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Realization of Hofstadter’s butterfly and a one-way edge mode in a polaritonic system
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We present a scheme to generate an artificial gauge field for the system of neutral bosons, represented by
polaritons in micropillars arranged into a square lattice. The splitting between the two polarizations of the
micropillars breaks the time-reversal symmetry (TRS) and results in the effective phase-dependent hopping
between cavities. This can allow for engineering a nonzero flux on the plaquette, corresponding to an artificial
magnetic field. Changing the phase, we observe a characteristic Hofstadter’s butterfly pattern and the appearance
of chiral edge states for a finite-size structure. For long-lived polaritons, we show that the propagation of wave
packets at the edge is robust against disorder. Moreover, given the inherent driven-dissipative nature of polariton
lattices, we find that the system can exhibit topological lasing, recently discovered for active ring cavity arrays.
The results point to a static way to realize artificial magnetic field in neutral spinful systems, avoiding the periodic
modulation of the parameters or strong spin-orbit interaction. Ultimately, the described system can allow for
high-power topological single-mode lasing which is robust to imperfections.
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I. INTRODUCTION

In a system of charged particles, the application of a
magnetic field qualitatively changes its behavior, and usually
is responsible for intriguing physical effects. For instance,
consider electrons in a periodic potential, which in the absence
of an electromagnetic field gives rise to Bloch bands. In
the presence of perpendicular uniform magnetic field, the
spectrum splits into highly degenerate Landau levels. It was
predicted that the interplay between a periodic potential and
magnetic field for the two-dimensional electron gas leads to
the emergence of a self-similar fractal energy spectrum, known
as Hofstadter’s butterfly [1]. It corresponds to the plot of the
allowed and forbidden energies as a function of magnetic flux.
For a rational value of the normalized magnetic flux β = p/q

(where p and q are coprime integers) each Bloch band splits
into q subbands. These energy bands deform into Bloch bands
only after closing the fractal gaps between them, admitting
a topological characterization in the system [2]. This also
leads to the appearance of topologically protected edge states.
Ultimately, the application of magnetic field to the strongly
correlated system may give rise to topological order, leading
to the fractional quantum Hall effect [3,4].

While the described physics naturally emerges for electrons
and other charged particles, systems of neutral particles do
not exhibit the same behavior, limiting their possible scope
of application. This posed the question of the possibility to
generate an artificial gauge field [5], where the effect of the
field is simulated by some means. For continuous systems,
examples include the generation of magnetic field for cold-
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atom gases using rotation [6] and laser illumination [5,7].
For lattice systems, different microwave [8], optical [9–13],
and cold-atom [14–17] setups were considered recently, and
recipes for artificial gauge field generations were proposed.
Up to date, Hofstadter’s butterfly was demonstrated using
engineered superlattice structures with microwave resonators
[18], bilayer graphene [19,20], optical ring microresonators
[21], and cold-atom lattices [14,17,22,23]. Finally, the Harper
Hamiltonian was simulated using a chain of superconducting
circuits [24], promising the way towards implementation of
magnetism in the interacting systems.

The described systems and approaches to observe fractal
Hofstadter butterfly behavior can be classified into several
categories. First, the lattice models with phase-dependent
hopping can be divided into systems where TRS is broken
(integer quantum Hall effect type physics) and not broken
(spin Hall effect type physics). In the former case, there is
a unique chiral edge state associated to the boundary, while
in the latter case two copropagating channels exist, albeit for
different spin components. From the point of realization, the
butterfly behavior may be posed by magneto-optical effects,
time-dependent modulation of the tight-binding coupling [11],
and phase-dependent hopping on a spinful lattice [9]. We
note that while for microwave and cold-atom systems the
first two approaches have allowed to break TRS explicitly, for
optical systems (e.g., silicon resonators) this was shown to be
notoriously difficult. Thus, so far mostly spin Hall physics with
nonbroken TRS was studied [21].

One of the promising platforms where the realization of
artificial gauge fields and the associated Hofstadter’s butterfly
is missing is the system of exciton-polaritons. Polaritons,
quasiparticles which arise due to the strong coupling between
photons and quantum well excitons, have attracted growing
interest in the last few decades [25,26]. Due to their photonic
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part, polaritons have very small effective mass and long
coherence length which enable them to show Bose-Einstein
condensation [27,28] and superfluidity [29,30] even at room
temperature [31]. Polaritons exhibit strong nonlinearity due to
their excitonic part, which makes them a potential candidate
for optoelectronic applications such as logic gates [32–34],
optical circuits [35], optical transistors [36], etc.

In traditional condensed matter systems, as an atomic
spacing is very small (of the order of an angstrom), one
needs a large magnetic field (thousands of Tesla to get one
flux quantum per unit cell) to observe Hofstadter’s butterfly
[37]. Alternatively, the self-similar pattern can be observed
in semiconductor nanostructures hosting high-mobility two-
dimensional electron gas, with the presence of superlattice
[38,39]. In the polaritonic system the periodicity is on the
scale of microns, and from the experimental perspective the
system favors the possibility to observe Hofstadter’s butterfly.
However, due to the charge neutrality of the polaritons, it is
not easy to affect the orbital motion significantly and to break
TRS directly [40] by applying magnetic field. Thus, in order to
mimic the effect, one needs to synthesize an artificial magnetic
field in the system. For continuous polaritonic systems, the
artificial magnetic field was implemented using the magneto-
electric Stark effect [41].

In this paper, we consider theoretically a system of coupled
micropillars with polarization splitting at each site, along with
spin-dependent coupling. This breaks time-reversal symmetry
even in the absence of a real magnetic field. The splitting is
realized in a way that effectively couples different lattice sites
i and i ′ with a phase factor φi,i ′ . Controlling φi,i ′ on the square
lattice, we show that the analog of Hofstadter’s butterfly for the
spectrum of the system and chiral edge modes can be observed.
The latter is demonstrated to avoid backscattering from the
disorder, potentially leading to unidirectional transport in the
polaritonic system.

Finally, considering the driven-dissipative nature of
exciton-polaritonic lattices, we show that the combination of
the topological transport and gain in the system can lead
to the single-mode lasing associated to an edge mode. This
corresponds to the recently discovered topological insulator
lasing, which was described theoretically in Ref. [42] and
experimentally confirmed in Ref. [43] for ring cavity arrays.
We demonstrate that polariton lattices can host a lasing mode
corresponding to a chiral edge state, which has a positive gain
and is unhampered by disorder. This opens the way towards
polaritonic lasers of largely increased efficiency and large gain.

II. MODEL

We consider an array of coupled exciton-polariton elliptical
micropillars which form a square lattice, as shown in Fig. 1(a).
In this vein, several experiments up to date were performed
for the coupled micropillars or arrays of micropillars [44–49].
Each micopillar has two kinds of polarization (σ = ±1). We
define the lattice in terms of two sets of modes corresponding to
alternating spin polarizations in successive micropillars. The
first set of modes [represented by filled circles in Fig. 1(a)]
will be called the (main) logical modes; the second set of
modes [represented by empty circles in Fig. 1(a)] will be
called the auxiliary modes. The hopping between only the
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FIG. 1. (a) Full model: schematic diagram of a square lattice
formed by coupled exciton-polariton elliptical micropillars that sup-
port two kinds of polarizations (σ = ±1) with the splitting �. Here,
filled circles denote relevant (main) modes, and empty circles denote
auxiliary modes. The angle of the micropillar polarization axis at site
(i, j ) is φi,j . The tunneling (overlap) between nearest micropillars
is allowed only for polaritons of the same polarization. The two
spin polarizations of a micropillar interact differently, one hopping
horizontally and the other one vertically, while other channels are
closed by the polarized potentials. The red lines describe the direct
tunneling between neighbors of polarization σ = +1, while blue
lines denote the direct tunneling between neighboring pillars of
polarization σ = −1, both described by the hopping amplitude J .
(b) Reduced model, where only main logical modes are shown.
The dashed lines represent the complex hopping associated with
magnetic vector potential A (see the discussion in the text), which
is responsible for the realization of an artificial magnetic field in the
system. Polaritons can hop in four orthogonal directions, and pick
up nonzero phases which are direction dependent. The phase per
plaquette is uniform and equal to 2πβ.

same polarization of two neighboring pillars is allowed. We
consider modes with σ = +1 tunneling horizontally, whereas
modes with σ = −1 tunnel vertically. We note that this
spin-dependent hopping corresponds to a breaking of time-
reversal symmetry, which will later be shown to give rise
to an artificial gauge field. This kind of potential landscape
can be created by nonresonant excitation with a localized
optical pump which induces a spin-dependent potential that can
selectively gate different spin polarizations [50]. Recent work
also shows that alternating patterns of spin polarization may
form spontaneously under near-resonant excitation, offering
a further alternative for engineering spin-dependent coupling
for our lattice [51]. In the tight-binding approximation with
nearest-neighbor coupling, the Hamiltonian can be written as

Ĥ =
∑
i,j,σ

[ − �e−i2πφi,j σ â
†
i,j,σ âi,j,σ̄

+ J â
†
i,j,σ â(i−δ1,σ̄ ),(j−δ1,σ ),σ

+ J â
†
i,j,σ â(i+δ1,σ̄ ),(j+δ1,σ ),σ + H.c

]
, (1)

where the operators â
†
i,j,σ (âi,j,σ ) create (annihilate) an

exciton-polariton at site (i, j ) with circular polarization σ and
its flipped component σ̄ . The first term in Eq. (1) describes the
coupling between the cross-polarized polaritons in the same
micropillars, leading to the splitting between σ = ±1 compo-
nents. It has been shown previously in polariton microwires that
their asymmetry in the horizontal and vertical directions results
in a polarization splitting [52]. Similarly, the micropillars could
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be grown with chosen asymmetry, which we model by the
linear polarization splitting � and an angle φ. The next two
terms describe the tunneling between nearest neighbors having
the same polarization as drawn by solid lines in Fig. 1(a). Using
the described model, we can write the equation of motion for
the polariton field at site (i, j ) as

ih̄
∂ψi,j,σ

∂t
=( − �e−i2πφi,j σψi,j,σ̄ + Jψ(i−δ1,σ̄ ),(j−δ1,σ ),σ

+ Jψ(i+δ1,σ̄ ),(j+δ1,σ ),σ
)
, (2)

where we observe the onsite coupling through polarization
splitting (first term on right-hand side), as well as intersite
tunneling terms. Our goal is to generate an effective phase-
dependent interpillar tunneling between main logical modes,
which is mediated by the polarization splitting. For this, the
auxiliary modes, chosen to be {ψi,j,−; ψi+1,j+1,−; ψi,j+1,+;
ψi+1,j,+}, have to be eliminated.

The elimination can be done by taking the second derivative
at the left-hand side of Eq. (2) and substituting the evolution of
the neighbors. Then, the evolution of site (i, j ) can be described
by a quadratic equation

∂2ψi,j,σ

∂t2
=

(
− �2 + 2J 2

h̄2 ψi,j,σ + J�e−i2πσφi,(j−δ1,σ )

h̄2 ψi,j−1,σ̄ + J�e−i2πσφ(i+δ1,σ̄ ),j

h̄2 ψ(i+1),j,σ̄ + J�e−i2πσφi,(j+δ1,σ )

h̄2 ψi,j+1,σ̄

+ J�e−i2πσφ(i−δ1,σ̄ ),j

h̄2 ψi−1,j,σ̄ − J 2

h̄2 ψ(i−2δ1,σ̄ ),(j−2δ1,σ ),σ − J 2

h̄2 ψ(i+2δ1,σ̄ ),(j+2δ1,σ ),σ

)
, (3)

and we note that no approximation was made so far. Equation
(3) demonstrates that the system decouples into two separate
parts, corresponding to the main and auxiliary modes [filled
and empty circles shown in Fig. 1(a)]. Considering the filled
circles, the model is reduced to Fig. 1(b). The first term in
Eq. (3) describes the onsite energy. The middle four terms
describe the tunneling with four orthogonal sites in the reduced
model, which are phase dependent. These are the plaquette
terms which are required to generate an artificial magnetic
field. Finally, the last two terms denote the interaction with the
next-nearest neighbors (NNN) in the reduced model, which
are inherent to our effective model, and are typically absent in
the other geometries (e.g., cold-atomic lattices with modulated
hopping [22]). In the following we highlight the differences,
and show the limit where NNN coupling can effectively be
neglected.

As a result of polariton hopping from one site to another,
the spatially dependent complex tunneling leads to the accu-
mulation of a nontrivial phase. This tunneling is directionally
dependent. It means that when particles hop between two sites
clockwise, the value of the accumulated phase will be the
negative of the value when it hops anticlockwise. Associating
a gauge potential A to the phase φc = (q/h)

∫
c

A · dr, this
introduces an effective artificial magnetic field in the system
which is given by B = (1/a2)

∮
plaquette A · dr, where a2 is

the area of the plaquette. Physically, the phases φi,j,σ are
dependent on the chosen polarization axis of the micropillars
and we choose the phases in such a way that polaritons
accumulate a uniform phase (2πβ) after completing each
plaquette. Therefore, the magnetic flux per lattice unit cell
in units of the magnetic flux quantum is set to be β. As a
result, we can realize a uniform artificial magnetic field in the
system.

III. RESULTS

A. Hofstadter butterfly

First, we consider the full model [see Fig. 1(a)] with a
square lattice of (10 × 10) micropillars, corresponding to 200

polarization modes. Imposing the toric boundary conditions,
we mimic the effect of an infinite lattice. Solving the eigenvalue
equation for the system, the energy spectrum (ε) of the single
particle as a function of normalized magnetic flux β is given
by Fig. 2. Notably, due to the structure of dynamical equations,
instead of solving the full model, by diagonalizing the reduced
model under periodic boundary condition, we can also obtain
the same spectrum of two identical Hofstadter butterfly patterns
which are symmetric about the ε = 0 axis. The tunneling
amplitude J controls the width of the spectrum (�4J ), whereas
the limits of the eigenvalues corresponding to each magnetic
flux are symmetric around ε = �. At the same time, compared
to the commonly described Hofstadter butterfly, the wings of
each are skewed. The symmetry of the spectrum depends on
the ratio of J to �, and close-to-symmetric butterflies can

Energy, ε

Fl
ux

, β

0

1

0.5

-4.2 -4. -3.8 0 3.8 4. 4.2

FIG. 2. Hofstadter butterfly spectrum. Energy ε (stated in meV)
is shown as a function of dimensionless parameter β, which is the
effective magnetic flux per lattice unit cell in terms of magnetic
flux quantum. We consider a 10 × 10 lattice with periodic boundary
condition to study the bulk properties, and effectively subject the
system to a uniform magnetic field by making the flux per plaquette
uniform (2πβ). Here, we consider � = 4 meV and J = 0.1 meV. For
each β we calculate the density of states (DOS), find the maximum
value (say M), and plot the points corresponding to DOS being
greater than 0.36 × M . The choice of β = 1

4 is shown by the pink
line.
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FIG. 3. (a) Energy diagram of the finite rectangular lattice (200 ×
20) formed by micropillars. As we consider β = 1

4 , we have four
bands and associated edge states. The upper edge state corresponds
to the propagation clockwise along the edges, whereas the lower edge
state corresponds to the propagation anticlockwise along the edges.
The energy and wave vector corresponding to the green dot is used in
Sec. III C, where the edge state transport is studied. (b) Field intensity
of the two edge modes indicated by the black and red dots in Fig. 3(a).
The fields are localized on the two edges and decay exponentially into
the bulk.

be observed in the limit J/� → 0. So, although the NNN
terms are present in the equations, by taking the ratio small
(J/� = 0.025) the effect is negligible and we observe the
self-similar spectrum. From onwards, we focus on the region
with β = 1

4 only.

B. Band structure

In the previous section, accounting for the effect of infinite
lattice by taking the toric boundary condition, we obtain only
the bulk states which correspond to the energy bands separated
by the band gaps. However, for the finite lattice, the breaking
of translational symmetry leads to the appearance of distinct
edge states. In the case of the lattice system subjected to the
artificial magnetic field, the bulk states are connected by edge
modes, which are propagating unidirectionally (clockwise or
anticlockwise) along the edges. Here, we take a finite rectangu-
lar lattice of dimension Nx × Ny [see Fig. 1(a)] corresponding
to the 2 × Nx × Ny polarization modes and after diagonalizing
we consider the modes with positive polarizations. Taking two-
dimensional discrete Fourier transforms of the corresponding
eigenstates, and summing over ky , we obtain the energy
spectrum as a function of kx [see Fig. 3(a)]. We consider the
case β = 1

4 , so the acquired phase per plaquette is 2πβ = π/2
implying that the magnetic unit cell consists of four lattice
unit cells and, as a result, the single-particle Bloch band splits
into four subbands. Figure 3(b) shows the integrated intensity
of the states marked by black and red spots in Fig. 3(a) in

the y direction. Their spatial structure confirms the edge-type
behavior for the states.

C. Edge state transport

Next, we simulate the transport properties of the system.
To illustrate the propagation at the edge mode, we excite
one of the edges by introducing a coherent pulse of the
form

F =F0 exp{−[(x − x0)2 + (y − y0)2]/L2}
× exp[−(t − t0)2/τ 2] exp[i(kpx − ωpt )], (4)

where F0 is the amplitude of a Gaussian pulse of width L,
which is centered on the edge at (x0, y0). We choose kp and
ωp to be in the gap, resonant with the edge mode dispersion
[see small green dot in Fig. 3(a)]. We add this pulse to the
right-hand side of Eq. (2), considering also the dissipation of
polaritons with rate �, given by

ih̄
∂ψx,y,σ

∂t
= ( − �e−i2πφx,yσψx,y,σ̄ + Jψ(x−δ1,σ̄ ),(y−δ1,σ ),σ

+ Jψ(x+δ1,σ̄ ),(y+δ1,σ ),σ − i�ψx,y,σ + F
)
. (5)

Recently, much experimental effort was devoted to the
implementation of long-lifetime polaritons [53,54], and we
take � = 250 ps. Here, we consider the full model as shown in
Fig. 1(a) of the dimension (Nx × Ny) and solve the time dy-
namics to observe the evolution of the states at different times
[see Fig. 4(a)]. In this case, the injected pulse is propagating
in a single direction along the edges of the rectangular lattice
with the absence of backscattering.

Now, to demonstrate the robustness of the edge states,
we account for the presence of a defect by removing two
micropillars along one edge of the rectangular lattice (Nx ×
Ny) and exciting the edge mode by injecting the Gaussian pulse
as given by Eq. (4). From the intensity distribution shown in
Fig. 4(b), we observe that the edge state goes around the defect
and maintains its unidirectionality, which demonstrates that the
edge state propagation is robust against disorder.

To quantify the robustness, we calculate the total intensity
of the wave packet, which shall be fully transferred from right
to left. We consider the case with no dissipation and plot
the total intensity of the sites situated to the right or left of
the defect as a function of time [see Fig. 4(c)]. Here, It (R)
is the total intensity for the sites on the right side of the
defect, and the total intensity of the rest is denoted by It (L).
We observe that in the large-time limit It (L) slowly reaches
the intensity of the pulse before the defect It (R). Thus, an
ultimate limiting factor then corresponds to the lifetime of the
pulse.

D. Topological insulator lasing mode

Finally, we make use of the intrinsic driven-dissipative
nature of the polaritonic system, and study its lasing properties.
It was shown recently that optical analogs of topological
insulators can act as powerful single-mode lasers, where the
influence of disorder is suppressed [42,43]. In this section, we
show how topological lasing can be achieved in the polaritonic
setup, and characterize its gain properties.
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FIG. 4. (a) Propagation of the one-way edge mode. We consider
a 200 × 20 lattice formed by micropillars and excite the edge by a
coherent probe field focused at the lower edge. We consider β = 1

4 ,
L = 2, t0 = 0 ps, τ = 60 ps, and choose kp and ωp from the dispersion
curve of the edge states [green dot in Fig. 3(a)]. The pulse is injected at
x0 = 150 in the lower edge, shown by the red box. The field profiles
at different times indicate that the edge state is unidirectional. (b)
Propagation of the one-way edge mode in the presence of a defect.
We create the defect by removing two micropillars at the lower edge.
Solving the dynamics with the same parameters as above, we plot
intensity at different times showing that the edge state goes around
the defect and maintains its unidirectionality which emphasizes that
the edge state is robust against disorder. (c) Integrated intensity
before and after the defect as a function of time, showing that the
total intensity is totally transferred from right to left in the long
time limit (here the dissipationless case is considered to isolate
the effects of dispersion and potential scattering from the overall
decay).

We consider the system to be driven with a nonresonant
pump, which has a nonzero value along the edges. The time
evolution of the system is given by

ih̄
∂ψx,y,σ

∂t
= ( − �e−i2πφx,yσψx,y,σ̄ + Jψ(x−δ1,σ̄ ),(y−δ1,σ ),σ

+ Jψ(x+δ1,σ̄ ),(y+δ1,σ ),σ − i�ψx,y,σ

+ iPψx,y,σ

)
, (6)

where the last term introduces an incoherent pump of amplitude
P , as typically done for polaritonic systems in the mean field
approximation [25]. The gain and loss properties of the system
are given by the solution of Eq. (6) in the frequency domain,
which are represented by imaginary and real parts of ε. The
results are shown in Fig. 5(a). We find that the eigenvalue with
the largest imaginary part, marked by the blue dot in Fig. 5(a),
corresponds to the edge state. Solving the time dynamics
and taking the average over many iterations, we get a large
occupation of the edge modes, as shown in Fig. 5(b). Similarly
to the previous section, we observe that the edge states are
robust against disorder and thus correspond to efficient lasing
modes. In analogy to topological insulator lasers, topological
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FIG. 5. Topological polariton lasing. (a) Imaginary and real parts
of the modes of the system, calculated from Eq. (6) for the rectangular
lattice (200 × 20) formed by micropillars. We consider the system
with β = 1

4 , � = 100 ps, P = 0.0075 meV. The blue dot points
the maximum value of the gain (imaginary part of energy), and
corresponds to the edge mode. (b) Zoomed plot of the occupation
calculated by evolving Eq. (6) in time, averaging over randomly
chosen initial conditions. The bright spots correspond to a lasing
mode.

polariton lasing could be realized using electrical injection [55]
to provide the gain for the lasing mode.

IV. CONCLUSIONS

We considered an array of elliptical polariton micropillars
in the form of a square lattice. The splitting between the two
polarizations of the micropillars, together with interpillar spin-
dependent tunneling, creates a phase-dependent coupling be-
tween the neighboring micropillars. With the suitable choice of
phases, we are able to generate a uniform flux corresponding to
each plaquette, which manifests an artificial uniform magnetic
field in the system. This artificial magnetic field represents the
breaking of the time-reversal symmetry in the system. Consid-
ering the toric boundary condition, we calculated the spectrum
of the system, which shows fractal behavior akin to the Hofs-
tadter butterfly. Furthermore, using the Dirichlet boundary con-
dition we have observed the edge states, that are unidirectional
and robust against disorder. We show that with the nonresonant
excitation we can obtain lasing in a topologically protected
mode, being a unique feature of the driven-dissipative polari-
tonic system. This makes the system a promising candidate
for practical applications, and puts the proposal on the road
map for artificial gauge potential realization with exciton
polaritons.

In this work, we have only considered the linear band
structure of exciton-polaritons, neglecting their possible non-
linear interaction. It was recently predicted theoretically that
exciton-polariton topological insulators using applied [56–58]
or effective [59,60] magnetic field could exhibit bistability
[61], superfluidity [62], and solitary waves [63,64]. As an
outlook we consider a study of nonlinear effects in the presence
of artificial gauge fields, and thus open new directions for future
research.
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