 2008), gender (Webster et al., 

2004) and age (Schweinberger et al., 2010).  

The adaptation paradigm has been widely employed in face research since it is 

a sensitive tool to “reveal the mechanism of face processing” (Rhodes, Jeffery, 
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Watson, Clifford, & Nakayama, 2003). Using adaptation aftereffects, psychologists 

can probe the visual system “via the indirect but none the less revealing route of 

studying certain illusions (Frisby, 1979)”. Because of the ‘neat relationship which 

often exists’ between the psychological findings using the adaptation paradigm and 

the neurophysiological findings using microelectrodes, some researchers called the 

adaptation paradigm ‘the psychologist’s microelectrode’ (Frisby, 1979; Webster, 

2015). For instance, researchers have studied the perception of adapting faces by 

measuring the magnitude of the adaptation aftereffects they have generated (Little et 

al., 2008; Luo et al., 2015; Rhodes & Jeffery, 2006; Webster et al., 2004).  

1.2.5. Ensemble statistics 

The visual system encounters a plethora of complex visual stimuli regularly. 

However, there is a huge discrepancy between the apparent rich environment and the 

limited processing ability of the human visual system (Cohen et al., 2016). The 



 

 32 

capacity and temporal limitations of working memory narrows perception onto a 

finite number of objects at any one time (Cowan, 2010; Haberman & Whitney, 2012; 

Nieuwenstein & Potter, 2006), resulting in the memory and recognition of an 

individual member of the a visual ensemble representation to be compromised. For 

instance, although grasping one component of an RSVP (Rapid Serial Visual 

Presentation) stream is possible (Keysers & Perrett, 2002; Potter, 2014), scrutinizing 

every stimulus in the RSVP stream is impossible.  

The human visual system processes the stream of visual input with elegant 

strategies. Alvarez (2011) suggested that redundant and repeated features are 

omnipresent in visual experience: the real world is not random, but has structures, 

regularities, and similarities. Recent studies in ensemble statistics have high lighted 

a possible explanation of the processing of multiple stimuli: individuals might 

comprehend the surrounding world by obtaining the averaged gist using the 

ensemble statistics (Alvarez & Oliva, 2009; Haberman & Whitney, 2012). 



 

 33 

Individuals derive the gist information of stimuli by averaging them. Such ensemble 

processing has been found in low-level features like location (Alvarez & Oliva, 

2008), size (Chong & Treisman, 2005; de Fockert & Marchant, 2008; Li & Yeh, 

2017), and high-level features like facial features (Haberman et al., 2009; Haberman 

& Whitney, 2010, 2012; Sweeny & Whitney, 2014). For example, Haberman and 

colleagues (2009) showed that after viewing a group of emotional faces, an 

individual could report the mean emotion of them with high accuracy. The studies 

(Haberman & Whitney, 2012) further suggested that such ensemble coding relied on 

holistic processing, not only on low-level feature processing: the accuracy of the 

reported mean emotion of the inverted faces was statistically smaller than that of 

upright ones. This averaging has many names, but is commonly known as ensemble 

coding (Alvarez, 2011; Ariely, 2001; Haberman et al., 2015; Haberman & Whitney, 

2007, 2012; Whitney & Leib, 2017), ensemble statistics, or summary representations, 

and can occur both spatially (i.e., multiple faces presented at once in a scene; e.g., 
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Haberman & Whitney, 2007) and temporally (i.e., different faces presented one at a 

time in rapid succession; e.g., Ying & Xu, 2017). Noticeable, most studies in 

ensemble face perception dealt with spatial ensembles, all faces presented at once. 

Therefore, temporal ensemble statistics require further investigation. Study 1 directly 

addressed this question. 

Despite researchers widely describing ensemble statistics as extracting the gist 

of a scene, it is still far from clear what this gist represents (Whitney & Leib, 2017). 

For example, does ensemble coding extract a general representation, whereby a high-

level judgment is made for each of the faces before summarizing the overall gist from 

these judgments? Or does the brain actually extract the low-level visual properties of 

each face first and then computationally average the facial deviations together? Here, 

Study 2 aimed to clarify this question. 

Ensemble statistics are well observed in the changeable aspects of a given face. 

A recent study suggested that ensemble coding occurred during the perception of 
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gaze viewpoints of a group (Sweeny & Whitney, 2014). However, the ensemble 

perception of invariant aspects of faces is only limited to facial identity. For example, 

Fisher and colleagues (2014) found that participants reported the mean identity of 

the crowd across multiple face viewpoints. Can we conclude that the ensemble 

statistic is a fundamental mechanism of visual perception? In this thesis, we 

examined the spatial and the temporal ensemble statistics of facial expressions and 

facial attractiveness to answer this question. 

Counterintuitively, Leib and colleagues (2012) showed that developmental 

prosopagnosia (DP) cases were able to form ensemble representations of facial 

identity, despite their difficulty in identifying the individual identities. Therefore, 

authors suggested that the processing of a group of faces might differ from the 

processing of an individual face. However, this finding did not necessarily reflect the 

different processing mechanisms between sets of faces and static faces (Brady & 

Alvarez, 2011; Haberman & Whitney, 2009). Alternatively, as suggested by Alvarez 
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(2011), the ensemble statistics might smooth out the inner noise of the DP’s 

representation of individual faces, and thus generate a comparable summarizing 

outcome to neural typical subjects.  

1.2.6. Attention and Face Perception 

The visual system is able to actively assign attention to a subset of sensory input, 

the processing of which will be facilitated by attention (Posner, 1980; Rensink, 2000; 

Treisman & Gelade, 1980). Attention, intertwined with all levels of visual processing, 

has been commonly believed to be of great importance in visual processing (Awh, 

Vogel, & Oh, 2006; Gazzaley & Nobre, 2012). The impact of attention has been 

observed behaviorally and neurally. Behaviorally, for instance, attention could lower 

contrast thresholds (Bisley & Goldberg, 2003) and decrease reaction times (Posner, 

1980; Zhang, Wang, & Goldberg, 2014). Neurally, for instance, attention could 

enhance the firing rate of cells (Wurtz, Goldberg, & Robinson, 1982), as well as alter 
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the BOLD signal (Vuilleumier et al., 2001). One effective way to modulate attention 

is distractor cueing (Bisley & Goldberg, 2003; Posner, 1980; Vuilleumier et al., 2001). 

It has been found that response times were shorter when subjects were cued to the 

spatial location of the stimuli compared to when cued away from the stimuli (Posner, 

1980). Also, when guided by attentional cues to emotional faces rather than to houses, 

subjects exhibit significant emotion-related frontal positivity (Holmes, Vuilleumier, 

& Eimer, 2003). On the other hand, insufficient attention jeopardizes emotion 

perception (Adolphs, 2006; Adolphs et al., 2005; Holmes et al., 2003; Raymond, 

Fenske, & Tavassoli, 2003).  

Visual attention is not only overt, e.g. linked to changes in gaze. Covert attention 

is vital in vision. Following the classic Posner cueing task (1980), researchers 

modified the cueing task, thereby further indicating that the reaction time (RT) 

differences between incongruent cue and congruent cue conditions reflected the 

strength of the ability to capture attention. From the classic Posner cueing task 
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paradigm (1980) to many face adaptation studies (Luo et al., 2015; Rhodes & Jeffery, 

2006; Rhodes, Jeffery, Watson, Clifford, & Nakayama, 2003; Xu et al., 2008) 

participants maintained their overt attention at the central fixation cross, while being 

able to sufficiently cast their covert attention onto periphery visual stimuli and to do 

the category tasks.  

There is an interesting relationship between face perception and attention. 

Finkbeiner and Palermo (2009) found that facial stimuli could always capture 

attention, denoted by faster reaction times; however, other stimuli could not. On the 

other hand, Rhodes and colleagues (2011) showed that under different attention 

allocation conditions, individuals perceived faces differently: enhanced attention 

manipulated by tasks amplified the magnitudes of visual adaptation aftereffects. 

Therefore, utilizing attention allows the visual system to perceive faces in a better 

manner (Palermo & Rhodes, 2007; Vuilleumier et al., 2001). On the other hand, 

evidence from neural imaging experiments suggests that face processing in the 
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amygdala is hardly affected by attention modulation, while cortical face processing 

is gated by spatial attention. For example, Vuilleumier and colleagues (2001) showed 

that the activation of FFA to facial stimuli was modulated by attention; however, the 

left amygdala responded to fearful expressions regardless of attention. Some 

evidence even suggests that the amygdala responds to various kinds of fear-related 

stimuli (e.g. fearful sound effect; Scott et al., 1997; Johnson, 2005); suggesting that 

the amygdala is a ‘vigilant monitor’. Another experiment also showed that the 

emotion-related ERP differences from cortical regions were undetectable when the 

faces were outside of the attended location (Holmes et al., 2003).  

Researchers have extensively studied ensemble representation as well as 

attention,. Some previous studies suggested that the ensemble coding of faces could 

be operated implicitly and explicitly (Haberman & Whitney, 2009; Ying & Xu, 2017) 

and could occur with reduced attention (Alvarez & Oliva, 2009). Recently, Elias and 

colleagues (2017) showed that attention is a prerequisite for perceptual averaging. 
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On the other hand, studies in ensemble representation of size have revealed that the 

impact of attention modulation on low-level ensemble coding (Chong & Treisman, 

2005; de Fockert & Marchant, 2008; Li & Yeh, 2017). For instance, De Fockert and 

Marchant (2008) found that attended items contributed more to the ensemble 

representation. Therefore, the ensemble coding of size might occur in brain circuits 

which are subject to attention, perhaps the early visual cortex (Fang, Boyaci, Kersten, 

& Murray, 2008; Moran & Desimone, 1985). Thus, it is reasonable for one to 

postulate that the ensemble coding of faces might also be subject to attention 

modulation. 
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Chapter II: Study 1: Adaptation Reveals the Temporal 

Ensemble Coding of Sequentially Presented Emotional 

Faces 

In real life, faces are usually temporally adjacent to other faces. How can we 

perceive faces presented in rapid succession? How could previous exposure to a 

stream of faces impact our face perception? Recent work on face perception has 

suggested that the visual system could interpret temporally presented faces via 

ensemble statistics. However, those findings were mainly based on the studies 

examining spatial ensemble statistics, the detailed perception of temporally presented 

faces is unclear. This study, with four experiments, systematically investigated the 

emotion perception of faces presented in RSVP streams using an adaptation 

paradigm.  
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2.1. Experiment 1.1: RSVP of emotional faces can generate 

adaptation aftereffects 

Faces presented in a rapidly changing sequence can either be segregated for 

target detection or grouped for holistic representation. This experiment investigates 

whether passively viewing consecutively presented face sequences containing 

emotional information will generate facial expression aftereffects. We exposed 

subjects to a sequence of faces and required them to judge subsequently presented 

faces’ emotion. The adapting faces were with the same emotion, but from different 

identities (either happy or sad). If the subjects did group the face streams into a 

holistic representation during adaptation, it is expected to observe a facial expression 

adaptation aftereffect comparable to other experiments.  

2.1.1. Methods 

 Subject. Ten subjects (5 females, total mean age 22.8) with normal or 
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corrected-to-normal vision participated in this experiment. Although one subject 

(HY) was the experimenter, the subjects were naïve to the purpose of the experiment. 

We collected written consent before the experiment. This study and the following 

ones were approved by the Internal Review Board (IRB) at Nanyang Technological 

University, Singapore, in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) for experiments involving human subjects. 

Apparatus. The visual stimuli were presented on a 17-inch Philips CRT monitor 

(refresh rate 85 Hz, spatial resolution 1024 × 768 pixels). The experiment was 

controlled by Matlab R2010a software (Mathworks, MA) with Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997), on an iMac computer (Apple Inc., CA). 

Subjects rested their heads on the chin-rest located at a distance of 75 cm in front of 

the monitor in a dimly lit room. Each pixel subtends 0.024° on the screen. 

 Stimuli. The face stimuli were chosen from Karolinska Directed Emotional 

Faces (Lundqvist, Anders Flykt, & Arne Öhman, 1998) database. The KDEF 



 

 44 

database contains 4900 high quality pictures of human facial expressions. It is one 

of the most popular face databases (used in more than 2000 published papers) among 

face and emotion researchers. The models of the KDEF database are all Caucasian 

amateur actors. The pictures of ten identities with happy, sad and neutral expressions 

from the same identity were selected. We used the Webmorph software (DeBruine & 

Tiddeman, 2017) to manipulate and morph these faces.  

Adapting Stimuli. The adapting stimuli were ten emotional faces from the KDEF 

face set. Happy and sad faces of the ten identities were chosen (Fig 2.1 A, B). The 

happy and sad faces were used because this pair of emotions has been widely used 

in facial expression adaptation studies (Fox & Barton, 2007; Hsu & Young, 2007), 

and has been believed to induce contrastive adaptation aftereffects (Xu et al., 2008). 

The adaptors were masked so that only the face region was visible during the 

experiment. All adapting stimuli were of a size of 2.40° × 3.02°. 

Test Stimuli. We averaged all of the 35 neutral female faces of different identities 
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from the KDEF face database to create a neutral face template. Similarly, we 

averaged 35 happy faces of these identities to generate the happy face template. We 

then morphed the neutral and happy templates to generate a sequence of test faces, 

varying in the proportion of happiness. The proportions of happiness in test faces are 

0, 10, 20, 30, 35, 40, 45, 50, 60, 70% (Fig 2.1 C). Only the face region of test stimuli 

is displayed in the experiment. The test stimuli have the same size as the adaptors. 

 

Figure 2.1. A. Adapting faces, ten happy faces from different identities used as adapting stimuli. 

B. Adapting faces, ten sad faces from different identities used as adapting stimuli. C. Test faces, ten 

morphed faces used as test stimuli. 

 

A

B

C



 

 46 

Procedure  

This experiment adapted subjects to the RSVP face sequences with different 

identities but the same emotion and measured the facial expression aftereffect. The 

adapting stimuli were either the happy or the sad RSVP face streams (examples in 

Figure 2.1A&B). In each trial, the test stimulus was one of the morphed faces (Figure 

2.1C). The face stimuli and the central fixation cross were horizontally aligned 

(center-to-center distance of 3.5°), presented randomly to the right or left of the 

central cross.  

There were three conditions in this experiment: happy RSVP adaptation, sad 

RSVP adaptation, and a baseline condition. We used a block design to run this 

experiment. In each block, each test face was repeated 10 times (random order). Each 

block lasted around ten minutes, and there was a ten-minute rest in between two 

consecutive sessions, to avoid carryover effects to the next block. For each subject, 

the order of the conditions was randomized. Each subject went through the whole 
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experiment within the same day. Data collection started after sufficient practice trials 

(10–20).  

Subjects pressed the space bar to initiate each block (Fig 2.2). They were asked 

to fixate at the fixational cross throughout the experiment. Each trial initiated with a 

1494 ms (127 frames) fixation period. After that, the adapting RSVP face sequence 

appeared for 3764 ms (320 frames). In the adapting streams, each image lasted 23.5 

ms (2 frames, temporal frequency at 42.5 Hz) on the screen and then was replaced 

by another picture at the same location with no interval. The 10 happy or sad faces 

each repeated 16 times in random order in the RSVP sequence. After a 506 ms (43 

frames) interstimulus interval, a testing stimulus appeared for 400 ms (34 frames), 

masked by two 47 ms (4 frames) random Gaussian noise masks. This short duration 

was chosen to maximize aftereffects (Wolfe, 1984). The mask was displayed to 

reduce the effect of any afterimage. In the baseline blocks, there was no adapting 

face. In each trial, only one test stimulus was presented for 400 ms (34 frames). After 
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that, subjects were reminded to report the emotion of the test face (pressing “H” for 

happy, “N” for not happy) by a 50 ms beep noise. After the response, the next trial 

began. No feedback was given. 

 

Figure 2.2. Trial Sequence of the happy RSVP adaptation condition. Subjects pressed the space 

bar to initiate one experimental block. After 1494 ms fixation, the RSVP stream of faces appeared for 

3764 ms. After a 506 ms interstimulus interval (ISI), one testing face was presented for 400 ms, 

masked by two 47 ms random noise masks. The location of the test faces was identical to that of the 

RSVP stream of faces. The subjects was reminded by a 50 ms beep noise to report the test face’s 

expression (pressing “H” for happy, “N” for not happy). Experimental details are in the Methods 

section. 

 

Fixation (1494 ms)

RSVP of faces (3764 ms)

Time

Interval (506 ms)

Mask (47 ms)

Test face (400 ms)

Mask (47 ms)

Respond
(happy or not)
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 Data analysis 

We plotted subjects’ responses for each condition separately. The x-axis 

represents the emotion values of the testing faces; and the y-axis represents the 

proportion of the ‘happy’ response. We then fit these responses with this sigmoidal 

function f(x) = 1/[1 + e-a(x-b) ]. Here, “a/4” is the slope of the psychometic curve. The 

“b” is the parameter corresponding to the point of subjective equality (PSE: point of 

subjective equality; the 50% point of the psychometric function). Adaptation 

aftereffects were calculated by the PSE shifts from baseline condition. All statistical 

analyses were conducted in JASP 0.8.6 (JASP team, 2018), Matlab R2017a 

(Mathworks, MA, USA) and SPSS Statistics 22 (IBM, NY, USA). 

2.1.2. Results 

The results from a naïve subject are illustrated in Figure 2.3A. The proportion 

of the “happy” responses was plotted as a function of the proportion of happiness of 



 

 50 

the testing stimuli. The psychometric curve (solid black line) represents the baseline 

condition without adaptation. After prolonged exposure to the happy RSVP face 

stream, the psychometric curve (blue, Hap RSVP) shifted to the right: the subject 

was less likely the perceive the testing faces as happy. Similarly, in the Sad RSVP 

condition, the psychometric curve (red, Sad RSVP) shifted to the left: the subject 

perceived happy expressions more frequently. These psychometric curves closely 

resembled other experiments in facial expression adaptation (Hsu & Young, 2007; 

Webster et al., 2004, 2011; Webster & MacLeod, 2011). The new finding here is that 

during the prolonged exposure to the RSVP face stream, which contains multiple 

faces from different identities but the same expression (happy or sad), the subjects 

are able to extract the emotion from face stream involuntarily. 
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Figure 2.3. The effect of RSVP face stream adaptation (experiment 1.1). A, results from a naive 

subject PR. Baseline, the No adaptation baseline (solid black line). Hap RSVP, the happy RSVP face 

stream condition (dashed blue line). Sad RSVP, the sad RSVP Face stream condition (dashed red line). 

For each condition, we plotted the happy responses as a function of the fraction of “happiness” in the 

test face. B, Summary of data from all subjects. The averaged PSE shifts from baseline condition were 

illustrated (error bars indicate SEMs). The p-value shown above each bar in the figure were calculated 

by the paired sample t-test(two-tailed) between the adaptation condition and the baseline condition. 

To quantify the facial expression aftereffects, we measured the PSE (the 

proportion of happiness corresponding to 50% happy responses) shifts away from 

baseline of all of the subjects (Figure 3B). The Shapiro-Wilk tests indicate that all 

data follow normal distributions, ps > 0.56. A positive PSE shift represents the 
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psychometric curve (of the condition) is to the right of the “baseline” psychometric 

curve (less “happy” response). A negative value represents the psychometric curve 

(of the condition) is to the left of the “baseline” curve (less “happy” response). Both 

conditions generated significant aftereffects: significant positive aftereffect for 

happy RSVP adaptation condition (M = 15.579%, SEM = 0.0251; t(9) = 6.219 , p 

< .01), and significant negative aftereffect for sad RSVP adaptation condition (M = -

14.118%, SEM = 0.0249; t(9) = -5.669, p < .01). 

2.1.3. Brief Discussion 

The results here suggested that prolonged exposure to rapidly changing 

sequences (RSVP) of faces with the same emotion (happy or sad) generated 

significant facial expression aftereffects. This is interesting as in each RSVP stream 

during adaptation there were 160 faces from 10 different identities with the same 

emotion, with each face presented for only 23.5ms. Although the subjects were not 
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required to do anything during the adaptation period, they were still able to extract 

the happy or sad emotional information in the RSVP stream during passive 

adaptation. This adaptation to the emotion in the RSVP stream then subsequently 

biased their judgment of the test faces, producing a facial expression aftereffect. It 

thus raises the question of how did this extraction of emotional information occur 

during RSVP adaptation?  

Haberman and colleagues (2009) reported that participants perceived the 

sequential presentation of faces by averaging the faces in streams by ensemble 

statistics. Thus, the ensemble statistics may happen during adaptation to the RSVP 

stream in the current study. This begs the question as to whether adaptation to the 

faces in the RSVP stream would generate an equivalent facial expression aftereffect 

to an average face created from all of the RSVP faces.  
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2.2. Experiment 1.2: Ensemble statistics are involuntarily 

utilized during the RSVP of emotional faces 

To test whether ensemble statistics are utilized during adaptation to an RSVP 

face stream, we adapted new subjects to the face average of the RSVP face stream 

and examined whether it generated similar facial expression aftereffects as adapting 

to the RSVP face stream. If they generate similar facial expression aftereffects, it 

would suggest that ensemble statistical averaging may occur during the adaptation 

stage of the RSVP face stream. If not, then this might suggest that other processes 

occur during adaptation, which remains yet to be further explored.  

2.2.1. Methods 

 Subjects. Ten subjects (6 females, total mean age 22.1 years), with normal 

or corrected-to-normal vision, participated in experiment 2. Apart from the subject 

(HY) who was the experimenter, the other nine new subjects were naïve to the 
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purpose of the experiment and different from the subjects in Experiment 1.1. All 

subjects gave written consent before testing.  

 Stimuli. All the visual stimuli were the same as in Experiment 1.1, except 

for two new face stimuli for adaptation. Using the Webmorph (DeBruine & 

Tiddeman, 2017), we created the average happy face from the 10 happy faces from 

different identities in the RSVP face stream; and similarly, we created the average 

sad face from the 10 sad faces from different identities in the RSVP face stream 

(Figure 2.4). These faces, with the same size as the testing stimuli, were used as the 

adaptors in the Experiment.  
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Figure 2.4.  The averaged faces used as adaptors. A. The averaged face based on all ten happy 

faces. B. The averaged face based on all ten sad faces. 

 Apparatus, Procedure, and Data Analysis 

The apparatus and data analyses were adapted from Experiment 1.1. The 

general procedure and the trial sequence were similar to Experiment 1.1, except for 

two new conditions. In this experiment, we added two additional adaption conditions: 

happy static adaption and sad static adaption. The happy static adaptation used the 

above generated happy averaged face as the adaptor (Fig 2.4A), and the sad static 

adaptation used the sad averaged face as the adaptor (Fig 2.4B). The static face 

A

B

Averaging

Averaging
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adaptors were displayed for 3.82s on the screen in each trial, with the same duration 

as the entire RSVP sequence. Therefore, there were five conditions in total: happy 

static adaptation, sad static adaptation, happy RSVP adaptation, sad RVSP adaptation, 

and baseline (no adaptation) conditions. The subjects went through all five conditions 

in randomized blocks. Within each block, the test faces were randomly selected from 

the test face set (Figure 1c) for each participant. 

Each test face was repeated 10 times in the experiment; however, each test 

stimulus was presented 20 times in Experiment 1.2 (in two different sections). 

Subjects finished the experiments on two different days within three consecutive 

days. On the first day, the subjects were tested on the 5 conditions in randomized 

blocks with 10 repetitions of each test stimuli; and the same occurs on the second 

day of the test. The testing orders were counterbalanced.  
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2.2.2. Results 

We illustrated the results from a naive subject XY in Figure 2.5A. After 

exposure to the averaged happy face, the subjects were less likely to perceived 

happiness in the test faces. The psychometric curve (solid blue, Hap Static) shifted 

to the right, as it was for adapting to the happy RSVP face stream (dashed blue, Hap 

RSVP). Similarly, after adapting to the sad averaged face, the subjects were more 

likely to perceive happiness in the test faces. The psychometric curve (solid red, Sad 

Static) shifted to the left, as the subjects were adapting to the sad RSVP face stream 

(dashed red, Sad RSVP). This is interesting as it provides the first direct evidence 

that an average face generates similar adaptation aftereffects as its RSVP face stream. 
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Figure 2.5. The effect of RSVP face stream adaptation and its statistically average face adaptation 

(experiment 1.2). A, a naive subject’s psychometric functions under the following conditions: 

Baseline, No adaptation baseline (solid black line); Hap RSVP, adaptation to the happy RSVP face 

stream (dashed blue line); Sad RSVP, adaptation to the sad RSVP Face stream (dashed red line); Hap 

Static, adaptation to the static average happy face (solid blue line); Sad Static, adaptation to the static 

average sad face (solid red line). For each condition, the “happy” response was plotted as a function 

of the proportion of “happiness” of the test face. B, Summary of data from all subjects. The averaged 

PSE shifts from baseline condition were illustrated (error bars indicate SEMs). The p-value shown above 

each bar in the figure were calculated by the paired sample t-test(two-tailed) between the adaptation 

condition and the baseline condition. 

The summary of PSE shifts from all ten subjects is shown in Figure 2.5B. The 

Shapiro-Wilk tests indicate that all data follow normal distributions, ps > 0.27. 

Compared to the baseline, all the adaptation conditions generated significant facial 
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expression aftereffects: happy RSVP adaptation condition (M = 12.894%, SEM 

= .0196; t(9) = 6.586, p < .01); sad RSVP adaptation condition (M = -11.455%, SEM 

= .0147; t(9) = -7.744, p < .01); happy static adaptation condition (M = 12.722%, 

SEM = .0215; t(9) = 5.929, p < .01); and sad static adaptation condition (M = -

13.365%, SEM = .0173; t(9) = -7.743, p < .01). Further comparisons of the RSVP 

face stream and average static face adaptation conditions revealed that there is no 

statistical difference between them: happy RSVP vs. happy static adaptation 

conditions (t(9) = -0.103,  p = .920); and sad RSVP vs. sad static adaptation 

conditions (t(9) = -1.388,  p = .199). Moreover, the RSVP adaptation generated 

similar magnitudes of aftereffects in Experiment 1 and 2: happy (t(18) = 0.844, p 

= .409) and sad (t(18) = -0.920,  p = .370) RSVP adaptation. This thus suggests the 

findings from the experiments are robust and replicable.  

Finally, we studied the relationships between the aftereffects caused by the 

RSVP face stream and its averaged face (Fig 2.6). We found significant correlations 
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between the happy RSVP face stream and its average happy static face adaptation (r 

= .67, p = .033), and between the sad RSVP face stream and its average sad static 

face adaptation (r = .64, p = .046). The similar trend of correlation between the two 

emotions suggests the existence of the same mechanism in the static and RSVP face 

stream adaptation.  

Figure 2.6. The magnitudes of adaptation evoked by static faces as a function of the magnitudes 

of adaptation evoked by RSVP faces. Ten blue dots represent (upper right corner) ten subjects’ 

performances on two happy adaptation conditions, and ten red dots (lower left corner) represent ten 

subjects’ performances on two sad adaptation conditions. For each emotion, the subjects’ adaptation 

magnitudes of static and RSVP conditions were significantly correlated. 
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2.2.3. Brief Discussion 

We found that adaption to the ensemble statistical average of the RSVP face 

stream generated similar facial expression aftereffects as adaption to the RSVP face 

stream. The magnitudes of the two aftereffects were significantly correlated. This 

finding supported our hypothesis and indicated that the subjects were automatically 

averaging the face stream in ensemble statistics during adaptation, even in a passively 

viewing condition. Studies on spatial visual integration, presenting a set of faces 

simultaneously, have demonstrated that the visual system interprets this set of faces 

by automatically averaging the spatially distributed faces together (Haberman et al., 

2015). Our current experiment and previous studies support the view that the subjects 

perceived the average emotion of the face streams holistically in an ensemble 

statistical way (Haberman & Whitney, 2012). However, we provide the first direct 

evidence in adaptation that if we are exposed to a heterogeneous sequence of 
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information (different identities), we are able to integrate the information and extract 

the common information (e.g., happy emotion), and the information will 

subsequently bias our judgement in the relevant tasks (e.g., emotion judgment). This 

process during adaptation is automatic and implicit, as we did not instruct the 

subjects to integrate and extract such information during adaptation.  

However, all the face images in the RSVP stream are of the same emotion. 

Consequently, the average face and its individual faces are of the same emotion as 

well. It thus raises this following question: does adaptation rely on the emotion of 

individual faces or the average face of the RSVP stream? To answer this question, 

following experiments manipulated the emotions in the face sequence. Experiment 

1.3 introduced variability to the adapting face sequence emotion, and Experiment 1.4 

introduced a face with the opposite emotion into the RSVP face sequence.  

2.3. Experiment 1.3: The temporal ensemble statistics are 
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determined by the mean, but not the variance 

To manipulate the variability of the emotions of the adapting face sequence, we 

generated the RSVPs from faces showing various degrees of happiness, from 0.6 to 

1.0 in the proportion of happiness, but maintaining the average RSVPs emotion as 

0.8. There are three types of emotion variance during adaptation: varying from 0.6 

to 1.0 randomly; 0.6 or 1.0 binomially; and all faces with 0.8 proportion of happiness. 

In addition, we also varied the temporal frequency of the RSVP stream, with high 

(42.5 Hz) and low (5.3 Hz) temporal frequency. Therefore, there are 6 additional 

adaptation conditions in this experiment. All of them have the same average face 

from the RSVP sequence but with different variations in emotion or temporal 

frequencies.  

If ensemble coding occurs during adaptation, we would expect the same facial 

expression aftereffect (FEA) for all conditions, as they have the same average face 
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during adaptation. However, if variation instead of ensemble coding counts in the 

RSVP adaptation, we would observe different FEA due to the variability among 

different conditions.   

2.3.1. Methods 

 Subjects. Ten subjects (3 females, total mean age 22.4 years), with normal 

or corrected-to-normal vision, participated in the experiment. One of the subjects 

(HY) was the experimenter; the other subjects were naïve to the purpose of the 

experiment and different from the subjects in the previous two experiments. All 

subjects gave written consent before testing.  

Stimuli. All the test stimuli and the raw adapting stimuli were the same as in 

Experiment 1 & 2. For the additional adapting faces, we morphed between the happy 

and neutral faces of each of the ten identities and generated 10 sets of faces, via the 

Psychomorph software online (DeBruine & Tiddeman, 2017). In each face set, there 
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are 11 faces, with various proportions of happiness, specifically at 60, 64, 68, 72, 76, 

80, 84, 88, 92, 98 or 100% (Fig 2.7A). Therefore, there are 110 faces (10 sets x 11 

faces) in total. These faces were randomly selected in the RSVP face sequence based 

on the experiment condition. In addition, we morphed all of these 110 faces into one 

average face with 80% happiness. We then used this 80% happiness face as the 

adaptor in the static adaptation condition.  

 

Figure 2.7. The adaptors. A, Examples of emotional faces used as adaptors. These faces were created by 

averaging the neutral and the happy faces of one facial identity. B, Schematic demonstration of the adapting faces 

selected on a hypothetical face space. The magenta bar indicates the faces chosen for the 80% condition, the blue 

bars indicate the 60or100% condition, and the green square indicates the 60to100% condition. 
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Procedure, and data analysis. 

The general trial sequence and data analysis were adapted from the previous 

experiment, except for the new conditions: 6 adaptation conditions, static average 

face adaptation, and baseline. These 6 RSVP adaptation conditions vary in two 

dimensions: (1) emotion variance, and (2) temporal frequency. There were two 

temporal frequencies: high temporal frequency, with each face displayed on the 

screen for 23.5ms (42.5Hz); and low temporal frequency, with each face displayed 

for 188ms (5.3Hz). There were three types of emotion variances (see Fig 2.7B): (1) 

60to100% condition, in which the adapting RSVP stream contains all of the adapting 

faces except for the 80% face, presented in random order; (2) 60or100% condition, 

in which the adapting face stream contains 20 individual faces showing either 60% 

or 100% happiness; and (3) 80% condition, in which the adapting face stream 

contains 10 individual faces each showing 80% happiness.  

In each condition, each test face was randomly presented 20 times. To minimize 
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the fatigue effect, we halved every condition into two identical blocks (similar to 

Experiment 2). Within each block, the orders of conditions were randomly selected.  

2.3.2. Results 

We plotted a naïve subject HN’s results in Figure 2.8a. After adapting to all 

conditions (the 7 colored lines), the subject was less likely to judge the test face as 

happy, which was quantified by the direction of the psychometric curves shift away 

from that of the “baseline” condition (solid black line).  
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Figure 2.8. The effects of various adaptation conditions. A. The results from one naïve subject HN. Baseline 

represents baseline condition without adaptation (black line). 80 static averaged represents the static adaptation 

condition with the averaged faces (dashed magenta line). The other six lines represent the RSVP conditions. The 

full lines represent the high temporal frequency condition, while the dashed lines represent the low temporal 

frequency condition. Magenta, blue, and green lines represent RSVP streams consisting of faces showing 80% 

happiness, either 60 or 100% happiness, and randomly from 60 to 100% happiness respectively. For example, 

the full magenta line (80 H) indicates the condition with faces streams at a high temporal frequency, comprising 

with 80% of happiness. For each condition, we plotted the happy response as a function of the proportion of 

happiness within each testing face. B. Data summary. The white bar (magenta line) indicates the 80 static 

averaged condition. The full-color bars indicate high temporal frequency conditions (42.5Hz), and the hatched 

bars indicate the low temporal frequency conditions (5.3Hz). Magenta, blue, and green bars represent RSVP 
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streams consisting of faces showing 80% happiness, either 60 or 100% happiness, and randomly from 60 to 100% 

happiness respectively. For example, the full magenta bar with caption 80 High RSVP represents the 80% 

condition at the high temporal frequency. The averaged PSE shifts from baseline condition was illustrated (error 

bars indicate SEMs). The p-values shown above each bar in the figure were calculated by the t-tests and Wilcoxon 

rank sum test between the adaptation conditions and the baseline condition. 

The adaptation aftereffects were calculated by the PSE shifts between the 

adaptation condition and the baseline. The summary of PSE shifts from all 10 

subjects is shown in Figure 8B. The Shapiro-Wilk tests indicate that all data, but the 

‘60to100 High RSVP’ condition (p = .006), follow normal distribution, ps > 0.20. To 

investigate the effects of emotion variance and temporal frequency on RSVP 

adaptation, we performed a two-way 2 (temporal frequency) by 3 (emotion variance) 

Bayesian Repeated Measures ANOVA (Wagenmakers et al., 2017) on the facial 

expression aftereffects (PSE shifts from the baseline) on all six RSVP conditions. 

The results supported the null hypothesis over the main effect of temporal frequency 

(BF01 = 3.00; suggesting the null hypothesis is 3 times more likely to be true), 

emotion variance (BF01 = 4.7), and the interaction between the two factors (BF01 = 
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13.99). These suggest that neither emotion variance nor temporal frequency of the 

RSVP sequence plays an important role in RSVP sequence adaptation. Then how do 

these 6 adaptation conditions compare to the static average face adaptation? 

A Friedman test showed that there was no significant difference among any of 

7 the adaptation conditions (χ2(2) = 2.5, p = .87). Moreover, all seven adaptation 

conditions showed significant adaptation aftereffects (all M > 8.38%, all t > 3.710, 

all p < .005; for the ‘60to100 High RSVP’ condition, Wilcoxon rank sum: Z= 55, p 

= .002). Further comparisons between the static adaptation condition with each of 

the RSVP conditions revealed no significant difference (all t < .889, all p > .397; for 

the ‘60to100 High RSVP’ condition, Wilcoxon signed-rank Z= 34, p = .56). These 

results thus suggest that adapting to the RSVPs of faces with variable emotions 

generated equivalent aftereffect as adapting to the averaged face of the RSVP 

sequence. 
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2.3.3. Brief Discussion 

We found that varying the temporal frequency (high vs. low) or varying the 

strength of emotion in the RSVP sequence with the same average face does not 

change the facial expression aftereffects (FEAs) accordingly. They all generated the 

same adaptation aftereffects as their face average. Therefore, regardless of the 

emotion variance and temporal frequency changes in the RSVP sequence, as long as 

the face sequence has the same average face, it will still generate the same magnitude 

of FEAs. 

Unlike Experiment 1.2 in which all of the adapting faces conveyed emotions at 

their maximum intensity, here we presented faces with different proportions of 

happiness. In the 60or100% and 60to100% conditions, the adaptation aftereffects 

were not reduced by the presence of the faces with 60% happiness in the adapting 

face sequence; nor increased by the presence of 100% happiness faces in the face 
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sequence. Instead, they both generated similar facial expression aftereffects as the 

mean emotion (80%) of the face sequence. Moreover, in these two conditions, the 

mean emotion was not directly accessible; therefore, the substantial adaptation 

aftereffects could only be attributed to the ensemble statistics. Taken together, this 

experiment suggests that the strength of the aftereffects of the RSVP stream 

adaptation was not determined by the variability of the face stream but were 

determined by the mean emotion of the stream. 

2.4. Experiment 1.4: Emotion, but not identity, determines the 

adaptation aftereffects 

All of the above experiments tested the emotion of average face identity. To 

independently manipulate the average emotion and identity in the stream, we 

matched the identity of the test face with one identity from the adapting RSVP face 

stream. If individual faces in the face stream play an important role in adaptation, 
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since the identity of the test face matched with one particular identity face in the face 

stream, we would expect to see the adaptation aftereffect influenced by the particular 

identity. On the other hand, if the pooled average of the face stream plays a more 

important role, it thus confirms ensemble representation during adaptation.   

To single out a particular identity’s faces, we manipulated its emotion to be the 

opposite of the other faces in the face stream. For example, if the face stream contains 

9 happy faces and 1 sad face, the test faces and the sad face have the same identity. 

The average of the face stream is happy. If the subjects’ judgment of test faces is 

influenced by the emotion of the same identity (e.g., sad) in the adapting face stream, 

they will tend to judge the test faces as happier. If the subjects’ perception of test 

faces is determined by the emotion of the averaged face (e.g., happy) during 

adaptation, they will make more sad judgments. Therefore, the direction of the facial 

expression aftereffect will tell us whether adaptation is based on the emotion of a 

single face with the matched identity or on the averaged emotion of the entire face 
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stream. 

2.4.1. Methods 

Subjects 

Ten subjects (2 males, mean age 21.9 years), with normal or corrected-to-

normal vision, participated in this experiment. One of the subjects was the 

experimenter (HY). The other subjects were naïve to the purpose of the experiment 

and different from the subjects in previous experiments. All subjects gave written 

consent before testing.  

Stimuli, Apparatus, Procedure, and Data Analysis 

The happy and sad faces from Experiment 1.2 were used in this experiment. We 

generated three new RSVP streams for the new adapting stimuli: 90% happy, 50% 

happy, and 10% happy in the face stream. In the 90% happy condition, 9 happy faces 

and one sad face was selected (see Fig 2.9A). Each face was randomly presented 16 
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times in the stream (at 42.5 Hz). In the 50% happy condition, we randomly selected 

5 happy faces and 5 sad faces to create the stream. In the 10% happy condition, one 

happy face and 9 sad faces were used. Notably, the identity F07 always showed the 

opposite emotion to the majority of the stream in 90% and 10% condition, and it 

appeared as happy and sad randomly in the 50% condition. To minimize the low-

level adaptation, the adaptors were at 133% of the size of test stimuli (Burton et al., 

2015; Zhao & Chubb, 2001).  

The test stimuli were generated from one specific identity (F07), which has been 

used in the previous RSVP streams. We morphed between the happy and neutral 

emotional faces of this identity and generated ten sets of faces, by the Psychomorph 

software online (DeBruine & Tiddeman, 2017). The proportions of happiness of the 

test stimuli were at 0, 10, 20, 30, 40, 50, 60% (Fig 2.9B). The size of the test stimuli 

was 2.40° × 3.02°, the same as those in previous studies. 
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Figure 2.9. Stimuli used in Experiment 4. A, The adapting stimuli used for 90% happy condition. This 

stream contained 10 faces (each repeated 16 times in random orders): 9 happy faces, and 1 sad face (in the red 

square). The sad face was from the same identity (F07) as the test stimuli. B, Testing stimuli. These were all 

generated from one chosen identity (F07). 

The apparatus, general trial structure, and data analysis were adapted from 

Experiment 1.3. There are 4 conditions in total, 3 RSVP adaptation conditions and 

baseline. Each test stimuli was tested 20 times randomly in two separate blocks. 

Therefore, the four conditions were tested in 8 blocks with a ten-minute rest in 

between.  
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2.4.2. Results 

A naïve subject HD’s results are illustrated in Figure 2.10A. The blue dashed 

line represents adaptation to the 90% happy face stream and shifts the psychometric 

curve to the right of the baseline condition (black solid line). This indicates more sad 

judgments after adapting to the 90% happy face streams, despite the fact that the 

testing face is of the same identity as the 10% sad face in the face stream. The red 

dotted line represents adaptation to the 10% happy face stream (with 90% sad faces 

in the face stream) and shifts the psychometric curve to the left of the baseline 

condition. This indicates more happy judgments after adapting to the 10% happy face 

stream. The magenta dash-dotted line represents adaption to the 50% happy face 

stream; the psychometric curve did not shift much from the baseline condition. It 

thus indicates little judgment bias in adapting to 50% happy and 50% sad face 

streams.  
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Figure 2.10. The effects of RSVP face streams with different proportions of happy faces. A, The results 

from a naïve subject HD. Baseline represents the baseline condition without adaptation (black line); 90% 

represents adapting to RSVP streams with 90% happy faces (blue line); 50% represents adapting to RSVP streams 

with 50% happy full faces (magenta line); 10% represents adapting to RSVP streams with 10% happy full faces 

(red line). For each condition, the happy response was plotted as a function of the proportion of happiness of the 

test face. B, Data summary from all ten subjects. The averaged PSE shift from baseline condition was illustrated 

(error bars indicate SEMs). The p-value shown above each bar in the figure was calculated by the paired sample 

t-test(two-tailed) between the adaptation condition and the baseline condition. Blue, magenta, and red bars 

represent the mean adaptation aftereffects under 90%, 50% and 10% of happy faces conditions correspondingly. 

The summary of all 10 subjects’ results is presented in Figure 2.10B. The 

Shapiro-Wilk tests indicate that all data follow normal distributions, ps > 0.30. A one 

way ANOVA found that different RSVP streams generated different adaptation 
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aftereffects (F(2,18) = 21.083, p <0.001, ηp2 = .701), compared to baseline. 

Specifically, adapting to a 90% happy face stream generated significant aftereffects 

(M = 0.0559, t(9) = 4.831, p = .001); adapting to the 10% happy face stream also 

generated significant aftereffects (M = -0.0754, t(9) = -3.003, p = .015). The 

aftereffects of the two are in the opposite directions. Adapting to the RSVP streams 

with 50% happy faces and 50% sad faces did not generate significant aftereffects (M 

= -1.92%, t(9) = -1.878, p = .093). This suggests that adaptation aftereffects are 

determined by the mean emotions of the RSVP streams of emotional faces, instead 

of the individual faces that are of the same identity as the test faces. 

2.4.3. Brief Discussion 

This experiment showed that adapting to a face stream with a majority (e.g., 

90%) of happy faces still produces significant facial expression aftereffects in a 

similar way as adapting to happy faces. Matching the identity of the test faces to the 
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minority (e.g., 10%) sad faces in the face stream did not affect the aftereffects in the 

same way as adapting to the sad faces. This is because the representation of the faces 

is defined by the overall emotion of the stream, but not the facial identity. Adapting 

to the 50% happy and 50% sad face stream did not produce any significant facial 

expression aftereffects, as the average emotion of the face stream is neutral. These 

results offer further evidence to support our hypothesis that ensemble coding occurs 

during adaptation to an RSVP face stream. 

When we matched the identity of the test stimuli to one of the identities in the 

RSVP stream, but presented it with the opposite emotion to the majority of the other 

faces in that stream, the adaptation aftereffect complied with the majority emotion 

instead of that of the same identity. During the RSVP face stream, the subjects were 

able to extract the mean emotion of the face stream, instead of focusing on the 

emotion of a particular identity which was the same identity as the test faces. It thus 

suggests that a substantial ensemble representation of the gist emotion occurs when 
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passively viewing a stream of emotional faces. 

2.5. Discussion 

This study investigated the effect of emotion adaptation to faces presented in 

RSVP streams. Experiment 1.1 showed that adapting to a set of faces with different 

identities but the same emotion (happy or sad) presented temporally affected 

judgments of emotion in subsequently presented faces. We then generated average 

faces from the adapting face sets. Experiment 1.2 demonstrated that the adaptation 

aftereffects generated by the RSVP face streams are equivalent to, and correlated 

with, the aftereffects generated by their average static face adaptation counterparts. 

Experiment 1.3 found that regardless of the variations in temporal frequency or 

emotion, the RSVP streams induced the same magnitude of aftereffect as the static 

averaged face of the streams. Experiment 1.4 further revealed that when presenting 

both happy and sad faces in the RSVP stream, the adaptation aftereffect is not 
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dependent on the identity of the test faces, but dependent on the mean emotion in the 

stream: when the faces are half happy and half sad, there are no adaptation 

aftereffects; when 90% is happy, and 10% is sad, aftereffects are generated in the 

same direction as adapting to a happy face; and vice versa. These results together 

suggest that we are able to passively average the RSVP faces’ emotions during 

adaptation. It further indicates that we can involuntary process the information into 

the ensemble representation even when we are not instructed to do so. The findings 

also delineated the possible mechanism for the formation of our facial expression 

norm. 

The results in all experiments suggest that ensemble statistics are extracted 

automatically during adaptation. When the subjects were adapted to the RSVP of 

faces, the subsequent aftereffect was influenced by faces presented in the RSVP 

stream; the similar aftereffects from adapting to the RSVP face sequence and its static 

average face suggests that the subjects involuntarily integrate all the facial 
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information together to create an ensemble representation. Moreover, strong 

correlations between the aftereffects of the RSVP of faces and the static faces’ 

observed in Experiment 1.2, as well as the similar adaptation aftereffects between 

RSVP streams and the static averaged faces in Experiment 1.3, show that there are 

similar mechanisms between the processing of RSVP of faces and the static faces, 

i.e., the magnitude of RSVP face stream adaptation could be predicted from the 

magnitude of the static face adaptation (Haberman et al., 2015); thus further 

supporting the notion that the visual system interprets the RSVP of faces as the 

statistically averaged static face (Haberman et al., 2009).  

All four experiments here suggest that adapting to a stream of faces of different 

identities generates a substantial and significant facial expression aftereffect, and this 

aftereffect is determined by the averaged emotion of the face stream. Previous studies 

have shown that after adapting to one identity posing a certain emotion, participants 

will then produce robust emotion adaptation aftereffects when judging emotion in 
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subsequently presented faces of different identities; in other words, there is identity-

independent emotion processing mechanism (Campbell & Burke, 2009; Fox & 

Barton, 2007). Noticeably, the test faces in the first three experiments were the 

average face from the adapting face stream. Therefore, the adapting and testing faces 

were from different identities. Moreover, the manipulation in Experiment 1.4 

confirmed that it is the emotion, instead of the identity of the face stream, that affects 

facial expression aftereffects. This independence of facial identity and emotion is 

supported by models of face perception that posit the existence of distinct cortical 

regions involved in the separate processing of facial identity and emotion (Haxby & 

Gobbini, 2011; Haxby et al., 2000; Haxby, Hoffman, & Gobbini, 2002). Therefore, 

our current findings in adaptation aftereffects of RSVP are in line with these previous 

studies indicating identity-independent facial emotion processing.  

Recent studies reported that four-year-old children are able to use certain 

ensemble processing (Sweeny, Wurnitsch, Gopnik, & Whitney, 2014), and could use 
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norm-based coding for faces (Jeffery, Read, & Rhodes, 2013). Our study, together 

with these studies (see also, Rhodes, Neumann, Ewing, & Palermo, 2015), highlight 

a potential link between ensemble and norm-based face processing. This study 

delineated the formation of the facial expression norm during adaptation: our vision 

system implicitly integrates the multiple faces we encounter over time to the average 

face of the face stream, an ensemble representation updated norm of the facial 

expression space shaped by recent visual experience. Therefore, our findings, for the 

first time, offer new insight into the updating procedure of the facial expression norm 

and automatic face processing. 
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Chapter III: Study 2: Distinctive Mechanisms for 

Temporal and Spatial Ensemble Coding of Faces 

When we are presented with an array of faces in a scene, our brains involuntarily 

extract the ensemble statistics of the information that they convey (Alvarez, 2011; 

Haberman & Whitney, 2007, 2012; Whitney & Leib, 2017). Despite researchers 

widely describing ensemble statistics as extracting the gist of a scene, it is still far 

from clear what this gist represents (Whitney & Leib, 2017). For example, does 

ensemble coding extract a general representation, whereby the high-level perception 

of faces (gist) is summarized? Or does the brain actually extract the low-level visual 

properties of each face first and then computationally average the facial deviations 

together?  

Facial characteristics displayed in previous ensemble coding research have 

failed to produce a consensus as to which hypothesis is correct. For example, facial 
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emotion predicts the same perceptual outcome for two competing hypotheses (Figure 

1.1A). Therefore, using emotional facial expressions is not ideal to elucidate the 

possible computational mechanisms of ensemble coding. Here, we take advantage of 

the fact that a computational average face created from the low-level properties of a 

group of faces is more attractive than the gist of the underlying faces in the group 

(DeBruine et al., 2007; Perrett et al., 1994). By requiring participants to perceive 

facial attractiveness in a temporal ensemble fashion, we can clearly test for the first 

time whether the ‘computational average’ or the ‘high-level average’ hypotheses of 

ensemble coding is correct. In this study, we started by investigating the temporal 

ensemble coding of facial attractiveness. In a previous study, it has been shown that 

the visual system could involuntarily perceive the facial expressions via ensemble 

statistics (Ying & Xu, 2017). We adapted participants to a group of faces presented 

one at a time in RSVP (Potter, 1976). After prolonged exposure to a face for a few 

seconds the perception of its characteristics is diminished in subsequently viewed 



 

 89 

faces (Rhodes & Jeffery, 2006; Webster, Kaping, Mizokami, & Duhamel, 2004; 

Webster & MacLeod, 2011; Ying & Xu, 2017); so, adapting to an attractive face will 

lead to the subsequently viewed face as being less attractive (Pegors, Mattar, Bryan, 

& Epstein, 2015; Rhodes et al., 2003; Clifford, & Nakayama, 2003). 

3.1. Experiment 2.1: Temporal ensemble statistics represent the 

computational average 

The first experiment compared the adaptation aftereffects produced by the 

group of faces to those elicited by their computer-generated averaged face (the 

computational average): if they are indistinguishable from one another, then it would 

suggest that the brain is not extracting the gist, as many in the field believe, but 

instead computationally averaging all of the low-level properties of the faces together.  
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3.1.1. Methods 

Participants 

Twenty-nine participants (14 Females; Mean Age: 22.03) with normal or 

corrected-to-normal vision were recruited. In the beginning, we recruited 30 

participants; however, one dropped out during the experiment. Thus, 29 participants 

finished this experiment. We selected this sample size based on previous research in 

facial attractiveness adaptation (n = 30 in Pegors et al., 2015). Written informed 

consent was provided by participants in all 3 experiments beforehand.  

Procedure 

Thirty-five Chinese female faces were chosen from the N-FEE database (Yap, 

Chan & Christopoulos, 2016). The N-FEE database contains high quality portrait 

pictures of Singaporean models, posting with various facial expressions. Due to 

copyright restrictions, we are not allowed to show these images in this thesis, so we 
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have used faces from the KDEF dataset (Lundqvist et al., 1998) for demonstration. 

In this study, we only selected portrait pictures from 35 female Chinese Singaporeans 

with neutral expressions. All face images were grey scaled and masked so that only 

the facial region of each face was visible to the subjects. The luminance of the face 

images was equalized via SHINE toolbox (Willenbockel et al., 2010). Every 

participant rated the attractiveness of the 35 faces at least 2 weeks before the main 

experiment (adapted from Rhodes & Jeffery, 2006; 1 for most unattractive and 7 for 

most attractive): the adapting stimuli were selected from the four faces rated as most 

attractive and four that were least attractive. The test faces included one of the 

attractive and unattractive faces from the originally rated 35 faces (not the adaptors), 

and a further 5 faces that were produced by morphing these two faces in equal 

incremental steps between them (thus giving us 7 attractiveness units ranging from 

the original unattractive face through to the original attractive face) via Webmorph 

(DeBruine & Tiddeman, 2017). To minimize low-level adaptation as per prior 
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research (Rhodes et al., 2003; Ying & Xu, 2017; Zhao & Chubb, 2001), the adapting 

stimuli were displayed at 3.20° × 4.03°, which is  roughly 133% of the size of the 

test stimuli. The test stimuli were 2.40° × 3.02° in size, which is roughly 75% of the 

adapting stimuli. Similar to Haberman, Lee, and Whitney (2015), we are aware that 

the ‘attractiveness unit’ is arbitrary, and we do not mean that the (perceived) 

attractiveness differences between the testing faces are linear. The ‘attractiveness unit’ 

merely represents the physical difference between these faces. 

Subjects completed 5 blocks: baseline, RSVP unattractive, RSVP attractive, 

computational average unattractive and computational average attractive. In the 

baseline condition, participants simply rated the test faces, which were presented for 

400 ms, as attractive or unattractive. The temporal frequency of the RSVP sequence 

was 42.5 Hz, with each face displayed for 23.5 ms per face frame. Each test face was 

presented 10 times (a total of 70 trials). The same test face sampling occurred in the 

attractive RSVP block, but this time participants viewed an RSVP stream of the 4 
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attractive adapting faces prior to viewing each test face (Figure 3. displays the trial 

sequence). This method was repeated for the unattractive RSVP block, except the 

RSVP stream comprised the unattractive adaptors. The same process occurred for the 

attractive computational average block. Except during adaptation, participants were 

simply presented with a single face that was created by morphing all of the 4 

attractive adaptors’ low-level visual properties together. The same was true for the 

unattractive computational average block, except the unattractive adaptors were used 

to create its adapting face. The blocks were presented in randomized orders. 

Participants were given a break between blocks that were roughly equal in duration 

to an experimental block to disperse any carryover effects. Subjects practiced this 

and future experiments for 5-10 trials before data collection.  
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Figure 3.1. Example trial sequence from the RSVP adaptation condition (the demonstrated faces are 

AF01NES and AF34NES from the KDEF database). Participants fixated on the cross throughout the experiment. 

After 1.494 s, the RSVP of the faces appeared onscreen for 3.764 s. After a short interval (0.506 s), the test face 

appeared for 0.4 s. Then a beep sound prompted subjects to judge the target face by pressing the ‘A’ button as 

attractive, or the ‘S’ button as unattractive.  

Analysis 

Participants’ responses were sorted into proportions of ‘attractive’ responses to 

each test stimulus per adaptation condition. A psychometric curve was created with 

the x-axis indexing the test stimuli and the y-axis plotting the fractions of ‘attractive’ 

responses. Calculation of PSE was the same as the previous study. We quantified the 

adaptation aftereffects by comparing the difference between the PSEs of the adapting 
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conditions and that of the baseline condition. Any subsidiary pairwise comparisons 

after the analysis of variance (ANOVA) were Bonferroni corrected. To validate that 

the non-significant results truly supported the null hypothesis, ‘there was no effect’, 

we used the Bayes Factor to further analyze the data (Dienes, 2014; Rouder, 

Speckman, Sun, Morey, & Iverson, 2009; Morey, & Iverson, 2009). In brief, the 

Bayes Factor utilizes the observed evidence to compute the ratio between the 

likelihoods of the hypotheses. For instance, ‘BF01 = 3’ suggests that the observed 

result is 3 times more likely to fit the “null-hypothesis” compared to the “alternative 

hypothesis”. Generally, BF01 > 3 is recommended to provide evidence for the null 

hypothesis. All statistical analyses were conducted in JASP 0.8.6 (JASP team, 2018), 

R 3.4.3 (R Core Team, Vienna, Austria), Matlab R2017a (Mathworks, MA, USA) 

and SPSS Statistics 22 (IBM, NY, USA). 
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3.1.2. Results and Brief Discussion 

To determine the presence of adaptation aftereffects in our experiment, we 

performed paired t-tests between the PSE of the baseline and the PSEs of the 

adaptation conditions (Figure 3.2). As expected, both the attractive RSVP and 

computational average conditions produced significant aftereffects (both ps < .001), 

with participants reporting the test faces as unattractive more frequently in the two 

attractive conditions relative to the baseline. Surprisingly, neither of the unattractive 

conditions produced any aftereffects (both ps > .67). Bayesian t-tests provided further 

support for the null hypothesis (both BF01s > 4.65): the unattractive conditions did 

not generate significant aftereffects relative to baseline. Participants did not seem to 

be processing either set of unattractive adaptors as unattractive. This is contrary to 

the outcome predicted by the ‘high-level top-down average’ hypothesis, for if this 

hypothesis had been correct, then we should have observed aftereffects in the 
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opposite direction to those found in our attractive conditions (i.e., negative relative 

to baseline, where test faces were rated as attractive more frequently after adaptation).  

To test whether temporal ensemble perception was indistinguishable from the 

computational average (the Shapiro-Wilk tests indicated that all data follow normal 

distributions, ps > 0.75; except for ‘Statica’ condition, p = .001. Considering 

Ghasemi & Zahediasl’s (2012) suggestion that with the current sample size ‘… we 

can use parametric procedures even when the data are not normally distributed’. We 

still applied parametric analysis here.), we performed a two-way repeated-measures 

ANOVA on the PSE shifts relative to baseline with factors of Attractiveness 

(attractive vs. unattractive) and Adaptor (RSVP vs. computational average). While 

there was a significant main effect of Attractiveness (F(1,28) = 46.65, p < .001, ηp2 

= .0.63) due to the attractive conditions having larger aftereffects than the 

unattractive conditions, there was no significant main effect of Adaptor (F(1,28) = 

0.028, p = .87, ηp2 = .0.001) nor any interaction (F(1,28) = 0.345, p = .56, ηp2 = .0.012). 
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Bayesian t-tests comparing the attractive RSVP condition versus the attractive 

computational average (BF01 = 4.89), and the unattractive RSVP versus the 

unattractive computational average (BF01 = 4.32), provided further evidence for the 

null hypothesis. This confirms that the RSVP streams were processed by our 

participants in a similar way to their computational averages. Further support for this 

came from the fact that the attractive (r = .66, p < .001) and unattractive (r = .53, p 

= .003) RSVP streams were correlated with their computational counterparts.  

 

Figure 3.2. The RSVP and computational average aftereffects (Experiment 2.1). (A) Summary of all 29 

subjects’ results. RSVPa: adapting to attractive RSVP faces condition; RSVPu: adapting to unattractive RSVP 
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faces condition; Statica: adapting to the average face of the attractive RSVP faces condition; Staticu: adapting to 

the average face of the unattractive RSVP faces condition. For each condition, the adaptation aftereffect was 

measured by PSE shift relative to baseline (error bars were SEMs). The p-value above each bar was computed 

using paired t-tests. Noticeably, a positive adaptation aftereffect measured by PSE shift indicates the target faces 

were perceived as less attractive than during baseline. (B) The relationship between the RSVP conditions and the 

paired average conditions. Blue diamonds represent the attractive faces, and red circles represent the unattractive 

faces. 

Adapting to an RSVP stream and its computational average led to comparable 

and correlated facial attractiveness aftereffects. These findings replicated prior work 

that showed similar effects on facial emotion (Ying & Xu, 2017, Chapter II). 

Moreover, the attractive and unattractive RSVP of faces generated asymmetrical 

adaptation aftereffects: unlike the attractive RSVPs, the RSVPs of unattractive faces 

which failed to generate significant adaptation aftereffects. Considering the similar 

and correlated aftereffects from the unattractive RSVP stream and the averaged face 

of them, it is reasonable to believe that the unattractive RSVP streams are represented 

as the ensemble average and were perceived as mediocre in facial attractiveness. 

Thus, the results here clarified what characteristics of a face our brain is extracting 
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in order to produce temporal ensemble perception: contrary to the commonly used 

parlance in the literature (Haberman & Whitney, 2012; Whitney & Leib, 2017), 

temporal ensemble statistics do not actually represent the gist of the group’s 

characteristics, but rather the computational average of the individual faces’ low-

level properties. This was clearly shown by the lack of differences between the RSVP 

streams’ adaptation aftereffects and those produced by their computational averages. 

Had the brain been extracting the gist (i.e., that this group of faces is unattractive), 

then we should have seen differences in the adaptation aftereffects between the RSVP 

streams and their computational averages; an outcome that was not realized here. 

Similarly, the lack of aftereffects in the unattractive conditions relative to baseline 

further indicates that the unattractive group was not being processed as unattractive. 

Instead, the unattractive stream was indistinguishable from its computational average, 

which was more attractive than the underlying faces in the group, and thus 

comparable to participants’ general levels of real-world habituation to facial 
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attractiveness, as shown in the baseline condition. To our knowledge, this is the first 

time that any evidence has been produced to support the computational average 

hypothesis over the common ‘gist’ hypothesis.  

3.2. Experiment 2.2: Temporal ensemble perception is linear 

Based on previous work (Ying & Xu, 2017, Chapter II), it is anticipated that the 

brain will average the underlying mean attractiveness of an RSVP stream of faces in 

a linear fashion. This experiment, therefore, tested a separate group of participants 

with the two RSVP streams from Experiment 2.2, while including a ‘Mixed’ 

condition that comprised an RSVP stream of the attractive and unattractive adapting 

faces. If the brain averages the RSVP streams in a linear fashion, then there should 

be a positive correlation between the group’s mean attractiveness ratings and its 

adaptation aftereffects. 

In the Experiment 2.1, the data suggested that the RSVP of unattractive faces 
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failed to generate significant adaptation aftereffects (asymmetrical aftereffects 

between attractive and unattractive RSVPs). Although we believe that this was 

caused by the computational mechanism of temporal ensemble coding of facial 

attractiveness. The data, however, is still open to an alternative explanation: our 

visual system might favor the attractive faces and ignore the unattractive ones 

(Palermo & Rhodes, 2007). If so, the insignificant aftereffect could be explained by 

the weaker cognitive resources. Thus, in this experiment, we added one new 

condition, the ‘Mixed’ condition, to elucidate this question. In this condition, all 4 

attractive faces and all 4 unattractive faces used in the ‘Attractive’ and ‘Unattractive’ 

conditions were shown in the RSVP sequence. If the visual system just ‘ignores’ the 

unattractive faces and ‘favors’ the attractive ones, the four unattractive faces would 

be discounted in the ensemble representation, and the ensemble representation 

should be largely formed by the attractive faces. Thus, we should observe a 

significant adaptation aftereffect from the ‘Mixed’ condition, which is similar to that 
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of the ‘Attractive’ condition. On the other hand, if our visual system is capable of 

encoding the unattractive faces (via the computational averaging, as we suggested in 

Experiment 2.1), then the attractive and unattractive faces would contribute (more or 

less) equally to the ensemble representation of the RSVP face stream. Thus, we 

should observe a significant adaptation aftereffect of the ‘Mixed’ condition which is 

similar to the mean of those of ‘Attractive’ and ‘Unattractive’ conditions. By 

monitoring the adaptation aftereffect of the new ‘Mixed’ condition, we could clarify 

the mechanism of the temporal ensemble coding of facial attractiveness. 

3.2.1. Methods 

Twenty new subjects (10 Females; Mean Age: 22.84) participated in this 

experiment. We selected this sample size basing on two reasons. Firstly, using the 

effect size of Experiment 1 (ηp2 = .65), power analysis (using G*Power 3.1, with α-

value at .05, and power (1 – β) at .80) indicated that we need at least 7 participants. 
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However, considering the differences in the experimental design, we chose to 

(roughly) triple the sample size. 

 We used the same procedure as in Experiment 2.1, except there were three 

adaptation conditions in addition to the baseline: RSVP of attractive faces (4 

attractive faces), RSVP of mixed faces (4 attractive faces and 4 unattractive faces, 

from both attractive and unattractive conditions), and RSVP of unattractive faces (4 

unattractive faces). All adaptors were the same as in Experiment 2.1.Also, each test 

face in each block appeared 14 times in a random order. We added more trials to 

investigate the robustness of the finding further. Additionally, after the main 

experiment, we asked the subjects to rate the mean attractiveness of the RSVPs on a 

7-point scale (1 for most unattractive and 7 for most attractive), with each stream 

being presented 10 times. 

A conventional correlation analysis has the assumption that the data are from 
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independent observations. However, our data consisted of repeated measures from 

three observations (i.e., an observation from each of the unattractive, mixed, and 

attractive conditions) for each individual participant. We therefore used the repeated 

measures correlation analysis (Bakdash & Marusich, 2017) to quantify the strength 

of the relationship between the attractiveness ratings of the faces and the adaptation 

aftereffects produced by those faces. 

3.2.2. Results and Brief Discussion 

Relative to baseline, significant aftereffects were generated by the RSVPs of 

attractive (Figure 3.3a, M = .20, SEM = .003; t(19) = 5.93, p < .001) and mixed (M 

= .11, SEM = .002; t(19) = 5.01, p < .001) but not the unattractive (M = .01, SEM 

= .02; t(19) = .63, p = .54) faces (the Kolmogorov-Smirnov tests indicate that all data 

follow normal distributions, ps > 0.14). Bayesian analyses suggested that the lack of 

aftereffects in the unattractive condition was in favor of the null hypothesis (BF01 = 
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3.613); i.e., no adaptation aftereffect relative to baseline. Participants therefore rated 

the test faces as less attractive after adapting to the attractive and mixed RSVP 

streams. Moreover, this experiment replicated Experiment 1 in showing no 

aftereffects to the unattractive group, suggesting participants were actually not 

processing the group as unattractive. An ANOVA yielded significant differences 

among all three adaptation conditions (with Greenhouse-Geisser Correction, 

F(1.46,27.70) = 34.46, p < .001, ηp2 = .0.65): subsidiary comparisons showed 

significant differences between the attractive and unattractive (t(19) = 6.58, p = .001), 

attractive and mixed (t(19) = 4.24, p < . 001), and mixed and unattractive (t(19) = 

5.84, p < .001) conditions. We further compared the adaptation aftereffects of the 

‘Mixed’ condition with the average of those of the ‘Attractive’ and ‘Unattractive’ 

conditions. The paired sample t-test suggested that there is no significant difference 

between these two (t(19) = .45, p = . 68). These indicate a graded fashion in which 

participants were perceiving the attractiveness of the adapting streams.  
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Figure 3.3. Adaptation aftereffects to RSVPs (Experiment 2.2) and spatially presented faces (Experiment 

2.3). (A) Combined summary of all subjects’ results of Experiment 2.2 and Experiment 2.3. The hatched bars 

indicate RSVP conditions (Experiment 2.2), and the solid bars represent Spatial Presentation conditions 

(Experiment 2.3). For each condition, the adaptation aftereffect was measured as a PSE shift away from the 

baseline (error bars were SEMs). The p-value shown above each bar was calculated by paired t-tests, comparing 

each adaptation condition with the baseline (no adaptation) or other adaptation condition in the same experiment. 
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Noticeably, a positive adaptation aftereffect measured by PSE shift indicates the test faces were perceived as less 

attractive than baseline. (B) The adaptation aftereffect as a function of the attractiveness rating of the RSVP of 

faces in Experiment 2.2. Hollow triangles represent the individual subjects mean ratings of RSVPs of attractive 

faces. Hollow squares for the RSVPs of mixed faces, and hollow circles for the RSVPs of unattractive faces. 

Each color represents one individual subject. The size of the adaptation aftereffect and the attractiveness ratings 

correlated significantly (r = .72, p <. 001). (C) The adaptation aftereffect as a function of the mean attractiveness 

rating of the adapting faces in Experiment 2.3. Filled triangles represented the individual subjects mean ratings 

of spatially presented attractive faces. Filled squares for the spatially presented mixed faces and filled circles for 

the spatially presented unattractive faces. Each color represents one individual subject. The size of the adaptation 

aftereffect and the attractiveness ratings correlated significantly (r = .87, p < .001). The faint dashed black 

auxiliary line indicates the no adaptation aftereffect.  

An ANOVA on the subjects’ attractiveness ratings of the RSVP streams 

suggested there were also significantly different from one another (F(2,38) = 112.55, 

p < .001, ηp2 = .0.86). Further comparisons indicated that subjects judged the RSVP 

of the attractive faces (M = 4.89, SEM = .013) as the most attractive, followed by the 

RSVP of mixed faces (M = 3.98, SEM = .016), and the RSVP of unattractive faces 

(M = 2.65, SEM = .017) as least attractive (all ps < .001). A further repeated measures 

correlation analysis (Bakdash & Marusich, 2017) revealed a significant positive 

correlation between the RSVP streams’ attractiveness ratings and their adaptation 
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aftereffects (Figure 3.3b, r = .72, p < .001, 95% CI [0.53, 0.85]); indicating that the 

brain performs temporal ensemble statistics in a linear fashion from the underlying 

attractiveness of the stream.  

In this experiment, we replicated the results from Experiment 2.1, but further 

illustrated the linear fashion in which the brain computationally averages the 

attractiveness of a temporal stream of faces. Moreover, the magnitude of the 

adaptation aftereffects of the ‘Mixed’ condition further supported our notion that the 

brain could perceive the unattractiveness of the unattractive faces. Thus, due to the 

mechanism of the temporal ensemble coding, the ensemble representation (reflected 

by the aftereffects) of unattractive faces could not alter the perception of the testing 

faces. These results, therefore, lend further support to our computational average 

hypothesis. 
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3.3. Experiment 2.3: Spatial ensemble statistics represent the 

gist 

Across Experiments 1 and 2 we have shown that the temporal ensemble 

perception reflects the low-level bottom-up averaging. However, is this also true for 

spatial ensemble coding when a group of faces is presented simultaneously? To test 

this, we used the same groups of adapting faces as in Experiment 2, but presented 

them with a spatial configuration (Figure 4); using identical adaptor faces allows us 

to directly compare the aftereffects derived from temporal and spatial ensemble 

coding. If the aftereffects between Experiment 2 and 3 are indistinguishable, then it 

would imply that a similar mechanism is at work both temporally and spatially; i.e., 

the faces are being computationally averaged from their low-level properties. 

However, if the aftereffects between the two experiments are different, then it would 

provide the first evidence that temporal and spatial ensemble statistics actually reflect 
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distinct mechanisms. If the ‘high-level top-down average’ hypothesis is at work 

during spatial ensemble coding, then we would expect an overall negative shift for 

all of the adapting face conditions: e.g., the unattractive group would elicit negative 

aftereffects, the mixed group would be no different from baseline, and the attractive 

group would elicit smaller positive aftereffects than the attractive group in 

Experiment 2.  

3.3.1. Methods 

Eighteen new subjects (11 Females; Mean Age: 22.78) participated in this 

experiment. We selected 20 subjects at the beginning (the same sample size as 

Experiment 2); however, 2 dropped out during the experiment. Here we used the 

same adapting faces and blocks from Experiment 3.2, except the mixed condition 

only contained 2 attractive and 2 unattractive. During adaptation, the 4 adapting faces 

were presented around the central fixation cross (Figure 3.4), with the test face 
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presented in the center of the screen. The trial procedure was otherwise similar to 

Experiment 2.1 & 2.2. We also asked the subjects to rate the attractiveness of the 

eight individual adapting faces in a similar fashion as was performed in Experiment 

2.1, and computed an average from the ratings reflecting the gist.  

 

Figure 3.4. Example trial sequence from a spatial adaptation condition (the demonstrated faces are 

AF01NES, AF05NES, AF06NES, AF07NES and AF34NES from KDEF database). Subjects fixated on the cross 

at all times. After 0.5 s, four adapting faces simultaneously appeared for 2 s. After a 0.4 s interval, the test face 

appeared on the screen for 0.2 s. Then a beep sound indicated subjects should judge the attractiveness of the 

target face by pressing the ‘A’ button for attractive, or the ‘S’ button for unattractive. Experimental details can 

be found in the Methods section. 
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3.3.2. Results and Brief Discussion 

Significant aftereffects were generated by both the attractive (M = .093, SEM 

= .016; t(17) = 5.91, p < .001) and unattractive (M = -.083,  SEM = .020; t(17) = -

4.20, p = .001) groups; test faces were rated unattractive or attractive more frequently 

relative to the no adaptation baseline following the attractive and unattractive 

adaptation groups respectively (the Shapiro-Wilk tests indicate that all data follow 

normal distributions, ps > 0.30). By contrast, the mixed faces did not evoke any 

aftereffects (M = .028, SEM = .019; t(17) = 1.48, p = .16). These results, therefore, 

show qualitative differences between the aftereffects of our previous two RSVP 

experiments and the spatial aftereffects here. An ANOVA on the three adaptation 

conditions was significant (F(2,34) = 50.40, p < .001, ηp2 = .0.75). Bonferroni 

corrected comparisons indicated that the attractive and unattractive (t(17) = 8.68, p 

<.001), attractive and mixed (t(17) = 3.55, p = . 007), and mixed and unattractive 



 

 114 

(t(17) = 7.93, p < .001) conditions were all significantly different from one another. 

As with the other 2 experiments, there was a significant positive repeated measures 

correlation (r = .87, p < .001, 95% CI [0.75, 0.93]; Figure 3.3C) between the mean 

attractiveness ratings of the groups of adapting faces and their aftereffects. 

To further clarify that the adaptation aftereffects produced by spatial versus 

temporal ensemble statistics were qualitatively different from one another, we 

performed a mixed model ANOVA on the adaptation aftereffects with a between 

participant factor of Group (Experiment 3.2: Temporal vs. Experiment 3.3: Spatial) 

and a within participants’ factor of Attractiveness (unattractive vs. mixed vs. 

attractive). There was a significant main effect of Attractiveness (with Greenhouse-

Geisser Correction, F(1.56,56.19) = 78.75, p < .001, ηp2 = .69) due to differences 

between the adaptation aftereffects (i.e., attractive>mixed>unattractive, Figure 3.3, 

all ps < .001). Similarly, there was also a significant effect of Group (F(1,36) = 11.20, 

p = .002, ηp2 = .24) due to the Experiment 2 Temporal group exhibiting more positive 
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aftereffects in contrast to our current Spatial group [Exp 2 M = .11 vs. Exp 3 M 

= .012]. Finally, the Group × Attractiveness was not significant [with Greenhouse-

Geisser Correction, F(1.56,56.19) = .29, p = .70, ηp2 = .0.08]. These findings, 

therefore, indicate that while our participants were producing aftereffects that were 

similarly distinct between attractiveness blocks, the actual perceptual outcomes were 

qualitatively different.  

It is obvious that the attractive and unattractive faces generated asymmetrical 

aftereffects in Experiment 2.2, while the very same faces generated symmetrical 

aftereffects in Experiment 2.3 (Figure 3.3A). To test whether the differences in 

aftereffects between the spatial and temporal aftereffects were simply due to the 

groups of participants perceiving the underlying faces’ attractiveness differently, a 

mixed model ANOVA was performed on the mean attractiveness ratings with a 

between participant factor of Group (Temporal Experiment 2.2 vs. Spatial 

Experiment 2.3) and a within participants’ factor of Attractiveness (unattractive vs. 
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mixed vs. attractive). There was a significant main effect of Attractiveness (F(2,72) 

= 302.74, p < .001, ηp2 = .89) due to the faces being rated significantly differently 

from one another (i.e., attractive > mixed > unattractive, all ps < .001), but no main 

effect of Group (F(1,36) = .025, p = .88, ηp2 = .01). There was, however, a significant 

interaction between the effects of Attractiveness and the Group (F(2,72) = 3.64, 

p= .031, ηp2 = .092). However, while simple effects revealed significant within-group 

differences between all attractiveness levels (all ps < .001), there were no significant 

between-group differences in the mean attractiveness ratings of the adapting faces 

for each of the attractiveness blocks (attractive p = .11, mixed p = .82, unattractive p 

= .43). Thus, presenting the adapting faces spatially or temporally (RSVP) does not 

change their perception of the adapting faces’ attractiveness per se, but simply their 

adaptation aftereffects. Therefore, these results suggest the qualitative differences in 

aftereffects between the RSVP and spatial experiments are not due to between-group 

differences in the perception of the adapting faces. Instead, it seems that spatial and 
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temporal ensemble processing simply produce qualitatively distinct perceptual 

outcomes.  

3.4. Discussion 

This study investigated the perceptual operations underlying ensemble statistics 

across three experiments. Experiment 2.1 showed that RSVP streams and their paired 

computational averages created from the individual faces’ low-level deviations led 

to comparable and correlated facial attractiveness aftereffects. Experiment 2.2 

replicated the findings from Experiment 2.1 thereby further supporting the 

‘computational average’ hypothesis. Moreover, Experiment 2.2 suggested that 

aftereffects increased as a function of the underlying RSVP stream’s attractiveness. 

Incongruent with first 2 experiments, Experiment 2.3 showed that spatial ensemble 

statistics favored the gist hypothesis (i.e., no aftereffects in the mixed condition, 

negative aftereffects in the unattractive condition). Taking all three experiments 
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together, it is clear that temporal and spatial ensemble statistics stem from 

qualitatively different extraction mechanisms.  

While a number of prior studies have examined spatial ensemble coding and 

temporal ensemble coding (Haberman, Brady, & Alvarez, 2015; Haberman & 

Whitney, 2007, 2009; Whitney & Levi, 2011; Whitney & Leib, 2017; Wolfe, 

Kosovicheva, Leib, Wood, & Whitney, 2015; Ying & Xu, 2017), no study so far has 

compared the effects of both. Moreover, even if researchers had compared the 

averaging of facial traits other than attractiveness (e.g., emotion) across these two 

presentation formats, then they would have been unlikely to observe differences 

between temporal and spatial ensemble coding anyway. This is because adapting to 

facial emotion via either a low-level computational process, or a high-level averaging 

process, would result in the same perceptual outcome (as illustrated in Figure 1.1A 

with hypothetical data). Here, we took advantage of the fact that averaging faces 

together from their low-level properties makes them more attractive (DeBruine et al., 
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2007; Perrett et al., 1994; as illustrated in Figure 1.1B with hypothetical data). We 

showed that while both spatial and temporal ensemble statistics were driven by the 

attractiveness of the underlying faces, they resulted in different perceptual effects. 

Despite minor differences between the experiments, we do not believe that these 

differences can account for the diverging experimental outcomes. For example, in 

Experiment 3.1 & 3.2 the adapting faces were shown in the horizontal visual 

periphery (Ying & Xu, 2017), while in Experiment 2.3 the adapting stimuli were 

shown in a matrix around the center. However, we found no differences in how the 

two groups appraised their attractiveness, therefore indicating that the between-group 

differences in attractiveness aftereffects were not simply due to alterations in the 

underlying attractiveness of the adapting faces.  

The other main difference between these spatial and temporal paradigms was 

that the test faces in Experiment 2.3 did not fully overlap with the adaptation faces. 

By contrast, the adaptation faces of Experiment 2.1& 2.2 were shown in the same 
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screen location as the test faces. Typically, spatially overlapping test and adaptation 

faces produce massive aftereffects (Leopold, O'Toole, Vetter, & Blanz, 2001; 

Webster & MacLeod, 2011). If this could explain the differences in aftereffects 

between our experiments, then we would have expected the unattractive faces in the 

first two experiments to be more negative (or even more negative than that of 

Experiment 2.3) than those produced here. Similarly, the mixed conditions in 

Experiment 2.2 should have produced no aftereffects. However, our RSVP mixed 

condition produced positive aftereffects, reflective of the fact that these faces were 

processed by the brain as more attractive than their underlying mean compared to the 

gist average. The current data therefore clearly fit with the hypothesis that there are 

simply different types of ensemble statistics arising to produce qualitative between-

group differences in aftereffects.  

We should explicitly clarify to the reader that the null results found in 
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Experiments 2.1 and 2.2 (e.g., the unattractiveness conditions of Experiment 2.1& 

2.2) actually support our low-level bottom-up averaging hypothesis. These findings 

are not caused by (a) insufficient unattractiveness in the unattractive adaptors to 

produce aftereffects, (b) nor by lacking power, (c) nor by ignorance of unattractive 

faces. First, we used the very same stimuli in Experiments 2.2 & 2.3, with the 

temporal and spatial presentation methods being the main difference between the two 

studies. The negative aftereffects generated by the unattractive condition in 

Experiment 2.3 shows that the unattractive group was being processed by the 

participants as unattractive; i.e., the participants perceived the subsequently 

presented faces as attractive. In the other words, the very same faces generated 

asymmetrical aftereffects when being presented temporally, but generated 

symmetrical aftereffects when being presented spatially. These findings are at odds 

with the suggestion that the unattractive adapting faces in Experiments 2.1 and 2.2 

were simply insufficient in unattractiveness to elicit the aftereffects expected from 
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an unattractive group. Such a suggestion is further strengthened by the large effect 

size in the unattractive condition’s aftereffects in Experiment 2.3. Moreover, by 

analyzing the data via Bayes Factors (Dienes, 2014; Rouder et al., 2009), we found 

evidence supporting the null hypothesis (i.e., the unattractive RSVP faces are 

equivalent to baseline and their computer-generated average face), thus countering 

any suggestion that the null effects across Experiments 2.1 and 2.2 are a result of low 

statistical power. Also, the magnitude of the adaptation aftereffects observed in the 

‘Mixed’ condition in Experiment 2.2 (see the result section of Experiment 2.2) 

clearly suggest that our vision system is capable of averaging the unattractive and 

attractive faces together; thus, our visual system does not ignore the unattractive 

faces. Simply put, the current data favors the notion that the RSVP streams of 

unattractive faces are perceived as neither attractive nor unattractive relative to 

participants’ baseline norms of attractiveness, and that this perceptual outcome is not 

due to these faces being unattractive enough to elicit negative aftereffects. Instead, 
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participants must have been averaging the RSVP stream in such a fashion that it made 

the faces as a group being processed as more attractive than their underlying mean. 

This was clarified by the fact that the aftereffects of the RSVP streams matched, and 

were correlated with, their more attractive computationally averaged morph face 

counterparts. In the future research, eye tracking measurement or fMRI is necessary 

to fully clarify the concerns 

The qualitative differences between the adaptation aftereffects produced by 

RSVP streams and spatial presentations of faces likely reveal the hierarchical nature 

of the human face perception system (Bartolomeo, Vuilleumier, & Behrmann, 2015; 

Behrmann & Plaut, 2013; Duchaine & Yovel, 2015; Eimer, 2000; Gobbini & Haxby, 

2007; Haxby et al., 2000, 2002; Liu, Harris, & Kanwisher, 2002; Young & Bruce, 

2011; Zhao, Zhen, Liu, Song, & Liu, 2017). For example, extracting the 

computational properties of a face arguably occurs at an earlier stage of encoding 
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(Eimer, 2000; Gauthier et al., 2000; Grill-Spector, Knouf, & Kanwisher, 2004; 

Kanwisher, McDermott, & Chun, 1997; Kanwisher & Yovel, 2006; Pitcher, Walsh, 

Yovel, & Duchaine, 2007) in comparison to when the brain can conceptually 

calculate the aspects of a face that make it unattractive (O’Doherty et al., 2003). 

These factors probably reflect computationally averaged low-level qualities of 

stimuli that are extracted during temporal ensemble statistics versus the high-level 

general representation that is extracted during spatial ensemble statistics. Where 

these changes occur in the brain is at present unclear, but current data favor the 

hypothesis that temporal ensemble statistics likely arise from the early visual cortex, 

or early stage face areas of the brain, where low-level visual processing occurs 

continuously (Eimer, 2000; Haxby et al., 2000; Keysers, Xiao, Foldiak, & Perrett, 

2001; Liu et al., 2002). By contrast, the FFA is likely to extract the high-level 

attractiveness of the face’s structure, where a specific group of face-selective neurons 

is activated (Kanwisher et al., 1997; O’Doherty et al., 2003) prior to producing the 
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gist. Support for this hypothesis stems from work showing an inverse relationship 

between neural responsiveness in the early visual cortex versus that produced by the 

fusiform gyrus when participants viewed serially presented faces (McKeeff, Remus, 

& Tong, 2007). For instance, activity in the early visual cortex became enhanced as 

serial presentations of faces become faster. However, such increasing of presentation 

speeds also led to a converse reduction in the fusiform gyrus’s activity.  

In conclusion, this study has shown for the first time that temporal ensemble 

statistics does not simply reflect the gist of a group of faces, but is instead extracted 

from the group’s low-level computational average. Contrary to what many in the 

literature take as fact regarding the gist being extracted during ensemble perception, 

we have actually shown two distinct levels of ensemble statistics that can occur for 

the same facial trait: ‘Gist averaging’ for spatial ensemble coding and ‘computational 

averaging’ for temporal ensemble coding. These levels must reflect distinct neural 

encoding stages of the properties that make up facial attractiveness. 
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Chapter IV: Study 3: Ensemble Statistics Shapes Face 

Adaptation and the Cheerleader Effect 

One of the widely studied and most important facial traits is that of 

attractiveness, due to its social and evolutionary significance (Little et al., 2011; 

Rhodes, 2006; Thornhill & Gangestad, 1999; Willis & Todorov, 2006). Researchers 

have uncovered numerous facial attributes that modulate facial attractiveness (Little 

et al., 2011; Rhodes, 2006). However, in addition to intrinsic qualities within a face, 

external factors such as context and experience may shape the perception of facial 

attractiveness (Anderson et al., 1973; Burriss, & Feinberg, 2007; Ewing et al., 2010; 

Hönekopp, 2006; Jones, DeBruine, Little, & Feinberg, 2007; Little et al., 2011; 

Penton-Voak et al., 2001; Rhodes, 2006). For example, simply being viewed in the 

company of others makes us appear more attractive than when we are seen alone; a 

powerful visual phenomenon known as the ‘cheerleader effect’ (Walker & Vul, 2014). 
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As is was put to us that the label ‘cheerleader’ effect might be a little outmoded and 

misleading, we henceforth refer to it as the ‘friend effect’ instead. Similarly, recent 

exposure to an unattractive distorted face also makes subsequently presented faces 

appear more attractive: an attractiveness adaptation aftereffect (Rhodes, 2006).  

Although the external factors of facial attractiveness are relatively less studied, 

they have important implications in real life. Because we are commonly surrounded 

by friends in social situations where we are being judged by a prospective partner. It 

is important to ask do we look better when we surround ourselves with attractive or 

unattractive friends? More specifically as to whether the mean attractiveness of a 

group of faces affects the attractiveness judgments of a target face. This is an 

important question to answer as we are commonly surrounded by friends in social 

situations where we are being judged by a prospective partner, i.e., in a room, party 

or in photos used on social media apps. Despite the friend effect and adaptation being 

two widely examined phenomena thought to shape attractiveness judgments, no prior 
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work has actually tested what influence a group’s attractiveness has on any given 

target face being judged.  

There are a number of competing theories as to how a surrounding group of 

faces may influence our perceptions of an individual’s attractiveness, with each 

predicting a distinct outcome. The first, postulated by Walker and Vul (2014), would 

be a ‘basking in reflected glory’ or averaging effect hypothesis. This hypothesis 

predicts that faces are more attractive when judged in a crowd because the visual 

system tends to average all of the faces (including the target face and the surrounding 

faces) together. Under this hypothesis, faces judged in an unattractive crowd should, 

therefore, be perceived as less attractive than those faces when judged in an attractive 

crowd. This is because the average attractiveness of an unattractive crowd is less than 

that of an attractive crowd, as opposed to the ‘basking in reflected glory’ situation in 

which the target face receives a benefit from being in the company of attractive 

friends (DeBruine et al., 2007; Perrett et al., 1994). 
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Alternatively, there might be a contrastive effect, similar to what occurs during 

face adaptation (Calder et al., 2008; Hsu & Young, 2007; Leopold et al., 2001; Pegors 

et al., 2015; Rhodes et al., 2003; Rhodes & Leopold, 2011; Webster et al., 2004). In 

this case, the visual system produces a new norm from the ensemble representation 

of the surrounding faces which then affects the target’s attractiveness ratings in the 

opposite direction to that of the crowd. Under these circumstances, being surrounded 

by increasingly unattractive friends will lead to a target’s beauty being more readily 

perceived. This contrastive effect is because the unattractive group is thought to 

habituate the neurons that are tuned to unattractive faces, leading subsequent faces 

to be perceived as more attractive (O’Doherty et al., 2003; Pegors et al., 2015; Rhodes 

et al., 2003; Webster & MacLeod, 2011).  

While the averaging and contrastive effects would arguably modulate the friend 

effect in line with the group’s mean attractiveness, the two effects’ relationships with 
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the group’s attractiveness would be in opposite directions to one another. For instance, 

under the averaging account, increasingly attractive friends would increase the 

target’s perceived attractiveness. This is because in the averaging theory, the target 

face becomes more attractive as it is biased towards the mean of the crowd when 

averaged into the group. Support for this suggestion comes from prior work that 

shows a Gabor patch’s orientation will contribute towards the group’s average, yet 

also be perceived as that average (Morgan, Chubb, & Solomon, 2008; Ross & Burr, 

2008). Converse to this, the contrastive hypothesis predicts that increasing group 

attractiveness would make a target face less attractive. Under such circumstances, 

the target face is compared to the ensemble representation of the surrounding faces. 

This contrastive effect is similar to that arising during facial attractiveness adaptation 

(O’Doherty et al., 2003; Pegors et al., 2015; Rhodes et al., 2003).  

Finally, the mere presence of a face in a group may be sufficient to cause some 
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kind of socially positive effect. In this case, simply being in a group makes a target 

face more attractive irrespective of how the group looks. What might cause this effect 

is unclear, but it may be driven by some kind of high-level process that can attribute 

popularity to a face due to the simple fact that it is surrounded by other people. It is 

possible that such a social positive effect might co-occur with either an averaging or 

contrastive effect. If this were to be true, then we might expect the target face in a 

group to always be rated as more attractive than when viewed in isolation, however, 

the strength of this friend effect may vary in response to the surrounding group’s 

mean attractiveness.  

While any of the above seems possible, recent research into ensemble statistics 

may give a hint as what effect the group’s mean attractiveness might have. Our visual 

system rapidly and involuntarily averages the heterogeneous information from a 

group of faces presented simultaneously or in sequence to obtain its gist (Haberman 
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& Whitney, 2007, 2009; Sweeny & Whitney, 2014; Whitney & Leib, 2017; Ying & 

Xu, 2017). It is thus reasonable to imagine that such ensemble perception may also 

occur for facial attractiveness when viewing a group of faces (Abbas & Duchaine, 

2008; Brady & Alvarez, 2015; Haberman & Whitney, 2012). One would expect 

ensemble statistics to help the visual system create a new norm for attractiveness 

from the group’s average. This norm would form an implicit template against which 

any face presented in the group could be judged (Ying & Xu, 2017). Under these 

circumstances, we should expect increasingly unattractive groups to bias our 

judgments towards finding the target face as more attractive. This is because 

someone should be judged more desirable in an unattractive crowd as he/she is 

representing the best available option based upon current experience. Conversely, the 

same individual will not be judged to be quite as attractive when in an attractive 

group due to the fact that they are not as desirable as other options available. Similarly, 

we would anticipate ensemble perception to shape face adaptation in a similar way, 
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albeit this time our perceptions are based upon recent, rather than concurrent, 

experiences. The following experiments aim to confirm these hypotheses.  

4.1. Experiment 3.1. Face adaptation shows that we look better 

if we appear after a group of unattractive friends  

If we appear after a group of friends, would we appear more attractive or 

unattractive? Could attractiveness aftereffect occur through spatial ensemble 

statistics by group face adaptation? When we are exposed to a single unattractive 

face for a few seconds, subsequently presented faces appear more attractive, with an 

attractive face producing a converse effect: a powerful visual illusion known as an 

adaptation aftereffect (Leopold et al., 2001; Rhodes et al., 2003; Webster et al., 2004). 

Similar adaptation aftereffects have been shown when people adapt to facial emotion 

(i.e., viewing a sad face makes subsequent faces seem happier; Afraz & Cavanagh, 

2008; Burns, Martin, Chan, & Xu, 2017; Luo, Burns, & Xu, 2017; Webster et al., 
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2004; Xu, Dayan, Lipkin, & Qian, 2008), and we are able to extract the gist of the 

emotion from a group of faces through ensemble coding (Haberman & Whitney, 

2009; Ying & Xu, 2017). It is currently unclear, however, whether this attractiveness 

aftereffect can occur through spatial ensemble statistics by adapting to a group of 

faces. To date, there has been a surprising lack of ensemble adaptation experiments 

in which multiple adaptors are simultaneously presented, with ensemble adaptation 

to low-level dots size one of the rare studies examining such an effect (Corbett, 

Wurnitsch, Schwartz, & Whitney, 2012).  

If attractiveness perception can be similarly shaped by our prior experiences 

with groups of faces as those observed with the dots, then we would expect ensemble 

representations to shape face adaptation. Under such circumstances, a group of faces’ 

mean attractiveness should predict their adaptation aftereffects. We tested this 

hypothesis in Experiment 3.1 by adapting participants to groups of faces that varied 

in their mean attractiveness and asking them to make attractiveness judgments to 
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subsequently presented faces.  

4.1.1 Method 

Subjects 

Twenty ethnic Chinese subjects (11 females, mean age 22.95 years), with 

normal or corrected-to-normal vision, participated in both experiments. We selected 

this sample size because it is comparable to previous research examining the 

ensemble coding using face adaptation aftereffects (we doubled the sample size from 

Ying & Xu, 2017). From the post-hoc power analysis (with α-value of .05, ηp2 = .64, 

G*Power 3.1), we found this sample size yield a high power 1 – β = 1.00. All 

participants gave their written consent before the study.  

Apparatus 

The same as previous studies. 
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Stimuli 

All of the visual stimuli were female faces chosen from the Oslo face database 

(Chelnokova et al., 2014). The Oslo face database contains roughly 200 male and 

female faces, who were students (mostly Caucasian) at University of Oslo, with 

neutral expressions. Due to copyright restrictions, we are not allowed to show these 

images in this thesis, so we have used faces from the KDEF dataset (Lundqvist et al., 

1998) for demonstration. We chose this face database for two reasons. First, it 

contained high-quality pictures that varied in attractiveness. Second, judgments of 

attractiveness towards female faces are almost perfectly correlated irrespective of the 

race being judged or judging (i.e., r > .9 in Cunningham, Roberts, Barbee, Druen, & 

Wu, 1995; Perrett et al., 1998; Rhodes et al., 2001). Thus, we anticipated that our 

Chinese Singaporean participants would have little difficulty in processing the 

attractiveness of the Caucasian faces in a normal manner. All face images were grey 

scaled and had an oval shaped crop applied so that only the central region of each 
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face was visible by Paint.Net (dotPDN LLC, USA) and Matlab R2010a (Mathworks, 

MA, USA). 

We assessed the perceived attractiveness of the stimuli via an online pilot study. 

Twenty subjects, those who took part in our two main experiments, were asked to 

rate the facial attractiveness for all 30 faces. Each face’s attractiveness was assessed 

on a 7-point scale (1 for most unattractive and 7 for most attractive). All faces were 

presented in a random order, with this cycle being repeated 3 times. Each time a face 

was presented, it would remain onscreen until a judgment was made before starting 

the next trial. The mean attractiveness ratings for each face ranged from 2.10 to 5.28 

(M = 3.52, SD = .85). The inter-rater reliability was high (Cronbach’s alpha = .94) as 

has been shown in prior work examining attractiveness judgments (DeBruine et al., 

2007; Rhodes et al., 2001). We selected the most attractive (M = 4.93, SD = .24) and 

most unattractive (M = 2.60, SD = .22) faces identified by our participants as adapting 

and test faces based on these ratings. Due to publishing restrictions, we use faces 
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from Karolinska Directed Emotional Faces database in our figures (Lundqvist, Flykt, 

& Öhman, 1998). 

Test Faces. Using MorphMan 2016 (STOIK Imaging, Moscow, Russia), we 

morphed the top two attractive faces together to create our most attractive target/test 

face. We did this as we wanted to make our highly attractive face even more attractive, 

and face averaging achieves this goal as average faces are rated more attractive than 

their non-average counterparts (DeBruine et al., 2007; Perrett et al., 1994). This face 

was then morphed with the most unattractive face to create a sequence of seven, 

incrementally spaced, morph continua test faces; we did not average the most 

unattractive face as we wanted to have the most unattractive face possible. The 

morphed faces were separated by units in proportions of 1/7th attractiveness. For 

example, the most attractive morph which contained 100% of the attractive face (and 

0% of the unattractive face) was equal to 1 attractiveness unit; the least attractive 

morph with 0% of the synthesized attractive face and 100% of the unattractive face 
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was equal to 0 attractiveness units. All test stimuli subtended a horizontal and vertical 

visual angle of 1.80° × 2.40° respectively.  

Adapting Faces. After selecting the most unattractive face from the Oslo face 

database for the test face, we selected the six most attractive faces and the six most 

unattractive faces from the remaining faces as the adapting stimuli. There were three 

types of adapting faces: all 6 most attractive faces; all 6 most unattractive faces; or a 

mixture of 3 most attractive and 3 most unattractive faces (randomly selected from 

the 6 attractive and 6 unattractive faces). These faces were displayed at the same size 

as the test faces. 

Procedure 

We used a block design comprising three experimental blocks and one baseline 

block. In the attractive adaptation block, the 6 presented adapting faces were the 6 

most attractive faces. In the unattractive block, the faces were the most unattractive 

faces. In the mixed block, 3 of the attractive faces and 3 of the unattractive faces 
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were presented. In the baseline condition block, only the test face was presented with 

no adapting faces. We favored a block design as it meant that participants were 

judging the test faces within a consistent group context within each block. In each 

trial, the test stimulus presented was one of the morphed faces selected at random. 

Each trial was initiated with a central fixation cross for 500 ms. This cross would be 

present in all trials and participants were requested to remain fixated at the cross at 

all times. The 6 adapting faces would then surround the central fixation cross in a 

hexagon fashion (See Figure 4.1) for 1 s. A 400 ms interstimulus interval would then 

occur with only the fixation cross present, before the test face’s presentation, 

superimposed under the fixation cross, for 200 ms. Therefore, the test face was 

presented onscreen after the group of 6 adapting faces, as is usual in adaptation 

studies (Rhodes et al., 2003; Webster et al., 2004; Ying & Xu, 2017). There was no 

spatial overlap among the adapting and test faces, so any adaptation aftereffects 

arising would not be low-level retinotopic effects but instead require higher level 
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adaptation (Rhodes et al., 2003). A final screen with only the fixation would then be 

presented until participants pressed the key response to indicate whether the test face 

was attractive or unattractive (‘A’ for attractive, ‘S’ for unattractive). This screen 

commenced with a 50 ms noise sound to alert participants to respond, with their 

response starting the next trial (Figure 4.2).  

 

Figure 4.1. An example of the adapting faces used in Experiment 1 (the demonstrated faces are AF01NES, 

AF06NES, AF08NES, AF17NES, AF20NES, and AF34NES from KDEF database). (A)  The 6 adapting faces 

formed a hexagon. In the experiment, the central fixation cross was right in the center of them. (B) The schematic 

of the relative locations of the stimuli. The test face was presented in the central position (the intersection of the 

three lines) of Cartesian coordinates. The locations of the central points of the adapting faces are at the endpoints 

of each line; the coordinates are the relevant location for each adapting face. For example, the top left surrounding 

face is 1.13° to the left and 2.16° above the fixation cross. 
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In each block, each test face was presented 10 times (in random sequences) 

making a total of 70 trials in each block. Similarly, the locations of the six adapting 

face identities were also shuffled randomly around the hexagon. Each block lasted 

around seven minutes, and there was a seven-minute rest in between consecutive 

blocks to avoid any carryover effects. The order of the blocks was randomized for 

each subject. Data collection initiated after sufficient practice trials. 

 

Figure 4.2. The sequence of an adaptation trial (the demonstrated faces are AF01NES, AF06NES, AF08NES, 

AF17NES, AF20NES, AF26NES, and AF34NES from KDEF database). Subjects pressed the space bar to start 

a block. After 500 ms, the adaptors, six faces appeared at the screen for 1 s. The locations of the adaptors are the 

same as the surrounding faces in Figure 4.1. Then after a 400 ms interval, the test face appeared at the center of 
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the screen for 200 ms. Subsequently, a beep sound prompted subjects to judge the attractiveness of the central 

face by pressing the ‘A’ button for attractive, or the ‘S’ button for unattractive. 

Data analysis 

The calculation of PSE was adapted from previous studies. The adaptation 

aftereffect (and friend effect in later experiments) was quantified as the difference 

between the PSE of each experimental condition relative to the baseline. We used 

repeated measures ANOVA and pairwise comparisons (Bonferroni corrected) to 

compare subjects’ PSEs for different conditions. The means derived from the 

attractiveness of the adapting faces were calculated by averaging the ratings of each 

adapting face by each subject individually.  

Considering the fact that all participants were repeatedly measured under three 

adaptation conditions, we used repeated measures correlation analysis (Bakdash & 

Marusich, 2017) to measure the correlation. The statistical analyses were conducted 

in R 3.4.3 (R Core Team, Vienna, Austria), Matlab R2010a (Mathworks, MA, USA) 
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and SPSS Statistics 22 (IBM, NY, USA). 

4.1.2. Results and Brief Discussion 

The results from all participants averaged together are presented in Figure 4.3A. 

We plotted the proportion of “attractive” responses as a function of the 

“attractiveness” units of the test faces. Adaptation aftereffects can be interpreted 

from the psychometric curve shift. The black dash-dotted line psychometric curve is 

the baseline condition. After exposure to the unattractive faces (solid blue line), there 

was a leftward shift in the psychometric curve relative to baseline. A similar shift, 

albeit in the opposite direction, is present in the attractive group condition (magenta 

dotted line). Moreover, the mixed group, in which the attractive and unattractive 

faces appear to cancel each other out, shows no shift compared to the baseline (cyan 

dashed line). The psychometric curves in the attractive and unattractive conditions 

illustrate the existence of classic adaptation aftereffects (Webster & MacLeod, 2011; 
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Ying & Xu, 2017).  

 

Figure 4.3. The attractiveness adaptation aftereffects of adapting faces with different levels of mean 

attractiveness (Experiment 3.1). (A) The psychometric functions of all subjects averaged together. ‘Baseline’ 

represents the baseline condition without any adapting faces (black star, black dash-dotted line). ‘Attractive 

Adapting’ represents the attractive adaptation condition with six attractive faces during adaptation (magenta 
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triangle, dotted line). Error bar indicates the standard error of the mean. ‘Mixed Adapting’ represents the mixed 

adaptation condition with three attractive and three unattractive faces during adaptation (cyan square, cyan 

dashed line). ‘Unattractive Adapting’ represents the unattractive adaptation condition with six unattractive faces 

during adaptation (blue circle, blue solid line). (B) Summary of all 20 subjects’ results. For each condition, the 

average PSE relative to the baseline condition and the 95% confidence intervals were plotted. The p value shown 

for each condition in the figure was calculated against the baseline condition using two-tailed paired t tests. Note 

that a more negative adaptation aftereffect measured by PSE shift indicates that the test faces were perceived as 

more attractive than with no adaptation. (C) The attractiveness adaptation aftereffects as a function of the mean 

attractiveness ratings of the adapting faces. Each data point is derived from the mean attractiveness rating of the 

adapting faces and their aftereffect from a single observer for each adaptation condition. Thus, each participant 

has his/her own correlation line fitted to the data points, of the same color. Taken together, the size of adaptation 

aftereffects and the mean attractiveness ratings correlated significantly (r = .81, p < .001, 95% CI [0.67, 0.90]).   

We then compared the mean PSEs relative to the baseline of all 20 subjects to 

quantify the facial attractiveness adaptation aftereffect (Figure 4.3B). The Shapiro-

Wilk tests indicate that all data follow normal distributions, ps > 0.15. Positive values 

represent the rightward (less attractive judgment) shifts of the respective 

psychometric curves; and negative values represent the leftward (more attractive 

judgment) shifts of the respective psychometric curves. Paired t-tests revealed 

significant negative adaptation aftereffects in the unattractive (i.e., test faces were 
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more likely to be judged as attractive; M = - 5.96%, SEM = .01; t(19) = - 4.33, p 

< .001, Cohen’s d = 0.97, 95% CI [- 0.09, - 0.03]) and positive aftereffects in the 

attractive (i.e., test faces more likely to be judged as not attractive; M = 6.16%, SEM 

= .01; t(19) = 5.49, p < .001, Cohen’s d = 1.23, 95% CI [0.04, 0.09]) conditions. By 

contrast, the mixed adapting faces yielded no significant aftereffects (M = - 1.12%, 

SEM = .01; t(19) = - .88, p = .388, Cohen’s d = 0.20, 95% CI [- 0.04, 0.02]). A 

repeated measures ANOVA also indicated significant differences among all three 

adaptation conditions (F(2,38) = 33.48 , p  < .001 , ηp2 = .64). Further comparisons 

indicated significant differences between the unattractive and the attractive (t(19) = 

7.63, p < .001, Cohen’s d = 1.71) conditions, and between the unattractive and mixed 

conditions (t(19) = 3.16, p = .005, Cohen’s d = .71). A significant difference was also 

found between the mixed and attractive adaptation conditions (t(19) = 5.43, p < .001, 

Cohen’s d = 1.22).  

To investigate if ensemble averaging shapes adaptation, we analyzed the 
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repeated measures correlation between the adaptation aftereffects and the mean 

attractiveness ratings across all group conditions (Figure 4.3C). A significant 

association was revealed between these mean attractiveness ratings and the size of 

the aftereffects (r = .81, p < .001, 95% CI [0.67, 0.90]). Ensemble averaging, 

therefore, appears to drive the creation of a new attractiveness norm which then acts 

as a virtual adapting stimulus.  

4.2. Experiment 3.2. The adaptation aftereffect is subject to the 

ensemble perception of the adaptors 

Experiment 3.1 showed that a group of faces could produce adaptation 

aftereffects. We wondered if this occurred from an averaging or summation process. 

In Experiment 3.2 we tested these possibilities in a number of different ways. First, 

we generated a morphed average face (Figure 4.4B) from the attractive face group 

(Figure 4.4A) and examined whether it could generate similar attractiveness 
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aftereffects; if ensemble averaging was occurring, then the attractive group should 

produce adaptation aftereffects that are equal to their morphed average group, as the 

means of both groups are equal.  

The second way we tested summation versus averaging was to assess whether 

ensemble adaptation led to distinct aftereffects when compared to the processing of 

an individual face (Figure 4.4C) from the group (Figure 4.4A). If summation was 

occurring, then the adaptation aftereffects produced by the single face should be 

roughly equivalent to 1/6th of the attractive group of faces. Similarly, the aftereffect 

by adapting to a group of the same single face presented in six locations at the same 

time (Figure 4.4D) should be larger than that produced by the single face (Figure 

4.4C). Please note, our reason for picking only the attractive faces was simply due to 

the impractical time constraints of testing all possible permutations from Experiment 

3.1. And also, we are aware that the attention distribution might be different between 

the ‘Single1’ and ‘Single6’ conditions; however, testing the ‘Single1’ condition could 
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offer us a unique chance to check whether the adaptation aftereffect of the ‘Single6’ 

condition is just a summation of the adaptation aftereffects of each individual 

adapting faces or not.  

4.2.1. Methods 

Subjects, Apparatus, Stimuli, and Procedure 

Thirty new participants took part in this experiment (two of them are authors). 

We chose this sample size for two reasons. The result of power analysis (using 

G*Power 3.1 software, basing on ηp2 = .64 from Experiment 3.1, with α-value at .05, 

and power (1 – β) at .80) indicated that we need at least 6 participants. We further 

considered that recently Pegors and colleagues used 30 as the sample size (2015) in 

their facial attractiveness adaptation study. Therefore, we chose 30 as the sample size 

of the current experiment. We used the same lab setting, analysis, and the face dataset 

as in Experiment 3.1, except for a couple of changes.  
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Firstly, to rule out the possible confounding factor from the overlap between the 

test faces and adapting faces, we created a new stream of the testing faces and 

carefully selected adapting faces. In this experiment, under the same manipulation, 

the new testing faces are a morph continuous of the most attractive face and the least 

attractive face from the face database (based on Experiment 3.1). The adapting faces 

are the six most attractive faces and the six least attractive faces from the rest of the 

database. Therefore, the test faces and the adapting faces are from different identities. 

As in Experiment 3.1, the faces are cropped with an oval shape mask. Moreover, the 

luminance of the faces was further equalized by the SHINE toolbox (Willenbockel 

et al., 2010). 

Secondly, as aforementioned, we have four different adaptation conditions 

(Figure 4). For the AVE condition, we created the averaged face of the adaptors using 

the Webmorph software (DeBruine & Tiddeman, 2017) to average all of the faces 

from the attractive group (Figure 4.4A). For the Single1 condition, we picked one of 
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the faces (note that, this face is not the most attractive one from the candidates; we 

picked it up randomly) from the attractive group adaptors and presented it at one of 

the 6 locations randomly from trial to trial. To match the low-level features with the 

ATT condition, we created scrambled faces from the rest of the attractive adaptors 

respectively via the Webmorph software (DeBruine & Tiddeman, 2017), and 

presented the scrambled faces in the other 5 adapting locations in the group. Finally, 

we created the Single6 group by simply presenting the Single1 face in all six 

adaptation locations (Figure 4.4D). 

 

Figure 4.4. The adapting faces for Experiment 3.2 (the demonstrated faces are AF01NES, AF06NES, 

AF08NES, AF17NES, AF20NES, AF26NES, and the averaged face of them from KDEF database). (A) The 

attractive adaptors (ATT) condition. (B) The averaged face (AVE) condition, the faces are all the averaged face 

of the six attractive adapting faces. (C) The single face with scrambled faces (Single1) condition. (D) The single 

face repeated six-time (Single 6) condition. 
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4.2.2. Results and Brief Discussion 

The results from all participants averaged together are presented in Figure 4.5A. 

We plotted the fraction of ‘attractive’ responses as a function of the attractiveness 

units of the test faces. The adaptation aftereffect can be interpreted from the 

psychometric curve shift: the leftward shift means the test faces are perceived as 

more attractive, and the rightward shift means the test faces are perceived as less 

attractive. All four conditions generated significant rightward shifts. Moreover, there 

is no significant difference between the PSE shifts of the ATT and AVE pair, as well 

as the Single1 and Single6 pair. 
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Figure 4.5. The attractiveness adaptation aftereffects of surrounding faces with different levels of mean 

attractiveness (Experiment 3.2). (A) The psychometric functions of all participants averaged together. ‘Baseline’ 

represents the baseline condition without any adapting faces (black star, black dash-dotted line). ‘ATT’ represents 

the attractive adapting faces condition with six attractive faces (blue circle, solid line). Error bar indicates the 

standard error of the mean. ‘AVE’ represents the AVE adaptation condition with six averaged faces of the ATT 

condition (cyan square, dashed line). ‘Single1’ represents the Single1 adaptation condition with one attractive 

face and the scrambled faces of the other five attractive faces (red triangle, dotted line). ‘Single6’ represents the 

Single6 adaptation condition with six repetitions of one attractive face during adaptation (magenta X, solid line). 

(B) Summary of all 30 participants’ results. The p-value above each bar was calculated against the baseline 

condition using the pairwise comparison (Bonferroni corrected). Note that, a more positive adaptation aftereffect 

measured by PSE shift indicates that the target faces were perceived as less attractive than on their own. 

The summary of the adaptation aftereffects measured by PSE shift is illustrated 

in Figure 4.5B. The Shapiro-Wilk tests indicate that all data but those from AVE 

condition follow normal distributions, ps > 0.15. Ghasemi & Zahediasl (2012) 
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suggested that with the current sample size ‘… we can use parametric procedures 

even when the data are not normally distributed’. Therefore, we still applied 

parametric analysis in here. Compared to the baseline PSE, the ATT (M = 10.37%, 

SEM = .022; t(29) = 4.81, p < .001, Cohen’s d = 0.88,  95% CI [0.06, 0.15]) , AVE 

(M = 12.30%, SEM = .022; t(29) = 5.69 p < .001, Cohen’s d = 1.04, 95% CI [0.08, 

0.17]), Single1 (M = 5.13%, SEM = .014; t(29) =  3.74, p = .001, Cohen’s d = 0.43, 

95% CI [0.2, 0.8]), and Single6 (M = 5.00%, SEM = .010; t(29) =  5.15, p < .001, 

Cohen’s d = 0.42, 95% CI [0.3, 0.7]) conditions all generate significant adaptation 

aftereffects. A repeated measures analysis of variance (ANOVA) also indicated 

significant differences among all four adaptation conditions (Mauchly’s test 

indicated that the assumption of sphericity was violated, χ2(5) = 14.47, p = .013; thus 

the degree of freedoms were corrected using Greenhouse-Geisser estimates of 

sphericity (ε = .73); F(2.18,63.13) = 9.72 , p < .001 , ηp2 = .25). Further Bonferroni 

corrected pairwise comparisons indicated that there were no significant differences 
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between the ATT and AVE conditions (t(29)=1.52, p = .84, Cohen’s d = .28), nor the 

Single1 and Single6 conditions (t(29)=.124, p = 1.00, Cohen’s d = .023). Moreover, 

both ATT and AVE conditions generated significantly larger aftereffects than both 

Single1 and Single6 conditions (all ps < .031). Finally, the correlation analysis 

indicated that there were significant correlations between ATT and AVE conditions 

(r = .83, p < .001, 95% CI [0.66, 0.91]), as well as between Single1 and Single6 

conditions (r = .44, p = .015, 95% CI [0.10, 0.70]). Noticeably, the adaptation 

aftereffect of the Single1 condition (M = 5.13%) was much larger than 1/6 of those 

of the ATT and Single6 conditions (10.37% and 5.00%, respectively). In order to test 

whether the Single1 face’s adaptation aftereffects were a 1/6th of the ATT group’s 

aftereffects, we performed a one-sample t-test on the Single1 condition’s aftereffects, 

comparing to the 1/6th of the ATT group’s mean aftereffect value (M = 1.73%). The 

aftereffects in the Single1 condition were significantly larger than this value 

(t(29)=2.41, p = .019; Cohen’s d = 1.43), hence indicating that the ATT group’s 
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aftereffects were unlikely to have arisen through summation. 

In summary, our results from the first two experiments indicate that adaptation 

aftereffects can arise from a group of faces. Moreover, these effects do not appear to 

be the result of each individual face being adapted to and summed together, but 

instead, the aftereffects seem equal to those produced by their averaged counterparts 

(ATT and AVE conditions). Similarly, a single face (Single1) produced equivalent 

aftereffects to those resulting from a group of the same face (Single6). These findings 

taken together support the hypothesis that the brain averages the faces in a scene 

together to produce adaptation aftereffects. From this, we were therefore curious if 

ensembles of faces influenced another face perception phenomenon related to facial 

attractiveness: the ‘friend effect’. Specifically, how does this friend effect vary with 

the attractiveness of the surrounding faces?  
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4.3. Experiment 3.3 We look better with unattractive friends 

In the previous two experiments, we found that ensemble statistics could 

influence face adaptation. We were therefore curious if ensemble perception could 

also influence another phenomenon related to face perception: the friend effect. The 

friend effect is characterized by an individual face being perceived as more attractive 

when it is viewed in the presence of other faces (‘friends’), in contrast to when it is 

judged in isolation by itself (Walker & Vul, 2014). We wanted to test whether 

ensemble perception could similarly modulate the magnitude of this friend effect as 

we had observed in our adaptation studies. Therefore, we asked participants to judge 

the facial attractiveness of a central target face when it was either presented by itself 

in a baseline condition or surrounded by a group of faces that were attractive, 

unattractive or mixed (the ‘friend’ conditions). By employing such a paradigm, we 

would be able to ascertain what, if any, influence ensemble perception was likely 
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having on the friend effect. Moreover, by using the same faces between the first 

experiment and this one, we would be able to directly study whether there is any 

relationship between the friend effect and face adaptation.  

There are a number of competing theories for how ensemble perception may 

influence the friend effect. The first, an averaging effect postulated by Walker and 

Vul (2014), predicts that faces are more attractive when judged in the crowd due to 

the crowd biasing the perception of that face towards the group’s average, and thus 

more attractive. If this is the case, then faces judged in an unattractive crowd should 

be judged as less attractive than those faces when judged in an attractive crowd. This 

is because the average attractiveness of an unattractive crowd is less than that of an 

attractive crowd (DeBruine et al., 2007; Little, 2007; Perrett et al., 1994). 

Alternatively, the friend effect might be explained by a contrastive adaptation effect, 

as we saw in Experiment 3.1, whereby a new norm is created from the surrounding 

crowd which then influences the attractiveness ratings of the central face. Thus, being 
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judged in an attractive crowd will make a face appear less attractive than when 

judged in an unattractive crowd. Under such circumstances, a group of faces’ mean 

attractiveness should predict their adaptation aftereffects and friend effects. As these 

latter two are shaped by ensemble statistics, we would anticipate a significant 

relationship between them too. Finally, there may be a social positive effect, where 

the mere presence of ‘friends’ boosts your attractiveness irrespective of their looks. 

This latter effect may, however, also occur concurrently with the averaging or 

contrastive theories we described above. We examined these hypotheses in 

Experiment 3.3. 

4.3.1. Methods 

Subjects, Apparatus, Stimuli, and Procedure 

The same 20 subjects from Experiment 3.1 participated in this experiment. 

From the post-hoc power analysis (with α-value of .05, ηp2 = .35, G*Power 3.1), we 
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found this sample size is sufficient to yield a high power: 1 – β = .98. We used the 

same lab setting and stimuli as in Experiment 3.1, except for a couple of minor 

adjustments. The key difference was that in the present paradigm, the surrounding 

faces were presented at the same time as the target face (for 1 s, Figure 6).  

The spatial arrangement of the surrounding faces was the same as in Experiment 

3.1. Simultaneously for the same duration, the target face was presented at the center 

of the screen, superimposed under the fixation cross; therefore, the target face was 

presented onscreen within a group of 6 ‘friends’. Note that the duration of the target 

face in this experiment was longer than that of the adaptation experiments; however, 

such a setting allows the ‘groups’ of faces in each condition (i.e., adaptation or friends) 

to be presented for the same duration in each trial across experiments (1 second). 

Thus, the influence of the group of faces can be directly compared. A final screen 

with only the fixation was then be presented until participants pressed the appropriate 

keyboard response to indicate whether the target face was attractive or unattractive 



 

 162 

(‘A’ for attractive, ‘S’ for unattractive). This screen commenced with a 50 ms beep 

noise to alert participants to respond, with their response starting the next trial. 

 

Figure 4.6. The sequence of one example trial (the demonstrated faces are AF01NES, AF06NES, AF08NES, 

AF17NES, AF20NES, AF26NES, and AF34NES from KDEF database). Subjects pressed the space bar to start 

a block. Then after 0.5 s, the target face, surrounded by the other six faces, appeared onscreen for 1 s. Then a 

beep sound prompted subjects to judge the attractiveness of the central face by pressing the ‘A’ button for 

attractive, or the ‘S’ button for unattractive. Experimental details can be found in the method section. 

4.3.2. Results and Brief Discussion 

The results from all participants averaged together are presented in Figure 4.7A. 

We plotted the fraction of ‘attractive’ responses as a function of the attractiveness 
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units of the target faces. The friend effect can be interpreted from a leftward 

psychometric curve shift; whereby larger leftward shifts indicate a larger friend effect. 

The figure indicates that when the target faces were surrounded by either unattractive 

faces (solid blue line), mixed faces (cyan dashed line), or the attractive faces 

(magenta dotted line), all target faces were perceived as more attractive than on their 

own (baseline, black dash-dotted line). Moreover, it appeared that decreasing the 

average attractiveness of the surrounding group led to larger friend effects. The 

summary of the friend effect measured by PSE shift is illustrated in Figure 4.7B. The 

Shapiro-Wilk tests indicated that the data from the ‘attractive surrounding’ condition 

follows normal distribution (p > .54); however, the those from the other two 

conditions do not (ps < .05). Compared to the baseline PSE, the unattractive (M = 

12.70%, SEM = .027; Z = 3.77, p < .001) , mixed (M = 9.21%, SEM = .025; Z = 3.62, 

p < .001), and attractive surrounding faces (M = 5.50%, SEM = .021; t(19) = 2.61, p 

= .017, Cohen’s d = 0.58, 95% CI [0.01, 0.10]) all boosted the attractiveness of the 
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centrally presented target faces. A Friedman test also indicated significant differences 

among all three friend conditions (χ2(2) = 10.33, p = .006). Further Wilcoxon signed-

rank tests indicated that the unattractive condition produced the largest friend effect: 

larger than the attractive (Z = 3.17, p = .002) and larger than mixed friend (Z = 2.09 

p = .036) conditions. Greater friend effects were found in the mixed over the 

attractive condition (Z = 2.28, p = .023).  
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Figure 4.7. The effects of surrounding faces with different levels of group attractiveness (Experiment 3.3). 

(A) The psychometric functions of all participants averaged together. ‘Baseline’ represents the baseline condition 

without any surrounding faces (black star, black dash-dotted line). ‘Attractive Surrounding’ represents the 

attractive surrounding faces condition with six attractive faces (magenta triangle, magenta dotted line). Error bars 

represent the SEMs. ‘Mixed Surrounding’ represents the mixed surrounding faces condition with three attractive 

and three unattractive faces (cyan square, cyan dashed line). ‘Unattractive Surrounding’ represents the 

unattractive surrounding faces condition with six unattractive faces (blue circle, solid blue line). (B) Summary 

of all 20 subjects’ results. For each condition, the Friend effect measured by PSE shift and the 95% confidence 
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intervals were plotted. The p-value above each bar was calculated against the baseline condition using the 

Wilcoxon rank sum tests, and one sample t-test. Note that, a more negative Friend effect measured by PSE shift 

indicates a larger friend effect (target faces were perceived as more attractive than on their own). (C) The friend 

effect as a function of the mean attractiveness rating of the surrounding faces. Magenta triangles represented the 

individual subjects’ mean ratings of attractive surrounding faces. Cyan squares for the mixed surrounding, and 

blue circles for the unattractive surrounding. Taken together, the size of the friend effect and the mean 

attractiveness rating correlated significantly. (D) The magnitude of the attractiveness adaptation aftereffects in 

each condition (relative to the baseline) plotted as a function of the corresponding conditions’ friend effects 

(calculated relative to the no friend baseline). Adaptation aftereffects and the friend effects were significantly 

correlated. 

We specifically predicted that the friend effect might be influenced by ensemble 

perception by forming a new norm from the group’s mean attractiveness ratings. To 

support this hypothesis (Figure 4.7C), we found a significant positive correlation 

between the mean attractiveness ratings for each surrounding group and the score of 

friend effect (r = .63, p < .001, 95% CI [ 0.39, 0.79]). In other words, target faces 

became more attractive as they were surrounded by less attractive friends. This 

indicates that the friend effect is influenced in a way that is consistent with ensemble 

adaptation.  
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To link the prior experience (Experiment 3.1) and contextual (Experiment 3.3) 

effects created via hypothesized ensemble coding, a further repeated measures 

correlation (Figure 4.7D) between the adaptation aftereffects in Experiment 3.1, and 

the friend effects from Experiment 3.3, was performed. The results showed that both 

were significantly associated with one another (r = .65, p < .001, 95% CI [ 0.42, 

0.80]). This further confirms a link between ensemble adaptation and the friend effect, 

whereby both were occurring in a way that is consistent with the underlying ensemble 

representations of facial attractiveness (Figure 4.8). Both adaptation aftereffects and 

friend effects were significantly correlated with the mean attractiveness of the face 

group (r = .81, p < .001; and r = .63, p < .001). This suggests that the mean 

attractiveness of a face group is the common factor associated with both friend effects 

and attractiveness adaptation aftereffects.  
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Figure 4.8. The generalized model from these experiments. The mean attractiveness of the face group 

(ensemble representation) could predict the adaptation aftereffect (Experiment 3.1) and the friend effect 

(Experiment 3.3). In the other words, the adaptation aftereffect and the friend effect were both associated with 

ensemble representations. 

In summary, the results from Experiment 3.3 confirm that an individual’s face 

is perceived as more attractive when it is presented with other faces than when 

presented alone. Our results therefore replicate that of prior work (Carragher et al., 

2018; Walker & Vul, 2014; but see Ojiro et al., 2015).  

 In contrast to Walker and Vul’s ‘basking in reflected glory’ theory of the friend 

effect, we find that the friend effect is negatively determined by the mean 

attractiveness of the surrounding faces: the more unattractive the friends are, the 
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more attractive the target face becomes. The friend effect is therefore not a 

consequence of averaging the target face towards the group’s mean, which should 

have made the faces more attractive in the attractive condition but seems to arise 

from a contrastive effect between the ensemble perception of the ‘friends’ and the 

‘target’. Moreover, if we consider the results from Experiment 3.1 where the ‘Mixed 

Adapting’ condition produced no adaptation aftereffects, the ‘Mixed Surrounding’ 

condition here could be reflective of a baseline friend effect. From this baseline, the 

attractive faces then diminish the effect and the unattractive faces boost it. Our results 

are therefore potentially consistent with the suggestion that the friend effect 

comprises of a social positive effect, where the ‘Mixed’ condition is the baseline of 

this effect, and a contrastive effect, which can then modulate the size of this social 

positive effect. This begs the question as to whether the friend effect is partly driven 

by the presence of surrounding faces, or requires variance between the faces too? To 

answer this question, we tested a new condition in Experiment 4, with identical faces 
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surrounding the target face. 

4.4. Experiment 3.4: Contrastive and variance, but not 

surrounding per se, determine the friend effect 

In this experiment, we not only tried to replicate the findings in Experiment 3.3 

with different groups of participants, but also tried to clarify the mechanisms behind 

the ‘social positve’ effect. We presented our participants with ‘friends’ that were 

identical to the targets (i.e., the target face was surrounded by six copies of itself); 

under such circumstances, the ensemble average of the ‘friends’ in the surrounding 

scene is the same as the target. We therefore anticipated that the contrastive effect 

would not be observed as there is no difference between the ensemble of the scene 

and the target, and so, only a social positive effect should occur when all faces in the 

scene are identical; e.g., the friend effect should be similar to the ‘Mixed Surrounding’ 

condition.  
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However, if the friend effect requires a contrast between the target and ensemble 

perception of the friends, then we might fail to find a friend effect when all faces are 

identical. Support for this possibility come from our adaptation results in Experiment 

3.2, where a single face (Single1) in a scene produced no different aftereffects from 

a group of identical faces (Single6). If we consider that the friend effect arises in part 

due to similar neuronal activation as with adaptation, then we may not find a friend 

effect when all faces are identical. This is because we would expect the same neuron 

populations to be activated for a particular face or its identical copies. Either result 

would give us an important insight into what drives the friend effect. Moreover, we 

had groups of attractive, mixed and unattractive adapting faces similar to those used 

in Experiment 3.1 and 3.2, as well as test faces from Experiment 3.2, in order to 

replicate the friend effect we found in Experiment 3.3. Finally, we used different 

facial identities between adaptation and test faces in order to remove any possible 

confound of identity, much like how we changed the stimuli for Experiment 3.2 in 
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order to counter the same issue in Experiment 3.1.  

4.4.1. Methods 

Subjects, Apparatus, Stimuli, and Procedure 

Thirty new subjects participated in this experiment. We chose 30 as the sample 

size for several reasons. Firstly, using the effect size of Experiment 3.3 (ηp2 = .35), 

power analysis (using G*Power 3.1, with α-value at .05, and power (1 – β) at .80) 

indicated that we need at least 13 participants. Considering the recent literature in 

attractiveness studies using similar paradigms (nmean = 27.8 in Walker & Vul, 2014; 

n= 30 in Pegors et al., 2015), we believed 30 is sufficient for the experiment. 

We used the same lab setting as in Experiment 3.3 and the updated stimuli as in 

Experiment 3.2, except for a small change to the paradigm. As mentioned before, 

apart from the replication of Experiment 3.3, we added the same surrounding 

condition to clarify the impact of social positive effect. Thus, in the new ‘Same 



 

 173 

Surrounding’ condition, the target face was always surrounded by six copies of itself. 

4.4.2. Results and Brief Discussion 

The results from all participants averaged together are presented in Figure 4.9A. 

We plotted the fraction of ‘attractive’ responses as a function of the attractiveness 

units of the test faces. The friend effect can be interpreted from a leftward 

psychometric curve shift; whereby a larger leftward shift indicates a larger friend 

effect. The figure suggests that when the test faces were surrounded by either 

unattractive faces (solid blue line), mixed faces (cyan dashed line), or the attractive 

faces (magenta dotted line). All target faces were perceived as more attractive than 

on their own (baseline with no surrounding faces, black dash-dotted line). However, 

the ‘Same Surrounding’ condition has no obvious shift from the baseline condition, 

which means surrounded by the same face did not increase the attractiveness.  

The summary of the friend effect measured by PSE shift is illustrated in Figure 
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4.9B. The Shaprio-Wilk tests indicate that all data follow normal distributions, ps > 

0.33. Compared to the baseline PSE, the unattractive (M = 12.8%, SEM = .014; t(29) 

= 9.12, p < .001, Cohen’s d = 1.67,  95% CI [0.10, 0.16]) , mixed (M = 8.59%, SEM 

= .012; t(29) = 6.94, p < .001, Cohen’s d = 1.12, 95% CI [0.06, 0.11]), and attractive 

surrounding faces (M = 4.5%, SEM = .010; t(29) =  4.52, p < .001, Cohen’s d = 0.59, 

95% CI [0.2, 0.7]) all boosted the attractiveness of the centrally presented test faces. 

However, the same face surrounding condition failed to invoke a significant PSE 

shift (M = 1.4%, SEM = .0093; t(29) = 1.46, p = .154, Cohen’s d = .018, 95% CI 

[-.005, 0.03]). A repeated measures analysis of variance (ANOVA) also indicated 

significant differences among all four conditions (Mauchly’s test indicated that the 

assumption of sphericity was violated, χ2(5) = 13.53, p = .01; thus the degrees of 

freedom were corrected using Greenhouse-Geisser estimates of sphericity (ε = .74); 

F(2.23,64.66) = 35.12 , p < .001 , ηp2 = .55). Further pairwise comparisons indicated 

that the unattractive condition produced the largest friend effect: larger than the 
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mixed (p = .002), attractive surrounding (p < .001) conditions, and the same 

surrounding condition (p < .001). Similarly, greater friend effects were found in the 

mixed over the attractive condition (p = .002) and over the same surrounding 

condition (p < .001). Finally, greater friend effects were found in the attractive over 

the same surrounding condition (p = .009). 

We further validated whether the friend effect is influenced by ensemble 

perception by forming a new norm from the group’s mean attractiveness ratings. 

Using repeated measures correlation analysis, we found a significant positive 

correlation (Figure 4.9C) between the mean attractiveness ratings for the three 

surrounding group and the score of friend effect (r = .54, p < .001, 95% CI [ 0.33, 

0.70]). 
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Figure 4.9. The effects of surrounding faces with different levels of group attractiveness (Experiment 3.4). 

(A) The psychometric functions of all participants averaged together. ‘Baseline’ represents the baseline condition 

without any surrounding faces (black star, black dash-dotted line). ‘Attractive Surrounding’ represents the 

attractive surrounding faces condition with six attractive faces (magenta triangle, magenta dotted line). Error bars 

represent SEMs. ‘Mixed Surrounding’ represents the mixed surrounding faces condition with three attractive and 

three unattractive faces (cyan square, cyan dashed line). ‘Unattractive Surrounding’ represents the unattractive 

surrounding faces condition with six unattractive faces (blue circle, solid blue line). ‘Same Surrounding’ 

represents the condition in which the target and 6 surrounding faces are identical (green X, solid green line). (B) 
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Summary of all 30 participants’ results. For each condition, the Friend effect measured by PSE shift and the 95% 

confidence intervals were plotted. The p-value above each bar was calculated against the baseline condition using 

the pairwise comparison (Bonferroni corrected). Note that, a more negative Friend effect measured by PSE shift 

indicates a larger friend effect (target faces were perceived as more attractive than on their own). (C) The friend 

effect as a function of the mean attractiveness rating of the surrounding faces. Magenta triangles represented the 

individual subjects mean ratings of attractive surrounding faces. Cyan squares for the mixed surrounding, and 

blue circles for the unattractive surrounding. Taken together, the size of the friend effect and the mean 

attractiveness rating correlated significantly, as in Experiment 3.3. 

Therefore, this study replicated the findings of Experiment 3.3. Moreover, it 

further clarifies that the ‘friend effect’ cannot be elicited by the mere presence of 

other, identical faces. Instead, it appears that there needs to be some variance between 

the faces in order for the friend effect to become engaged. 

4.5. Discussion 

In the first two experiments, the data showed that ensemble statistics of 

previously viewed groups could shape subsequent attractiveness judgments in the 

form of adaptation aftereffects. These judgments were correlated with the underlying 

mean attractiveness of the adapting group of faces, indicating that spatial ensemble 
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perception was arising and producing attractiveness adaptation. Similarly, in 

Experiment 3.3 & 3.4, we tested whether the company we keep changes how others 

perceive our attractiveness. As expected, being surrounded by an increasingly 

unattractive group leads to you being more likely to be judged as attractive, causing 

a contrastive ‘bring out the beauty’ effect. The participants’ mean ratings of 

attractiveness of the surrounding faces were correlated with the size of their friend 

effects. Overall, it would seem that the brain can average the attractiveness of a group 

of faces together involuntarily, to form a new norm which target faces can be 

implicitly judged against. These findings may, therefore, indicate an evolutionary 

advantage in rapidly assessing a mate’s worth against past (adaptation) and present 

(friend effect) experiences. Overall, the adaptation and friend effect are two 

important face perception phenomena that are predicted in a fashion consistent with 

ensemble statistics. 

Previous studies in facial attractiveness adaptation have tended to use 
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configurally distorted faces as their adaptors (Rhodes et al., 2003). For instance, 

Anzures and Mondloch (Anzures & Mondloch, 2009) adapted children and adults to 

compressed and expanded faces to probe attractiveness perception. In this study, 

adaptors were natural faces without distortion, yet we still observed large aftereffects 

(similar to Webster et al., 2004; Webster & MacLeod, 2011). To our knowledge, the 

present study is the first that tests facial attractiveness adaptation through the use of 

natural, undistorted faces. Also, our aftereffects seem incompatible with a low-level 

retinotopic adaptation explanation (Afraz & Cavanagh, 2008; Leopold et al., 2001), 

as the adaptors and the test faces were presented in non-overlapping spatial locations 

in first two experiments. Such incongruence between adaptors and test face is 

typically thought to counteract low level retinotopic effects (Adams, Gray, Garner, 

& Graf, 2010; Leopold et al., 2001) and thus indicates the ensemble perception 

occurs at a higher level of face perception (Haxby & Gobbini, 2011; O’Doherty et 

al., 2003). Similarly, they support the suggestion that the perception of facial 
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attractiveness is not entirely innate but can be shaped quite considerably by both 

context and experience (Ewing et al., 2010; Furl, 2016; Jones et al., 2007; Little et 

al., 2001; Little et al., 2011; Rhodes et al., 2003; Stormer & Alvarez, 2016). 

In Experiment 3.2 we further confirmed that it is the ensemble coding of the 

crowd that drives adaptation aftereffects. Interestingly, the mere presence of multiple 

same faces in the crowd does not increase the adaptation aftereffect of a single face 

(Single1 vs Single6). Thus, these results clarify that the adaptation aftereffect derived 

from a crowd comes about through averaging, and not the summation of the 

individual faces. Moreover, by using different identities of adaptors and the target 

face (Experiment 3.2), we further clarified that the observed adaptation aftereffect 

can be only attributed to the facial attractiveness adaptation, rather than a 

consequence of facial identity adaptation. 

Experiment 3.3 suggests that being in the presence of increasingly unattractive 

faces leads to greater friend effects, which is incongruent with the inferred prediction 
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from Walker and Vul that attractive friends should make one more attractive (Walker 

& Vul, 2014). While the friend effect seems altered by ensemble perception, there is 

still a robust boost in the target face’s attractiveness regardless of the surrounding 

faces’ mean attractiveness. The findings of Experiment 3.3 are, however, still open 

to the interpretation that the friend effect is comprised of two components: a 

contrastive effect and a social positive effect. The results from Experiment 3.4 not 

only replicated the major findings from Experiment 3.3, but also clarified that the 

mere presence of faces (the ‘Same Surrounding’ condition) does not increase the 

attractiveness ratings of the central target face. Therefore, while the friend effect 

seems modulated by the contrast between the ensemble representation of the 

surrounding faces and the central target face, there needs to be variance between 

these faces (i.e., they cannot be identical) for the social positive component of the 

friend effect to become engaged.  

Why should a face always be more attractive when viewed in a crowd? 
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Moreover, why does the attractiveness of the target face decrease when that of the 

surrounding faces increased? As mentioned earlier, we believe that the friend effect 

might have two components. The first component seems to be a social positive effect 

generated by the surrounding faces. The second is a contrastive effect between the 

target and the ensemble representation (mean attractiveness) of the surrounding faces. 

We therefore believe that the second component can be explained by ensemble 

neuronal habituation, similar to the ensemble adaptation aftereffects observed in 

Experiment 3.1 & 3.2. For example, prior work has shown that the specific neurons 

responsible for face perception in the inferior temporal cortex have large receptive 

fields and position invariance (Barraclough & Perrett, 2011; Gross et al., 1972; 

Desimone et al., 1984; Desimone, 1991; Tsao & Livingstone 2008). When the 

identical faces are presented at different locations (‘Same Surrounding’ condition), 

they may activate the same population of neurons as the single face in isolation (i.e., 

the ‘Baseline’ condition where there were no surrounding faces). This explains why 
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there was no social positive effect in the ‘Same Surrounding’ condition in Experiment 

3.4.  

When the faces in a scene have variance by being different identities, we would 

expect each face to activate different populations of neurons from those of the 

baseline condition. We believe that when these additional face selective neurons are 

activated to detect multiple faces, it can allow the target to be appraised as more 

attractive because of this apparent popularity. While attending to the target face, and 

multiple faces have been detected in the scene, the brain can then engage a 

contrastive effect (Luck et al., 1997). This could explain why we always observe a 

friend effect, even when the friends are attractive. For example, in the ‘Attractive 

Surrounding’ condition, the social positive effect and the contrastive effect both 

occurred, but the social positive effect is always present due to the detection of 

variance in the faces preventing the contrastive effect from eradicating it entirely or 

reversing it. Future neuroimaging work will, however, be required to clarify the 
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neural mechanisms of the social positive effect. 

It should be noted that we are not claiming ensemble coding cannot occur when 

there is no variance in the scene. For example, Luo and Zhou (2018) recently showed 

variability is not required for ensemble perception of facial attractiveness to arise. 

Instead, for the friend effect to occur, variance is required. We have demonstrated 

this through the ‘missing’ friend effect in the identical face (the ‘Same Surrounding’ 

condition) in Experiment 3.4. Similarly, there appeared to be nothing special with 

respect to adapting to an ensemble of identical faces when compared to the single 

face in Experiment 3.2. Based upon our current experiments, however, we are unable 

to answer whether or not the target face is included in the ensemble representation.  

The observed friend effect seems similar to the center-surround inhibition in 

low-level vision: the appearance of other stimuli around the target ‘suppress’ the 

perception of the target stimuli. However, we believe the friend effect is not likely to 

be a process which is similar to center-surround effects in low-level visual 
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dimensions. The center-surround inhibition describes the fact that the response of a 

neuron (e.g. in the medial temporal visual area) to a favored stimulus in the classical 

receptive field would be inhibited by the simultaneous appearance of other stimuli 

outside of the classical receptive field (e.g. Allman, Miezin, & McGuinness, 1985). 

However, in our Experiment 3.3 and 3.4, the spatial arrangement of the stimuli 

ensured that the faces were within the classical receptive fields of the face processing 

neurons: face perception related neurons in the inferior temporal cortex have large 

receptive fields and position invariance (Barraclough & Perrett, 2011; Gross et al., 

1972; Desimone et al., 1984; Desimone, 1991; Tsao & Livingstone 2008). Moreover, 

if the friend effect is a face-level center-surround inhibition, then the ‘same 

surrounding’ condition should generate an attractive boost. However, the 

insignificant friend effect from the ‘same surrounding’ condition further suggests that 

the mere appearance of faces around the target face does not alter the friend effect, 

and thus the observed friend effect is not face-level center-surround inhibition. Future 
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research may consider using other direct measurements to further clarify the 

similarity and difference between the friend effect and the center-surround inhibition. 

In Experiment 3.2 the ‘Single1’ condition was quite different from the other 

three adaptation conditions: the other three conditions had six faces in the adaptor, 

while the ‘Single1’ condition had one intact face and five scrambled facial images. 

Such a design offered us a chance to directly compare the adaptation aftereffect of 

one face (‘Single1’) against that of a group of the same faces (‘Single6’) and clarify 

whether the observed adaptation aftereffects in Experiment 3.1 was an averaging 

(ensemble) or a summation (a cumulative effect caused by multiple faces) process. 

The observed similar adaptation aftereffects supported the ensemble averaging 

notion. We have to admit, to a certain extent, that the participants may have casted 

their attention in different manners in ‘Single1’ and ‘Single6’ conditions. For instance, 

the single intact face in the ‘Single1’ condition should attract more attention than any 

of its copies in the ‘Single6’ condition: faces attract attention in an automatic fashion, 
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and our visual system is biased to faces over other visual stimuli (Palmer & Rhodes, 

2007). Therefore, it is reasonable to say that the participants tend to pay more 

attention to the single intact face over the five scramble images. However, the design 

itself was to clarify the mechanisms behind the observed aftereffects. So, to examine 

the so-called ‘summation’ hypothesis, we have to check whether the aftereffect of 

the ‘Single6’ condition is a summation of adaptation aftereffects to each individual 

face (six times of the aftereffect of ‘Singe1’).  

It is remarkable that ensemble perception occurs in adaptation and the friend 

effect experiments even though participants were never instructed to look directly at 

the group of surrounding faces, and in the case of Experiments 3.3 and 3.4, only paid 

attention to the single target face in the center of the face crowd. This suggests that 

ensemble perception can occur regardless of directed attention and supports the claim 

that such perception is an involuntary process. Similarly, the fact that our participants 

never look directly at the faces would seem to indicate that they were not simply 
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‘picking’ a single face out of the group to base their judgments upon. This suggestion 

is further supported by the correlations between the mean attractiveness ratings of 

the underlying groups and the friend/adaptation effects. Our current study supports 

the suggestion that ensemble perception occurs for facial attractiveness adaptation, 

in addition to emotion adaptation (Ying & Xu, 2017). These findings fit with the 

view that ensemble perception likely arose through an evolutionary advantage at 

being able to judge the attractiveness of any particular face against recent and current 

experiences. However, such high-level ensemble coding is likely to have arisen from 

a precursor system that initially processes lower level information such as contours 

and textures in the environment. One could imagine that as man became a more social 

creature, then this process was developed for complex, higher level social 

information such as attractiveness. In any case, this perspective suggests that other 

aspects of facial social traits (Oosterhof & Todorov, 2008), such as trustworthiness 

or dominance, might also be susceptible to ensemble encoding.  
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In summary, this study with four experiments has provided evidence that 

supports the ubiquitousness of ensemble coding in shaping face perception. The 

converging data has further confirmed the robustness and replicability of the friend 

effect, whereby simply being in the company of friends, at least different looking 

from the target, makes an individual look more attractive. Similarly, if the viewer has 

prior exposure to unattractive groups of faces, then a face will again seem more 

attractive when subsequently viewed by comparison. If individuals therefore want to 

maximize their mating competitiveness by seeming more desirable, they should 

surround themselves with unattractive friends or appear after them. 
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Chapter V: Study 4: Attention Modulates the Ensemble 

Coding of Facial Expressions 

What is the relationship between attention and ensemble statistics? Recent 

evidence in ensemble coding of size suggested that the attended items contributed 

more to the averaging (Chong & Treisman, 2005; de Fockert & Marchant, 2008; Li 

& Yeh, 2017). Moreover, some new evidence showed that the perceptual averaging 

requires attention: when attention was biased to the secondary task, subjects were 

unable to average the emotion between faces (Elias et al., 2017). Thus, it is possible 

that attention would modulate high-level ensemble statistics. 

However, there are reasons to be skeptical that attention could interfere with the 

ensemble statistics of facial expressions. Facial expressions are processed through 

both cortical and subcortical pathways (Haxby & Gobbini, 2011; Haxby et al., 2000, 

2002; Johnson, 2005; Kleinhans et al., 2011; Lovejoy & Krauzlis, 2010; Nguyen et 
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al., 2016): cortical regions like superior temporal sulcus (STS), insular, orbitofrontal 

cortex (OFC); subcortical regions like amygdala, pulvinar, superior colliculus (SC). 

A substantial body of evidence from brain imaging studies suggests that face 

processing in the amygdala is hardly affected by attention modulation, while cortical 

face processing (e.g. STS) is gated by spatial attention (Holmes et al., 2003; 

Vuilleumier et al., 2001). Consequently, attention might not necessarily impact the 

ensemble coding of facial expressions. If the ensemble coding of facial expressions 

occurs in the amygdala but not the other attention sensitive face processing regions, 

then attention would not impact the ensemble coding, and vice versa. Therefore, 

examining the relationship between attention and the ensemble statistics of facial 

expression might not only clarify the computation of ensemble coding but also hint 

at the neural mechanism of the ensemble coding. 

In brief, this study aims to clarify that whether and how attention modulates the 

ensemble coding of facial expressions. The first experiment tested whether the 
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exogenous cues affect the reported mean emotion of a crowd of faces. Then, the 

second experiment further examined the role of attention using endogenous cues and 

adaptation paradigm. 

5.1. Experiment 4.1: Attention modulates the reported mean 

emotion of a group of faces 

The current experiment aims to study how attention to a single face affects the 

perceived mean emotion of the crowd, by using exogenous cues. Subjects were cued 

either to the happiest face, the saddest face, or simply at the central fixation (not to 

any faces).  

If the perceived mean emotions are similar among different cueing conditions, 

then this would suggest that ensemble coding is merely an averaging of the crowd, 

regardless of attention. Thus, the ensemble statistics of faces might occur in 

amygdala. Alternatively, if the perceived mean emotions are significantly different 
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among cueing conditions, then it would suggest that ensemble coding is subject to 

the loci of spatial attention. Thus, the ensemble statistics of faces might occur in the 

attention sensitive face processing regions (e.g. STS, SC, pulvinar). 

5.1.1. Methods 

Subjects 

Ten subjects (5 females, mean age 26.1), with normal or corrected-to-normal 

vision participated this study. This number of subjects is based on previous studies 

on attention and ensemble coding of sizes (de Fockert & Marchant, 2008; Li & Yeh, 

2017). 

Stimuli 

This experiment selected facial identity AM14 from Karolinska Directed 

Emotional Faces (Lundqvist et al., 1998) database as the testing stimuli. Pictures with 

Happy, Neutral, and Sad expressions (AM14HAS, AM14SAS, and AM14NES) from 
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this chosen identity were selected. Then we used Webmorph software (DeBruine & 

Tiddeman, 2017), and Matlab (Mathworks, Natick, MA) to morph and further 

manipulate these faces. All of the faces were grey scaled and cropped by an oval-

shaped mask with only the central region of each face remaining visible. The 

luminance and contrast of the faces were matched by SHINE toolbox (Willenbockel 

et al, 2010.). All test stimuli were 2.40° × 3.02° in size. 

We created one continuum of emotional faces with emotions from Sad to 

Neutral to Happy respectively to create the testing stimuli (Fig 5.1). The happiest 

faces showed 100% of happiness, the neutral faces showed 50% of happiness, and 

the four saddest faces showed 0% of happiness. 

 
Figure 5.1. Stimuli used in experiment 1. The continuum of emotional faces from sad (0% of happiness), to 

neutral (50% of happiness), to happy (100% of happiness). 
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The target stimuli are four faces from the continuum. Their mean emotion was 

either 45%, 50%, or 55% of happiness. The four faces were +45%, +15%, -15%, and 

-45% of happiness compared to the mean. Therefore, there was one happy face, one 

sad face, and two mediocrely neutral faces. The test faces are seven faces from the 

continuum. They have 0%, 20%, 35%, 50%, 65%, 80%, and 100% of happiness. We 

presented all of the test faces on the screen simultaneously (Figure 5.2) on a black 

background. Each face corresponds to one button. 

 

Figure 5.2. The testing phase of experiment 1. Subjects see this screen for unlimited amount of time. They 

were asked to select the face, by pressing the correspondent button, with the mean emotion of the target faces. 
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Procedure 

Before the actual experiment, subjects went through a practice section with 4-8 

trials to become familiar with the procedure of the experiment. Then they 

commenced the experiment. 

The scheme of one trial is illustrated in Fig 5.3. Each trial commenced with a 

fixation (1000 ms). Subjects were forced to concentrate on it until it disappears. Then 

a visual cue appeared on the screen for 188 ms. It might appear at the location of the 

happiest face (which presented later) for 1/3 of the time; or at the location of the 

saddest face (which presented later) for 1/3 of the time; or at the location of the 

fixation cross for 1/3 of the time. After a 94 ms interval, four target faces appeared 

on the screen for 1000 ms. At last, subjects were asked to select one face, by pressing 

the correspondent button, that represented the mean emotion of the target faces as 

soon as possible. 
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Figure 5.3. The trial sequence of one example trial in experiment 4.1. In each trial, the experiment initiates 

with a 1000 ms fixation stage. Then a cue appears on screen for 188 ms. In this example, the cue aims to guide 

subjects’ attention to the happiest face. 

 

Analysis 

We plotted subjects’ response distributions for each cueing condition 

individually. The x-axis represents the emotion value that the subject selected as the 

mean emotion of the target crowd (corrected from the raw data); and the y-axis 

represents the frequency of that selection. We then fit these responses with a Gaussian 
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distribution. The x value, whereby the peak of the distribution occurs, is used to 

estimate the subject’s perceived mean emotion in that condition. Afterward, we 

measured the cueing effect by calculating the difference between the perceived mean 

emotion of two cueing conditions against that of the baseline condition (the neutral 

cue condition). 

5.1.2. Results 

To clarify the impact of attention on the ensemble coding of the facial 

expressions, we compared the shift of perceived mean emotion of all subjects from 

baseline (cued to fixation condition). The Shapiro-Wilk tests suggested that the data 

from ‘Cueing to Happy’ condition does not follow normal distribution (p = .03), 

while that from ‘Cueing to Sad’ condition follows normal distribution (p = .17). 

Results of Wilcoxon rank sum test and result of t-test illustrated that cueing to the 

happiest face (M = 7.67%, SEM = 2.75%; Z = 64, p = .003) and cueing to the saddest 
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face (M = -8.91%, SEM = 3.29%; t(9) = - 2.71, p = .022, Cohen’s d = 0.82) 

significantly increased the weight of the attended face in the reported mean emotion 

of that crowd, compared to the baseline condition (Fig 5.4.). Also, we found a 

significant difference between these two conditions (Z = 65, p = .002). 

 

Figure 5.4. Summary of all subjects’ results from Experiment 4.1. For each condition, the effect of cueing 

was measured as a reported mean emotion shift relative to baseline (cued to the fixation cross; error bars = SEM). 

The p values for each condition in the figure were calculated by Wilcoxon rank sum test and one sample t-test, 

comparing each cueing condition with the baseline or between cueing conditions. 
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5.1.3 Brief Discussion 

The effect of the exogenous cues on the ensemble statistics of facial expressions 

was measured in this experiment. As hypothesized, the exogenous cues influence the 

reported mean emotion of the crowd by elevating the weight of the cued face. When 

subjects were cued to the happiest face, their perceived mean emotion of the crowd 

was happier; while they found the crowd sadder when cued to the saddest face. The 

findings here are consistent with previous research which showed that attention 

modulates the ensemble statistics of size (Chong & Treisman, 2003; Chong & 

Treisman, 2005; de Fockert & Marchant, 2008; Li & Yeh, 2017).  

5.2. Experiment 4.2: Attention modulates the adaptation 

aftereffect of a group of faces 

Results from Experiment 4.1 indicate that the explicit and voluntary ensemble 

perception of facial expressions is subject to the locus of spatial attention. Is this 
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effect confined to the specific paradigm (namely the exogenous cueing and explicit 

report)? Could top-down attention impact the implicit averaging of facial expressions?  

In this experiment, we use endogenous cues and an adaptation paradigm to 

address these questions (Corbett, Wurnitsch, Whitney, Schwartz, & Whitney, 2012; 

Ying & Xu, 2017). By doing so, the ensemble representation of the faces could be 

measured by the adaptation aftereffect. If attention cannot alter the implicit ensemble 

statistics of facial expressions, we should observe the indistinguishable adaptation 

aftereffects from two cueing conditions and the no-cue condition. Alternatively, if 

spatial attention modulates the adaptation aftereffect, we should observe distinctive 

aftereffects biased by the emotion of the cued faces. 

Since face processing is hierarchical, adaptation to low-level features is possible 

to generate an aftereffect at higher-level face perception (Xu, Dayan, Lipkin, & Qian, 

2008). Therefore, in this experiment, we presented adaptors and the testing stimuli 
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at different sizes and arranged them at spatially offset locations to minimize the effect 

of the lower-level features in the adaptation aftereffects (Afraz & Cavanagh, 2008; 

Webster, 2015; Zhao & Chubb, 2001). Thus, the observed aftereffects in this 

experiment can only be attributed to high-level face adaptation aftereffects. 

5.2.1. Methods 

Subjects, Apparatus, Stimuli 

Eight new subjects, with normal or corrected-to-normal vision, participate in 

this study. The apparatus and stimuli are adapted from Experiment 4.1. The most 

significant difference here is the happy and angry expressions of the facial identity 

AM 14 from KDEF database was selected. We also applied the same stimuli 

manipulation from the previous study on the raw pictures.  

The adaptors here were the happy and angry faces from the selected identity 

(AM 14), which were further processed in the same way as the stimuli in Experiment 
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1. We then created a morph continuum from happy to neutral to angry expressions 

for the testing faces (Debruine & Tiddeman, 2017). We chose angry instead of sad in 

the current experiment to further validate that the role of attention is not limited to a 

certain expression pair. We quantified the emotion of each morph by the proportion 

of happiness in the face. In the continuum, the happiest face carries 100% of 

happiness, the neutral face carries 50% of happiness, and the angriest face carries 0% 

of happiness. The faces with 70, 60, 55, 50, 45, 40, 30% of happiness were selected 

as testing stimuli. Noticeably, the testing faces were set at the size of 75% of the 

adaptors (2.40° × 3.02°) to minimize the low-level aftereffects (Burton, Jeffery, 

Calder, & Rhodes, 2015; Zhao & Chubb, 2001). 

Procedure 

The general procedure of this experiment is similar to previous studies testing 

facial adaptation aftereffects (Figure 5.5). Each subject completes three adaptation 

conditions and the baseline condition, which were in randomized orders. In all 
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adaptation conditions, the adaptors are two happy faces and two angry faces. The 

adaptors surround the central cross in a square fashion (at 3° eccentricity). The happy 

faces and angry faces are always presented at one side of the screen with 

counterbalanced orders, which means in half of each adaptation condition, the happy 

faces appear at the left part of the screen while the angry faces appear on the opposite 

half. The three adaptation conditions contain the same adaptors but with one 

difference which is the type of endogenous cue. In the no-cue adaptation condition, 

there is no cue; in the happy and angry cue conditions, the endogenous cue always 

points to the location of the corresponding expression. The cue is a white arrow at 1° 

above the central fixation cross.  

During the whole experiment, subjects were asked to fixate only at the fixation 

cross. Each trial starts with a 506 ms fixation. Then the cue appears for 1000 ms (for 

the no-cue condition, just a fixation cross). Then the adaptor appears with the cue for 

200 ms. After a 94 ms interval, one testing stimulus appears for 47 ms. Then subjects 
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are allowed to judge the emotion of that face by pressing ‘A’ (happy) or ‘S’ (angry) 

on the keyboard. In the baseline condition, there is no adaptation phase but only the 

target stimuli and the judgment. 

 
Figure 5.5. The trial sequence of one example trial in Experiment 4.2. In each trial, the experiment initiates 

with a 506 ms fixation stage. Then an endogenous cue appears on screen for 1000 ms. In this example, it is the 

happy cueing condition, and the cue points to the happy faces. After that, the adaptors appear on the screen for 

200 ms. After a 94 ms interval, the test faces appear for 47 ms. Subjects then judge the emotion of the target face 

by pressing the corresponding button. 

Analysis 

Adapted from that of Study 1. Note that, in this experiment, the ‘No Cue’ 
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condition is not the baseline for the adaptation aftereffect. It serves as a control to 

make sure whether attention could affect the inner representation of the emotional 

facial expressions. The actual baseline condition is the one with no adaptors, but just 

the testing faces. 

5.2.2. Result 

We compared the mean PSEs relative to the baseline of all subjects to measure 

the adaptation aftereffect (Figure 5.6). Results from Wilcoxon rank sum test showed 

that the no-cue condition (Shapiro-Wilk test suggests the aftereffects were not 

normally distributed, p = .024) failed to induce a significant attractive aftereffect (Z 

= 13.00, p = .547). However, results from t-tests (Shapiro-Wilk tests suggest the two 

aftereffects were normally distributed, ps > .40) suggested adaptation aftereffects in 

cue-to-happy condition (M = -2.45%, SD = 2.62%; t(7) = - 2.64, p = .03, Cohen’s d 

= 0.93) as well as cue-to-anger condition (M = 2.50%, SD = 2.44%; t(7) = .2.87, p 
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= .02, Cohen’s d = 1.01) generated significant aftereffects, but pointing in opposite 

directions. 

 
Figure 5.6. Summary of all subjects’ results of Experiment 4.2. For each condition, the effect of cueing was 

reflected by the adaptation aftereffect (PSE shift from baseline condition). The blue bar with a dashed hatch line 

represents the no-cue condition; the magenta bar with a dash-dotted hatch line represents the cue-to-happy 

condition; the red bar with a dotted hatch line represents the cue-to-sad condition. The p values for all condition 

was calculated by Wilcoxon rank sum test paired t-tests, comparing the PSE of each cueing condition with that 

of the baseline. All error bars indicate the SEM. 

5.2.3. Brief Discussion 

This experiment employed endogenous cues and an adaptation paradigm. The 

results suggested that the locus of attention modulates the implicit ensemble statistics 
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of facial expressions. The insignificant aftereffect observed in the no-cue condition 

here actually confirms the existence of ensemble statistics: the visual system does 

average the facial expressions together, thus the ensemble representation is precisely 

the average between happy and angry, which could not induce an adaptation 

aftereffect (Burton et al., 2015). Therefore, the ensemble representation was 

involuntarily calculated during the adaptation stage. Noticeably, the short 

presentation duration of the face crowd (200 ms in the current experiment) was 

sufficient for implicit ensemble statistics, which converges with other studies 

(Whitney & Leib, 2018). 

Furthermore, the short duration of adaptors as well as the spatial offset between 

the adaptors and the target face together minimized the contribution of the low-level 

features in the observed adaptation aftereffects (Adams, Gray, Garner, & Graf, 2010; 

Afraz & Cavanagh, 2008; Bi, Su, Chen, & Fang, 2009). Consequently, the observed 
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aftereffect could not be explained by some low-level features of the faces (only), but 

by the high-level adaptation to the ensemble representation of facial expressions.  

5.3. Discussion 

This study, with two experiments, employed different paradigms and scrutinized 

the role of attention in the ensemble statistics of facial expressions. Converging 

evidence showed that the emotion of the face(s) within the locus of attention heavily 

influences the ensemble representation of the crowd. When the subjects were 

required to report the mean emotion of the crowd, the emotion of the attended face 

biased the perceived mean (Experiment 4.1). Similarly, the location of the 

endogenous cue impacted the implicit ensemble averaging of the crowd, which was 

reflected in adaptation aftereffect (Experiment 4.2). Therefore, the ensemble 

representation is not calculating a simple arithmetic mean of the stimuli. It is more 

likely to be weighted averaging.  
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As the role of attention has been revealed in both experiments, it is highly likely 

that the ensemble statistics of facial expression are conducted in the attention 

sensitive regions for emotion perception (Holmes et al., 2003; Vuilleumier et al., 

2001). Thus, the core facial processing regions (e.g. STS) could be the origins of the 

ensemble statistics of facial expressions (Haxby & Gobbini, 2011; Haxby et al., 

2000). The SC and the pulvinar are also candidate regions (Kleinhans et al., 2011; 

Lovejoy & Krauzlis, 2010; Nguyen et al., 2016). Although it has been shown that the 

ensemble statistics abilities of high- and low-level features could not predict each 

other (Haberman et al., 2015), current findings together with a growing body of 

evidence suggests that the ensemble statistics of high- and low-level objects are both 

subject to attention modulation. Considering the fact that face perception is 

hierarchical (Xu et al., 2008), future research in neuroscience may further examine 

the possible neural mechanisms between high- and low-level ensemble statistics. 

In Experiment 4.1, subjects were cued to one of the faces which has the most 
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extreme emotion in the crowd. This method is similar to that of a previous report (de 

Fockert & Marchant, 2008) whereby the authors instructed subjects to attend to either 

the smallest or the largest circle in the set. Their study as well as the current study 

both find that attention modulates the mean representation by altering the weight of 

the attended item in averaging. However, researchers in that study modulate the 

attention differently in their two experiments: they specify the size of the circle to 

attend to in their first experiment and highlight one circle by changing the luminance 

in the second experiment. This made certain that they explicitly measured the 

ensemble statistics, which is also what this study ensured. The similarities in the 

experimental design and the observed findings suggest that the modulation by 

attention of ensemble statistics is ubiquitous and somewhat fundamental in ensemble 

statistics.  

Typically, studies measure the attention’s modulation on ensemble 

representation explicitly. For example, Li and Yeh (2017) asked their subjects to 
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adjust a circle to match the mean size of the earlier shown circles. Conversely, 

Experiment 4.2 used the adaptation paradigm to measure the involuntary ensemble 

statistics. The adaptation paradigm is a powerful method to study the representation 

of stimuli in our visual system (Webster, 2015; Ying & Xu, 2017). The subtle change 

in perception which is undetectable via explicit measurement could be reflected by 

an adaptation paradigm (Luo et al., 2015). The subjects from Experiment 4.2 were 

not instructed to process the crowd, but the implicit ensemble representation still 

generated significant adaptation aftereffects on the subsequently viewed testing faces 

(Ying & Xu, 2017). Moreover, the findings of Experiment 4.2 further indicate that 

the observed effect in Experiment 4.1 is not confined to the specific experimental 

controls. To our knowledge, this is the first direct evidence suggesting that attention 

affects the involuntary ensemble statistics of faces. 

In this study, the variances between emotions are large. Previous researchers 

studied the ensemble statistics with relatively small variances between objects. For 
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instance, Haberman and colleagues (2009) tested the temporal ensemble statistics of 

facial expressions with four faces. The emotion difference between faces in their first 

experiment equals 6% of the emotional units in the current study. Unlike them, the 

emotion variance in Experiment 4.2 is much bigger (at 100%). However, it is 

reasonable to believe such a huge variance did not obscure the ensemble coding. 

Elias and colleagues (2017) found that the visual system is capable of averaging the 

emotion between fully happy (or angry) and neutral faces (50% in emotional units). 

Besides, another study showed that a stream consisting of half happy and half sad 

faces could be averaged together (Ying & Xu, 2017). They also suggested that the 

variance of emotion does not alter the perceived mean emotion.  

The insignificant aftereffect in the no-cue condition from Experiment 4.2 

confirms the existence of ensemble statistics: the visual system does average the 

facial expressions together, so the ensemble representation is precisely the average 

between happy and angry, which could not induce adaptation aftereffect (Burton et 
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al., 2015). Thus, the ensemble representation is involuntarily calculated during the 

adaptation stage. Furthermore, the short duration of the presentation of adaptors as 

well as the spatial offset between the adaptors and the target face minimized the effect 

of low-level adaptation. Consequently, the observed aftereffect could only be 

explained by the high-level adaptation to the ensemble representation of facial 

expressions, and not to some low-level features of the faces.  

To summarize, converging evidence from the two experiments showed that 

ensemble representation of facial expressions is sensitive to the emotion of the cued 

face(s). The modulation of attention occurs for both explicit and implicit ensemble 

statistics of facial expressions, by an alteration of the weight of the cued faces in the 

perceptual averaging. The findings here indicate that weighted averaging is an 

important characteristic of ensemble statistics of faces. 
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Chapter VI: Conclusion 

6.1. General Discussion 

In this thesis, four studies with thirteen experiments systematically examined 

the mechanisms of ensemble statistics of faces. These four studies: (1) suggested 

distinctive mechanisms of temporal and spatial ensemble statistics; (2) showed the 

prevalence of ensemble statistics in face perception; (3) linked ensemble statistics 

with important phenomena in face perception; and (4) showed the relationship 

between attention and the ensemble statistics of faces. 

The results from Study 1 suggested that the emotions of the sequentially 

presented faces are involuntarily perceived via ensemble statistics. Further controls 

in emotion variance, temporal frequency, and facial identity suggested the robustness 

of the ensemble coding. As long as the mean emotions are the same, regardless of 

variance, the adaptation aftereffects are the same.   
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Since the average of the unattractive faces is (moderately) more attractive than 

any of its components, Study 2 examined the computational mechanisms of ensemble 

statistics, the fundamental question of ensemble statistics which has not yet been 

fully clarified. The results suggested that the temporal and spatial ensemble statistics 

of faces stem from different mechanisms. The temporal ensemble coding extracts the 

low-level ‘computational’ information from the faces, while the spatial ensemble 

statistics is averaging the high-level gist. 

After confirming the involuntariness of ensemble statistics in facial expression, 

Study 3 further examined the ubiquitousness of ensemble coding in face perception. 

Results from four experiments together showed that two important phenomena 

related to facial attractiveness perception, namely adaptation and the 

cheerleader/friend effect, are both shaped by and linked with ensemble perception. 

The human visual system involuntarily updates the facial attractiveness perception 

by utilizing the ensemble statistics over the previous and current experience of 
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other’s faces.  

The thesis then further studied the mechanisms behind ensemble statistics by 

examining its relationship with attention. The results from two distinctive paradigms 

here showed that attention plays an important role in perceptual averaging. The 

attended object has a bigger weight in the averaging. Thus, the ensemble coding of 

faces is a weighted average. These studies together also indicated the ubiquity and 

robustness of ensemble statistics in face perception. 

Taken together, findings from the four studies expand current understanding of 

visual perception and face processing. The following sections specifically discuss 

the important findings from this thesis and compare the studies here with relevant 

works. 

6.1.1. Mechanism of Ensemble Statistics of Faces 

Our visual system is capable of extracting a summary representation of the 
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facial characteristics provided by a group of faces (Haberman & Whitney, 2007, 2012; 

Sweeny & Whitney, 2014; Whitney & Leib, 2017; Ying & Xu, 2017). We do not 

fully understand the detailed mechanisms of it. This renders three questions: (1) what 

is ‘averaged’ during the ensemble statistics of faces? (2) what could affect the 

ensemble coding? (3) what are the possible mechanisms for ensemble statistics of 

faces? This thesis addressed all these questions. 

Most studies in the literature describe the ensemble statistics as ‘averaging the 

gist’, implying that a general representation of the perception of the group is 

extracted (Haberman & Whitney, 2012; Whitney & Leib, 2017). However, it is 

possible that only the low-level features of the stimuli were extracted. Previous 

studies implied that it is impossible to differentiate between these two hypotheses 

using facial expression and identity. For facial attractiveness, however, the low-level 

‘computational’ averaging theory produces a conflicting prediction as to what will 

be perceived when compared to the group’s high-level gist average (DeBruine et al., 
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2007). Therefore, studying the ensemble coding of facial attractiveness benefits not 

only the understanding of facial attractiveness but also the understanding of 

ensemble statistics itself.  

By examining the ensemble perception of facial attractiveness, Experiment 2.1 

& 2.2 showed asymmetrical adaptation aftereffects between the attractive and 

unattractive face streams. The results suggested that contrary to the pervasive gist 

hypothesis, the visual system actually extracts the low-level ‘computational’ 

information when each face in the group is presented individually across time: the 

ensemble representation of temporally presented unattractive faces is more attractive 

than any component. However, using the same stimuli and a similar paradigm, 

Experiment 2.3 in return showed that in contrast to temporal ensemble statistics, 

spatial ensemble perception extracts the higher level gist of the faces: the ensemble 

representation of spatially presented unattractive faces is as unattractive as its 

components (symmetrical adaptation aftereffects between the attractive and 
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unattractive face streams). Temporal and spatial ensemble representations, therefore, 

arise from distinct neural operations that produce qualitatively different perceptual 

outcomes.  

This thesis, for the first time, revealed the computational mechanisms of 

ensemble statistics. The different mechanisms also reflect distinct neural encoding 

stages of the properties that make up facial attractiveness and reveal the hierarchical 

nature of the human face perception system. The ensemble coding of faces is 

interdependent with face processing. Therefore, it is reasonable to assume that all 

levels of ensemble statistics are nested with the associated visual processing.  

In the temporal ensemble coding experiments, the faces were always presented 

at fast speed. Would such speed generate some morphing in itself? McKeeff et al. 

(2007) used fMRI and showed that even at a high speed (roughly 40 Hz, very similar 

to our high-speed RSVP), the V1 cortex activates more than its activation for the low 

speed face stream. This suggests that even at high speeds, the cortical visual 
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processing regions are still capable of (at least partially) separating the visual inputs. 

And thus, the faces at high-speed RSVPs would not generate a morphing effect 

themselves, but they can be perceived as a stream by our visual system.  

Although this thesis did not directly examine the combining effect of spatial and 

temporal ensemble coding, it is reasonable to believe (based on our findings in this 

thesis) that inner representation of the stimuli would be the ‘gist’ average of the 

‘computational’ average of each temporal stream. For instance, if there are several 

streams of unattractive faces being presented in front of us, our visual system would 

tend to average the individual stream via ‘computational’ averaging. Thus, the visual 

system perceives several ‘computational’ averages all over the space. Therefore, our 

visual system would further average the ‘computational’ averages via ‘gist’ 

averaging: the several streams of unattractive faces would be perceived as mediocre 

to look at and would generate a similar adaptation aftereffect like ‘UNA’ conditions 

in Experiment 2.1 and 2.2. Future research should be conducted to directly study our 
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hypothesis here. 

What could impact the ensemble statistics of faces? As the result of Study 1 

shows variance could not alter the adaptation aftereffects induced by a stream of 

faces. Therefore, the ensemble perception is (at least partly) immune to differences 

in variance. However, using direct report and adaptation paradigms, converging 

evidence from Study 4 showed both top-down and bottom-up attention heavily 

influence the ensemble statistics of facial expressions by changing the weight of each 

component. Thus, ensemble coding is a weighted average modulated by attention. 

Would the ensemble coding of facial attractiveness also be immune to temporal 

frequency manipulation? It is reasonable to believe that the temporal frequency 

would also barely impact the ‘computational averaging’ of the facial attractiveness 

of the temporally presented faces, just like what has been observed in Experiment 

1.3. Because of the overlapping neural mechanisms between the perception facial 

expression and that of facial attractiveness (Haxby & Gobbini, 2001; O’Doherty et 
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al., 2003; Todorov et al., 2008), the temporal ensemble coding might be conducted 

by a similar computational mechanism and is largely immune to the temporal 

frequency control. Future research should directly examine the possible impact of 

temporal frequency on temporal ensemble coding of facial attractiveness as well as 

other facial characteristics. 

In Study 4, the data suggests that the ensemble coding of facial expressions is 

similar to ensemble coding of size, as both of them are subject to attention 

manipulation. However, there is still a distinction among different levels of ensemble 

statistics. Haberman and colleagues (2015) directly compared the ensemble coding 

of faces against the ensemble coding of low-level stimuli. If all ensemble statistics 

are formed by the same mechanism, then the error in low-level ensemble should 

correlates with not only other low-level ensembles but also the high-level ones. 

However, they found the averaging error in the ensemble coding of facial expressions 

could be predicted by that of facial identity but not by those of size and orientation. 
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Thus, the data clearly shows a distinction between high- and low-level ensemble 

coding. As suggested by Whitney and Leib (2017), the ensemble coding of faces and 

the ensemble coding of low-level features (e.g. size, contrast) are inter-dependent, 

because the ensemble coding may reflect some general features of visual processing, 

rather than high- or low-level specific visual processing.  

Finally, two lines of findings here hinted at the possible neural mechanisms for 

ensemble statistics of faces. Based on the findings of adaptation (Fox & Barton, 2007; 

Webster, 2011), the aftereffects results suggested that the ensemble statistics occur in 

the regions employed for face processing. This converges with the previous finding 

that the ensemble statistics of higher-level objects are distinctive from that of lower-

level objects (Haberman et al., 2015). Moreover, the impact of attention on ensemble 

coding further suggested that the neural systems which code the ensemble of faces 

should be subject to attention. Taken together, these two lines of findings indicated 

the ensemble statistics of faces might occur at the core region for face processing, 
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namely the OFA, STS, and FFA (Haxby & Gobbini, 2011; Haxby et al., 2000). 

 

6.1.2. Mechanism of the Perception of Facial Expression 

Previous research extensively studied the perception of facial expression, but 

we still do not know what happens when we see a group of faces, which is very 

common in daily life. Studies in RSVP suggest that the visual system is capable to 

correctly recalling certain items from the stream (Keysers & Perrett, 2002; Keysers, 

Xiao, Földiák, & Perrett, 2001; Potter, 1975, 2014). However, evidence from other 

studies indicated that the visual system cannot recall all of them but instead averages 

them together (Brady & Alvarez, 2015; Haberman et al., 2009; Haberman & Whitney, 

2012; Nieuwenstein & Potter, 2006). Besides, most of the studies mentioned above 

employed the voluntary report (e.g. pick the test face that represents the mean 

emotion of the previous group). However, the adaptation paradigm we employed 
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throughout this thesis is capable of examining involuntarily ensemble coding. The 

mechanism of the involuntary perception of facial expressions streams is less clear.  

In the first study, an adaptation paradigm was used to probe the perception of 

temporally presented facial expressions. During the whole study, subjects were not 

instructed to respond or process the adapting face streams. Therefore, the induced 

aftereffects purely reflected the involuntary processing of the faces. The evidence 

from the first two experiments showed that the adaptation aftereffects of RSVP of 

facial expressions are comparable and correlated with those induced by the 

computer-generated average faces. Thus, the finding supported the notion that the 

visual system is capable of representing the temporally presented faces by ensemble 

coding. 

Apparently, the stimuli used in Experiment 1.1 & 1.2 have small variance, while 

the faces in the real-life scenarios are distinctive in their facial expressions. Temporal 

frequencies and emotion variances were carefully induced in Experiment 1.3. As 



 

 227 

long as the mean emotion is the same, regardless of variances, those face streams 

evoked the similar adaptation aftereffects. Further controls in changing the facial 

identity (Experiment 1.4) closely resembled the findings. Therefore, the visual 

system processes the emotions of the stream of faces by involuntary ensemble 

statistics. 

6.1.3. Mechanism of Facial Attractiveness Perception 

How do past experiences with faces alter individuals’ future judgments on 

attractiveness? In Experiment 3.1 & 3.2, results showed that a face was judged as 

most attractive after the viewer had recently experienced groups of unattractive faces, 

and vice versa. The adaptation aftereffects were correlated with the underlying mean 

attractiveness ratings for the groups of faces, suggesting that visual system implicitly 

averages the past experience of facial attractiveness and recalibrates the current 

perception.  
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When subjects judged a target face which was presented within a group of faces 

that varied in levels of attractiveness, the results in Experiment 3.3 & 3.4 showed 

that the ‘cheerleader/friend effect’ was indeed shaped by the attractiveness of the 

company the target face kept: the target appeared more attractive when surrounded 

by increasingly unattractive ‘friends’. The size of the friend effect was correlated 

with the mean attractiveness ratings for the surrounding group. However, even 

surrounded by the most attractive faces, unlike the adaptation aftereffect in 

Experiment 3.1 & 3.2, there was still a significant residual attractiveness boost. A 

further control in Experiment 3.4 suggested that the ‘social positive effect’ is not 

necessarily induced by being surrounded by other faces. When the target face was 

surrounded by six copies of itself, there was no significant attractiveness boost. 

Therefore, the results here suggested that the contrastive effect (similar to adaptation) 

between the ensemble perception of the different surrounding faces and the central 

target face determines the friend effect. 
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The results from these four experiments together suggested that facial 

attractiveness, in the real world, is dynamically perceived through implicit 

comparisons based upon its prior, and current, experiences. Also, the results 

delineated the possible mechanisms of the friend effect. Thus, this study bridged two 

key phenomena in facial attractiveness, namely adaptation and the cheerleader effect: 

they are both shaped and linked by ensemble perception. This study even provided 

the general public with a useful ‘tip’: if an individual wants to maximize his/her 

appearance, he/she should surround him/herself with unattractive friends. 

Facial attractiveness could be affected by both low-level local information and 

high-level holistic information (Little et al., 2011). For example, skin tone is 

comparatively low-level local information, while the averageness is a kind of high-

level holistic information determined by the second-order relationships among facial 

features (Maurer et al., 2002). In Experiment 2.1 and 2.2, the testing faces were at 

75% size of the adaptors to minimize the local adaptation, and in Experiment 2.3 the 
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adaptors and testing faces were presented at different locations. Therefore, the 

observed adaptation aftereffects in this thesis could not be fully explained by the 

local features. Moreover, using inverted faces, Olson and Marshuetz (2005) showed 

that the inverted attractive faces could not generate similar priming effects when they 

were upright. They further suggested that the perception of attractiveness requires 

the holistic processing. On the other hand, ensemble coding is widely judged as 

holistical processing (Whitney & Leib, 2017). For instance, Leib et al., (2012) found 

that the participants could report the mean of upright faces better than inverted ones. 

Taken these findings together, it is reasonable to assume that the ensemble coding of 

facial attractiveness is driven by the high-level information in a holistic manner. 

However, it is still worthwhile for future researchers to investigate the possible 

influence of low-level local information on the high-level facial attractiveness 

perception. For instance, the face composite paradigm (Rossion, 2013) and part-

whole paradigm (Tanaka & Farah, 1993) should be used to validate the hypothesis. 
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Noticeably, this thesis examined the ensemble coding of facial expressions and 

facial attractiveness separately. The relationship between these two remains as an 

open question. Based on the current understanding of facial attractiveness, it is 

reasonable for one to believe there might be an interaction between ensemble coding 

of facial expressions and facial attractiveness. A growing body of evidence suggests 

that our perception of facial characteristics (e.g. attractiveness, trustworthiness) 

might be a consequence of overgeneralization of facial expressions (e.g. Todorov et 

al., 2008). O’Doherty and colleagues (2003) also showed that the orbital frontal 

cortex (OFC) could be activated by both attractive faces and face smile; suggesting 

a shared neural mechanism for perception of facial expression and facial 

attractiveness. For instance, a happy face should be perceived as more attractive to 

look at than a sad face, because the happiness in the face may further activate the 

neural systems evaluating facial attractiveness. Although we did not directly test this 

interaction hypothesis, however, we carefully picked neutral faces for Study 2 & 3, 
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when testing the ensemble coding of facial attractiveness, to minimize the potential 

influence of facial expression. Future researchers should directly test the possible 

interaction of facial expression and attractiveness in ensemble coding to further 

clarify the mechanism behind ensemble coding. 

6.1.4. Formation of Face Space 

A substantial body of evidence from psychophysics and neural imaging studies 

suggested that the face processing network represents perceived faces using ‘face 

space’ (Bruce & Young, 2012; Leopold et al., 2001; Loffler et al., 2005; Nishimura 

et al., 2008; Oosterhof & Todorov, 2008; Rhodes et al., 2005; Sutherland et al., 2013; 

Todorov et al., 2015; Webster, 2011; Valentine, 1991, 2001; but see Jenkins et al., 

2011). This theory, inspired by the face distinctiveness effect (Valentine, 2001), 

suggests that each face is uniquely represented in a multidimensional psychological 

space against the central norm. Thus, some researchers named this processing as 
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norm-based coding of the face. Consequently, the centroid of the face space is the 

peak of the typicality: the center norm should be the most averaged face.  

How are the face space and the face norm formed? Research into the other race 

effect looks into the possible mechanism. As Valentine (1991) suggested, the 

insufficient experience of faces from other races lead to a face space and norm which 

fail to represent the foreign faces adequately. For example, using an adaptation 

paradigm, Webster and colleagues (2004) found that Japanese students who are not 

familiar with Caucasians have different perceptual patterns in response to the 

Caucasian faces compared to native subjects. However, with an immersive 

experience abroad, those Japanese students' face perception of Caucasian faces got 

improved. Recently, some researchers reported that even four-year-old children are 

able to conduct certain ensemble processing (Sweeny, Wurnitsch, Gopnik, & 

Whitney, 2015), and could use norm-based coding for faces (Jeffery, Read, & Rhodes, 

2013). Here, four studies together showed that the past experience of faces would 
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update the face norm and bias the perception of the subsequently viewed faces. 

Studies in this thesis, together with those studies (see also, Rhodes, Neumann, Ewing, 

& Palermo, 2015), highlight a potential link between ensemble and norm-based face 

processing. Current findings delineated the formation of the facial expression norm 

during adaptation: our vision system implicitly integrates the multiple faces we 

encounter over time to the average face of the face stream. Consequently, the recent 

visual experience could update the norm of the face space shaped by ensemble 

statistics. Therefore, this thesis, for the first time, offers new insight into the updating 

procedure of the face space and face norm. 

6.1.5. A New Paradigm to Study Ensemble Statistics 

In most studies of ensemble statistics, the researchers required subjects to 

directly and voluntarily compute the mean of the stimuli. Some examples of this 

include choosing whether the testing face is more emotional than the mean of the 
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preceding faces (e.g. Haberman et al., 2009; Haberman & Whitney, 2009), or 

choosing which side (of the screen) contains the circles with larger mean size (e.g. 

Chong & Treisman, 2003; Gorea, Belkoura, & Solomon, 2014); or choosing a face 

that matches the mean identity of the preceding faces (e.g. Haberman et al., 2015; 

Leib et al., 2014). The conventional measurements might only probe the ensemble 

representation in working memory, but not necessarily the encoding stage in the face 

processing regions. 

Quite differently, this thesis tested the involuntary ensemble coding of faces by 

a visual adaptation paradigm (Webster et al., 2004; Ying & Xu, 2017). Being 

described as a ‘microelectrode for psychologists’, adaptation has been widely used 

in studying face perception (Frisby, 1979). Are adaptation aftereffects as capable to 

examine the ensemble statistics as conventional methods are? Study 2 compares the 

results between the adaptation paradigm and the direct report (similar to Haberman 

et al., 2009). The significant correlation between the reported mean attractiveness 
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and the adaptation aftereffect suggests that the adaptation paradigm is capable of 

detecting the ensemble statistics. Also, the converging evidence from Study 4 using 

different measurements indicates the effectiveness and robustness of the adaptation 

paradigm in detecting the ensemble coding. Consequently, adaptation employed here 

is a powerful and reliable paradigm to study the mechanisms of involuntary ensemble 

statistics. 

6.1.6. Implications for the Face Adaptation Aftereffect 

Conventionally, experiments using a face adaptation paradigm always put the 

adaptors and the testing face at the same location to maximize the aftereffect 

(Leopold et al., 2001; Rhodes et al., 2003; Webster et al., 2004; Xu et al., 2008; Ying 

& Xu, 2017). After doing so, however, it is hard to discriminate the sources of the 

face adaptation aftereffect (Adams, Gray, Garner, & Graf, 2010; Afraz & Cavanagh, 

2008; Leopold et al., 2001). Since face processing is hierarchical, adaptation to low-
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level features is possible to generate an aftereffect at higher-level face perception (Xu 

et al., 2008). To address this issue, some researchers shrunk the size of the test face 

(e.g. testing stimuli at 75% size of the adaptors) to counterbalance retinotopic 

adaptation (i.e. Rhodes et al., 2007; Burton et al., 2015; Burton et al., 2015; Zhao & 

Chubb, 2001), while some researchers floated the adaptor to avoid local adaptation 

(i.e., Bi, Su, Chen, & Fang, 2009; in this study, the adaptor moved slowly within a 

predefined area at the center of the screen). However, the residual overlapping 

between the adaptors and testing faces leaves an opening for low-level adaptation.  

In Experiment 3.1 and 4.2, the adaptors and testing faces were presented at non-

overlapping spatial locations, while adaptors appeared for brief durations (1s for 

facial attractiveness adaptation, and 200ms for facial expression adaptation). Such 

controls are typically thought to counteract low-level retinotopic effects. Thus, the 

observed aftereffects in these experiments could only be attributed to high-level face 

adaptation aftereffects. These experiments also offer new insights into face 
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perception as well as high-level face adaptation. 

6.1.7. The Face Databases 

In this thesis, three face databases were used. Study 1 and Study 4 used the 

KDEF database to study the ensemble coding of facial expressions. Study 2 used the 

N-FEE face database to examine the different mechanisms of temporal and spatial 

ensemble statistics of facial attractiveness. Study 3 used the Oslo face database to 

study the relationship among different ensemble coding, the facial attractiveness 

adaptation aftereffect, and the friend effect. Both KDEF database and Oslo face 

database contain pictures from Caucasian models, while the N-FEE face database 

consists of pictures of local Singaporeans.  

For the facial expression related studies, we used the KDEF database. The 

KDEF database is one of the most popular face databases among visual scientists and 

psychologists. It contains more than 4900 high quality images with excellent facial 
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expressions and has been used in more than 2000 published papers (according to 

KDEF database). The quality of these facial expressions has been wildly 

acknowledged. We are aware that the modals in this dataset are all Caucasian; 

however, we do not believe this will affect the interpretation of the data. Although 

there is an ongoing debate as to whether the basic facial expressions are universal or 

not (Ekman, 1993; Jack, Garrod, & Schyns, 2014; Jack & Schyns, 2017), researchers 

still have consensus that the happy and sad expressions (the ones we used in our 

studies) are from distinctive emotion categories and can be perceived universally. 

Moreover, the emotional expressions from the KDEF database has been validated 

across different cultures (e.g. Goeleven et al., 2008; Yan, Andrews, & Young, 2016). 

Therefore, using the KDEF database allows us to examine the perception of 

emotional expression in a conventional way. 

For the facial attractiveness related studies, we used the N-FEE face database 

(Study 2, Chapter III) and the Oslo face database (Study 3, Chapter IV). The N-FEE 
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face database contains local Singaporean faces, while the Oslo face database consists 

of Caucasian faces. Previous researchers have shown that, at least in female 

attractiveness (what we studied in this thesis), is universal (regardless of viewer’s 

ethnicity or gender). When studying the innate feature of female facial attractiveness, 

Perrett and colleagues (1994) found ‘…Caucasian and Japanese subjects showed the 

same pattern of preference’. The judgments of attractiveness towards female faces 

are almost perfectly correlated irrespective of the race being judged or judging (i.e., 

r > .9 in Cunningham, Roberts, Barbee, Druen, & Wu, 1995; Perrett et al., 1998; 

Rhodes et al., 2001). Moreover, the results from Experiment 2.3 (using local 

Singaporean faces) and Experiment 3.1 (using Caucasian faces) showed that both of 

the databases can generate similar adaptation aftereffects; meaning they are equally 

capable for our research. To minimize the possible unforeseeable influence of using 

different databases, all the stimuli used in Study 2 & 3 were selected using the 

judgements of our participants: for instance, the attractive faces were specifically 
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picked based on participants’ ratings, so that each attractive face is appreciated by 

everyone (taking part the study). Therefore, we have good reasons to believe that the 

databases we used in the studies should not affect the interpretation of our findings. 

6.2. Limitation and Future Direction 

The current thesis uses adaptation paradigms to study the mechanisms of spatial 

and temporal ensemble statistics of facial expression and attractiveness. There are, 

inevitably, some limitations in this thesis. This section discusses the limitations of 

this thesis, and also points to some uncharted territories in ensemble statistics 

research. 

Firstly, the categories of the facial expressions were limited in the current work. 

In study 1, only happiness and sadness expressions were inspected. However, some 

other researchers in ensemble statistics used a more comprehensive selection of 

facial expressions. For instance, Elias and colleagues (2017) used morphed faces 
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with expressions including angry, fearful, and happy to study how synchronization 

of expressions affect the ensemble perception. Noticeably, Experiment 4.2 used a 

happy and anger pair and replicated the findings in other experiments with happy and 

sad faces. Still, testing ensemble statistics with other facial expressions would make 

the current findings even more convincing. Moreover, often neglected by researchers, 

using non-emotional expressions may clarify whether ensemble coding is an innate 

ability or merely reflects the expertise of the subjects and their experiences of facial 

expressions. Therefore, future experiments may apply an increased repertoire of 

categories of facial expressions to study the mechanism behind ensemble statistics 

further. 

Secondly, the range of facial attractiveness was limited in Study 2 & 3. The face 

databases used in these two studies both contain pictures taken in well-controlled 

laboratory settings. However, since they both consist of ordinary people without 

makeup, there are no extremely attractive faces as appealing as models or actresses 
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in both datasets. As discussed in Study 3, using extremely attractive faces may 

entirely abolish the friend effect (by fully canceling out the social positive effect), 

and further clarifying the mechanism of the friend effect. Therefore, future research 

may use models or actresses to further examine the ensemble statistics of facial 

attractiveness. Also, future research should also consider using faces with makeup to 

mimic the real-life scenarios. 

Thirdly, the spatial arrangements of the adaptors and the test faces in 

Experiment 2.3 as well as that in Experiment 3.1 do not fully represent all kinds of 

spatial ensemble coding. Despite this, we believe the distinguished representations 

of spatial and temporal ensemble coding (Study 2) were not a consequence of the 

differences between the adaptor-test-overlap (Experiment 2.1 & 2.2) and adaptor-

test-nonoverlap (Experiment 2.3). However, testing Experiment 2.3 with other 

designs could further clarify the computational mechanisms of spatial ensemble 

coding. Therefore, it is worthwhile for future researchers to evaluate the impact of 
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the spatial arrangements of adaptors and test faces on adaptation as well as ensemble 

coding. 

Fourthly, whether the temporal frequency of RSVP streams can affect the 

temporal ensemble coding of facial attractiveness is unclear. Although the results in 

Experiment 1.3 suggest that the temporal frequency can hardly affect the ensemble 

representation of facial expressions, we cannot assert that the same pattern would 

definitely be observed in facial attractiveness, considering the different neural 

mechanisms behind them. Future researchers should further clarify the impact of 

different temporal frequencies on the temporal ensemble coding of facial 

attractiveness. 

Lastly, although the adaptation paradigm is a powerful tool to study ensemble 

statistics, it is not omnipotent at scrutinizing every facet of ensemble statistics. A 

growing body of evidence recently showed that the human vision system uses both 

central tendency and dispersion (as the name of ‘ensemble statistics' implies) to form 
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the ensemble representation of the visual inputs (Whitney & Leib, 2017). Noticeably, 

only the central tendency part was examined in this thesis. However, the current 

adaptation paradigm in this thesis is not capable to fully examining the mechanisms 

behind the extraction of dispersion. On the other hand, the adaptation paradigm 

requires lots of repetition to estimate the aftereffect; it is naturally incapable of 

reflecting the changes between trials. Thus, the current method is unable to examine 

the ‘subsampling' hypothesis which could only be found in a trial-by-trial analysis. 

Multiple repetitions may perceptually train subjects to be better at ensemble statistics, 

so that the observed data might have been exaggerating the ensemble perception. 

Consequently, future research in ensemble statistics should utilize other 

measurements. Moreover, considering the limited number of adaptors (in spatial 

ensemble coding experiments), it is possible that the participants memorized the 

adaptors. In future research in adaptation, more adaptors should be used to 

counterbalance such limitations. 
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The future researchers shall examine ensemble statistics in other facial 

characteristics, such as trustworthiness, which is also fundamental to social 

communication (Oosterhof & Todorov, 2008; Sutherland et al., 2013). Besides, could 

the facial symmetry level and the sexual dimorphism, which are essential parts of 

facial attractiveness as averageness, be perceived involuntarily by ensemble coding 

in our visual system is also an important question for future researchers.  

6.3. Conclusion 

In conclusion, studies from this thesis systematically examined the mechanisms 

behind the spatial and temporal ensemble statistics of facial expressions and 

attractiveness. They linked the ensemble statistics with essential phenomena in face 

perception.  

There were several lines of findings here. Firstly, the studies all suggested that 

the human visual system is able to involuntarily form the ensemble representation of 
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facial information across time and space. Secondly, the ensemble statistics of 

temporally presented faces are more likely to involve a low-level ‘computational' 

averaging, while that of spatially presented faces favor a high-level gist averaging. 

Thirdly, face perception is heavily influenced by the present and the previous 

experience of faces by the ensemble statistics. Lastly, the ensemble perception of 

faces is not a simple arithmetic mean, but a weighted average (altered by attention).  

These findings have psychophysical, neural and social implications. The results 

shed light on a refined theoretical framework of face perception in the group context. 
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