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Abstract: The current paper aims to review tooling life span, failure modes and models in cold
microforming processes. As there is nearly no information available on tool-life for microforming
the starting point was conventional cold forming. In cold forming common failures are (1) over
stressing of the tool; (2) abrasive wear; (3) galling or adhesive wear, and (4) fatigue failure. The large
variation in tool life observed in production and how to predict this was reviewed as this is important
to the viability of microforming based on that the tooling cost takes a higher portion of the part cost.
Anisotropic properties of the tool materials affect tool life span and depend on both the as-received
and in-service conditions. It was concluded that preconditioning of the tool surface, and coating
are important to control wear and fatigue. Properly managed, the detrimental effects from surface
particles can be reduced. Under high stress low-cycle fatigue conditions, fatigue failure form internal
microstructures and inclusions are common. To improve abrasive wear resistance larger carbides are
commonly the solution which will have a negative impact on tooling life as these tend to be the root
cause of fatigue failures. This has significant impact on cold microforming.

Keywords: fatigue; wear; life-span; modeling; prediction; tool material; microforming

1. Introduction

In cold forging the common failures are (1) over stressing the tool; (2) abrasive wear failure
leading to flawed tolerances of the workpiece and poor surfaces; (3) galling leading to poor surface
of the workpiece and material buildup and wear of the tool, and (4) fatigue failure. Miniaturization
of components and the requirements for tighter tolerances lead to increasing contact pressures at the
tool-workpiece interfaces in cold forming operations. Consequently, fatigue and wear of forming tools
also increase.

Currently overstressing in tooling can be estimated and reasonably well predicted using
finite element modelling (FEM) including elastic defoemation with deviation of product shape [1],
but life-span prediction for fatigue and wear with high tool hardness, as required in microforming,
is a relatively new area needing further study [2–4].

The scope of current paper is not on the conditions that will result in product shape deviation but
of the wear and fatigue failure of tooling used for cold forming operations with particular focus on
microforming. The lack of work on tool life in microforming made it necessary to start with a review
of tooling lifespan and tooling failure in conventional cold forging processes, models that can account
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for the stochastic behavior of wear and fatigue phenomena will be discussed. An in-depth review of
the material properties of typical tool steels will then be presented in relation to their microstructures
and their effects on fatigue life and wear behavior. The paper will follow with a presentation of
the characteristics and fatigue behavior of coatings typically used on tooling before discussing the
implications of changes to surfaces in service. Finally, the implications of the tribological and friction
size effects on the tooling surfaces at the microforming scale will be discussed.

2. Tool-Life Variations and Methods to Predict Tool-Life

2.1. Observed Tooling Life Span Variation and Failure

Meidert and Hansel [5] studied the tool lifespan for typical net shape cold forging parts produced
for the automotive industry (see Figure 1a). It should here be noted that the failure mode in this study
was primarily fatigue failure or over load and rarely wear failure. The life span observed ranges from
a few hundred up to 90,000 strokes. Some cases of short tool life can most likely be associated with
wrong setup and common factory type mistakes, but this would still render a lifetime variation close
to a factor eight to explain. This variation must be better understood in order to make microforming a
viable process.

Tabe [6] illustrated qualitatively the causes of tool failure as a function of tool hardness as shown
in Figure 1b. It is suggested based on this figure that maximum tool life is not given by maximum
hardness but that there is an optimum hardness. It is, however, important to bear in mind that
as formed parts are getting smaller and more complicated, the necessary local pressures increase
necessitating harder tools. In this context, failure by fatigue will be increasingly important to manage.
Fatigue failure has a strong stochastic nature which will be discussed more in detail below.
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longitudinal directions, as shown in Figure 2. This was due to the elongation of the microstructural 
features. As the tool material is being cut at the tool manufacturer the original orientation is not 
always kept under full control making this an inherent source for variation of the fatigue life. The 
same type of variation between transverse and longitudinal directions was observed for toughness, 
which influences fatigue crack growth rate, for AISI 01, D2, D3 ASP 2023 and Vanadis10 [9]. Modeling 
attempts to address the relation between phase arrangements and toughness have also been 

Figure 1. Tool life, (a) data of life spans of individual tool inserts over time illustrating the large
variation observed under industrial practice conditions, after ref. [5]; (b) schematic relation between
toll hardness and reasons for failure in tooling after ref. [6].

Broeckmann [7,8] studied the microstructure of tool steel and its resulting properties. Broeckmann [7]
concluded that as the tool material was made harder the influence of the rolling or forging process
was becoming greater showing up directional properties in the transverse and longitudinal directions,
as shown in Figure 2. This was due to the elongation of the microstructural features. As the tool
material is being cut at the tool manufacturer the original orientation is not always kept under full
control making this an inherent source for variation of the fatigue life. The same type of variation
between transverse and longitudinal directions was observed for toughness, which influences fatigue
crack growth rate, for AISI 01, D2, D3 ASP 2023 and Vanadis10 [9]. Modeling attempts to address the
relation between phase arrangements and toughness have also been presented [10]. It was suggested
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that local variations in carbide concentration in tool steel should result in a layered structure causing
stress concentrations in the material between layer of high carbide concentration and low carbide
concentration and not just around the particles themselves [11]. This strongly suggests that for hard tool,
the tool cavity orientation relative to rolling and forging direction becomes important. In microforming
tool pressures are high with significant stress concentration at sharp features. The ability to model
tool life thus becomes increasingly critical, as tool cost is a decisive factor. A correct relation between
applied stress and material anisotropy is thus also becoming more and more important.
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Lange and coworkers [3] studied cold forward extrusion and identified for this type of die that
the failure modes were predominantly of three different kinds, namely overloading, fatigue failure and
wear, as illustrated in Figure 3. They concluded that reducing the stress level in cold-forging tooling
by modifications in the design has the greatest influence on tool life. Reducing the influence of radial
machining and polishing marks through jet-honing and shot-peening has also some positive effect on
die life whereas increasing the overall hardness of the insert reduces the toughness of the tool material
and, thus, accelerates crack growth. However, increasing the hardness of the surface by CVD coating
can have a positive effect on die-life.

In order to be able to reduce stress at critical points in the die and to ensure that the material
response is appropriate it is thus necessary to address the following points [3]:

• Accurately analyze and measure the tool material properties

• This involves understanding of the influence of the carbides and inclusions and their type,
size and size distribution as well as clustering effects to evaluate their effects on:

• Fatigue crack initiation and growth
• Wear rates

• Accurately understand the influence of the surface conditions in the tooling

• Influence of the residual and overlay stresses in the tool surface
• Influence of surface finishing
• Influence of the type of coating and coating properties

• Understand how to characterize properties

• Capability to characterize the base material to be able to describe the nature and origin of the
tool material property variation

• Capability to characterize the surface coating properties
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2.2. Principal Schemes for Simulation and Prediction of Tool Life

One of the major damages that limit the die life in cold forging is low-cycle fatigue. The various
methods for material testing, modeling and finite element (FE) simulations to analyse the effects of
different modifications in the process and tool design on die life optimization through FE simulation
were summarized by GroenBaek and Hensel [4].

2.2.1. Fatigue Life Modeling

Strategies developed to tackle tool-life naturally depend on the nature of failure in the tools.
For high volume cold forged parts with net shaped complex surfaces, fatigue cracking of the active
tool elements is the leading cause of failure. The most efficient route to do this analysis is to use FEM
to assess [2]:

• Tool load (contact stress distribution at the die-workpiece interface).
• FE based elastic-plastic stress-strain analysis (stress-strain curve required).
• A minimum of two loading cycles to determine the cyclic response of the tooling at the highest

loaded zone.

Knoerr et al. [2] developed the analysis flow chart shown in Figure 4. They used a local strain
approach for damage analysis (strain life data for active tool component required) and coupled this to
data for strain amplitude and cycles to crack initiation (see Figure 5).
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In Figure 5 it is clear that a reasonable first estimate of the tool life is possible by the local strain
approach using the total strain amplitude approach. The analysis does however not reproduce nor
predicts the experimental variations. Alternative approaches are thus necessary to reach quantification
of the variations in die life.
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The nature of the data required depends greatly on the damage considered. Falk et al. [12]
assessed the applicability of different damage models to the case of closed die forging with the critical,
process-dependent load is quantified and localized by using a FEM.

The simplest approach is the Wöhler approach or usage of the SN curve where the tooling life
span, N f , is

N f = ND

(
σa

σD

)k
(1)

where σa is the stress amplitude. This model can be applied when the values for fatigue limit σD, its
corresponding lifetime ND and the constant k are known. The drawback is that the required values are
only available for specific relations between the maximum and minimum stress [12].

The next approach is the local strain approach with the total strain εa,tot as measure and εa,el , εa,pl
as the elastic and plastic strain components, respectively. The influence of the mean stress σm is taken
into consideration by the modification of the elastic component as in Equation (3)

εa,tot = εa,el + εa,pl (2)

εa,tot =
σ′f − σm

E

(
2N f

)b
+ ε′f

(
2N f

)c
(3)

where σ′f is the fatigue strength and σm is the mean stress, E is the Young’s modulus, ε′f is the strain
level in the fatigue cycle and b and c are constants. The effect of multi-axial stress conditions can
be correlated with uni-axial fatigue data under the assumption that all stress components oscillate
synchronous with proportional mean values amplitudes. This results in a more flexible approach
which was also chosen by e Knoerr et al. [2].

A more generic approach is the local energy approach [12]. The local energy approach can take
the work performed at the surface and ∆We++ multi-axial stress conditions into account. The total
work, can be expressed as

∆We++ =
1
2

(
∆σ

2
+ ∆σm

)(
∆ε

2
+ εm

)
(4)
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where ∆σm, εm is the mean stress and strain respectively and ∆σ, ∆ε is the stress and strain amplitudes,
respectively. The effective work of damage, ∆We f f , is then expressed as

∆We f f = ∆We++ − ∆Wh (5)

The hydrostatic component ∆Wh can be expressed as

∆Wh =
3
8

∆σh∆εh (6)

The life span of the tool can in this context be expressed as

N f =
1
2

(
2E∆We f f

σ′2f

)1/2b

(7)

Falk et al. [12] concluded that the local energy approach in the study yielded the most satisfactory
results as a prediction tool even though other techniques have lately successfully been used for
engineering solutions of die life extension [13–15].

2.2.2. Wear Life Modeling

Lee et al. [16] studied a bolt forming operation and included strain hardening in their model. Tool
wear and fatigue is not uniquely determined by the tool and the process set-up but there is a strong
component of the workpiece properties in the balance between the wear failure and the fatigue failure.
As fatigue model they chose the simplest model, the Wöhler type of model, and included workpiece
strain hardening expressed as

N f = 0.5

(
2.5K + Kn− 1482.8

σ′f + 499.3− 2.3K− 0.9Kn

)1/b

(8)

Here N f is the fatigue life of the tool, K is the strength coefficient of the work piece, n is the
strain hardening coefficient of the work piece, σ′f is the fatigue strength coefficient for the tool material
(33,415 MPa) and b is the fatigue strength exponent (−0.289) for the tool material [16]. The work-piece
properties are collated in Table 1.

Table 1. Tool life calculated from integrated model for fatigue life, Nf, wear life NW, using strength
coefficient, K and strain hardening exponent n [16].

Materials K (MPa) n DA (nm) DB (nm) NW (103) Nf (103) Tool Life (103)

AISI4135 900 0.084 0.754 0.957 418 133 133
AISI1045 896 0.109 1.060 0.749 377 102 102

AISI51B20 813 0.129 1.470 0.625 272 321 272
AISI10B22 779 0.104 0.799 0.666 500 557 500

To model the wear they chose the commonly used Archard’s model where the incremental volume
worn off, dV is expressed as

dV = k
dPdL

H
(9)

Here k is an experimental wear coefficient influenced by variation in wear conditions (temperature,
environment, i.e., presence of chlorine amount of debris and so forth), P is pressure and H is hardness
of the worn part. For the current planar sliding geometry, it is possible to rewrite this as

dV = dZdA (10)
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dP = σndA (11)

dL = udt (12)

where Z is height, A is area, σn is normal pressure at the surface, u is sliding speed and t is time,
resulting in that

dZ = k
σnudt

H
(13)

The height change resulting from wear, Z, of the bolt forming tool then becomes

Z(r, t) =
k
H

t∫
0

σn(r, t)u(r, t)dt (14)

The outcome from the simulations was subjected to regression analysis of the total wear depth D,
for two critical areas, A and B located at the bottom and top of the die. For these two locations, wear
depth can be expressed as function of the work piece properties as

DA = K
(

1.30× 10−5 − 4.14× 10−4n + 0.00478n2 − 0.0232n3 + 0.04034
)

(15)

and
DB = K

(
50.35 exp

(
− n

0.0040

)
+ 3.49× 10−7 exp

(
− n

0.17

)
+ 6.73× 10−8

)
(16)

These depths are being worn for each blow and it was assumed that the wear rate did not change.
The wear tolerance was set to 0.4 mm. The correlation between work-piece properties and tool life are
shown in Figure 6a,b.

Technologies 2016, 5, 3  7 of 29 

 

Here k is an experimental wear coefficient influenced by variation in wear conditions 
(temperature, environment, i.e., presence of chlorine amount of debris and so forth), P is pressure and H 
is hardness of the worn part. For the current planar sliding geometry, it is possible to rewrite this as 

dZdAdV =  (10) 

dAdP nσ=  (11) 

udtdL =  (12) 

where Z is height, A is area, nσ  is normal pressure at the surface, u is sliding speed and t is time, 
resulting in that 

H

udt
kdZ nσ

=  (13) 

The height change resulting from wear, Z, of the bolt forming tool then becomes 

=
t

n dttrutr
H

k
trZ

0

),(),(),( σ  (14) 

The outcome from the simulations was subjected to regression analysis of the total wear depth 
D, for two critical areas, A and B located at the bottom and top of the die. For these two locations, 
wear depth can be expressed as function of the work piece properties as 

( )4324-5
A 0403.00232.000478.01014.4101.30K D +−+×−×= − nnn  (15) 

and 








 ×+





−×+






−= −− 87

B 1073.6
17.0

exp1049.3
0.0040

n50.35expK D n
 (16) 

These depths are being worn for each blow and it was assumed that the wear rate did not change. 
The wear tolerance was set to 0.4 mm. The correlation between work-piece properties and tool life 
are shown in Figure 6a,b. 

(a) (b)

Figure 6. (a) Simulated fatigue and wear life versus strength coefficient after ref. [16]; (b) Simulated 
fatigue life for four different strengths coefficients versus the strain hardening coefficient after  
ref. [16]. Dashed line = fatigue limit, solid line = wear limit. 

Figure 6. (a) Simulated fatigue and wear life versus strength coefficient after ref. [16]; (b) Simulated
fatigue life for four different strengths coefficients versus the strain hardening coefficient after ref. [16].
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Lee et al. [16] concluded that for the same strength coefficient of the material the high-cycle fatigue
tool life decreased as the strain hardening coefficient increased. However, the total amount of wear
had local maximum and minimum values depending on the strain hardening exponent.
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In the coupling between the wear depth and the fatigue life, surface conditions are important as
surface roughness influences the fatigue crack initiation. Wan et al. [17] developed and implemented a
model for wear depth and surface roughness change in abrasive media finishing which has relevance to
cold forming and abrasive tool wear. The basic assumption is that the wear has two components, on that
is steady wear corresponding to the Archard wear type and a transient component. Wan et al. [17]
derived a phenomenological model describing the local change in dimension, h, as well as the local
change in surface roughness, Ra, as

Wear depth h

h = a(R0 − R∞)

(
1− exp

(
− kT pavt

H

))
+

kS pavt
H

(17)

Surface roughness Ra

Ra = (R0 − R∞) exp
(
− kT pavt

H

)
+ R∞ (18)

where kT , kS are material constants, H is material hardness, pa contact pressure, v sliding/surrounding
media speed (here the analogy would be work piece sliding speed, t duration of sliding action), R0 is
initial surface roughness and R∞ is final attainable roughness.

3. Material Properties and Implications for Tool-Life

It is clear from the above examples of modeling that there are several important areas to cover in
order to understand the uncertainties of tool life.

Simple relations as stress strain curves are the starting point for mechanical behavior. Stress strain
relationships for common tool steels are shown in Figure 7a [2]. For different materials there is also
a unique relation between tensile strength and hardness which is illustrated for common cold-work
steels in Figure 7b. For fatigue there also exists a generic relationship for the material itself, for different
load cases as illustrated in Figure 7c and for wear, Figure 7d [18].
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Figure 7. (a) Stress strain curves for M2 and D2 tool steels after ref. [2]; (b) Relation between
hardness and tensile strength for SKD11 (D2-type) and QCM8 (low Cr version of SKD11) after ref. [18];
(c) Relation between stress amplitude and fatigue life for tension-compression fatigue for SKD11
(D2-type) and QCM8 (low Cr version of SKD11) after ref. [18]; (d) Relation between sliding speed and
wear rate for SKD11 (D2-type) and QCM8 (low Cr version of SKD11) after ref. [18].

These tests are made under constant and well controlled conditions. In the real tool these conditions
are not as well defined and are changing during use. There also exists a spread in properties depending
on where the material fails that is both batch and supplier dependent. In an effort to capture the
probabilistic nature of the tool life Engel [19] concluded that the task to predict tool life depends
on 2 steps

• the determination of load and
• the determination of strength

The key reasons for the scatter on the other hand is due to

• the deviations from perfect geometry;
• uncertainties in the state of pre-stressing of the die;
• uncertainties in the strength of the material; and
• deviations from ideal surface conditions.

Engel [19] concluded that if the tool life is considered as the decisive criterion for tool layout
and for improving the tool performance, the stochastic characteristics of this parameter have to
be taken into account. Due to the tool life being influenced by deterministic as well as stochastic
factors, the most promising way to solve the problem is the combination of mechanical/numerical and
statistical analysis. The approach capable to derive a tool-life with a well-defined level of confidence is
comprised of the following steps:

• quantifying the stochastic characteristics of primary parameters of influence, such as for example
the surface topography;

• establishing the distribution functions of load and strength; and
• determining the failure probability and its evolution.

3.1. Material Fatigue Resistance

The material fatigue resistance is clearly influenced by the type and nature of the particles inside
the material and as well as particle near the surface of the specimen and by the surface roughness.
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The individual influence and the origin of failure strongly depend on the stress level and number
of cycles to failure as different crack initiation mechanisms are active. Sohar et al. [20] clearly
illustrated this experimentally for a high chromium alloyed tool steel in giga-cycle fatigue, Figure 8a,b.
The influence of carbides and the effect of surface residual stresses, resulting from heat treatment
or from the grinding/polishing process, on the fatigue behavior in the giga-cycle regime of ingot
metallurgy produced D2 type tool steel were examined. Residual stresses were found to be responsible
for the occurrence of two failure modes:

• Internal cracks initiating at large primary carbides (clusters) were observed in the cycle number
range of 105–106 cycles,

• In the giga-cycle regime near-surface cracks originating at primary carbides caused failure, which
was related to degradation of the RS by cyclic loading.

In the absence of considerable residual stresses predominantly near-surface crack initiation was
obtained. It should here be noted that with a high compressive residual stress internal carbides are the
main cause for fatigue crack initiation. Understanding the particle size distribution of carbides and
inclusions are thus clearly important.
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The importance of surface inclusions was further emphasized by Meurling et al. [22]. They clearly
illustrate in Figure 10 the importance of microstructual features such as carbides and carbide clusters at
the higher strength. The relation between the carbides and inclusions are consistent with the findings
of Haglund [23] that concluded that:

• The highest stress concentrations are found in the transversal direction of MnS inclusions while in
the parallel direction the stress concentration is very small.

• The second highest stress concentration is found around Ti(C,N) particles due to the square geometry.
• Al2O3 particles generated the smallest stress concentrations due to the rounded geometry.
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From this it is understood that in addition to understanding the particle size distribution, it is
also important to understand the probability of finding particles in the surface of the part or specimen.

Sohar et al. [20] used a simple approach to assess the number of surface carbides in a materials
based on the total number of carbides, NCar,V , in the test specimen are

NCar,V = nCarVtest (19)

With, nCar, as particle density and, Vtest =
πd2l

4 , as specimen volume (cylindrical shape of diameter
d and length l).

The number of carbides in a thin surface volume, Vsl , can be expressed as

NCar,sl = nCarVsl (20)

with
Vsl = πdldsl (21)

where dsl is the thickness of the surface layer.
For the carbides it is reasonable to assume that

dsl = dCar (22)

The ratio between the bulk and surface carbides can thus be expressed as

NCar,sl

NCar,V
= 4

dCar
d

(23)
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The probabilistic nature of the fatigue failure is intimately connected to the variation in life-span
as illustrated in Figures 8–10. Meurling et al. [22,24] developed a model based on the particle size
distribution, divided into inclusions and carbides, in the material to estimate the life span of tool
materials. The starting point is the size distributions of carbides and inclusion as illustrated in
Figure 11a,b.
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In fatigue the stress amplitude, ∆σ, is important and the interior particles of a diameter, D, acts as
stress intensifiers as

∆KI = 2∆σ

√
D
2π

(24)

The stress intensity factors, ∆KI , found for inclusions and carbides are shown in Figure 12a,b.
Clearly the intensity factors mainly lie in a band above 4 MPa

√
m, which is the common threshold

stress intensity for crack propagation, ∆Kth, in the steels studied excluding the M2 high-speed steel.
To account for the stochastic nature of fatigue analysis, Meurling et al. [22] developed a model

based on the following assumptions:

• Around all particles such as carbides and inclusions, cracks exist of equal size as the
initiating particles.

• An existing crack will not grow unless the stress intensity at its tip exceeds the stress intensity
threshold for crack propagation.

• If there exists at least one crack for which the stress intensity exceeds the threshold value, then
this crack will eventually propagate to cause failure of the specimen.
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Based on the different inclusion and carbide populations, a defect is defined as critical if its stress
intensity exceeds the threshold for propagation, ∆Kth, calculated through Equation (25), coupled with
data as shown in Figure 12a,b. The critical size of a particle, Dc, as shown is therefore

Dc(∆σ) = 2π

(
∆Kth
2∆σ

)2
(25)

Meurling et al. [22] then used Poisson statistics to derive an expression for the number of critical
defects, λc , in the material as

λc = f

√
2k3

π

∫
V

∞∫
Dc

D−
1
2 e−kDdDdV (26)

Here f and k are constants defining the particle distribution. Knowing this expected number, the
probability of finding a certain number of critical defects, n, in a volume of material can be expressed
using Poisson’s statistics

p(n) =
λn

n!
e−λ, n = 1, 2, 3, . . . (27)

According to assumptions above one can then say that the specimen will fracture if n equals any
number except zero, i.e., at least one critical defect exists. Therefore the fracture probability equals one
minus the probability that there exists no (n = 0) critical defects:

Pf = 1− e−λc (28)

For the total failure probability due to the combination of all considered defects the following
expression is used:

Ptot
f = 1− e

−∑
i

λc ,i
(29)

where i is the sum over all types of considered defects which for Meurling et al. [22] case would be
pcarbides and inclusions. The critical criterion for fracture was then set to Ptot

f = 0.5. Meurling et al. [22]
did not change the carbide distributions for surface carbides but rather only increased the fatigue life
limit with the measured residual stress to obtain the measurement for surface particle induced failure.
The work by Meurling et al. [22] concluded that fatigue crack initiation occurred at inclusions situated
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inside the specimens in most cases. Carbides also caused failures in the M2 grade and in the carbide
rich grade VANADIS10. For longitudinally ground PM23, specimens also fractured from carbides in
the surface. For shot peened PM23, specimens also fractured from deformed turning-grooves from
the hard turning. The threshold for propagation of cracks at inclusions and carbides controlled the
fatigue strength.

Important to the fatigue life is not only the inclusions and carbides but also the way the surface is
prepared. Fredriksson et al. [25] investigated the effect on EDM conditions on the formation of surface
defects and fatigue life of the cold work steel CALMAX (CLX) and the high speed steel ASP2023
(A23). The fatigue tested conditions were EDM3 (Rough EDM (1.3 J) and fine EDM (0.09 J)), and EDM6
(Rough EDM (0.24 J) medium EDM (0.09 J) and fine EDM (0.022 J)). The resulting crack depths and
pore diameters are found in Figure 13a,b. The corresponding fatigue life is shown in Figure 14a,b.
Fredriksson et al. [25] concluded that the conditions in EDM6 resulted in smaller crack depth than
EDM3 significantly improving the fatigue life of the specimen. From Figure 14a,b it is also clear that
as the fatigue life was improved the scatter of the data increased. The fact that the scatter is greater
for ASP2023 than for CALMAX is due to a more complex interaction between the carbides and the
crack propagation.
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Methods like laser shot peening have been applied success fully to change the failure mode from
crack propagation to flaking, commonly viewed as a less aggressive form of failure. One reason was
the generation of very deep compressive stress [26]. Similarly, surface texturing using lasers have been
tested with life extensions up to 170% though improved lubricant retention [27,28].

3.2. Material Wear

In the models discussed above it is clearly understood that the wear behavior of the material is as
important as the fatigue behavior. Wear is a subject well studied and the current work will focus on
particular issues related to tool materials. In the modeling attempts above the key factor reducing the
wear is hardness. The material dependent proportionality constants used in the modeling are strongly
influenced by the nature of the contact which in turn is more or less dictated by the microstructure and
how it wears. It is important to understand the type and nature of the microstructural constituents
as these determine the hardness. Bergman et al. [29] studied the tribological properties of powder
metallurgy (PM) based high speed steels (see Table 2). In these tool steels primary carbides are even
harder than the matrix (1500–2800 Hv)

Table 2. Nominal chemical composition of the investigated materials (wt. %) and Microstructural
constituents as vol % and average size of primary carbides (µm), and bulk hardness for the high speed
steels (HSS’s) after ref. [29].

Material C Si Mn Cr Mo W V Nb

ASP2014 0.75 0.3 0.4 4.1 3.0 3.0 1.0 1.0
E M2′ ′ 0.87 0.3 0.4 4.2 5.0 6.4 2.0 -
M2 PM 0.87 0.3 0.4 4.2 5.0 6.4 2.0 -

ASP 23 CC 1.28 0.3 0.4 4.2 5.0 6.4 3.0 -
ASP 2023 1.28 0.3 0.4 4.2 5.0 6.4 3.0 -
ASP 2053 2.50 0.3 0.4 4.2 3.0 4.0 8.0 -

Material vol % Primary Carbide Primary Carbide Diameter Bulk Hardness

M6C MC M6C + MC MC M6C + MC (HVm)

ASP2014 a 2.9 ± 0.4 2.9 ± 0.4 0.5 1.7 83O ± 10
E M2 8.1 ± 3.2 a 8.1 ± 3.2 3.2 b 10.5 b 930 ± 20

M2 PM 10.0 ± 1.5 a 10.0 ± 1.5 2.5 5.4 900 ± 20
ASP 23 CC 6.3 ± 0.7 6.2 ± 0.8 12.5 ± 1.5 3.1 4.2 900 ± 10
ASP 2023 8.1 ± O.6 5.4 ± 0.9 13.5 ± 1.5 1.2 2.2 930 ± 20
ASP 2053 - 16.2 ± 1.4 16.2 ± 1.4 2.4 2.7 920 ± 20

Conventionally produced a Only small amounts (<1%), not possible to separate MC from M6 carbides with
reasonable accuracy. b The primary carbides form streaks. c Different process parameters for ASP 23 CC give a
different carbide size compared to ASP 2023, despite identical chemical compositions.

The main conclusions were that abrasives significantly harder than primary carbides of the HSS,
hardness and ductility of the matrix controlled the wear rates. A consequence is then that two and
three body abrasion rates showed only small variations with volume fraction, size and type of primary
carbides. Abrasive or erosive particles are commonly softer than the primary carbides of the HSS.
A positive effect on both abrasive and erosive wear resistance with an increased volume fraction of
primary carbides will thus also be obtained [29]. For direct contact between the tool and work piece a
high two-body abrasion resistance is associated with large and hard primary carbides in combination
with comparably soft abrasives [29,30].

In general it is not so common to use uncoated dies. As the work piece size is reduced the contact
pressure goes up and the risk of galling and other effects increase, in particular under microforming
conditions. The influence of surface coatings and coating properties are equally important to the tool
performance and are reviewed in the next section.
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4. Surface Coatings

Dohda et al. [31] investigated the application of hard coatings to die in dry ironing process by
strip-ironing type tribo-simulator. They found that DLC-Si coating has the lowest friction coefficient
and is characterized by the absence of galling when compared to CrN coating (see Figure 15a,b).

Takaishi et al. [32] investigated the effect of surface coatings of blanking die in a bid to reduce the
use of lubrication. Their study adopted the use of diamond-like coatings, electric discharge coatings,
the cryogenic process heat treatment and a combination of surface coatings and the cryogenic process.
They could show (Table 3) that surface coatings and heat treatment of blanking die were effective and
efficient for extension of blanking die life under no lubrication condition.
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Table 3. Experimental results from ref. [32].

Die
Material

Surface
Coating

Thickness of
Coating (mm)

Heat
Treatment

Number of
Blankings

Extension
Ratio

Damage of Die
Material

SKD11 None - Normal 7000 1.00 None: worn out
SKD11 None - Normal+CP 3 14500 2.07 None: worn out
SKD11 PVD Me-DLC 0.002 Normal 23519 3.36 Small chipping
SKD11 PVD DLC 0.002 Normal 18413 2.63 None: worn out
SKD11 PVD DLC 0.002 Normal 13000 1.86 Peeling
SKD11 PVD DLC 0.005 Normal 12000 1.71 Peeling
SKD11 ED-coat 0.01 Normal 27500 3.93 None: worn out
SKD11 ED-coat 0.01 Normal+CP 3 20100 2.87 Chipping
SKD11 ED-coat 0.01 Normal+CP 3 21900 3.13 Chipping
SKD11 ED-coat 0.01 Normal+CP 3 62000 8.86 None: worn out
HSS 1 None - Normal 24000 3.43 None: worn out
HSS 1 ED-coat 0.01 Normal 8300 1.19 Chipping
VS 2 ED-coat 0.01 Normal 15667 2.24 Chipping

1 HSS: High Speed Steel made through powder metallurgical processing. 2 VS: Chromium-Vanadium-
Molybdenum powder metallurgical processed tool steel. 3 CP: Cryogenic Processing.

Tsuchiya et al. [33] conducted metal forming type tribological tests to evaluate the adhesion
performance of DLC-Si coating. It was found that the coating had the lowest friction coefficient under
a wide range sliding velocities, good anti-galling properties in backward extrusion test and good
anti-flaking properties with preprocessing and as a coating on hard based metal.

Takatsuji et al. [34] investigated the validity of using high-strength/low friction die coatings
to improve the tribological characteristics observed in micro extrusion. It was shown that the
DLC-Spatter-coating produces the least friction and has the lowest extrusion force.
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4.1. Characterization of General Coatings

Thin, hard coatings deposited by physical vapour deposition (PVD), chemical vapour deposition
(CVD) or plasma-assisted chemical vapour deposition (PACVD) onto tools of complex geometry
to improve the tribological performance for engineering applications are increasingly widespread.
The performance of the coatings usually depends on the fundamental properties of the coating and
substrate used. Characteristics of the coatings mechanical properties such as hardness are usually the
focus when new tribological coatings are developed. The characterization of the intrinsic mechanical
properties of coatings and composite is also important. Figure 16 illustrates the general correlation
between coating deposition parameters and the tribological response of the generated coating. Some
techniques frequently used for the characterization of a few fundamental coating properties are listed
in Table 4 [35,36].
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Table 4. Important coating properties and methods used to obtain them [35,36].

Coating Property Characterization Method(s)

Chemical composition
Energy dispersive X-ray spectroscopy (EDX)
Auger electron spectroscopy
Glow discharge optical emission spectroscopy (GDOES)

Microstructure and morphology

Transmission electron microscopy (TEM)
Scanning electron microscopy (SEM)
Light optical microscopy
X-ray diffraction

Residual stress state X-ray diffraction
Substrate deflection

Thickness
Ball grinding
Cross-section microscopy
X-ray fluorescence

Hardness Extrapolation
Theoretical models

Adhesion to substrate Scratch adhesion testing

Fracture toughness

Indentation
Microscopy observation of crack patterns
Acoustic emission
Bend test in Scanning electron microscope

Young’s modulus

Vibrating reed
Membrane
Bulge
Beam bending
Indentation
Uniaxial tensile
Tensile
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The use of low temperature TiN coating (deposited at 200 ◦C) gives a significant increase in
hardness and residual compressive stress as compared to standard temperature coating (deposited at
400 ◦C) according to a study done by Gahlin et al. [37]. They found that this increase is attributed to
a sharp decrease in grain size and an increased micro strain for the low temperature coating due to
poor quality of the low temperature TiN coating in combination with the high residual compressive
stress. They found that for low temperature CrN coatings, the mechanical and tribological properties
were comparable to that of coatings deposited at the standard temperature although a change in
microstructure from a two phase structure to a single phase structure in the low temperature coating
was observed.

4.1.1. Young’s Modulus

PVD coatings often have a Young’s modulus that surpasses that of the substrate and the coefficient
of thermal expansion is usually lower, which affects the stress state in both the coating and the interface
when a change in surface temperature occurs. The degree of the compressive residual stress will be
reduced with a raise in the temperature which may lead to crack formation and coating delamination.
A test method proposed by Hollman et al., which makes use of tensile testing, can be used to determine
the Young’s modulus of most PVD coatings in favor of the more traditional techniques such as the
bulge test, the vibrating reed and membrane test [36,38].

Coatings Young’s modulus can be obtained from:

Ec =
k− Estsw− kg

tcw
(30)

where,

k = slope of the tensile curve
kg = slope of force vs. strain for the two strain gauges (determined separately)
Es = Young’s modulus of the substrate material (known)
w = width of the coated sample
tc = thickness of the coating
ts = thickness of the substrate

Example of values for TiN can be seen in Table 5.

Table 5. Example of Young’s modulus data for TiN [38].

Coating Material Substrate Thickness (µm) Young’s Modulus (Coating) (GPa)

TiN 75 425 ± 80
48 400 ± 60
23 380 ± 30

NbN 75 350 ± 50

4.1.2. Residual Stress

Coatings are often used to improve mechanical, thermal, chemical, optical and sometimes
magnetic properties of surfaces. Interfacial delamination is usually the predominant failure mechanism
due to the weak interface between the coating and the base material. High residual stresses present
in the coatings will amplify the occurrence of interfacial delamination. Residual stresses are created
in a good number of coatings as an effect of the manufacturing process whereby either a disparity in
thermal expansion between the coating and substrate material generates considerable stresses which
intensifies during cooling from a high deposition temperature or as a result of growth mechanisms
or both [39].
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The residual stresses experienced by PVD coatings on steel are usually compressive stresses that
contributes to the occurrence of plastic deformation and micro-cracking which in turn affects the
tribological response of the coated part [36].

The most common technique to determine residual stress is by using X-ray diffraction. Another
approach is to use the curvature of a plate measured before and after deposition of the coating to
calculate the residual stress σrs using the Stoney equation [35,36,40]:

σrs =
Est2

s
6(1− vs)tc

(
1

Ra
− 1

Rb

)
(31)

where,

Es
(1−vs)

= biaxial modulus of the substrate

ts = substrate thickness
tc = coating thickness
Ra = radius of curvature after coating deposition
Rb = radius of curvature before coating deposition

Bromark et al. [41] found that multilayered Ti/TiN coatings show promise for combined wear and
corrosion protection and that they also offer a means to modify the properties of tribological coatings
which then can be used to control the coating’s residual stress state. The wear characteristics of PVD
Ti/TiN multilayer coating, which were put through two-body abrasion and particle erosion, have
been studied using diamond slurry and silicon carbide particles as abrasive medium and erodant,
respectively. Abrasive wear rate of the Ti/TiN multilayer coatings was found to decrease with an
increase in the relative amount of metallic Ti in the coatings. Their research also found that there is
the likelihood that TiN in Ti/TiN coatings contain fewer impurities than conventional, homogeneous
TiN coatings.

4.1.3. Hardness

In general, when the abrasive surface is harder than the wearing surface, the wear resistance in
abrasive wear is closely related to hardness. However, if the wearing surface is much harder than
the counter-surface, abrasion is no longer the wearing mechanism. In this case, ductility, chemical
stability, fatigue resistance, or other properties affect the wear resistance more than the hardness.
The extrapolation method is usually used by measuring the hardness of the coated specimen using
different loads and extrapolating towards infinitely low loads [36]. The hardness can also be measured
using a conventional Vicker’s microhardness indenter and a load of 50 to 100 gf [37,40], although some
researchers believe that the measured hardness is not a good representation of the true hardness of the
coating as it is usually influenced by the substrate material [35].

4.1.4. Layer Adhesion

A method for estimation of adhesion strength under similar situation of forging by combination
of FEM and experiments was proposed by Hayakawa et al. [42] where a hard film coated spherical
indenter made of tool material was indented into a flat workpiece material in the experiment while
different values of critical interfacial normal and shear stress were used to perform the finite element
analysis to obtain calibration curves by comparison of the the delamination length and indentation
(Figure 17a–d).

Wang et al. [43] described a method to obtain stress-plastic strain curve by estimating the
compression behavior of cemented carbides for cold forging dies using the Rockwell hardness test via
the equations below (e.g., (32) and (33)). The correlation between the coefficient A or C and Rockwell
hardness can be approximated by using a quadratic equation, Figure 18a,b.

A = 1.87× 102HRA2 − 3.04× 104HRA + 1.25× 106 (32)



Technologies 2017, 5, 3 20 of 29

C = 5.68× 103HRA2 − 9.44× 106HRA + 3.93× 107 (33)

The damage behavior of DLC-Si coating under high contact pressure was investigated by
Kubota et al. [44] by conducting a series of experiments using the Vicker’s hardness test. The effect of
coating thickness on coating damage was observed from the coating and cross-section surfaces. During
unloading materials flow to the cents in the upper regions with the possibility of shear cracking in the
coating. Tensile stress will also develop at the substrate/coating interface, (see Figure 19).
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4.1.5. Fracture Strength

The coating’s fracture toughness is an important parameter when choosing a coating, as the
presence of crack initiation and propagation usually signals the start of coating failure. Fracture
toughness of coatings can be obtained by introducing high loads of Vickers’ indentations of at least
10 kg and determine the length of the cracks that appear in the corners of the indentation. The presence
of extended cracks signifies a low fracture toughness and vice versa [35].

4.2. Lubrication and Tribological Influence of Surface Condition and Coatings on Tool Life

Large surface expansion and normal pressure in the tool/workpiece interface in combination with
elevated tool temperatures have extremely severe effects on the tribological conditions in cold forging.
The use of a conversion coating acting as a lubricant carrier in order to reduce friction is essential in
such a case as conventional lubricants are inadequate under these conditions. The physical or chemical
reaction of the lubricant to the surface of the workpiece results in better adhesion. Some recommended
lubricants in cold forging of steel are shown in Table 6. However, the use of surplus amount of
lubricants might cause entrapment of lubricants in the corners of the tool and in the workpiece surface
resulting in severe intolerance and surface roughness on the tool and workpiece surface. Table 7 shows
some advantages and disadvantages of the various lubricant systems [45].

Table 6. Recommended lubricant in cold forging of steel and approximate values of the friction
coefficient [45].

Process Deformation Lubrication Friction Coefficient µ *

Upsetting Light None 0.2
Mi + EP+ FA 0.1

Severe Ph + SP 0.1

Ironing and open die extrusion Light Ph + Mi + EP + FA 0.1
Severe Ph + SP 0.05

Extrusion Light Ph + Mi + EP + FA 0.1
Severe Ph + SP 0.05

Ph + MoS2 0.1
Ph + MoS2 + SP 0.05

Mi-mineral oil; EP-extreme pressure additive; FA-fatty additives; SP-soap; Ph-phosphate coating. * Note:
The values for the coefficient of friction are directional values, which are suited only for comparison between
different lubricants and processes.
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Table 7. Advantages and disadvantages of different lubrication systems for cold forging of aluminium [45].

Lubricant System Lubricant Performance Advantages Disadvantages

Oil Moderate lubricity Easy to handle
Grease Moderate lubricity Easy to handle
Zinc stearate Good lubricity Easy to handle Dust problems

Phosphate coating + lubricant Very good lubricity Low treatment temperature
Applicable to all aluminium alloys

Very difficult bath control
Difficult disposal
Limited life time of bath

Aluminate coating + lubricant Excellent lubricity
Easy disposal
Low treatment temperature
Applicable to all aluminium alloys

Difficult bath control
Agitation of the bath required
Limited life time of the bath

Aluminium fluoride
coating + lubricant Excellent lubricity

Short treatment time
Easy bath control
Applicable to all aluminium alloys

Hazardous working
environment
High treatment temperature
Difficult disposal
Short life time of bath

Hanson et al. [46] investigated the adhesion and metal transfer of austenitic stainless steel against
TiN under non-lubricated sliding contact. The interface between the TiN and the adhered stainless
steel was investigated by TEM and the oxide layer emanating from the stainless steel surface was
observed between the tool surface and the adhered stainless steel. They showed that samples oxidized
at higher temperatures were less inclined to adhere than those oxidized at lower temperatures due to
their higher thickness or a higher content of Cr at the surface.

The frictional properties and tendencies of counter material pickup were compared between a
physical vapour deposited (PVD) TiB2 coatings and commercially available PVD TiN, TiAlN and
TiCN. Berger et al. [47] investigated the possibility of the superior behaviour of the TiB2 coating
experienced in severe sliding applications against aluminium alloys being extended to other materials
with similarly poor tribological characteristics. The paper proved it possible to approximate the friction
force from the width of the sliding tracks, Vickers hardness of the opposing material and simple
plastic considerations. This estimation also confirmed the surprisingly low friction of all coatings
against Ti alloys. TiB2 coating outperformed the commercially available coatings regarding friction,
resistance against pick-up of counter material and smoothness in the contact area of both coating
and counter material. This trend is attributed to the exceptionally high chemical resistance of TiB2
against aluminium.

Surface Finish/Roughness

The effects of substrate material on the erosion resistance of three dissimilar TiN coated tool
steels were studied. Results showed that the carbide volume fraction and the impact toughness of
the substrate material controlled the erosion rate of both the coatings and the substrates. Properties
such as hardness and impact toughness of the substrate are imperative for the general tribological
performance of a coating—substrate composite [48].

The critical nominal force during scratch testing on four different TiN coated tool steels was
obtained to study the effect of pre-coating substrate surface topography. For the TiN coated high speed
steels, the critical nominal force decreased with increasing surface roughness although no effect could
be seen for the coated hot and cold worked steels. It thus can be assumed that the critical normal
forces that are commonly cited as measures of the adhesion between good adhering coatings and their
substrates are instead measures of the ability of the coatings to resist deformation [49].

Tribological evaluation on the influence of surface roughness and coating type on the galling
properties of coated forming tool steel was investigated by Podgornik et al. [50] They found that
the friction intensity and the aptitude of a material to prevent the pick-up of counter material were
largely influenced by surface roughness. The study showed that with increasing smoothness of the
substrate, the coated surface can withstand a higher critical load and thus polishing of a surface prior
to deposition of a coating will increase the critical load for material transfer by reducing friction.
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The effect of different surface modification techniques on galling properties was investigated.
The group considered the application of different grades of polishing, plasma nitriding and DLC
coating on cold work tool steel and tribological evaluation work was done in a load-scanning test rig.
The research found that with appropriate polishing of the tool surface, the inclination for galling to
occur reduced significantly. They also found that the application of a carbon-based multilayer WC/C
coating can sustain low friction and greatly increase the galling resistance even when there is a fairly
high surface roughness. Hard TiN coating displayed high friction and low galling resistance when in
contact with austenitic stainless steel while plasma nitride treatment on the tool surface after polishing
enhanced galling properties by up to 40%. It was suggested by Podgornik et al. [51] that a hard, low
friction coating can be deposited by plasma nitriding being applied to the tool material to improve the
load carrying capacity of forming tool steel followed by post polishing of the contact surface to remove
any surface asperities. The influence of an excimer laser treatment of TiN-coated tool surfaces on their
tribological behaviour in the field of cold forging was investigated by Popp et al. [52]. The results show
that triological behavior of the tool surface can be improved if the textures are designed with proper
geometry and size according to the process parameters, and this will lead to an increased tool life.

4.3. Influence of Coatings on Fatigue Life

The effect of low cycle fatigue on TiN coated high-speed steel and high chromium (12.6%) high
carbon cold work tool steel were studied by Kocanda et al. [53] Constitutive equations which can
be applied in numerical modelling of TiN coated tool behavior were derived from results from
experimental works where cyclic loading was strain controlled and stress-strain hysteresis loops were
recorded for both workpieces. Maximum tensile stress amplitudes were obtained from stabilized loops
and the corresponding strain amplitudes where cyclic stress-strain curves were plotted (Figure 20a,b).
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The fatigue crack growth behavior of cemented carbide dies was investigated under the service
load in the cold heading process of steel wire by Wang et al. [54]. The failure mode was identified as
fatigue cracks and smaller chipping pits appearing at the very early stage when the die was under the
chipping process stage.
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In general the introduction of an additional interface should reduce fatigue life of a well-controlled
specimen. Baragetti [55] studied the effect of extremely thin films and their effect on fatigue. The benefits
of thin coatings can be summarized as

• High hardness and wear resistance without affecting the dimensional tolerances of coated
components,

• Suitability for coating small components,
• Good wear protection of specific geometries (e.g., sharp edges),
• Process capability to coat complex shaped components.

This is naturally under the provision that compressive residual stresses are introduced on the
surface layer from the PVD deposition process that helps to increase the fatigue limit of coated
structural components. Baragetti [55] concluded that:

• Fatigue test showed that the PECVD/SiO2 coating did not significantly affect the fatigue behavior
of the base material with no change in initiation and propagation between the coated and
uncoated specimen

• Fatigue crack propagation mechanisms in coated specimens are similar to uncoated specimen.
• Fatigue limit decrease by 10% with respect to uncoated material

5. Surface Characteristics Change in Service and Influence on Wear Resistance

Gåård et al. [56] assessed the galling resistance of various tool steels against dual phase
high-strength carbon steel using a slide-on-flat-surface (SOFS) tribometer. The tools’ chemical
composition, microstructure and heat treatment were found to have a significant influence on the tools’
behaviour during the entire wear process. Three frictional regimes were identified and characterized
during sliding: Regime 1, with relative stable frictional conditions; Regime 2, with an increase in
friction due to macroscopic abrasive scratching of the sheet surface; and Regime 3, with high and
unstable frictional conditions due to adhesive wear of the sheet of the entire contact area.

Different lab test methods with respect to their ability to guide in the selection of material
resistance to gouging abrasive wear were investigated by Bryggman et al. [57] The pin-on-disc test
was carried out to study the resistance of the test material to low stress abrasion; multiple pass
single tip grooving was used to evaluate the material response to cyclic abrasion under low stress,
where the fatigue and adhesion properties of the affected surface layers governs the wear rate under
these conditions. Single pass grooving was carried out to evaluate the energy consumption during
abrasion and structure studies utilized light optical microscopy, scanning electron microscopy and
micro-hardness measurements carried out on prepared metallographic sections parallel to the grooving
direction and normal to the worn surfaces, to study the affected material underneath the worn surfaces
and groove bottoms. It was found that the single pass pendulum grooving mimicked the wear of
bucket teeth during the loading of wet blast stone most closely.

Jacobson et al. [58] presented briefly a selected number of surface modifications tribosystem to
illustrate the prediction of friction and wear properties of a material in a given tribological situation
based on the four main categories of surface modifications shown in Figure 21. Their study based
on the four surface modification categories highlighted the importance of surface modifications
and tribofilms analyses being included in the analyses of tribological components or tribological
tests as their importance is often overly underestimated which can lead to drastic consequences.
The understanding of surface modifications tribosystem will enable design of materials, coatings,
lubricant additives and surface topographies with the possibility to meet the sharply increasing
requirements of performance in combination with a sustainable society.
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6. Critical Issues Particular to Microforming

Due to the predominance of surface effects as compared to bulk behavior when dimensions are
scaled down, friction and die wear have a considerable impact in microforming, which refers to metal
forming processes where at least two dimensions are in the sub-millimeter range [59]. In particular,
friction size effects have been studied for microforming and it has been shown in various studies that
friction increases when the part size decreases [60–63].

Lubricants are usually used in conventional metal forming processes to avoid excessive friction,
which can increase process load, lead to die wear and generate poor product surface finish. However,
the use of lubricant in microforming is not economically effective as the surface to volume ratio
increases significantly and cleaning becomes an issue when lubricant is trapped in the small features
of the die. By evaluating various liquid and solid lubricants Taureza et al. [64] showed that lubricant
effectiveness is limited in microforming and can even be reduced for liquid lubricants as explained
by the lubricant pocket model [65]. Baek et al. [66] explained that the lubricant ineffectiveness can
be related to the fact that the feature size in components produced by microforming is close to the
lubricant film thickness, suggesting that the lubricant effectiveness can be retained if the natural
lubricant thickness is reduced.

DLC coating was proven to be an efficient way to reduce friction in microforming as shown by
the work of Hu et al. [67] using micro deep drawing experiment and Wang et al. [68] in the case of
strip drawing. Surface texturing of the die was proposed by Brinksmeier et al. [69] as another mean to
control friction in sheet microforming applications and therefore prolong die life. Using a strip drawing
test experiment, Brinksmeier et al. [69] have shown that there is an optimum finish for which friction
is the lowest and that a smoother surface finish does not necessarily correlate with less friction. Similar
applications in the case of bulk forming have been reported by Geiger et al. [70] and Wagner et al. [28]
where it was shown that proper surface texturing could increase die life.

In microforming, it was also observed that die life can be affected by galling as shown in
experiments by Taureza et al. [64] for aluminum workpiece material where high friction values
were explained by the presence of galling marks on the die and workpiece. A similar galling effect was
observed by Ghasemali et al. [71] during extrusion of copper micro-pins. Hu et al. [72] studied the
wear behavior in micro deep drawing tools. They observed that wear was dominated by adhesive
wear on the drawn radius in micro deep drawing of a stainless-steel blank. Increase in friction force
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due to die wear and non-uniform distribution of the wear areas on the drawn radius were highlighted
as the mechanism responsible for bottom fracture and cup wall damage, respectively.

7. Concluding Remarks

Modeling of tool life has come far, but further work is necessary to fully understand and predict
tool life. This is especially true for an increased understanding of the nature of the large variations in
tool life found in industry. Tool-life span will be a make or break factor for microforming.

Material properties of tool materials are anisotropic and tool life sensitivity to the anisotropy
is depending on both the as-received and in-service conditions. The importance of anisotropy is
seemingly increased with increasing tool hardness being a requirement in microforming due to
extreme contact pressures.

For fatigue limited tool life, under high stress and low-cycle fatigue conditions, failure due to
internal microstructures and inclusions are common. In microforming the requirements on abrasive
wear resistance are increased. To improve abrasive wear resistance larger carbides are improve
wear resistance but cause negative impact on tooling life as are a common cause of fatigue failures.
Furthermore, carbide size influences the attainable surface roughness.

To create the correct combination of base material and coating combined with preconditioning
of the tool surface with a residual stress of appropriate level can be used to eliminate the effects
from surface particles. The proper preconditioning and choice of optimum coating type and coating
thickness for the service conditions of the tooling to manage wear with a minimum impact on fatigue
life is a critical skill. For the case of microforming friction management in a non-lubricated condition
will also be critical.
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