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ABSTRACT Microgrids consider adjustable loads in demand-side management (DSM), which respond to
dynamic market prices. A reliable DSM strategy relies on load forecasting techniques in day-ahead (DA)
scheduling. This paper applies an error-driven prediction modulation to evaluate these differences. In addi-
tion, this paper creates two newDSMmethods with an evaluation environment to utilize this modulation. The
first method adds this modulation directly to traditional microgrid DSM with electrical storage. The second
method creates two virtual sub-storages for behavior adjustment in both DA and real-time (RT) markets. The
results of numerical studies indicate that the new DSM methods can reduce microgrid operation costs.

INDEX TERMS Storage, microgrid, power market deregulation, behavior, smart grid, virtual storage.

I. INTRODUCTION
The integration of information & communication technol-
ogy (ICT) with Smart Grid features an integrated energy
system [1]–[6]. The proliferation of data in power systems
will intensify the use of rapidly developing decision models
for real-time data analyses [7]–[10]. Among these models is
the demand-side management (DSM) for mining potential
operational benefits in microgrids.

Data-driven analyses in microgrids help decision makers
forecast energy requirements [11]–[13]. For example, [14]
developed a neural network-based optimization approach for
predicting energy demand. This model uses a neural network-
based genetic algorithm (NNGA) and neural network-based
particle swarm optimization (NNPSO) approaches to forecast
consumer demand. Reference [15] proposed a load fore-
casting model for maximizing system reliability, resilience
and stability. Using historical information, the accuracy
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on norm was the main target of training the prediction
model [16], [17]. The norm-based accuracy evaluates positive
and negative errors in terms of the F-norm. If the predicted
load is fairly distributed at both positive (larger than) and
negative (smaller than) sides, the norm-based training target
can describe the model accuracy well. However, positive
and negative errors are not always fairly distributed. This
unbalanced distribution can be improved at the prediction
level rather than the modeling level.

Using accurate prediction results, decision makers opti-
mize power system operation [18]–[20]. In comparison
with operational constraints embedded in industrial pro-
cesses (e.g., cement milling or light), battery energy sys-
tems (BESs) appear to be a viable option for behav-
ioral adjustment [21]–[23]. For example, [24] proposed a
comprehensive optimal sizing solution for microgrid BES
applications. This model considers different technologies
for distributed deployment, operational strategies on BES
degradation and coordination of microgrid operation modes.
In [25], performance analyses and comparisons of different
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BES technologies for microgrids were studied, in which loads
were assumed to be accurately predicted.

Practically, load prediction errors will be passed on from
prediction models to microgrid controllers. In [26], a robust
energy management method was proposed for microgrids
with high penetrations of wind and solar energy, and a for-
mula was established for calculating the worst-case harvest-
ing renewable DER. In [27], by considering the worst-case
scenario of renewable generation, a robust scheduling scheme
was obtained for optimizing on-site generation resources in
a microgrid, which minimizes the expected economic cost
while satisfying all operational constraints [28]. However,
impacts of prediction errors have been seldom evaluated in
a power market environment such that microgrid operators
should be capable to handle prediction errors in the decision-
making process and adjust the microgrid’s operational behav-
ior under uncertainties.

This paper makes the following contributions.
�Indifferent to traditional DSMmodels, this paper initiates

a new DSM evaluation environment with both day-ahead
optimization and real-time examination. The two-settlement
market structure (a day-ahead market and a real-time market)
is considered in this DSM environment.
�This paper distinguishes positive errors and negative

errors. If these two errors are not fairly distributed in the
norm-based prediction model training, this paper creates an
error-based prediction modulation in the DSM process.
�Additionally, as prediction errors may contribute posi-

tively or negatively to microgrid operations in a power market
environment, this paper develops a novel DSM model with
virtual storage management in order to adjust the impact from
prediction errors on microgrid operations.

The following content is summarized as below. Section II
discusses positive and negative errors, where a preliminary
experiment is conducted for illustrating the necessity of pre-
diction error modulation. In Section III, an evaluation envi-
ronment is introduced for DSM, together with two new DSM
methods. Section IV presents a numerical study to demon-
strate the feasibility of the proposed model.

II. ERROR-DRIVEN BASED PREDICTION MODULATION
A. PROBLEM FORMULATION AND
PRELIMINARY EXPERIMENT
The identification of positive and negative errors is important
to the improvement of prediction accuracy. A typical norm-
based prediction error is calculated as below:
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where Lp;ij is the predicted load at hour i of day j. Lr;i is
the real load at hour i of day j. The corresponding positive
and negative errors are represented in Equations (2) and (3),

FIGURE 1. Comparison between Positive Error and Negative Error.
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A preliminary load forecast experiment is conducted for
implementing both positive and negative error analyses on
a norm-based training set that contains historical load and
climate data. A feedforward neural network (FNN) with
10 hidden-layer neurons is used for predicting the test set.
Fig. 1 shows the result of this experiment.

In Fig. 1, although the norm-based error, mean absolute
percentage error (MAPE), is approximately 90%, the total
percentage of positive errors is approximately 40%, which
is smaller than the percentage of negative errors. This imbal-
anced error distribution indicates the potential of prediction
model improvement. For example, by simply decreasing each
data in the original test set by 30MW, the prediction accuracy
in that preliminary experiment will increase from 90.17% to
91.69%. Theoretically, one possible way is to modulate the
prediction based on the classification of positive and negative
errors without requiring the addition of new features in the
prediction model.

B. ERROR-DRIVEN PREDICTION MODULATION
Here, an error-driven prediction modulation (EDPM) proce-
dure is initiated for improving the model accuracy with the
imbalanced error distribution. EDPM is developed based on
the probability density estimation theory, the entire procedure
of which is shown in Fig. 2:
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FIGURE 2. EDPM procedure.

EDPM comprises three main steps.
Step 1: Setting the backward period (BP). Historical errors

are used for training the density estimationmodel by selecting
a proper backward time period.

Step 2: This step verifies if the error imbalance in the target
prediction period is similar to that in BP. The following index
is used for the stability verification.

�BP D
1
n

nX
jD1
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��
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��MAEneg;j

��
!

> � (4)

where MAEpos;j is the mean absolute error in the jth day.
MAEpos;j;BP is the mean absolute error in BP corresponding
to the jth day. If the imbalanced error distribution in the
prediction period resembles the distribution in BP, the pro-
portional expression in the parentheses in Equation (4) will
be close to one. � represents the similarity threshold, which
is provided by a decision maker.

Step 3: The confirmation of prediction stability represents
that the imbalanced error distribution in BP is similar to that in
the prediction. The prediction error can be estimated based on
the probability density estimation of historical data. A typical
non-parametric kernel density estimation is stated below [29]:8>>>>>><>>>>>>:
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where sub-equation (5.1) represents the probability density
estimation, and sub-equation (5.2) is the kernel function. Og(x)
is the estimated probability density function. is the kth error
sample in the corresponding BP. �j and �j are the mean
and the standard deviation of Og(x), respectively. Given the
estimated error distribution, the mean value will be a fair
estimation of the potential error in the load prediction. Thus,
the modulation to the predicted results should be half of this

FIGURE 3. DSM Evaluation Environment.

error, which is shown below:
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III. DSM METHOD EVALUATION ENVIRONMENT AND
VIRTUAL STORAGE MANAGEMENT
A. DSM EVALUATION ENVIRONMENT
A typical DSM model with storage is shown as the ‘Tra-
ditional Framework’ in Fig. 3. At a certain scheduling
period (e.g., one day ahead), decision makers regard pre-
diction results as the actual load and send them into the
DSM model for optimizing microgrid operations. The DSM
model also receives operational constraints from field devices
(e.g., energy storage) and obtains price information (usually
day-ahead market prices) from the electricity market. The
output of the traditional framework includes the optimized
schedule of energy storage operations and the corresponding
cost.

As prediction errors will influence the decision making of
DSM optimization, there is a need for an examination section
in the DSM evaluation for verifying the optimality of the
obtained schedules. This examination section will receive the
predicted load, the actual load, and prices from both day-
ahead and real-time electricity markets. The cost variation
from the difference between predicted and actual loadswill be
computed in terms of the real-timemarket price. Additionally,
the evaluation contains an error-based prediction modulation
for adjusting positive/negative errors in the DSM model.
Once virtual storage (VS) is implemented, the cost will be
calculated based on the real-time market price.
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B. DSM MODEL WITH/WITHOUT ERROR ESTIMATION
Traditional DSM models assume load prediction with 100%
accuracy, where the objective function and constraints are
generally stated as [11]–[13]8>><>>:
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where equation (8) is the objective function that minimized
the total optimization cost. Equations (9) and (10) reveal the
charging power limits and the energy storage level limits,
respectively. vij indicates the storage device’s charging power
at the ith hour of the jth day, and a negative value repre-
sents discharging. Equation (11) reveals other operational
constraints specified by decision makers.

When the prediction error modulation (see Equations (6)
and (7)) is implemented, the objective function in Equa-
tion (8) is expanded as8>>>><>>>>:
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where the new objective function considers the estimated
error�j and modulates the forecasted load. This small adjust-
ment will change the operations and market behavior of the
microgrid, while the DSM constraints remain unchanged.

C. DSM MODEL WITH/WITHOUT ERROR ESTIMATION
� Impact of Prediction Error on Operational Cost

Prediction errors do not always play a negative role in DSM
optimization. Consider Obj_2 in Equation (12) as an example.
The prediction error affects the microgrid’s bidding behavior
in the day-ahead market. If the prediction error is positive
(the actual load is larger than the predicted load), the error
can reduce the operational cost when the price in the real-
time market is smaller than the price in the day-ahead market.
In other words, the operational cost may decrease by reducing
the bids in the day-ahead market or by increasing the actual
load when the day-ahead price is higher. When the real-time
price is higher, the operational cost may decrease by reducing
the actual load or increasing the bids in the day-ahead market.
Fig. 4 illustrates the cost variation between day-ahead and
real-time markets.

Therefore, when receiving the estimated error, the deci-
sion maker requires a load adjustment tool that adjusts
the microgrid’s bids in both day-ahead and actual markets

FIGURE 4. Cost variation of microgrid operations.

FIGURE 5. An Example of Virtual Storage Management.

simultaneously. To achieve this goal, we propose a virtual
storage management (VSM) scheme.
� Virtual Storage Management

The aim of VSM is to provide two adjustable variables for
predicted and actual loads such that each energy storage can
be separated into two sub-storages.

It is noted that physical constraints only limit the operation
of the actual energy storage rather than two independent
fictitious sub-storages. Therefore, when the storage is sep-
arated into 2 sub-storages in VSM, the overall operational
performance of the actual storage is from the combination
of both sub-storages, each of which may not necessarily
have independent constraints. Fig. 5 introduces an example
of separating and coordinating two sub-storages.

In Fig. 5, assume that a storage is charging at 1 kW,
its maximum charging power is 2 kW, and the maximum
energy storage capacity is 2 kWh, which are recognized as the
combined characteristics of two sub-storages. For example,
the overall storage operation is equivalent to the following
scheme: one of the sub-storages is charging at 3 kW (which
exceeds the charging limit of the actual storage), and the
other is charging at �2 kW (discharging). If the operation
is maintained for 1 hour, the energy stored in the first sub-
storage is 3 kWh (which exceeds the maximum energy limit
of the actual storage), and that for the second sub-storage is
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�2 kWh (which violates the minimum energy limit for the
actual storage). In the day-aheadmarket, only one sub-storage
will be considered in microgrid operations. In the real-time
market, both sub-storages will operate in close coordination
without violating physical constraints.

Equation (13) is another example for one more adjustable
variable construction.(

Traditional Storage V vij 2 [vmin; vmax]
Virtual Storage V vmin 6 vij D vd;ij C vr;ij 6 vmax

(13)

Traditionally, determination of storage requires only vij,
which is the charging / discharging power of traditional
storage. In VSM, vij, vd;i j and vr;i j are required. vr;i j is
the sub-storage charging / discharging power for the day-
ahead market only. vr;i j is the charging / discharging power
adjusting load in the real-time market. Any two variables
in the equation in (13) can determine a certain situation of
storage behaviors. In the two-stage power market structure
(day-ahead and real-time market), the total cost of purchased
power depends on the prices and trading situations in both
markets. Thus, two adjustable variables can create sufficient
flexibility in power trading inside both markets together.
Therefore, the virtual storage can be recognized as a market
trading strategy. New flexibility is created from separating
real storage into two adjustable sub-storages. In comparison
with the strategy with only one behavioral variable from
storage (Obj_1 and Obj_2), one more adjustable variable
can determine more chances of hedging between these two
markets and reduce more cost.

D. DSM MODEL WITH ERROR ESTIMATION AND VSM
� Estimated Cost under Binary Market Structure

In DSM with VSM and estimated error, the load schedule of
the DA market and un-noticed load in the RT market are both
considered. Equation (14) reveals the optimization objective
of DSM by considering both VSM and prediction errors.

Obj_3j
�
vd;i;j; vr;i;j

�
D Cd;j C bCr;j (14)

where the operational cost consists of two components: the
cost in the day-ahead market ( Cd;j is the cost at the jth day),
and the estimated cost in the real-time market ( bCr;j is the
estimated cost at the jth day).

In VSM, a certain sub-storage is specified for the day-
ahead market, the cost of which is determined as below:
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IX
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�
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where the unmodulated prediction value Lp;i j and the
dayDahead charging power of sub-storage vd;i j are used for
determining the load bidding quantity. Pd;i j is the day-ahead
market clearing price.

The cost in the real-time market is determined by the
power difference between the bidding amount in the day-
ahead market and the actual load. The estimated cost in the

real-time market is stated as below:8><>:
bCr;j D
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where �j is the estimated error. vr;i j is the real-time charging
power of the sub-storage. Pr;i j is the real-time market clear-
ing price.
� Constraints of VSM

Following the definition of VSM, operational constraints will
only limit the integrated performance of the two sub-storages.
Accordingly, equations (9) and (10) are updated as

Const 1 V vmin 6 vij D vd;ij C vr;ij 6 vmax (17)

Const 2 V Emin 6 Einit C

168a6IX
iD1

�
vd;ij C vr;ij

�
6 Emax

(18)

which indicate that each sub-storage is allowed to exceed the
limitation as long as the other storage can help reduce the total
quantity within the limitation.

Without separate constraints for each sub-storage,
the charging power/discharging power may become
extremely large. Hence, two new constraints are defined as
follows.

The first limit comes from the market requirement on
the bidding quantity (which is enforced to be non-negative),
as stated below:

Const 3 V Lp;ij C vd;ij > 0 (19)

The second limit comes from the physical capability of the
real-time market in balancing supply and demand. Normally,
the real-time market would fail to satisfy the actual load,
which is extremely far from the submitted bid in the day-
ahead market. Therefore, the difference between these two
quantities should be limited inside a security range, as stated
below:

Const 4 V

8>>>>>>>>><>>>>>>>>>:

1� � 6
Lp;ij C

�j

2
C vr;ij C vd;ij

Lp;ij C vd;ij
6 1C �

m�������
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2
C vr;ij

Lp;ij C vd;ij

������� 6 �

(20)

where � is a threshold provided by decisionmakers according
to their market experience. For example, � D 0:2 means that
the actual load cannot be larger than 120% or smaller than
80% of the load bidding amount in the day-ahead market.

To ensure the repeatability of the operation scheme, each
storage’s initial energy level should be equal to that at the end
of a day, as stated below:

Const 5 V 0 D
IX

iD1

�
vd;ij C vr;ij

�
(21)
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By solving the DSM optimization with the consideration
of VSM and prediction errors, v_d;i j and v_r;i j are the opti-
mal scheduled charging/discharging powers of the two sub-
storages, respectively.n

v_d;ij; v
_
r;ij

o
D argmin

const 1;2;3;4
.Obj_3/ (22)

E. DSM EXAMINATION ENVIRONMENT
The proposed DSM optimization is solved before the sub-
mission of bids in the day-ahead market because the load
prediction is not 100% accurate. Thus, the effectiveness of
Obj_2 and Obj_3 should be examined after the actual load is
obtained. Additionally, constraint 4 in Equation (20) limits
the behaviors of both sub-storages with the estimated pre-
diction error. When the actual deviation is different from
the estimated error, this constraint may be violated and will
lead to the exceeding forbidden loss (EFL). Therefore, it is
necessary to examine the effects of different DSM methods
with the actual load.
� Actual Cost Resulting from the Two-Settlement Mar-

ket Structure
Under the two-settlement market structure, the total opera-
tional cost is calculated as below:

exj

�
v_d;ij; v

_
r;ij

�
D Cd;j C Cr;j C Loj (23)

where the operational cost comprises the day-ahead market
cost Cd;j, the real-time market cost Cr;j, and the EFL cost.
Loj

� Exceeding Forbidden Loss (EFL)
When constraint 4 is violated, the extra load may be supplied
at an extremely high price in the real-time market or must
be curtailed. Here, the load management strategy and the
corresponding penalty cost are considered as below:

Loj D
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2j�ijj

�ij D Lr;ij C (� � 1)Lp;ij C v_r;ij C �v_d;ij
(26)

where sij is a logical indicator, with 1 representing the actual
load larger than (1 C �) times the load bidding amount in
the day-ahead market. mi;j is another logical indicator, with
1 representing the actual load smaller than (1� �) times the
bidding amount. Pf is the extra cost for each load outside
the security region. Lr;i j is the actual load combined with the
storage’s charging/discharging power.
� Cost in the RT Market

With the actual load exceeding the allowable range, the cost
in the real-time market has the following scenarios.

1) When sij D mij D 0, the real-time market compensates
the difference between the actual load and the bid in the day-
ahead market, and the cost is revealed in Equation (27).

TABLE 1. Simulation parameter settings.

TABLE 2. Evaluation of BP modulation stability.

2) When sij D 1, load management is activated to prevent
the actual load from exceeding (1 C �) times the bidding
amount. In that regard, the excessive load is curtailed and not
supplied in the real-time market, and the cost is determined
by Equation (29).

3) When mij D 1, load management is activated to prevent
the actual load from being lower than (1��) times the bidding
amount. Similarly, the cost is determined by Equation (30).

Cr : j D

IX
iD1

�
�nor C �up_ex C �low_ex

�
� Pr;ij (27)

�nor D

�
Lr;ij C v_r;ij � Lp;ij

� �
1� sij

� �
1� mij

�
(28)

�up_ex D (1C �)
�
Lp;ij C v_d;ij

�
sij (29)

�low�ex D (1� �)
�
Lp;ij C v_d;ij

�
mij (30)

IV. NUMERICAL EXPERIMENTS
A. SETTINGS OF NUMERICAL EXPERIMENTS
Numerical experiments are implemented to demonstrate the
feasibility of the proposed method based on a typical large
microgrid in Pittsburgh, U.S. The microgrid load forecasting
for weekday prediction is based on FNN. Market data from
PJM and NYISO between 2012 and 2014 are selected as a
training data set, and the data between 2015 and 2016 are
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TABLE 3. Optimization results of different DSM models.

selected as the test set for load forecasting [31], [35]. The
load forecast feature space includes temperature, humidity,
wind speed [30] and historical daily load. The historical
load selection follows the bidding submission requirements
of PJM’s and NYISO’s day-ahead markets [32], [33]. The
studied microgrid decision maker owns an electric storage for
market operations. The simulation-relevant parameters are
shown in Table 1.

B. ERROR UNBALANCING DETECTION
By training the FNN in Table 1, the MAPE of the prediction
in 2015 (testing set) is approximately 90% for PJM and 93%
for NYISO. If the past one month is set as BP, Table V shows
the �BP of each month in 2015. In Table 2, only one value
of �BP is negative for PJM data, and three are negative for
NYISO data, which means that the error distribution in the
target period follows the same pattern as that in BP. �BP of
the entire year is 1.1282 for PJM data and 1.0591 for NYISO
data. This shows that the distribution of errors in the precited
results is on average the same as that in BP.

C. DSM SIMULATION RESULT
As observed, the unbalanced errors are mostly negative
and stable so that the proposed modulation can be used.
Table 3 provides the simulation results for different DSM
models.

In Table 3, the following aspects are revealed.
� DSM with VSM has the best performance in saving

the operation cost
By comparing with the traditional DSM model (Obj_1),
the DSM with VSM (Obj_3) can achieve an 8.08% cost
reduction for PJM in 2016 and 10.81% in 2015. This case
for NYISO results in 14.97% in 2016 and 14.37% in 2015.
The reason is that two virtual sub-storages can catch the
benefit cap in the two-settlement markets for compensating
the operation cost.
� Only DSM with VSM can accurately quantify the

cost of the real-time market

The results of Obj_1 and Obj_2 cannot reflect their actual
costs in the real-time market because they strictly follow the
submitted bids in the day-ahead market. Therefore, their real-
time market costs are 0. On the other hand, Obj_3 considers
the modulation and one specific sub-storage in the real-time
market.

Obj_2 has the best prediction accuracy
The error modulation is directly added into Obj_2, so it

achieves the lowest level of the two errors in Table VI. Com-
pared with Obj_2, two different sub-storages expand the dif-
ference between actual and predicted loads. Thus, Obj_3 has
the largest difference between real consumption and load bid.

D. RESULT ANALYSIS�BEHAVIORS OF STORAGES
A typical day in 2016 in the PJM data is selected for further
analysis of the storage behaviors under the three DSM mod-
els. For that day, the real-time market price is higher than that
in the day-ahead market before 13:00, as depicted in Fig. 6.

As described in Equations (8) and (12), Obj_1 and
Obj_2 only consider the day-ahead market. Therefore,
the charging/discharging behaviors of storage in these two
models can only utilize the price information in the day-ahead
market cost reduction. As shown by Fig. 6 (b), the storage
charges between 2:00 to 8:00 am, when the price is the lowest,
and discharges between 15:00 to 18:00 pm, when the price is
the highest.

Virtual storage can adjust the behaviors in both day-ahead
and real-time markets. Therefore, Obj_3 can utilize both
the price differences inside these two markets and the price
differences over these twomarkets. The following aspects can
be revealed in Fig. 6.

� DSM with VSM can consider price differences over
different markets.

Consider Fig. 6 (c) as an example. Before 13:00, the charging
of the sub-storage for the day-ahead market is more expen-
sive than that for the real-time market. Therefore, energy is
discharged from the sub-storage of the day-ahead market.
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FIGURE 6. (a) Prices of the DA Market and RT Market. (b) Charging / Discharging Behaviors of Obj_1 and Obj_2. (c) Charging /
Discharging Behaviors of Obj_3. (d) Storage Energy of Obj_3.

� DSM with VSM can also consider differences
between price peak and price valley within one mar-
ket.

In Fig. 6 (c), the entire storage is mainly charged before
8:00, which is the price valley of both markets. It discharges
between 15:00 to 18:00, which is the price peak of both
markets.

� Virtual Storages do not suffer physical constraints.

As the charging/discharging constraint and the energy con-
straint only limit the overall behaviors of actual storage,
the actual storage’s behavior curve in Fig. 6 (c) and the
energy curve in Fig. 6 (d) satisfy the constraints stated as
Equations (17) and (18). The charging power for the day-
ahead market sub-storage climbs up to 1000 kW. However,
the energy storage level of the real-time market sub-storage
would become negative.

V. CONCLUSIONS
Given that the load prediction error could be transferred to
the DSM decision making, this paper proposes a prediction
modulation mechanism for compensating either positive or
negative error. Based on this modulation, this paper also pro-
poses an integrated evaluation environment for DSM models
as well as two new DSM methods. The first method is to
add the modulation directly into traditional DSM models,
whereas the second method is constructed based on the VSM
concept. The numerical study shows that DSMwith VSM has
the best cost reduction performance for microgrid operations.
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