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Abstract 

The modern urban life and increasing demands of energy are calling toward energy 

conservation and energy efficient strategies. Energy saving and energy management in 

the residential sectors are of great interests for obvious economic and environmental 

reasons, with increasing energy consumptions by the consumers. An efficient energy 

conservation and monitoring program requires some means of monitoring the power 

consumed by individual appliances within the households. The deployment of smart 

meters in smart grids in many countries has generated an increase in research interests 

in the areas of non-intrusive load monitoring (NILM) in recent years. Non-intrusive load 

monitoring, or load disaggregation, are sets of techniques and methods that decompose 

the total aggregate consumptions, measured at a single point by smart meters, into the 

respective appliance-specific consumptions in the household. Studies conducted have 

shown that information of the energy consumed by individual appliances in the homes 

can influence the behavior of the household occupants in a way that can achieve 

noticeable energy savings. There are several challenges in the domain of unsupervised 

load disaggregation approaches that do not require human intervention for learning or 

installation of additional measuring instruments for each appliance, apart from the smart 

meters, allowing a feasible economic adoption of NILM techniques. 

In this thesis, a detailed literature review on methods and techniques applied to NILM 

and common challenges is presented. Enhanced approaches that tackle three essential 

challenges in the domain of NILM were proposed. Firstly, with the aim to achieve an 

improved disaggregation accuracy, an unsupervised approach for load disaggregation 

that embeds the mutual devices interactions information into the factorial hidden 

Markov model (FHMM) representation of the total aggregate signal was introduced. 
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The method was further extended with adaptive estimations of the devices main power 

consumptions effects and their two-way interactions. Secondly, the modeling of 

continuously varying loads was proposed using a quantized continuous-state hidden 

Markov model (CS-HMM). A method to estimate the transition matrix that mitigates 

the both extreme cases of too frequent and never occurred transitions was introduced 

and the Viterbi algorithm was used to estimate the power consumption profile of the 

variable loads. Thereafter, the proposed model for the continuously varying loads was 

integrated with the standard FHMM to produce a hybrid continuous/discrete state 

HMM, which is capable of modeling and disaggregating energy consumptions from a 

wider range of home appliances types. Thirdly, to tackle the problem of overlapping 

clusters that represent devices power consumptions resulting when applying a 

clustering-based disaggregation, a method to analyze the cohesion of devices’ clusters 

to determine if a cluster should be split into two small clusters was proposed. The 

analysis of clusters cohesion was investigated based on normality tests performed 

against two confidence levels.  

The proposed approaches and techniques were applied and tested on real houses from 

the Reference Energy Disaggregation Data Set (REDD). The proposed approaches, in 

general, enhanced the overall performance and accuracy of disaggregation. The work 

presented in thesis represents an advancement in the state-of-art in the domain of NILM 

and contributes toward achieving energy savings in residential homes.  
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Chapter 1 

Introduction 

It is an established fact that energy plays a principal part in the contemporary urban life. 

The global demands of various types of energy has rapidly increased due to the increase 

of world population and vast developments in industry and transportation sectors. 

Energy statistics shows that total world energy consumption grew by 1.0% in 2016 to 

reach 13276.3 million tonnes oil equivalent (toe) [BP P.L.C., 2017]. Consequently, 

several challenges are augmented particularly regarding utilization of sustainable energy 

resources alternative to fossil fuel and regarding the arising necessity of mitigating 

undesired environmental impacts caused due to global energy consumption. Energy 

saving in residential homes shares in achieving the aforementioned goals as it results in 

significant reduction in the total consumed raw energy. 

In the recent BP energy outlook 2018 report, it is expected in 2020 that approximately 

29.12% of worldwide energy consumption is consumed in buildings, of which 45.52% 

of energy consumption in buildings is in the form of electricity. That is, worldwide 

electricity consumption in buildings in 2020 is expected to be approximately 13.26% of 

the total energy consumption. For illustration, Figures 1.1a and 1.1b show the energy 

consumption by sector and the share of electricity consumption in buildings, 

respectively [BP P.L.C., 2018]. 
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Fig. 1.1a and 1.1b: The energy consumption by sector and the share of electricity 

consumption in buildings, respectively [BP P.L.C., 2018]. 

Facts on electricity consumption share in buildings are useful in motivating the research 

work in the field of non-intrusive load disaggregation, which aims basically to achieve 

energy saving in households. 

1.1 Motivations 

Energy saving and management are arising interests in the deployment of the smart grids 

due to continuous fluctuations in the global raw energy markets (e.g. fossil fuel) and 

inevitable environment impacts caused due to energy consumption. Savings in 

electricity consumption in residential homes can be achieved by two principal ways 

[Bollen, 2011] 

1. Using energy-efficient appliances that consume less amounts of electrical energy. 

2. Using less appliances, or using existing appliances less often. 

Therefore, it is recommended to replace old households’ appliances, if possible, with 

energy-efficient ones. It may not always be possible to reduce the number of appliances 

1.1a 

1.1b 
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in a household. Hence, occupants are advised to use their existing appliances less often 

to accomplish energy savings. 

The current metering infrastructure of electrical energy consumption in majority of 

countries provides household occupants with their total energy consumption and 

associated cost at every stipulated time period (e.g. monthly). The occupants are not 

aware of contribution shares by each individual appliance existing in their homes. 

Conducted studies showed that significant energy savings between 9% to 20% of current 

energy consumption can be achieved once the household occupants are aware of detailed 

information on energy consumption by individual appliances [Kim et al., 2010; Parson 

et al., 2014]. These studies showed that when occupants are aware of individual 

consumptions by respective appliances, they are influenced by the breakdown of 

information in a way to use home appliances less often, especially those appliances with 

high power ratings. 

Non-intrusive load monitoring (NILM) is a set of methods and techniques that aim to 

decompose the total aggregate measurements by smart meters into the detailed 

individual consumptions profiles by appliances present in the household [Zeifman and 

Roth, 2011]. To achieve a promising solution to NILM, it is essential to be able to 

perform the proposed disaggregation process only using the total aggregate signal 

measured by smart meters at household-level. Sub-metering or installing additional 

sensors at appliance-level will apparently incur extra cost, time, privacy and 

applicability challenges [Zoha et al., 2012; Kim et al., 2010]. 

Beside targeting energy savings in residential homes, NILM techniques are promising 

to benefit in broader useful applications such as [Chou and Chang, 2013] 

• Energy management systems. 
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• Demand side management. 

• Faults troubleshooting.  

1.2 Problem Statement 

Load disaggregation objective is to obtain the power consumption profiles of individual 

appliances merely from the total aggregate signal measured by a smart meter from a 

single point at a household-level. That is, if there are 𝑀 appliances present in a 

household, and the total aggregate measurements 𝑝(𝑡) was observed over the time 

period 𝑡 = 1, 2, …𝑇, then  

 𝑝(𝑡) = ∑ 𝑝𝑚(𝑡)

𝑀

𝑚=1

 (1.1) 

An approach of NILM aims to disaggregate the total aggregate measurements 𝑝(𝑡) to 

obtain estimates of the individual power consumptions 𝑝𝑚(𝑡) for each appliance 𝑚 

present in the household during the time period of observation 𝑡 = 1, 2, …𝑇. 

The task of NILM increases in complexity and becomes more challenging based on the 

following important factors 

• The number of active appliances and number of occupants in the household. 

• The usage patterns and behaviors of the household occupants. 

• Existence of appliances that overlap in their power consumptions. 

• Existence of continuously varying loads such as light dimmers, electronic devices 

and power tools. 

• Noisy signals from possible sources that may affect the accuracy of metering. 

• Other applicability and scalability concerns. 
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In brief, the general framework of NILM methodologies consists of three consecutive 

tasks [Zoha et al., 2012] 

1. Data acquisition: measurements of total aggregate consumption and other signals and 

information, if applicable. 

2. Features extraction: extracting useful features (also called appliances signatures or 

attributes) from the measured signals. 

3. Load identification: using a proper method or algorithm to identify individual 

appliances based on their distinct features and other available information. 

Overall, to provide an efficient scalable solution to NILM, a proposed approach for 

NILM should fulfil a number of requirements such as [Parson, 2014] 

1. Non-intrusive: the proposed approach should only make use of total aggregate signal 

measured at household-level. The approach should not require intrusive sub-metering 

of individual appliances or installing additional sensors to report or record the 

operation of individual home appliances. 

2. Load disaggregation: the proposed approach should provide estimates of individual 

appliances consumptions profiles at same sampling resolution as that of the total 

aggregate signal. 

3. Low frequency measurements: the proposed approach should utilize available 

features in current broadly-adopted low frequency measurement instruments (e.g. 

smart meters operating at 1 Hz frequency). Though metering at higher frequencies 

can provide extra useful features (e.g. harmonics and transients), installing additional 

high frequency metering equipment will incur extra cost and applicability challenges. 

4. Unsupervised learning: the proposed approach should learn appliances models 

online from the aggregate signal. Training data (e.g. individual appliances models) 
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should not be a pre-requirement since this settles an intrusive load disaggregation 

technique. 

1.3 Major Contributions 

In this work, three enhanced approaches are proposed to tackle three essential challenges 

in the domain of NILM which are enhancing the load disaggregation accuracy, modeling 

and disaggregating varying loads and disaggregating overlapping home appliances. 

Firstly, mutual interactions between appliances is introduced as a new feature that can 

be embedded in the factorial hidden Markov model (FHMM) representations of home 

appliances and the total aggregate signal so as to improve the disaggregation accuracy 

of individual loads (home appliances). Secondly, a method is proposed to model 

continuously varying home loads using a quantized continuous-state hidden Markov 

model (CS-HMM) that estimates the transition matrix in a way to mitigate possible 

extreme cases of transitions: never-occurred transitions and too-frequent transitions. 

Thereafter, the proposed CS-HMM is consolidated with the factorial hidden Markov 

model (FHMM) to produce a hybrid continuous/discrete state FHMM that capable of 

modeling and disaggregating various types of loads. Thirdly, to disaggregate home 

appliances with overlapping power consumptions, an approach for clusters splitting is 

proposed based on inspection of clusters cohesion to split appliances clusters where 

appliances are expected to be overlapping in their power consumptions.  

In this work, the low frequency measurements were used for cost reduction, availability 

and applicability reasons as stated in section 2.2.1. In addition, unsupervised learning 

approaches were adopted in the learning phase of HMMs and its variants (approaches 

proposed in Chapter 3 and Chapter 4) for cost reduction, privacy and applicability 

reasons as stated in section 2.2.2. Figure 1.2 illustrates the adopted research path, which 
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is directed on using unsupervised learning approaches to be applied on low frequency 

measurements of aggregate consumptions (e.g. sampled at a rate of 1 Hz). 

 

Fig. 1.2: Adopted research path in this thesis (shaded path). 

The major contributions of this research, which aim to tackle essential gaps in literature, 

are articulated in brief in the following sections. 

1.3.1 Enhanced Load Disaggregation with Mutual Devices Interactions 

The feature of mutual interactions between appliances is introduced and utilized in the 

FHMM representation of the aggregate total signal in order to achieve improved 

disaggregation accuracies of individual home appliances. Interactions between 

appliances is interpreted as the lumped effects of power quality issues such as harmonics 

and electromagnetic interference. Home devices are prone to interact (to some extent) 

since they are usually connected in parallel to the same feeder line. A statistical factorial 

design was adopted to estimate devices main power effects (primary power 

consumptions) and their possible two-way interactions, which ultimately affect the total 

aggregate measurements. This information was embedded in the FHMM representation 

of the aggregate measurements with the purpose of improving the disaggregation 

accuracies per existing device. An interaction between two appliances is expected to 

affect the total aggregate signal only in cases when both corresponding appliances are 

detected to be operating in the ON state. 

Energy 
Disaggregation

Low Frequency 
Measurements

Supervised 
Learning 

Unsupervised 
Learning

High Frequency 
Measurements
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The above approach was further extended using an adaptive algorithm that updates both 

devices main power effects and their two-way interactions (where possible) during the 

disaggregation process. The adaptive method was applied in cases when there are four 

devices or less operating in the ON state simultaneously. A suitable fractional factorial 

design was utilized to assist in updating devices models and estimates of two-way 

interactions based on the number of simultaneously ON devices. An unsupervised 

approach was applied on low frequency measurements of a real house from the 

Reference Energy Disaggregation Data set (REDD) [Kolter and Johnson, 2011] to test 

and validate the proposed approaches. 

1.3.2 Modeling of Continuously Varying Loads by a Quantized CS-HMM and a 

Proposed Hybrid Continuous/Discrete States FHMM 

Continuously varying loads (such as light dimmers, power tools and electronic devices) 

are those having no consistent finite number power consumption levels. Based on their 

nature of operation, these loads may consume varying amounts of power within their 

power consumption ranges. Hence, the standard discrete-state HMM (DS-HMM) may 

be incapable of modeling and disaggregating this type of loads. A quantized CS-HMM 

is proposed to model and estimate the power consumption of continuously varying 

loads. A modified method is proposed to estimate the model transition matrix that 

mitigate two possible extreme cases of transitions 

1. Never-visited transitions during the learning phase, which may result in being 

incapable of detecting these transitions during the testing and validation phase. 

2. Too frequent transitions, which may result in a dominant transition probability that 

is likely to limit the possibility of detecting other transitions in the same row of the 

transition matrix. 
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The Viterbi algorithm was used to infer most probable hidden sequence of states, given 

a sequence of measured observations. The proposed quantized CS-HMM was tested on 

synthetic data that emulate varying loads and on real devices measurements available 

from the REDD public data set. In addition, the proposed quantized CS-HMM was 

combined with the standard FHMM to produce a hybrid CS/DS-FHMM that capable of 

modeling and disaggregation of various types of discrete loads (FSMs) and continuously 

varying loads. A framework for both learning and estimation phases was developed so 

as to model and disaggregate various types of loads that exist simultaneously in a 

household merely from their total aggregate power measurements. 

1.3.3 Disaggregating Overlapping Clusters of Appliances Using a Clusters 

Splitting Approach 

Clustering methods were applied to NILM where the objective is to group home 

appliances into representative distinct clusters. When two devices or more have close or 

overlapping power consumptions, it is likely that their corresponding representative 

clusters be wrongly merged in one cluster when applying some clustering techniques. 

However, since such merged cluster has originated by data from more than one sources 

(i.e. two or more home appliances), it is reasonable to observe a degree of non-

cohesiveness between its elements. An approach for cluster splitting is proposed based 

on inspecting the degree of within-cluster cohesion. The cohesion test is carried out 

using three common normality tests performed against two confidence levels. Since the 

proposed approach of cohesion test is basically based on normality tests, the following 

considerations were taken into account 

1. Only devices with stable single state or finite state machines (FSMs) were included 

in the study to maintain good normality fitting’s in their clusters.  
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2. As some devices show an overshoot starting consumption, the overshoot periods 

were excluded since they may alter normality patters within the device cluster. 

3. A median filter was applied in all cases to remove outliers and noisy signals. 

In brief, a splitting of a cluster is carried out by the flowing procedure 

1. Apply normality tests on the checked cluster. 

2. Conclude the degree of cohesiveness to decide splitting (some threshold values are 

set to conclude the splitting decision). 

3. Once a splitting is decided, split the cluster into two sub-clusters using a proper 

method like inner expectation maximization (EM). 

1.4 Alternate Solutions Other than NILM 

There are some alternate methods and techniques other than NILM techniques that may 

be used or developed to inform households occupants about detailed appliance-level 

power consumptions. Examples of these methods include [Parson, 2014] 

1. Sub-metering: where each appliance power consumption is metered or logged 

individually using a special metering equipment. 

2. Smart appliances: where some modern appliances are designed with a technology 

that reports its power consumption information to a central hub in the household. 

3. Appliances surveys: where surveys on appliances and their use by occupants can be 

used to conclude estimates of appliances power consumptions. 

Overall, these methods face noticeable shortcomings in terms of applicability, 

availability and estimation accuracy. For example, the sub-metering technique requires 

installing extra sensors at appliance-level which incurs additional cost, applicability and 

privacy challenges. Smart appliances are a good option to report appliances 

consumptions, but this technology is not yet embedded in all appliances types and 
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brands. Surveys on appliances and their usage patterns may provide an estimate of 

appliances usage. However, these estimates may not be accurate in many cases since 

people differ widely in their behaviors and usage patterns of different types of home 

appliances. 

1.5 Organization of This Thesis 

The remaining parts of this thesis are organized as follows: 

Chapter 2 presents a background and detailed literature reviews on related research work 

done in the domain of NILM. The principal inadequacies in available approaches are 

demonstrated respectively. It also articulates main useful appliances features used in 

NILM methods and compares different accuracy metrics used to assess proposed NILM 

approaches. An overview of HMMs, extensions of HMMs and clustering techniques is 

presented as these models are enhanced thereafter in this research work. 

Chapter 3 presents the first proposed approaches to enhance load disaggregation 

accuracy using information on appliances mutual interactions. Theoretical parts of the 

proposed approach are augmented with explanations on how the proposed approaches 

can mitigate potential shortcomings that often hamper reference methods. In addition, 

case study applications on real measurements of home appliances from available public 

data set were used to carry out models learning, testing and validation tasks. Reference 

methods were also applied on same data for objectives of benchmarking and comparison 

of methods. 

Chapter 4 presents the second proposed approach to model and disaggregate 

continuously varying loads using a quantized CS-HMM and a framework for the hybrid 

CS/DS-FHMM to apply on load disaggregation. Theoretical parts of the proposed 

approach are augmented with explanations on how the proposed approaches can 
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mitigate potential shortcomings that hamper reference methods. In addition, case study 

applications on synthetic data and real measurements of home appliances from available 

public data set were used to carry out models learning, testing and validation tasks. 

Reference methods were also applied on same data for objectives of benchmarking and 

comparison of methods. 

Chapter 5 presents the third proposed approach which aims to disaggregate overlapping 

clusters of home appliances which result when applying a clustering method to NILM. 

An approach for clusters splitting is proposed based on investigation of clusters 

cohesion. Theoretical parts of the proposed approach are augmented in detail. In 

addition, case study applications on real measurements of home appliances from 

available public data set were used for testing and validation. 

Chapter 6 summarizes conclusions and significant findings concluded from the research 

work and presents recommendations for potential future work. 
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Chapter 2 

Background and Related Work 

This chapter presents background and literature reviews on related research works that 

targeted the problem of non-intrusive load disaggregation. It highlights the first work 

and the general framework for an approach of NILM. Commonly utilized appliances 

features, load identification approaches and accuracy metrics are articulated. In addition, 

an overview on hidden Markov models (HMMs), extensions of HMMs and basic 

clustering approaches is presented. 

2.1 Intrusive Load Monitoring 

Intrusive load monitoring requires sub-metering of individual appliances by installing 

appliance-dedicated sensors that report or log their individual operation and power 

consumption. Though this method can provide accurate power consumptions by 

respective appliances, it apparently incurs additional burdens such as 

• Added costs associated with installation of power sensors for each home appliance. 

• Concerns about occupant’s privacy due to the intrusive nature of this method. 

• Extra care needed whenever household occupants add or drop an appliance. 

Therefore, intrusive load monitoring is often considered an impractical solution 

especially when it is supposed to be widely deployed for large scale users [Kim et al., 

2010; Parson, 2014]. 
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2.2 Non-Intrusive Load Monitoring 

Non-intrusive load monitoring (NILM) utilizes only the total aggregate signal (i.e. 

measurements by a smart meter) at a household level to extract distinct appliances 

features in order to deduce the operation and power consumptions of individual 

appliances present in the household. The concept and first work on NILM was proposed 

by Hart in 1992 [Hart, 1992]. His research showed the possibility to detect and infer 

appliances operation from the aggregate signal basically by detecting ON/OFF events 

(transitions edges) as shown in Figure 2.1 [Zoha et al., 2012]. 

 
Fig. 2.1: Aggregate signal showing appliances ON/OFF events [Zoha et al., 2012]. 

Hart’s first work of load disaggregation consisted of two subsequent steps. First, 

detecting events when a device switches ON/OFF and extracting useful features (e.g. 

real and reactive power consumptions). Thereafter, these distinct features (devices 

signatures or attributes) were grouped in clusters that represent different appliances. The 

work showed that high power consuming devices were easier to be classified as being 
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placed far from each other. Conversely, there were overlapping regions of low power 

consuming devices, which encouraged further research on efficient methods for NILM. 

Hart [Hart, 1992] named his first work in NILM as non-intrusive appliance load 

monitoring (NIALM). Throughout literature, some other alternate terms were used to 

describe the problem of NILM such as energy disaggregation and load disaggregation. 

Progression in the domain of NILM was usually by targeting improvements in either or 

both of the two following paths [Zeifman and Roth, 2011] 

• Extracting extra useful features from the total aggregate signal that can lead to 

distinguish between household appliances. 

• Enhancing the identification methods which would lead to improved performance by 

the proposed NILM approaches. 

To simplify research work on NILM, home appliances are usually categorized into four 

main categories as follows [Zeifman and Roth, 2011] 

• Type I appliances, or always ON appliances, which are always active and operating 

in the ON state. These devices never switch to the OFF state and, hence, they 

represent the baseload of the household. Smoke detectors and home internet routers 

are typical examples of this appliances category.  

• Type II appliances, or ON/OFF appliances, which can be either OFF or operating at 

only one possible ON state. These appliances consume power consistently around a 

specific level. Lights and toaster represents examples of these category of appliances.  

• Type III appliances, or multi-state appliances, which are also called finite state 

machines (FSMs), are appliances that can operate at a finite number of possible 

states. These appliances are expected to consume different amounts of power 
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according to the state of operation. Examples of this category include ceiling fans 

and washing machines. 

• Type IV appliances, or continuously varying loads, which may consume power at 

infinite number of states during their operation. Light dimmers, power tools and 

electronic devices are typical examples of this appliances category. 

2.2.1 Appliances Features for Load Disaggregation 

Extracting distinct features (also known as attributes or signatures) of appliances is an 

essential driving factor to achieve accurate load disaggregation. In general, a feature is 

valuable given that  

• The feature is measurable from the total aggregate signal when the respective 

appliance is active (ON). 

• It can be used to distinguish between two or more of individual appliances. 

• It remains consistent and does not change with time or other factors. 

The type and number of extractable features from the total aggregate signal in the 

domain of NILM depends mainly on the frequency of the measurement equipment. In 

addition, some extra non-electric features from ambient facts can be utilized to assist in 

the load disaggregation process. 

2.2.1.1 Low Frequency Measurements Features 

Common installed smart meters (or to be installed with the deployment of smart grids) 

measure a household’s total aggregate consumptions at low frequencies such as 1 Hz in 

USA [Kolter and Johnson, 2011] and 0.1 Hz in UK [Parson, 2014]. Therefore, using 

available smart meters measurements is reliable and cost effective in the domain of 

NILM since it does not require installations of additional metering equipment. By means 
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of low frequency equipment, NILM approaches can only use relatively macroscopic 

features of appliances [Zeifman and Roth, 2011]. 

The first work on NILM [Hart, 1992] utilized changes in both real and reactive power 

draws from the aggregate consumption signal. These changes were used to construct a 

two-dimensional signatures space of real and reactive power (∆𝑃 − ∆𝑄 plane), thereby 

to group appliances in distinct representative clusters.  

Albicki and Cole [Albicki and Cole, 1998] have extended the previous mentioned NILM 

method with the use of edges and slopes as appliances extra features. These two new 

features are defined, respectively, as the initial upward spike in power and the slower 

changing variation that occurs during the turn ON events. The method is specifically 

appropriate for appliances characterized by significant spikes in power draw such as 

heat pumps, dishwashers, and refrigerators. 

Baranski and Voss [Baranski and Voss, 2003] proposed a histogram-based approach 

that analyzes occurrences of power transitions. Only frequent events (ON/OFF 

transitions) were considered for analysis. Thereafter, they applied an optimization 

method to search for best matches between events and home appliances. 

2.2.1.2 High Frequency Measurements Features 

Measuring the household total aggregate consumptions at high frequencies provides 

data that is rich in information and fine features such as harmonics, transient power 

profile, electromagnetic interference (EMI), etc. However, in most cases, high 

frequency measurements require installation of additional metering equipment which 

means added cost and time disadvantages [Zoha et al., 2012]. 

Analysis of harmonics obtained by means of Fourier transform (FT) helped in 

distinguishing between appliances such as computers and incandescent light bulbs 
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[Zeifman and Roth, 2011]. Spectral envelope of harmonics, which is a vector of 

coefficients of harmonics, was found to be a characteristic feature for continuously 

varying loads [Lee et al., 2005; Wichakool et al., 2009]. Nonetheless, detecting the 

presence of a varying load is not sufficient for NILM since estimation of the power 

consumption is the crucial goal of a NILM approach [Zeifman and Roth, 2011]. Akbar 

and Khan [Akbar and Khan, 2007] considered a method to analyze harmonics based on 

short-time fast Fourier transform (STFFT) of transient signals. The method was 

developed to identify some non-linear devices (e.g. power electronics appliances) which 

usually produce rich harmonics content. In comparison with Fourier transform, the 

wavelet transform was used to characterize the transient behavior of the loads. Using 

wavelet transform, Chang [Chang, 2012] showed that the transient response time and 

the transient energy features are better than steady-state features for the task of loads 

disaggregation. However, the study considered selected appliances with distinct turn-on 

attributes [Zoha et al., 2012]. 

The geometrical shape of the current-voltage (also called the 𝐼 − 𝑉 trajectory) was used 

to separate appliances based on their categories [Lee et al., 2004; Lam et al., 2007]. Lam 

et al. [Lam et al., 2007] utilized the 𝐼 − 𝑉 trajectory to decompose appliances into eight 

groups with high accuracy, providing further sub-divisions within each group. 

Patel et al. [Patel et al., 2007] proposed to monitor electric noise in a socket for transient 

signals and then to use its fast Fourier transform (FFT) as a feature. A training phase 

was required for each appliance and their possible combinations. Results in terms of 

detection accuracy were found comparable to those of other methods [Zeifman and 

Roth, 2011]. However, computational expense of capturing and analyzing transient 

noise, the necessity for training for each household device and the dependence of the 
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obtained signatures on household wiring were some obvious shortcomings of using the 

noise FFT as a feature [Gupta et al., 2010; Zeifman and Roth, 2011]. 

Gupta et. al. [Gupta et al., 2010] proposed an approach showing that appliances 

equipped with switch mode power supply (SMPS) can be characterized by analyzing 

the steady-state voltage noise generated due to their operation, i.e., electromagnetic 

interference (EMI). They utilized Fourier features of the EMI signals in the 36-500 kHz 

range. The signatures were found to be distinct for different appliances. While this 

feature can easily distinguish between motor-based appliances (as they generate voltage 

noise), it remains sensitive to wiring architecture, EMI signatures overlap with each 

other, and not all appliances are equipped with SMPS technology [Zoha et al., 2012]. 

2.2.1.3 Non-Traditional Appliance Features 

Beside appliance electrical features, some non-traditional features were proposed to 

assist in the task of NILM. Examples of these features include [Kim et al., 2010] 

• The duration of use of an appliance, especially for appliances with repeatable 

operation pattern (operation cycle) such as refrigerators and washing machines. This 

feature is less likely to be helpful for devices fully dependent on occupants’ behavior 

such as lights, TV, electronics, etc. However, if home occupants show some usage 

pattern of an appliance, this may be learnt over time by a NILM approach.  

• The time and day of which the appliance was used, which depends on the usage 

pattern and behavior of home occupants. For example, some occupants tend to use 

specific appliances in the evening time or on weekends. 

• The operational relation (inter-dependency) between two or more appliances. For 

example, switching ON some entertainment devices may indicate the probability to 

switch ON the LCD screen. 
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• The ambient weather (e.g. temperature) information. For example, the air conditioner 

is likely to be used when there is a high ambient temperature. 

2.2.2 Approaches for Load Identification 

After collecting useful appliances features, an approach for load identification is 

required to detect and identify the operation of the corresponding appliances. In 

addition, the main objective of NILM is to estimate the individual appliances power 

consumptions as accurate as possible merely by using the total aggregate signal. Since 

the main goal of NILM is to provide estimations of power consumed by individual 

appliances, it becomes essential to achieve accurate estimations by a proposed NILM 

method. Hence, the impact of NILM and potential energy saving become achievable, 

given the estimation of individual appliances consumptions is as accurate as possible. 

The problem of NILM falls under the general blind-source separation class of problems. 

A common example in this field is the speakers’ decomposition (or who-spoke-when) 

problem; where a single audio recording of a meeting is given, and we wish to infer the 

number of speakers present, when they speak, and some characteristics governing their 

speech patterns [Johnson and Willsky, 2013]. According to the method of appliances 

models learning, a NILM approach can generally fall in either supervised or 

unsupervised learning category. 

2.2.2.1 Supervised Learning Approaches 

In supervised learning approaches, there is a learning phase in which individual 

appliances models are built and other features are extracted from appliance-level 

consumption measurements. To acquire appliance-level measurements, additional 

metering equipment are usually required, which obviously incur extra installation cost 

and efforts. Records of appliances (their consumption profiles or models, and other 

extractable features) are hence recorded in a database for use of appliances matching in 
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the disaggregation process. Thereafter, the NILM approach performs the process of load 

disaggregation on the total aggregate signal with the goal of detecting the operation of 

individual appliances (e.g. when an appliance switches ON/OFF). To apply a supervised 

learning approach, two broad methodologies were used to carry out the load 

disaggregation process: optimization and pattern recognition [Zoha et al., 2012]. 

The core task of optimization methods in the context of NILM is to search for an optimal 

combination of known appliances (which were recorded in a database during the 

learning phase) that would minimize the error between the observed and the estimated 

total aggregate consumption. Various optimization methods such as integer 

programming and genetic algorithm were used to search for optimal solutions for NILM 

[Baranski and Voss, 2003; Liang et al., 2010; Baranski and Voss, 2004; Suzuki et al., 

2008]. However, these methods increase in complexity and computational time as the 

number of existing appliances increase. In addition, it becomes challenging to detect 

appliances that were added to the household after the appliances models were learnt and 

their database was recorded. 

On the other hand, pattern recognition methods construct distinct patterns or models for 

individual appliances so as to be used in the disaggregation process by detecting the 

most likely appliance patterns from the total aggregate signal that can be matched to 

recorded patterns of appliances. Development of patterns recognition techniques are hot 

topics in the scope of machine learning and other related fields in the broad scope of 

artificial intelligence. Marchiori et al. [Marchiori et al., 2011] used a Bayesian approach 

to infer the state of home appliances using the power features and state-switching 

information. The temporal information along with power transitions were found 

effective in appliance detection [Zeifman and Roth, 2011; Lin et al., 2010]. Hence, 

hidden Markov models (HMMs) and their extensions were used to model and 
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disaggregate the operation of home appliances [Kim et al., 2010; Kolter and Jaakkola, 

2010]. Artificial neural networks (ANN) has also shown good performance for the task 

of load disaggregation [Ruzzelli et al., 2010]. Support vector machines (SVM) 

methodology was also used with utilization of features such as harmonics and other low 

frequency signatures and showed good performance in appliances classification 

[Srinivasan et al., 2006; Kato et al., 2009; Lin et al., 2010]. Lai et al. [Lai et al., 2012] 

proposed to utilize a gaussian mixture model (GMM) to describe the distribution of 

currents waveforms and then to use a SVM to classify individual loads. 

2.2.2.2 Unsupervised Learning Approaches 

Since supervised learning approaches often require extra equipment and labor costs to 

acquire appliance-level measurements, models and features, research direction toward 

unsupervised learning and inference methods gained increasing attention recently [Kim 

et al., 2010; Parson, 2014; Zoha et al., 2012]. An unsupervised learning approach does 

not require measurements or models of individual appliances in prior. Alternatively, 

appliances models and other features are learnt online from the total aggregate signal or 

using some historical measurements of the total aggregate signal of the same household. 

This online modeling process is usually carried out by applying a set of probabilistic 

analysis and classification methods [Kim et al., 2010; Kolter and Jaakkola, 2010]. 

In brief, the basic advantages of unsupervised learning approaches compared to 

supervised learning approaches are 

• Reduction of overall NILM system deployment expense, as there is no need to install 

extra metering equipment or features extraction at appliance-level in prior. 

• When a detected appliance in the disaggregation process found to be not matching to 

any previously known appliances, it can be considered as an added new appliance to 
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the household. Hence, its model and features should be added as a new record of the 

known appliances database. Thereafter, it becomes possible to be detected once it 

turns in operation. 

However, appliances modeling and feature extraction from the total aggregate signal 

introduce some noteworthy challenges such as 

• Analysis methods should be capable of distinguish between models that belongs to 

different appliances. Therefore, the applied statistical analysis or machine learning 

techniques may need to be equipped with some rules to differentiate between 

individual appliances and their models/features. 

• Since the unsupervised learning approaches results in unlabeled groups or clusters 

(i.e. appliances), a manual labeling step is required by a field expert in order to label 

the NILM outcomes with the respective home appliances [Parson, 2014]. 

There are several unsupervised-fashioned methods and frameworks that were applied in 

the domain of load disaggregation. Parson et al. [Parson et al., 2014] proposed an 

approach in which a one-time supervised learning process with already labeled data set 

was used to create general probabilistic models of appliances. Thereafter during the load 

disaggregation process, these general models can be tuned to previously unseen 

households in an unsupervised manner. The tuning process resulted in specific models 

of devices that were existing in the tested households. Goncalves et al. [Goncalves et 

al., 2011] applied an unsupervised blind source separation technique to obtain 

appliance-level consumptions from the aggregate data. They utilized both genetic K-

means and agglomerative clustering with features like ∆𝑃 − ∆𝑄 to cluster appliances. 

Shao et al. [Shao et al., 2012] proposed a motif mining method to perform load 

disaggregation in an unsupervised fashion. Their method was mainly applicable to 

appliances with distinctive repeatable events. Kamoto et al. [Kamoto et al., 2017] 
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presented a new approach based on competitive agglomeration (CA) which incorporates 

the good qualities of both hierarchical and partitional clustering aiming to carry out 

energy disaggregation to discover appliances without prior information about the 

number of appliances.  

Hidden Markov models (HMMs) and their extensions were also used in unsupervised 

manners to achieve the task of load disaggregation. Kim et al. [Kim et al., 2010] applied 

four extensions of the HMMs to the problem of NILM. They utilized some non-

traditional features, such as the duration of use and time of use, in order to enhance the 

performance of the proposed models. Kolter and Jaakkola [Kolter and Jaakkola, 2010] 

presented a new approximate inference method based on FHMM. They applied two 

complementary models, the additive and the difference FHMM. The additive FHMM 

captures well the total aggregate output signal while the difference FHMM encodes the 

signal differences between subsequent power levels (when a device switches ON or 

OFF). Henao et al. [Henao et al., 2018] targeted to the disaggregation of the electric 

space heater by applying a robust disaggregation approach based on the difference 

factorial hidden Markov model (DFHMM) that uses their common prior knowledge. 

Johnson and Willsky [Johnson and Willsky, 2013] introduced a hierarchical Dirichlet 

process hidden semi-Markov model (HDP-HSMM) where state durations are explicitly 

defined. The methods introduced also provide new techniques for sampling inference in 

the finite Bayesian HSMM. The proposed model was applied to synthetic data and to 

selected home appliances from available public data set. Lu et al. [Lu et al., 2017] 

proposed an event-based detection algorithm that apply a simplified Viterbi algorithm, 

which considers fewer state transitions each time than the traditional Viterbi. 
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2.2.3 Public Data sets for Load Disaggregation 

Research on load disaggregation requires measurements of both total aggregate signal 

at household-level and of measurements at appliance-level. Measurements at appliance-

level (or sub-metering) are useful to build appliances models in supervised learning 

approaches and they are also important for validation and judging the accuracy of 

outcomes of the proposed NILM approach. Hence, some data sets of detailed 

measurements of real houses were published and made available for public to facilitate 

and expedite research work on load disaggregation. In addition, public data sets can be 

used for benchmarking purposes, i.e., to compare the performance of two or more 

approaches by testing on the same data. 

One of the largest and commonly used public data sets is the Reference Energy 

Disaggregation Data set (REDD) [Kolter and Johnson, 2011]. The REDD includes both 

low and high frequency measurements of six real houses for an approximate period of 

two weeks. While REDD satisfies most research needs, it was noted that the summation 

of individual consumptions is not always equal to total household consumption at the 

same time instant. This indicates existence of some unmeasured or excluded devices. 

Moreover, the devices are not grouped to be connected to either mains 1 or mains 2 

phase circuits (the main feeder lines). In this work, the REDD data set was used to apply 

and test the proposed approaches. 

A number of other data sets were made available for public to test their NILM 

approaches, but they differ from many aspects such as: number of monitored houses and 

appliances, frequency of metering, etc. For illustrations, Table 2.1 from [Bonfigli et al., 

2015] shows a brief comparison between a number of available data sets collected and 

prepared to test NILM approaches. 
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Table 2.1: Comparison of available data sets for NILM [Bonfigli et al., 2015]. 

Data Set Location 

Appliance 

Sample 

Resolution 

Aggregate 

Sample 

Resolution 

Reference 

REDD USA 3 seconds 

1 second and 15 

kHz 

[Kolter and 

Johnson, 2011] 

BLUED USA 

State transitions 

label 

12 kHz 

[Anderson et 

al., 2012] 

UMass 

Smart 

USA 1 second 1 second 

[Barker et al., 

2012] 

AMPds Canada 1 minute 1 minute 

[Makonin et al., 

2013] 

BERDS USA 20 seconds 20 seconds 

[Maasoumy et 

al., 2014] 

For more information and comparisons of available public data sets, see e.g. [Parson, 

2014; Bonfigli et al., 2015]. 

2.2.4 Evaluation of Load Disaggregation Approaches 

Though load disaggregation approaches have the same goal of obtaining accurate 

estimations of individual appliances consumptions, there were different accuracy 

metrics used in literature to assess the performance of an approach. The following 

accuracy metrics were commonly used in research to evaluate a proposed approach 

1. The accuracy of power estimated of individual appliances compared to their 

actual power consumptions over the tested time period. This accuracy metric for 

each home device, 𝐴𝑐𝑐𝑚, can be given as follows [Kolter and Johnson, 2011; 

Johnson and Willsky, 2013] 
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where 𝑝𝑚(𝑡) is the true power consumed at time 𝑡 by the device 𝑚, �̂�𝑚(𝑡) is the 

estimated power consumption at time 𝑡 by the device 𝑚 and 𝑇 is the time length of 

the sequence used for the disaggregation process. This accuracy metric can also be 

given, as a unified accuracy across all monitored devices in a household, as follows 

where 𝑝(𝑡) is the total aggregate power at time 𝑡, which is consumed by the existing 

𝑀 home devices. Since this accuracy metric is based on the accuracy of power 

estimation of individual device, which is the principal goal of load disaggregation, it 

will be used to assess the proposed approaches in Chapter 3 and Chapter 4 of this 

work. The division by 2 in equations (2.1) and (2.2) comes from the fact that using 

the absolute value will double count the errors [Kolter and Johnson, 2011; Johnson 

and Willsky, 2013]. 

2. Using Precision, Recall and their extensions. These metrics are used often to 

assess the accuracy of assignments of events or energy to individual appliances. 

In this metric, detected events are categorized into four groups based on reality 

and concluded outcomes as shown in Table 2.2. In brief, TP and TN are the 

counts of true assignments and true non-assignments of events with respect to a 

specific appliance. The FP indicates the occurrences of wrong assignments of 

events to a particular appliance. This should not be confused with the FN, which 

indicates the occurrences of wrong non-assignments of events to that particular 

appliance. 

  

 𝐴𝑐𝑐𝑚 = 1 −
∑ |�̂�𝑚(𝑡) − 𝑝𝑚(𝑡)|
𝑇
𝑡=1

2∑ 𝑝𝑚(𝑡)
𝑇
𝑡=1

 (2.1) 

 𝐴𝑐𝑐 = 1 −
∑ ∑ |�̂�𝑚(𝑡) − 𝑝𝑚(𝑡)|

𝑀
𝑚=1

𝑇
𝑡=1

2∑ 𝑝(𝑡)𝑇
𝑡=1

 (2.2) 
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Table 2.2: Actual versus concluded events. 

Test conclusion Real event occurred Real event did not occur 

Detected True Positive (TP) False Positive (FP) 

Not detected False Negative (FN) True Negative (TN) 

Precision is a measure that describe the relevance ratio of the detected elements 

(percentage of truly detected events for an appliance from all detected events) and it 

is given by 

Recall is a measure of how many of relevant elements (events actually occurred by 

an appliance) were detected and it is given by 

F-Measure is a commonly used measure that combines Precision and Recall as 

the harmonic mean and it is given by  

For more details about Precision, Recall, F-measure and some other related metrics 

of assignments accuracy, refer e.g. to [Powers, 2011]. 

To encompass the impact of appliances modeling (i.e. building power consumptions 

profiles by the approach) in these accuracy metrics, Kim et al. [Kim et al., 2010] 

suggested to divide the 𝑇𝑃 category into two sub-categories: Accurate True Positive 

(𝐴𝑇𝑃) and Inaccurate True Positive (𝐼𝑇𝐴), which were defined as follows 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.4) 

 𝐹 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑜𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (2.5) 

http://en.wikipedia.org/wiki/Harmonic_mean
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where �̂� refers to the estimated power consumption of a specific device and 𝑝 is its 

actual power consumption. Usually, power consumptions fluctuate within 20% of the 

average power, thus a 𝜌 threshold can be taken as 0.2 [Kim et al., 2010]. 

Parson [Parson, 2014] used receiver operating characteristic (𝑅𝑂𝐶) curves to trade-

off between True Positive Rate (TPR), which is same as the Recall measure, and its 

complementary: False Positive Rate (FPR). 

3. Liang et al. [Liang et al., 2010] differentiated between the detection and classification 

accuracy as follows: if detected events include all true and false detections, then 

detection accuracy is the percentage number of those classified correctly from 

detected events. Classification accuracy is the percentage of number of those 

classified correctly from truly detected events. Overall accuracy is the percentage 

number of those classified correctly to events that actually occurred. 

2.3 Hidden Markov Models and Their Extensions 

Hidden Markov models (HMMs) and their extensions are useful stochastic models that 

were applied on various scientific problems. As they were used in research work on load 

disaggregation (including this work), HMMs and their common extensions (or variants) 

are presented here in brief. In their basic structure, HMMs model a sequence of 

observations (or emissions) that is evolving due to another hidden (or latent) sequence 

 𝑇𝑃

{
 
 

 
 𝐴𝑇𝑃, 𝑤ℎ𝑒𝑟𝑒 

|�̂� − 𝑝|

𝑝
≤ 𝜌

𝐼𝑇𝑃, 𝑤ℎ𝑒𝑟𝑒 
|�̂� − 𝑝|

𝑝
> 𝜌

 (2.6) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴𝑇𝑃

𝐴𝑇𝑃 + 𝐼𝑇𝑃 + 𝐹𝑃
 (2.7) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴𝑇𝑃

𝐴𝑇𝑃 + 𝐼𝑇𝑃 + 𝐹𝑁
 (2.8) 
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of states [Bishop, 2006]. The hidden sequence of states cannot be observed directly but 

may be inferred from the sequence of observations. In brief, the ingredients of a typical 

HMM (denoted as 𝜆) are as follows 

where 𝜋𝑖 represents the likelihood of the initial state of the model (i.e. the hidden state 

𝑠𝑡 at time 𝑡 = 0), the transition matrix 𝐴 provides the probabilities of which the model 

to switch from a state 𝑖 at time 𝑡 − 1 to state 𝑗 at time 𝑡, thus each element in in the 

transition matrix 𝐴, 𝑎𝑖,𝑗, gives the following transition probability 

The observation likelihood 𝑏𝑗 give the likelihood of an observed item 𝑥𝑡 at time 𝑡. Thus, 

𝑏𝑗(𝑥𝑡) is the likelihood to observe the item 𝑥𝑡 at time 𝑡 for some hidden state 𝑗. While 

observations likelihood may be discrete or continuous distribution, the above 

configuration is valid for cases of discrete or finite number of hidden states. Once the 

HMM has been set up (i.e. the model parameters have been leant), there are two (among 

others) basic and useful tasks that can be carried out using the modeled HMM 

• Inferring the maximum likely sequence of hidden states, given a sequence of 

observations. This task can be done using the dynamic optimization by Viterbi 

algorithm [Bishop, 2006; Parson, 2014]. The Viterbi algorithm is a dynamic 

optimization technique that aims to select the best possible hidden sequence of states 

that provides maximum likelihood sequence, give the sequence of observations for a 

given modeled HMM. Various examples of applications in this domain include the 

wide applications in speech and patterns recognition, bioinformatics application, 

energy disaggregation, etc. 

 𝜆 = {𝜋𝑖 , 𝐴, 𝑏𝑗} (2.9) 

 𝑎𝑖,𝑗 = 𝑃(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) (2.10) 
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• Prediction of possible future observations, given current sequence of observations 

and states. This task can be done, for example, by the forward algorithm [Zucchini et 

al., 2016]. Various examples of applications in this domain include computational 

finance, time series analysis and other forecasting problems. 

2.3.1 Factorial Hidden Markov Models and Other Extensions 

Factorial HMMs (FHMMs) [Ghahramani and Jordan, 1997] are an extension to the 

standard HMM with belief that there are several hidden states chains evolving 

independently and in parallel producing the measurable sequence of observations as 

shown in Figure 2.2. 

 

Fig. 2.2: The basic structure of FHMM. 

Figure 2.2 shows the basic structure of FHMM where a sequence of observed emissions 

𝑋 = {𝑥1, 𝑥2, … 𝑥𝑇} are evolving over corresponding time 𝑡 = 1, 2, …𝑇 due to several 

independent parallel hidden state chains or factors denoted as 𝐴, 𝐵, … etc. The hidden 

states chains evolve independently from each other. For example, the hidden state chain 

𝐴 in Figure 2.2 would have its own transition matrix that consists of elements 𝑎𝑖,𝑗 =

𝑃(𝐴𝑡 = 𝑗|𝐴𝑡−1 = 𝑖) to give likelihoods that states of hidden chain 𝐴 switch from state 𝑖 
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at time 𝑡 − 1 to state 𝑗 at time 𝑡. The observed output (emissions chain) is usually a joint 

discrete or continuous function of all hidden states [Kolter and Jaakkola, 2012]. That is,  

 𝑋 = 𝑓𝐴,𝐵,…(𝐴, 𝐵,… ) (2.11) 

The configuration of FHMMs gained increasing interest in the domain of load 

disaggregation because it is suitable to model existing individual home appliances as 

Markov models evolving concurrently resulting in the observed total aggregate power 

as the summation of individual consumptions of individual home devices. 

In addition to the FHMM, there are a number of developed extensions of HMM that 

may be considered according to the case study and the available information in prior. 

Examples of these extensions of the HMM include the following 

• Hidden semi-Markov model (HSMM) [Yu, 2010; Johnson and Willsky, 2013], where 

the hidden states are supposed to occupy some time durations that could be defined 

by a specific probability distribution. In the context of NILM, this model could be 

useful if durations of appliances operation are known to have repeatable patterns or 

fit into some probability distribution. 

• Conditional FHMM (CFHMM), where the transition probabilities are not constant 

but are conditioned on the extra features. Although the CFHMM is similar to a 

coupled hidden Markov model (CHMM), CFHMMs are more generic as they 

consider the dependencies between hidden state sequences and the additional input 

sequences [Kim et al., 2010]. 

• Conditional Factorial HSMM (CFHSMM), which combines both the CFHMM and 

the HSMM [Kim et al., 2010]. 
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• Input-Output HMM, where additional information that might have impacted upon 

the hidden variables’ states can be integrated into the model at a little extra 

computational cost [Parson, 2014].  

2.3.2 Continuous-States Hidden Markov Models 

The structure of the common discrete-states HMM (DS-HMM) consists of a sequence 

of hidden finite number of states (e.g. 𝑁 number of states). Thus, it is reasonable to 

model transitions probabilities by a 𝑁 ×𝑁 matrix; the transitions matrix. A continuous-

state HMM (CS-HMM) is sought to model the cases of infinite number or continuous 

space of hidden states (denoted as 𝑍 in the settings of continuous space of hidden states). 

The essential challenge of complexity arises when transitions between states are difficult 

to be modeled by a known joint continuous likelihood function such that [Ainsleigh, 

2001] 

 𝑃(𝑠𝑡 = 𝑧𝑡|𝑠𝑡−1 = 𝑧𝑡−1) = 𝑓𝑍,𝑍(𝑧𝑡, 𝑧𝑡−1) (2.12) 

where 𝑓𝑍,𝑍 is a joint continuous function that represents likelihoods of transitions in the 

continuous space from state 𝑧𝑡−1 at time 𝑡 − 1 to state 𝑧𝑡 at time 𝑡. In case the continuous 

transitions probability likelihood is unavailable (which is common in real-life 

applications), approximating methods such as nonparametric statistics or quantizing the 

continuous states range techniques may be employed. 

2.4 Bayesian Nonparametric Models and Dirichlet Process 

Nonparametric models are used to model selection and adaptation of the studied 

problem where the sizes of models can grow progressively with data size. This is 

opposed to parametric models, which use a fixed number of parameters [Orbanz and 

Teh, 2011]. The Dirichlet process (DP) [Teh, 2011] is a stochastic process used in 

Bayesian nonparametric models of data, particularly in DP mixture models (which is 



34 
 

also known as infinite mixture models). It is a distribution over distributions which 

means that each draw from a DP is itself a distribution. 

Teh et al. [Teh et al., 2005] proposed a hierarchical DP approach where they assumed 

that the number of mixture components is unknown a priori and is to be inferred from 

the data. Thus, they considered a set of DPs, one for each group, where the well-known 

clustering property of the DP provides a nonparametric prior for the number of mixture 

components within each group. 

Johnson and Willsky [Johnson and Willsky, 2013] introduced the hierarchical Dirichlet 

process hidden semi-Markov model (HDP-HSMM) where state durations are explicitly 

defined. The methods introduced also provide new techniques for sampling inference in 

the finite Bayesian HSMM. These models can be used as tools in constructing and 

performing inference in larger hierarchical models. They applied their model on 

synthetic data and selected home appliances from the REDD public data set. 

These methods are related to the CS-HMM or clustering techniques in the sense that the 

possible number of states (or clusters) is unknown in prior and grow progressively 

according to the available data (often, when a data stream or time series of data is the 

main supplier to build these clusters/states). Though the number of states (or clusters) is 

possibly infinite theoretically, the number of detected states (or constructed clusters) are 

usually countable and determined mainly by the available data. 

2.5 Common Clustering Approaches 

Clustering is a broad concept in the domain of artificial intelligence in which 

heterogenous data is grouped into distinct clusters based on significant features or 

attributes [Jain et al., 1999]. Clustering is a reasonable approach when applied to data 

that is believed to have originated from different sources and later merged in a data 
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stream or time series. In the domain of NILM, for example, consumptions of individual 

home appliances are lumped together in the form of the total aggregate signal that is 

usually metered by the household smart meter. In general, a clustering method is 

supposed to result in clusters consisting of items that are alike by some means and differ 

from those in other clusters. 

Clustering methods were used in NILM techniques, but they were usually efficient in 

identifying non-overlapping and high power consuming devices [Zeifman and Roth, 

2011]. In [Farinaccio and Zmeureanu, 1999], the clustering approach was extended by 

filtering and smoothing mechanisms to deal with power variations. Nonetheless, this 

method requires excessive training and it was applicable mainly to high power loads 

[Zoha et al., 2012]. 

2.5.1 Overview of Basic Clustering Methods 

Clustering methods aim to group items in the data stream or time series measurements 

into a distinct number of clusters. However, the performance of a clustering method 

depends on many factors such as: number of originating sources that have merged in 

the data stream, number and nature of extractable features, the dimensions of features, 

etc. Since clustering approaches were used in the domain of load disaggregation, an 

overview of basic clustering methods such as nearest neighbor (NN), K-means, fuzzy 

K-means and expectation maximization (EM) is presented in brief. 

The nearest neighbor (NN) clustering is a method to assign unlabeled items to clusters 

according to their distance from items that has been previously assigned to clusters. An 

iterative procedure of NN clustering it assigns each unlabeled item to the cluster of its 

nearest labeled neighbor item, provided the distance to that labeled neighbor is below a 

threshold. The process continues until all items are labeled or no additional labeling 

occur [Jain et al., 1999]. 
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The K-means clustering approach assign items to clusters based on their distance from 

the clusters centers. The K-means method firstly initialize items randomly to clusters, 

so each cluster has a center in the features space. Then, the K-means method iteratively 

run the following two steps 

• Update clusters centers using all items assigned to the corresponding clusters. 

• Assign items to clusters whose center has the minimum distance from each 

investigated item. 

The above steps are repeated till some termination criteria met. The termination criteria 

could be, for example, a maximum number of iterations, relative change in clusters 

centers, or other enhancement measures [Jain et al., 1999]. It is noticeable that, since it 

is a distance-based assignment method, using K-means method for clustering is 

reasonable in cases where no information is available in prior about the distribution 

fitting of the targeted clusters. A basic shortcoming of K-means method is that it requires 

to know the number of distinct clusters prior to execution of the clustering process. 

The fuzzy K-means approach is similar to the K-means approach, except that each item 

is not strictly assigned to one cluster in the fuzzy K-means approach. Instead, a 

membership function is used to present how likely an item belongs to each cluster. 

The expectation maximization (EM) is an iterative clustering method that assigns items 

to clusters based on their probability likelihoods (not based on a distance measure). The 

EM is also commonly used for parameters estimation from data. If items in one cluster 

are believed to follow some probability likelihood (e.g. normal distribution), then using 

the EM clustering method is an efficient way to perform the clustering task [Jain et al., 

1999; Bishop, 2006]. Analogous to the K-means method, the EM method iteratively 

runs the following two steps 
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• Update likelihood functions using all items assigned to the corresponding clusters. 

• Assign items to clusters based on achieving maximum likelihood of each item to be 

belonging to the investigated cluster. 

The above steps are iterated till some termination criteria met such as a maximum 

number of iterations or relative change in some enhancement measures [Jain et al., 

1999]. It is noticeable that, since it is a likelihood-based assignment method, using EM 

method for clustering is reasonable in cases where information is available in prior about 

the distribution fitting of the targeted clusters. Same as in K-means clustering, a basic 

shortcoming of the EM method is that it requires to know the number of distinct clusters 

prior to execution of the clustering process. 

2.5.2 Clusters Splitting and Merging 

In real world applications, clustering may not be a straight forward process. Many 

challenges may arise such as overlapping between features from different clusters, 

difficulties in extracting significant features, limitations on number of available features, 

noisy measurements environment, etc. Therefore, the following two cases may occur 

• Two or more clusters that represent different sources has merged in one cluster. In 

such cases, cluster splitting could be reasonable to retrieve the right clusters. 

• A cluster has been retrieved as two or more clusters due to some dissimilarity 

measures or dispersion among items. In such cases, clusters merging could be 

reasonable to retrieve the right cluster. 

Unfortunately, to decide splitting or merging on clusters is a problematic decision that 

highly depend on the available information and the case under study. Wagstaff et al. 

[Wagstaff et al., 2001] proposed a constraint-based clustering which modifies the K-

means method considering a set of constraints to be satisfied. Lu and Leen [Lu and Leen, 
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2007] used a mean field approximation to produce the Penalized Probabilistic 

Clustering (PPC) to handle increasing complexity in large data sets. Instead of using 

item-to-item constraints as in PPC, the Class-Level Penalized Probabilistic Clustering 

(CPPC) was proposed by defining cluster-to-cluster constraints [Preston et al., 2010]. 

These constraints provide probabilities about how likely two clusters should be merged, 

split or kept unchanged. As the number of clusters is often significantly less than the 

total number of items to be classified, CPPC provides a noticeable reduction in 

complexity over PPC [Preston et al., 2010].  

Hierarchical divisive clustering is a top-to-bottom clustering that repeatedly partition a 

present cluster into two smaller clusters till reaching some stopping criteria. Common 

approaches in considering such splitting decisions are size priority, cluster cohesion tests 

and dissimilarity between the possible sub-clusters [Ding and He, 2002]. It is notable 

that size priority method to split clusters requires a prior knowledge about the size (e.g. 

total number of items) of the clusters. On the other hand, cluster cohesion tests require 

to adopt a cluster cohesion metric (e.g. a particular pattern or a distribution fitting). 

Dissimilarity between clusters could be indicated by how far the clusters are in terms of 

some defined features in the features space. 

2.6 Summary 

This chapter presented an in-depth literature overview on related research works in the 

field of non-intrusive load disaggregation. Significant extractable appliances’ features 

and load identification approaches investigated in previous works were presented. In 

addition, a brief outlook was given about HMMs, extensions of HMMs and clustering 

techniques, as these models and methods were further enhanced in the proposed 
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approaches in this thesis. To articulate the presented clustering methods, Table 2.3 

compares between DP, K-means and EM methods. 

Table 2.3: Comparison between DP, K-means and EM methods. 

Clustering Method Mechanism Number of Distinct Clusters 

DP Nonparametric methods Variable, grows with data 

K-means Distance-based Fixed, must be known in prior 

EM Likelihood-based Fixed, must be known in prior 
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Chapter 3 

Enhanced Load Disaggregation Using 

Information on Appliances Interactions 

This chapter presents the first proposed approach that aims to enhance the overall 

performance of non-intrusive load disaggregation. To improve the load disaggregation 

accuracy, two-way interactions between appliances is introduced as a new feature that 

can be embedded in the factorial hidden Markov model (FHMM) representations of 

home appliances and total aggregate signal. In addition, this Chapter presents in-depth 

interpretations of mutual devices interactions from power quality aspects. Then, a 

statistical factorial design is adopted to model devices and estimate their primary power 

consumptions and possible two-way interactions. Thereafter, information on devices 

interaction is embedded in the FHMM representation of the total aggregate signal so as 

to carry out the task of non-intrusive load disaggregation. 

Since home appliances are often connected in parallel to the same main feeder line, it is 

possible that the operation of one appliance may affect the power consumption of other 

appliances to some extent due to several issues of power quality. Figure 3.1 shows a 

typical connection of two devices connected in parallel to the main feeder line in a 

typical residential household. 
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Fig. 3.1: Parallel connection of devices in residential households. 

The connection of home devices as shown in Figure 3.1 allows some power quality 

issues to arise such as harmonics and electromagnetic interference (EMI) which may 

lead to inter-devices interactions (two-way interactions) that can affect their individual 

power consumptions. 

An experimental factorial design is adopted aiming to capture appliances main power 

factor effects (primary power consumptions) and their mutual two-way interactions (if 

possible). Statistical design of experiments refers to the process of planning the 

experiment so that the appropriate data that can be analyzed by statistical methods will 

be collected, resulting in some valid and objective conclusions. The statistical approach 

to experimental design is necessary if there is an objective to draw significant 

conclusions from the data [Montgomery, 2001]. In the context of NILM, operation of 

appliances can be considered as the main factor behind the transitions and fluctuations 

in the total aggregate measurements. Hence, it is reasonable to plan the experimental 

design considering the home appliances to be the main factors that affect the observed 

values of total aggregate measurements collected by the household smart meter. 

Besides, noisy signals and other possible disturbances can be considered as existing but 

uncontrollable factors as explained in section 3.2. 
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3.1 Interpretation of Appliances Interactions from Power Quality 

Perspective 

In the ideal case of home devices operation, each appliance is expected to operate as an 

isolated entity without affecting or being affected by the operation of other home 

appliances. However, due to the increasing number of electronic devices and low power 

quality in the design or operation of some devices, the flow of different interference 

components such as harmonics and electromagnetic interference currents between home 

appliances is possible. The design or manufacturing of a device is considered to have 

low power quality issues when its operation does not satisfy the desired case in its 

operation. This includes emissions of harmonics, interference currents, being affected 

by the operation of other devices, etc. In general, electricity networks, components, and 

home appliances are becoming more sophisticated in terms of their functionalities and 

the way they interact with other equipment connected to the same network 

[Bhattacharyya et al., 2007].  

Gil-de-Castro et al. [Gil-de-Castro et al., 2014a] studied harmonic interactions between 

different devices (e.g. LED lamp, microwave oven and TV) and how different 

combinations of these devices could affect the charging process of an electric vehicle 

(EV). It was found that the presence of a neighboring device could have a strong 

influence on the harmonics emitted by the EV. In addition, the EV was found to be 

affected by different emissions (amplitudes and frequencies) coming from different 

nearby devices. They concluded that to understand the current flowing through an 

electronic device, the interactions between connected devices must be understood. 

In a different study, Gil-de-Castro et al. [Gil-de-Castro et al., 2014b] investigated 

harmonic emission of different domestic equipment combined with different types of 
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lighting. Their study showed that the total emissions produced by equipment depended 

on the lamps that were connected in the background. 

Pavas et al. [Pavas et al., 2012] carried out a statistical analysis of power quality 

disturbances propagation by means of the method of disturbances interactions. Their 

study was performed on a large scale to estimate possible interactions between two 

buildings. The measurements were done at the medium/low voltage level substation that 

feeds the two buildings. The presence of disturbances was found to be responding to 

possible interactions of the two buildings circuits and all connected devices. 

3.2 Interpretation of Appliances Interactions from a Statistical 

Perspective 

An experimental factorial design is adopted to represent the statistical model of home 

appliances and being able to estimate their possible two-way interactions. Figure 3.2 

shows a typical experimental factorial model where an output is generally driven by a 

set of controllable factors and uncontrollable factors (e.g. noise signals, poor power 

quality factors) [Montgomery, 2001; Montgomery and Runger, 2011]. 

 

Fig. 3.2: Experimental factorial model. 

In the context of the problem of load disaggregation, the input represents the main feeder 

line, home appliances are represented by the controllable factors which are controlled 
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by the house occupants, and the output represents the total aggregate consumptions that 

is usually measured by a smart meter. 

A model of 2𝑀 factorial design was considered, where there exist 𝑀 controllable factors 

(i.e. home appliances) and each factor has only two possible states (ON/OFF). Multi-

state appliances or finite state machines (FSM) can also be modeled using this 

representation as they can be encoded, as several two-state appliances [Kim et al., 2010] 

(by means of some defined constraints/rules to assure that a device occupies one state 

at a time). To estimate possible mutual interactions between appliances, the case of two 

devices (say 𝐷𝐴 and 𝐷𝐵) is presented for simplicity. The used notation of the output 

response of the factorial design model (𝑦) at different states of the two devices 𝐷𝐴 and 

𝐷𝐵 is as shown in Table 3.1. 

Table 3.1: Output response (𝒚) at different devices 𝑫𝑨 and 𝑫𝑩 states. 

Device 𝑫𝑨 state Device 𝑫𝑩 state Output response (𝒚) 

OFF OFF 𝑖 

ON OFF 𝑎 

OFF ON 𝑏 

ON ON 𝑎𝑏 

In the context of NILM, the output response (𝑦) represents the aggregate power 

consumption at different states combinations of existing home devices. It is often noted 

that even when all devices are OFF, there is a still a baseload power consumption due 

to always ON devices, which is denoted by the value of 𝑖 in Table 3.1. A device is 

assumed to interact with other devices in the same household if its power consumption 

is not the same in cases of different combinations of the states of other devices. To apply 

on the case of two devices 𝐷𝐴 and 𝐷𝐵, the devices main power effect (primary power 
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consumption), denoted as 𝐴 and 𝐵, and their two-way (or second order) interaction, 

denoted as 𝐴𝐵, can be estimated from the following [Montgomery, 2001; Montgomery 

and Runger, 2011] 

For illustration of the above, if one devices 𝐷𝐴 is ON, then the output response should 

be 𝑦 = 𝑎, where the actual effect (main power effect) of device 𝐷𝐴 is 𝐴 = 𝑎 − 𝑖 because 

it is still possible to have a baseload consumption before device 𝐷𝐴 switches to ON. 

Assuming the case of no devices interactions, when device 𝐷𝐵 switches to ON beside 

device 𝐷𝐴, then the output response becomes 𝑦 = 𝑎𝑏 = 𝑎 + 𝐵 = 𝑎 + 𝑏 − 𝑖, which will 

result in a value of 𝐴𝐵 = 0 when applied to equation (3.3). 

Theoretically, an interaction 𝐴𝐵 may hold a positive or negative value and it interprets 

the difference of power consumptions when two devices are ON simultaneously and 

when considering their summation of individual power consumptions at the ON states. 

Thus, to be able to estimate an interaction between two devices, it requires to monitor 

them operating together (i.e. both are ON) and also when each of them is the only ON 

device. To benefit from equation (3.3) in the domain of load disaggregation, it can be 

re-written as  

The term 𝑎𝑏 − 𝑎 in equation (3.4) represents a transition upward (denoted as |𝑡𝑥|) in 

the total aggregate signal when a device 𝐷𝐴 is ON at time 𝑡 − 1 then both devices 𝐷𝐴 

and 𝐷𝐵 are ON at time 𝑡. It is noted that the term 𝑏 − 𝑖 in equation (3.4) represents an 

 𝐴 =  (𝑎𝑏 + 𝑎 − 𝑖 − 𝑏)/2 (3.1) 

 𝐵 = (𝑎𝑏 + 𝑏 − 𝑖 − 𝑎)/2 (3.2) 

 𝐴𝐵 = (𝑎𝑏 + 𝑖 − 𝑎 − 𝑏)/2 (3.3) 

 𝑎𝑏 − 𝑎 = 𝑏 − 𝑖 + 2𝐴𝐵 (3.4) 
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estimate for the main power effect (primary power consumption) of the device 𝐷𝐵 (i.e. 

𝑏 − 𝑖 = 𝐵). Therefore, it can be concluded that 

The importance of equation (3.5) comes from the fact that when a device switches ON, 

not only its main power effect will be reflected on the total aggregate signal, but also its 

interactions effects (e.g. two-way interactions) with already ON devices. Conversely, 

when a device switches OFF, not only its main power effect will be suppressed from the 

total aggregate signal, but also its interactions effects with other ON devices. Hence, 

information on devices interaction are helpful in identifying home devices when a 

transition is detected in the total aggregate signal. Thereafter, information on devices 

interactions were embedded in the proposed FHMM representation of home devices and 

the total aggregate measurements to enhance the performance of load disaggregation. 

3.3 The Sparsity of Effects Principle 

In experimental factorial models, factors are normally expected to interact with each 

other at possible levels of interactions (two-way, three-way, etc.) which basically 

depend on the number of controllable factors. However, the principle of sparsity states 

that an experimental factorial model is usually dominated by main factors effects and 

low order interactions (e.g. two-way interactions). High order interactions often hold 

negligible effects on the output response [Montgomery and Runger, 2011]. Sometimes, 

this phenomenon is referred to as the hierarchical ordering principle which can be useful 

in the screening of significant factors from the insignificant ones [Montgomery, 2001]. 

Following the principle of sparsity of effects, only main factors effects of home devices 

and their two-way interactions, where possible, will be included in the proposed FHMM 

to tackle the problem of non-intrusive load disaggregation.  

 |𝑡𝑥| = 𝑎𝑏 − 𝑎 ≈ 𝐵 + 2𝐴𝐵 (3.5) 
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3.4 Models of Power Consumptions by Individual Appliances 

It is common that each appliance has a rated power consumption that is supposed to be 

consumed during its operation. Finite state machines (FSMs) are also supposed to 

consume power at some rated levels for each of its possible states of operation. 

However, in the practical case, appliances may consume inconsistent amounts of power 

during their cycle of operation. Barker [Barker, 2014], who developed model-driven 

analytics of energy measurements, found that the profile of power consumptions by 

home appliances may start at overshot high values then decrease gradually, or, for other 

appliances, may start at some value then increase gradually during their operation. 

 
Fig. 3.3: Consumption pattern by a central air conditioner [Barker, 2014]. 

For illustration, Figure 3.3 shows a consumption pattern by a central air conditioner 

[Barker, 2014] in which the power consumption starts at some value then increase 

gradually during its operation. On contrary, Figure 3.4 shows a consumption pattern by 
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a refrigerator from the REDD public data set [Kolter and Johnson, 2011], in which the 

power consumption starts at some value then decrease gradually during its operation. 

 
Fig. 3.4: Consumption pattern by a refrigerator [Kolter and Johnson, 2011]. 

From the above, it is noticeable that ON and OFF transitions may not be close to each 

other for some devices. Therefore, a model that consists of three power levels is 

considered to model the power consumption profile of each home appliance. The initial 

power consumption is used to represent the starting power consumption usually within 

few seconds duration after the device is switched ON (e.g. for five seconds duration). 

The final power consumption is used to represent the power consumption usually with 

few seconds before the devices is switched OFF (e.g. for five seconds duration). Overall, 

the average power consumption is used to represent the average (or mean) level of power 

consumed during the entire period of operation of a device. 

To carry out the load disaggregation process, a transition upward in the total aggregate 

signal should be compared to initial power consumptions of known devices in order to 

identify the switched-on device. Conversely, a transition downward in the total 

aggregate signal should be compared to final power consumptions of known devices in 
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order to identify the switched-off device. In all cases, the average power consumption 

of an appliance can be used as a reasonable estimate of its actual power consumption 

during its operation period. 

3.5 Embedding Two-Way Interactions of Device in the FHMM 

Information of mutual devices interactions (were possible to be estimated) are then 

embedded in the FHMM representation of home devices and the total aggregate signal. 

Figure 3.5 shows the proposed FHMM including all possible two-way interactions of 

home appliances.  

 

Fig. 3.5: FHMM with two-way interactions chains. 

An interaction hidden chain is considered only when both of corresponding devices are 

in the ON state. For example, the two-way interaction 𝐴𝐵 is considered (i.e. to be 

affecting the 𝑋 observations) only when both devices 𝐷𝐴 and 𝐷𝐵 are in the ON state. 

The observed sequence of measurements 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑇} at a time instant 𝑡 can be 



50 
 

seen as the additive outcome of individual power consumptions of the ON devices and 

their mutual two-way interactions at that time instant. 

To perform the task of load disaggregation, hidden states of devices could be inferred 

from the sequence of observed measurements using the Viterbi algorithm. However, a 

transition in the aggregate signal should consider the mutual interaction between the 

switched devices and all previously ON devices. To articulate this concept, consider a 

transition upward in the total aggregate signal, then it is reasonable to look for the best 

matching device 𝐷𝑋 that satisfy the following 

Likewise, when a transition downward in the total aggregate signa is detected, then it is 

reasonable to look for the best matching device 𝐷𝑋 that satisfy the following 

where 𝑋𝑖 is the initial power level of the possible device 𝐷𝑋, 𝑋𝑓 is the final power level 

of the possible device 𝐷𝑋, 𝑌 represents the set of currently ON devices just before the 

transition occurs, 𝑋𝑌 represents the two-way interaction pairs of devices 𝐷𝑋 and 𝐷𝑌 and 

|𝑡𝑥| is the absolute value of the transition caused by the switched device 𝐷𝑋 (ON/OFF). 

Equations (3.6) and (3.7) are concluded from equation (3.5) and the fact that when a 

device is switched ON, not only its main power effect will be added to the total aggregate 

signal, but also its two-way interactions with currently ON devices. Conversely, when 

a device is switched OFF, not only its main power effect will be suppressed from the 

total aggregate signal, but also its two-way interactions effects with other ON devices. 

 𝐷𝑋 ~  |(𝑋𝑖 + 2∑𝑋𝑌

𝑌

) − |𝑡𝑥||𝐷𝑋      
arg𝑚𝑖𝑛

 (3.6) 

 𝐷𝑋 ~  |(𝑋𝑓 + 2∑𝑋𝑌

𝑌

) − |𝑡𝑥||𝐷𝑋      
arg𝑚𝑖𝑛

 (3.7) 



51 
 

It is notable that estimating both 𝑋𝑖 and 𝑋𝑓 should be over some period of time (periods 

of 5 samples were used in this research) as a transition is detected in order to avoid 

misleading abrupt spikes (often happen for one or two samples). Therefore, information 

on devices interaction are helpful in identifying home devices when a transition is 

detected in the total aggregate signal. It is noteworthy that identifying of appliances from 

equations (3.6) and (3.7) is not based only on the closest one that matches the detected 

transition in the aggregate signal, but it represents a measure that can be used via Viterbi 

algorithm to identify the most probable home device that has caused the transition in the 

total aggregate signal. Thereby, the proposed method provides an enhanced method for 

detection of appliances. In addition, estimation of power consumption by individual 

appliances could be enhanced by considering the possible changes of an appliances 

power consumption due to the operation of other existing home appliances. 

3.6 Adaptive Estimation of Appliances Main Power Effects and 

Two-Way Interactions 

It is possible to estimate appliances models and their mutual interactions (where 

possible) from a portion of the aggregate signal, then keeping these models fixed when 

performing the load disaggregation on subsequent portions of the total aggregate 

measurements. Hence, such fixed-model technique will not benefit from the extra 

information that is extractable during the disaggregation process. Therefore, applying 

an adaptive method that keep updating of original models, whenever the corresponding 

appliance is detected, could improve the appliances models’ profiles and thereby the 

accuracy of detection and power estimation of individual home appliances. 

In the context of load disaggregation, the smart meter measurements are usually of long 

sequences and they represent an infinite data stream in the real-life case. Therefore, it is 
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reasonable to use sequential mean updating based on the current mean value and the 

new sample that belongs to the same population (i.e. the same device). That is, the new 

mean as a function of the current mean can be given by [Bishop, 2006] 

where 𝜇𝑘+1 is the new updated mean value (i.e. of an appliance power consumption) to 

be used in the subsequent process of load disaggregation, 𝜇𝑘 is the current mean value 

and 𝑁 is the new total number of observed samples, including the new sample 𝑥 used to 

model the average of a device power consumption. It is interesting to note that the shift 

(amount of deviation) from the current mean to the new mean value depends on how far 

the value of the new sample 𝑥 is from the current mean value. In addition, since 𝑁 is 

always increasing during the disaggregation process, the deviations from the current 

mean to the new mean caused by new samples gradually become smaller. 

Though many appliances often exist in a standard household, only few of them are 

usually operating (ON) simultaneously [Kim et al., 2010]. To update devices models 

and possible two-way interactions, an adaptive method is proposed according to the 

number of simultaneously ON devices. An adaptive approach was developed for cases 

when there are four devices or less operating (ON) simultaneously. Figure 3.6 shows 

the developed criteria to update estimates devices models and their two-way interactions 

(where possible) according to the number of simultaneously ON devices. The cases 

when there are five or more ON devices were neglected for two reasons: increasing 

complexity and the case is less frequent than other cases in ordinary situations of typical 

residential households. 

 𝜇𝑘+1 = 𝜇𝑘 +
1

𝑁
(𝑥 − 𝜇𝑘) (3.8) 
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Fig. 3.6: Criteria of adaptive estimations based on the number of ON devices 

When there is no active (ON) device in the household, the total aggregate measurements 

represent the household baseload (denoted as 𝑖). To articulate the adaptive estimation 

techniques, the following is considered for each corresponding case of simultaneously 

ON home devices. 

In the first case, when there is only one ON device (denoted as device 𝐷𝐴), the total 

aggregate measurements can be considered as the observation of 𝑎. Hence, obtaining a 

new sample to update the model (i.e. average power consumption) of the device 𝐷𝐴 is 

straightforward as follows 

where 𝐴′ is a new sample to be used to update the estimate of the main power effect 

(denotated as 𝐴) of the corresponding device 𝐷𝐴. Thereafter, the updating process is 

directly handled by equation (3.8) to obtain a new estimate of the device model using 

the old estimate and the new obtained sample. It is notable that the number of samples 

 𝐴′ = 𝑎 − 𝑖 (3.9) 
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𝑁 in equation (3.8) should be increased by one whenever a new sample is available and 

used to update the estimate of the device main power effect. 

In the second case, when there are only two ON devices (denoted as 𝐷𝐴 and 𝐷𝐵), it is 

possible to update both of their main power effects (primary power consumptions, 

denoted as 𝐴 and 𝐵) and their two-way interaction (denoted as 𝐴𝐵). In this case, the 

total aggregate measurements can be considered as the 𝑎𝑏 observation. Thus, new 

samples of main power effects and two-way interactions can be obtained directly using 

equations (3.1), (3.2) and (3.3). Thereafter, the estimates of these factors can be updated 

using equation (3.8) exactly in the same logic as articulated previously in the case of 

only one ON device. 

In the third case, when there are only three ON devices (denoted as 𝐷𝐴, 𝐷𝐵 and 𝐷𝐶), it 

is possible to update their main power effects (primary power consumptions, denoted as 

𝐴, 𝐵 and 𝐶). In some cases, it could be possible to update some or all of their two-way 

interactions (denoted as 𝐴𝐵, 𝐴𝐶 and 𝐵𝐶). In this case, the total aggregate measurements 

can be considered as the 𝑎𝑏𝑐 observation. To obtain new samples for either main power 

effects or two-way interactions, the half fractional factorial design (denoted as 23−1) is 

proposed to be used with the defining relation of 𝐼 = +𝐴𝐵𝐶. For illustrations, Table 3.2 

shows a typical 23 full factorial design with upper half is the fractional factorial design 

(half fraction) with the defining relation of 𝐼 = +𝐴𝐵𝐶 [Montgomery, 2001; Montgomery 

and Runger, 2011]. In brief, using a half-fractional factorial design is proposed when it 

could be difficult to obtain all combinations of observations. Using a half-fractional 

factorial design (half of observations only) would incur additional complexity cost, 

which is the aliasing between a number of factors. When two factors are aliases, it means 

that it would be impossible to separate their individual estimates, but the sum of their 

effects, however, could be estimated. 
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Table 3.2: Plus (ON) and Minus (OFF) signs for the 𝟐𝟑 Factorial Design. 

Combination 

Factorial Effect 

𝑨 𝑩 𝑪 𝑨𝑩 𝑨𝑪 𝑩𝑪 𝑨𝑩𝑪 

𝒂 + - - - - + + 

𝒃 - + - - + - + 

𝒄 - - + + - - + 

𝒂𝒃𝒄 + + + + + + + 

 
       

𝒂𝒃 + + - + - - - 

𝒂𝒄 + - + - + - - 

𝒃𝒄 - + + - - + - 

𝒊 - - - + + + - 

Since lower half of the factorial design in Table 3.2 consists of combinations that are 

more unlikely to be observed than combinations in the upper half, the upper half, 

represented by the defining relation 𝐼 = +𝐴𝐵𝐶 (upper half has 𝐴𝐵𝐶 column always 

with positive signs) can be used to obtain samples to update main power effects and 

two-way interaction (if possible). However, it becomes difficult to compute samples of 

individual factors from the half fractional design due to the confounded factors 

(sometimes called as aliasing between different factors). Nonetheless, an estimate of the 

summation of the aliased factors (confounded together) can be obtained from the 

following 

 𝐿𝐴 =
1

2
(𝑎𝑏𝑐 + 𝑎 − 𝑏 − 𝑐) = 𝐴 + 𝐵𝐶 (3.10) 
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 𝐿𝐵 =
1

2
(𝑎𝑏𝑐 + 𝑏 − 𝑎 − 𝑐) = 𝐵 + 𝐴𝐶 (3.11) 

 𝐿𝐶 =
1

2
(𝑎𝑏𝑐 + 𝑐 − 𝑏 − 𝑎) = 𝐶 + 𝐴𝐵 (3.12) 

For example, equation (3.10) shows the confounding case between the main factor 𝐴 

and the interaction 𝐵𝐶, which means that it is not possible to observe (i.e. have an 

estimate) of each of them individually, but it is possible to obtain a measurement of their 

summation (which is denoted as 𝐿𝐴). To illustrate the updating process, the case of 𝐿𝐴 

as appears in equation (3.10) is considered, but the same logic applies for cases of 𝐿𝐵 in 

equation (3.11) and 𝐿𝐶 in equation (3.12). For the case of 𝐿𝐴, there are two possible 

scenarios based on the availability of the interaction 𝐴𝐵 in prior. The first scenario is 

when the interaction 𝐵𝐶 is unknow in prior (i.e. 𝐵𝐶 = 0). Hence, the value of 𝐿𝐴 can be 

used as a new sample to update the main power effect of the factor 𝐴 exactly using the 

same method as applied in the case of only one ON device. The second scenario happens 

when there is a previous estimate of the interaction 𝐵𝐶. Hence, the previous estimates 

of both 𝐴 and 𝐵𝐶 can be updated using their known prior ratios as follows 

 𝐴′ = �̃� [
𝐿𝐴

�̃� + 𝐵�̃�
] (3.13) 

 𝐵𝐶′ = 𝐵�̃� [
𝐿𝐴

�̃� + 𝐵�̃�
] (3.14) 

 where 𝐿𝐴 represents the new measurement of 𝐴 + 𝐵𝐶 as a confounded value, �̃� and 𝐵�̃� 

are the previous averaged values for the main factor effect 𝐴 and the two-way interaction 

𝐵𝐶, respectively. Thereafter, new samples (𝐴′ and 𝐵𝐶′) can be used to update the 

corresponding main power factor and the two-way interaction using equation (3.8). 
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In the fourth case, when there are only four ON devices (denoted as 𝐷𝐴, 𝐷𝐵 , 𝐷𝐶and 𝐷𝐷), 

it is possible to update their main power effects (primary power consumptions, denoted 

as 𝐴, 𝐵, 𝐶 and 𝐷). In some cases, it could be possible to update some or all of their two-

way interactions (denoted as 𝐴𝐵, 𝐴𝐶, 𝐴𝐷, 𝐵𝐶, 𝐵𝐷 and 𝐶𝐷). In this case, the total 

aggregate measurements can be considered as the 𝑎𝑏𝑐𝑑 observation. To obtain new 

samples for either main power effects or two-way interactions, the half fractional 

factorial design (denoted as 24−1) is proposed to be used with the defining relation of 

𝐼 = +𝐴𝐵𝐶𝐷. For illustration, Table 3.3 shows a portion of the 24−1 fractional factorial 

design with the defining relation of 𝐼 = +𝐴𝐵𝐶 [Montgomery, 2001; Montgomery and 

Runger, 2011]. Since three-way interactions are negligible with accordance of the 

principle of sparsity, they were not included in the fractional factorial design shown in 

Table 3.3. 

Table 3.3: A portion of the 𝟐𝟒−𝟏 fractional factorial design. 

Response 

Factorial Effect 

𝑨 𝑩 𝑨𝑩 𝑪 𝑨𝑪 𝑩𝑪 𝑫 𝑨𝑫 𝑩𝑫 𝑪𝑫 𝑨𝑩𝑪𝑫 

𝒊 − − + − + + − + + + + 

𝒂𝒃 + + + − − − − − − + + 

𝒂𝒄 + − − + + − − − + − + 

𝒃𝒄 − + − + − + − + − − + 

𝒂𝒅 + − − − − + + + − − + 

𝒃𝒅 − + − − + − + − + − + 

𝒄𝒅 − − + + − − + − − + + 

𝒂𝒃𝒄𝒅 + + + + + + + + + + + 
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To update the main power effects, a new sample for corresponding factors can be 

obtained from Table 3.3 as follows 

 𝐴′ =
1

4
(𝑎𝑏𝑐𝑑 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 − 𝑏𝑐 − 𝑏𝑑 − 𝑐𝑑 − 𝑖) (3.15) 

 𝐵′ =
1

4
(𝑎𝑏𝑐𝑑 + 𝑎𝑏 + 𝑏𝑐 + 𝑏𝑑 − 𝑎𝑐 − 𝑎𝑑 − 𝑐𝑑 − 𝑖) (3.16) 

 𝐶′ =
1

4
(𝑎𝑏𝑐𝑑 + 𝑎𝑐 + 𝑏𝑐 + 𝑐𝑑 − 𝑎𝑏 − 𝑎𝑑 − 𝑏𝑑 − 𝑖) (3.17) 

 𝐷′ =
1

4
(𝑎𝑏𝑐𝑑 + 𝑎𝑑 + 𝑏𝑑 + 𝑐𝑑 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐 − 𝑖) (3.18) 

Thereafter, new samples of main power effects obtained from equations (3.15) to (3.18) 

can be used to update the corresponding device main power effect using equation (3.8) 

exactly in the same logic as done in the previous cases. It is notable that though main 

factors are confounding with three-way interactions, three-way interactions are 

neglected in accordance with the principle of sparsity. It is notable also that some two-

way responses (observations of 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 and 𝑐𝑑) may not be available in prior 

to updating of main power effects. In this case, an estimate of the two-way response can 

be obtained as in the following example for the response of 𝑎𝑏 

 𝑎𝑏 ≈ 𝐴 + 𝐵 + 𝑖 (3.19) 

In case a two-way response is not available in prior (e.g. 𝑎𝑏 is unknown), the 

corresponding two-way interaction will usually be unavailable (e.g. 𝐴𝐵 = 0). 

To update the estimates of the two-way interactions in this configuration, it is important 

to handle the aliasing between each pair of two-way interactions and its alias (the pair 

that it confounds with). From Table 3.3, the following linear combinations can be 

concluded to show the confounding between the available two-way interactions 
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 𝐿𝐴𝐵 =
1

4
(𝑎𝑏𝑐𝑑 + 𝑖 + 𝑎𝑏 + 𝑐𝑑 − 𝑎𝑐 − 𝑏𝑐 − 𝑎𝑑 − 𝑏𝑑) = 𝐴𝐵 + 𝐶𝐷 (3.20) 

 𝐿𝐴𝐶 =
1

4
(𝑎𝑏𝑐𝑑 + 𝑖 + +𝑎𝑐 + 𝑏𝑑 − 𝑎𝑏 − 𝑏𝑐 − 𝑎𝑑 − 𝑐𝑑) = 𝐴𝐶 + 𝐵𝐷 (3.21) 

 𝐿𝐴𝐷 =
1

4
(𝑎𝑏𝑐𝑑 + 𝑖 + 𝑎𝑑 + 𝑏𝑐 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑑 − 𝑐𝑑) = 𝐴𝐷 + 𝐵𝐶 (3.22) 

For illustration, equation (3.20) articulates that it is impossible to obtain an estimate of 

either interaction 𝐴𝐵 or 𝐶𝐷 individually. Instead, the estimate 𝐿𝐴𝐵 represents their 

summation (i.e. confounded together as 𝐴𝐵 + 𝐶𝐷). Hence, it is only possible to update 

the estimates of interactions (e.g. 𝐴𝐵 and 𝐶𝐷) only if a previous estimate is known from 

another measurements or estimation. Otherwise, it would be impossible to update the 

estimates of the two-way interaction. In case both confounding two-way interactions 

(e.g. 𝐴𝐵 and 𝐶𝐷) are known from some previous estimation, they can be updated by 

obtaining new samples from the following 

 𝐴𝐵′ = 𝐴�̃� [
𝐿𝐴𝐵

𝐴�̃� + 𝐶�̃�
] (3.23) 

 𝐶𝐷′ = 𝐶�̃� [
𝐿𝐴𝐵

𝐴�̃� + 𝐶�̃�
] (3.24) 

where 𝐿𝐴𝐵 observation represents the new measurement of 𝐴𝐵 + 𝐶𝐷, 𝐴�̃� and 𝐶�̃� are 

the current known, or previously estimated, averaged values for the interactions 𝐴𝐵 and 

𝐶𝐷, respectively. Thereafter, the new samples 𝐴𝐵′ and 𝐶𝐷′ can be used to update the 

corresponding two-way interaction in the same logic as explained earlier. 

In the fifth case, when there are five or more ON devices simultaneously, no updating’s 

were performed due to two main reasons 
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1. Having five or more ON devices simultaneously becomes more unlikely to happen 

in households as shown in [Kim et al., 2010] and as found from the results of this 

research work. 

2. The increasing complexity of the factorial design in this configuration. 

3.7 Procedure to Perform the Load Disaggregation 

To carry out the load disaggregation task, the following summarized procedure was 

applied merely on the total aggregate measurements 

• Step 1: using a portion of the total aggregate signal (e.g. two days of low frequency 

measurements), models of devices were built, and their two-way interactions were 

estimated (if possible). 

• Step 2: the process of load disaggregation was performed on the remaining part of 

the total aggregate signal. 

• Step 3: at every sample processed for disaggregation in step 2, the main power factors 

effects and two-way interactions of ON devices were adaptively estimated and 

updated using the criteria explained in section 3.6. 

• Step 4: accuracy of disaggregation can be evaluated by comparing the resulting 

power profiles estimates to the actual individual consumptions of devices as 

presented in subsection 2.2.4. 

3.8 Case Study Application on Using Appliances Interactions to 

Enhance Load Disaggregation 

The approach proposed to utilize appliances two-way interactions (where possible) was 

applied on real home measurements from the REDD public data set as explained earlier 

in this Chapter. House 2 from the REDD was selected to test the proposed approach 

since it includes nine appliances only, which made it easier to extract information on 
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mutual interactions between appliances. The nine devices are the microwave, 

refrigerator, outlet 1, outlet 2, washer dryer, lights, stove, dishwasher and disposal. 

These devices are fed by two feeder lines, which are labeled as mains1 and mains 2 

circuits. As a pre-processing of smart meter measurements, a 9-ample median filter was 

applied in order to remove noisy signals and outliers which may mislead the learning, 

modeling or disaggregation processes. The median filter sorts the processed samples in 

an ascending or descending order and then return the mid-point value as a result; thereby 

removing noisy spikes or values that are inconsistent with its neighboring samples. 

3.8.1 Extracting Interaction Information and Performing Load Disaggregation 

The learning of appliances models and extracting possible two-way interactions of 

appliances were done using a portion of two days of measurements by applying methods 

explained in this Chapter. Firstly, the base load of each feeder line should be estimated 

from the minimum level of total aggregate power consumptions. The baseload 

estimations represent the response (𝑖) in the proposed factorial design and were found 

as shown in Table 3.4. 

Table 3.4: Baseload for mains 1 and mains 2 feeder lines. 

Circuit Mains 1 Mains 2 

Base load (W) 15.7 22.8 

Although positive baseload values mean that there are some always ON appliances, it 

can be considered as the response 𝑖 in the factorial design since, at baseload 

consumptions, all other home appliances (to be detected later when they are switched 

ON) are still in the OFF state. 

In the learning phase using two days of aggregate data, the models of appliances were 

built using the three power levels as described in section 3.4. Table 3.5 shows that 
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detected appliances (or detected states in appliances) with corresponding initial, average 

and final power consumptions of these appliances (or states of appliances). As examples 

from Table 3.5: 𝐷𝐵 refers to the refrigerator, 𝐷𝐶  refers to a microwave, both 𝐷𝐼 and 𝐷𝐽 

are states a washer dryer, etc. The matching process of these states/appliances symbols 

to the actual home appliance was done manually, since an unsupervised adopted 

approach results in unlabeled group of appliances. 

Table 3.5: Detected appliances/states with three levels of power consumptions. 

State/Appliance 

Symbol 

Initial Power 

(W) 

Average Power 

(W) 

Final Power 

(W) 

𝑫𝑨 22.8 22.8 22.8 

𝑫𝑩 277.5 237.6 255.0 

𝑫𝑪 1973.2 1934.7 1945.7 

𝑫𝑫 230.3 199.0 223.5 

𝑫𝑬 66.0 42.0 64.7 

𝑫𝑭 102.8 78.3 95.2 

𝑫𝑮 57.7 41.1 56.0 

𝑫𝑯 1111.0 1097.4 1107.9 

𝑫𝑰 271.0 255.1 268.3 

𝑫𝑱 1283.8 1230.3 1234.2 

𝑫𝑲 807.4 790.2 807.2 

𝑫𝑳 394.4 409.5 410.1 
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Thereafter, appliances modeling and estimation of mutual interactions were performed 

on a two-day length sequence of measurements. Table 3.6 shows the obtained 

estimations of appliances two-way interactions. The unknown appliance in Table 3.6 

was represents a consumption transition of an unlabeled appliance in the REDD. 

Table 3.6: Estimated interactions between appliances. 

Appliance 𝑫𝑨 Appliance 𝑫𝑩 Interaction 𝑨𝑩 (W) 

Outlet 1 Outlet 2 -27.7 

Outlet 2 Unknown (40 W) -12.5 

Refrigerator Microwave -31.5 

The adaptive estimations approach proposed in this Chapter is applicable to cases of 

four or less simultaneously ON home appliances. Thus, number of concurrently ON 

home appliances was investigated during the load disaggregation process and found as 

shown in Table 3.7. 

Table 3.7: Time occupancy for number of concurrently ON appliances. 

Number of concurrently 

ON appliances 

Occupied time 

(hours/day) 

Percentage of time 

occupancy of a day 

Base load only 14.45 60.22% 

One appliance 5.81 24.21% 

Two appliances 2.69 11.22% 

Three appliances 0.81 3.37% 

Four appliances 0.21 0.87% 

Five appliances or more 0.03 0.11% 

Total 24 hours 100% 
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The proposed non-intrusive load disaggregation approach then was applied on one-day 

sequences of the total aggregate smart meter measurements. The proposed approach was 

applied three times, each time by applying a different scenario as follows 

• The first scenario: using the modeled appliances without information on appliances 

two-way interactions, the standard FHMM was applied to disaggregate individual 

home loads consumptions. 

• The second scenario: using the modeled appliances with information on appliances 

two-way interactions, a FHMM that embeds information on appliances mutual 

interactions was applied to disaggregate individual home loads consumptions. 

• The third scenario: using the modeled appliances with information on appliances two-

way interactions, a FHMM that embeds information on appliances mutual 

interactions was applied to disaggregate individual home loads consumptions. In 

addition, the adaptive estimations approach was applied at every sample of the 

aggregate signal to update appliances main power effects and two-way interactions 

(if possible) as explained earlier in this Chapter. 

Table 3.8 shows a comparison between the obtained results when approaches are applied 

on house 2 from the REDD using the three above presented scenarios. Table 3.8 shows 

results in terms of disaggregation accuracy using the metric of correct assigned power 

compared to the actual consumed power by an appliance as explained earlier in 

subsection 2.2.4. Figure 3.8 shows an example of the washer dryer that illustrate the 

estimated versus the actual power consumptions of the appliances. 
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Table 3.8: Disaggregation accuracy for each device. 

Appliance 

FHMM 

(without interactions) 

FHMM 

(with interactions) 

FHMM 

(with interactions 

and adaptive 

estimations) 

Microwave 54.26% 57.29% 58.61% 

Outlet 2 78.66% 81.40% 85.83% 

Refrigerator 64.11% 64.57% 66.41% 

Outlet 1 68.66% 68.80% 65.89% 

Washer dryer 77.26% 77.26% 87.37% 

Lights 51.62% 51.66% 52.43% 

Stove 81.56% 81.56% 80.66% 

 
Fig. 3.7: Estimated versus actual power consumption of the washer dryer. 
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3.8.2 Interpretation and Discussion of Load Disaggregation Results 

Including information of appliances two-way interactions (when possible) by 

embedding to the FHMM in the proposed approach improved the detection of appliances 

and load disaggregation accuracies. The rationale in this setting is to consider the 

behavior of an appliance when there are other appliances operating in the background. 

The proposed FHMM with interactions showed an improvement in the disaggregation 

accuracy whenever a mutual interaction between two devices was observed and 

estimated. In addition, the adaptive estimations used to update appliances models and 

possible interaction improved the load disaggregation accuracy for almost all devices 

except for the stove and the outlet 1. 

In the learning and modeling phase, it was possible to estimate a limited number of two-

way interactions between existing appliances. This reveals the fact that to estimate an 

interaction between two appliances, it is essential to be able to observe each appliance 

operating alone in different time instants, beside observing when both are operating 

simultaneously. These conditions, as explained earlier in this Chapter, limited the cases 

of possible estimations of interactions between pairs of appliances. Therefore, it was 

possible to estimate three cases of two-way interactions between home appliances as 

shown in Table 3.6. The transition of the unknown appliance in Table 3.6 was detected 

but there was no close match with any of the known appliances in the household. Hence, 

it was given a generic unknown appliance name. 

The load disaggregation results conclude that embedding estimated interactions 

characteristics have improved the disaggregation accuracy for a set of appliances such 

as the microwave, refrigerator, outlet 1 and outlet 2. No significant improvement was 

achieved for the rest of other devices since no interaction information were extracted (to 

be utilized in the FHMM representation) from the measurements sequence for these 
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appliances. Conversely, it was found that either interactions information was embedded 

to FHMM or not, appliances with unknown two-way interactions features were not 

significantly affected in terms of the disaggregation accuracy. Overall, embedding 

information on appliances interactions helped in improving the load disaggregation 

accuracies from two aspects 

• Improving detection of appliances, as information of appliances interactions were 

utilized to investigated most probable appliances switching by considering 

interactions with other ON appliances. That is, when a transition in the aggregate 

signal is detected, not only the primary power consumptions should be searched for 

matching, but also how the switching appliance may interact with already ON 

appliances in the same household. 

• Improving the estimation of power consumptions by appliances, as information of 

appliances interactions provide how their power consumption is affected when there 

are ON appliances in the background. Thus, this change of power consumption 

should be reflected in the process of power estimation of individual home appliances. 

The adaptive estimations of main power factors and two-way interactions of operating 

devices, where applicable, has improved the power estimation accuracy for almost all 

present appliances except for the stove and outlet 1. Table 3.7 depicts that considering 

the adaptive updating process in cases of four or less concurrently ON appliances is 

reasonable. As shown in Table 3.7, observing five appliances or more to operate at the 

same time was found to be rare in this case study on a typical household (which is house 

2 from the REDD public data set). 

The adaptive estimations techniques were applied during the disaggregation process 

which provided a method to follow up and mimic the changes of appliances power 

consumption (main power effects) and possible inter-appliances two-way interactions. 
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This adaptive updating approach re-estimated corresponding appliances models (power 

consumptions profiles) by utilizing available information from the aggregate total signal 

during the load disaggregation process. From Table 3.8, it was found that updating the 

primary power consumption (main factor effect), even when no interaction information 

is available, may provide a good enhancement in the load disaggregation accuracy as in 

the case of the washer dryer. The lights in the selected house were modeled as a lumped 

model but they were actually several distributed light bulbs as can be seen from the 

individual consumptions of the REDD public data set. This resulted in a poor modeling 

of lights which explains the low disaggregation accuracy results obtained even in the 

considered standard configuration of the FHMM. 

The two cases of the stove and outlet 1 showed lowered disaggregation accuracy that is 

not better than those obtained in cases of no adaptive estimations methods were applied. 

The lowered disaggregation accuracy happened since there were still errors in 

appliances detections or power consumptions models, which have likely accumulated 

and contributed to the obtained disaggregation results. In addition, 

• From the individual actual consumption data of outlet 1, it was observed that it 

sometimes consumed different amounts of power which indicates the possibility to 

have more than one appliance (or FSMs) connected to the outlet 1. Moreover, there 

has been a low power consumption level (about 15 W) for some periods, which is 

undetectable by our approach (due to being a too small transition) but could affect 

the adaptive estimation process. The adaptive estimations techniques are affected by 

small transitions in the total signal because the total consumptions measurements 

always play a role in the adaptive estimations process as clarified in section 3.7.  

• The stove was observed in operations only in day 2 and day 7 of the disaggregation 

period. The drop in the disaggregation accuracy for the stove is because there have 
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been smooth gradual transitions (instead of clear or sharp transition) that happened 

in day 2 of the disaggregation period. These smooth gradual transitions are not 

detectable by the proposed modeling approach as they basically depend on significant 

ON/OFF switching events. 

For the purpose of comparison of approaches, the following results were obtained when 

applying FHMMs on house 2 of the REDD and using the same power estimation 

accuracy metric 

• Kolter and Johnson [Kolter and Johnson, 2011] obtained energy disaggregation 

accuracies in the range of 50.8% to 59.6% when applying a FHMM on house 2 from 

the REDD. 

• Johnson and Willsky [Johnson and Willsky, 2013] obtained energy disaggregation 

accuracies in the range of 50.8% to 84.8% when applying a FHMM on house 2 from 

the REDD. 

These results show good performance of the proposed methods in Chapter 3, when 

compared to methods in literature that were applied on house 2 from the REDD and 

adopted the same accuracy metric (accuracy of power estimations). 

3.8.3 Unseen Appliances and Computational Complexity  

There are two appliances in house 2 from the REDD, the dishwasher and the disposal, 

not appearing in Table 3.8 showing the load disaggregation results. From the individual 

power consumptions data of the REDD, it was observed that the dishwasher operated 

only once during the entire two-week period at time when data was collected. This single 

appearance could be sufficient to build a model for the appliance but the appliance itself 

was not switched ON again during the rest of the two-week period. Hence, it was not 

detected by our proposed disaggregation algorithm. On the other hand, the disposal 
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consumed varying power amounts during the learning phase. Therefore, appliance with 

varying power was not detectable by the proposed load disaggregation approach. 

For further assessments of the proposed approach, the computational complexity of the 

proposed adaptive estimations approach was investigated. The approaches were 

executed on one-day sequences of samples using Matlab 2013a installed on a PC with 

Intel Core i5 3230M dual CPU 2.60 GHz and 4.00 GB of RAM. The average simulation 

and execution time increased from 13.1 s (for FHMM without adaptive estimations) to 

15.4 s (for FHMM with adaptive estimations). With increased capabilities of processors 

and computers in recent years, this increase in complexity is acceptable for the improved 

disaggregation accuracies gained from the adaptive approach. The executional time for 

the algorithm serves as an indication in the practical deployment of NILM where the 

availability of disaggregation outcomes to household occupants in real time are 

important to lead to potential impacts in energy saving. 

3.9 Remarks on the Proposed Approaches in this Chapter 

The proposed approaches utilized information on two-way interactions between home 

appliances aiming to enhance the overall load disaggregation accuracy. Some remarks 

were noticed in the proposed approaches, which can be summarized as follows 

1. To be able to extract information on a two-way interaction between two appliances, 

it is necessary to observe the total aggregate measurements in cases when both are 

operating (ON) together and when each of them is the only operating (ON) 

appliances. These conditions may limit the number of extractable information of 

appliances interactions. Longer sequences of measurements (e.g. extra few days of 

aggregate data) could be used in the learning phase (if available) in order to capture 

as much information on appliances interactions as possible. 
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2. The proposed approach makes use of only the main power effects and two-way 

interaction of home appliances. Three-way and higher order interactions were 

neglected in accordance with the principle of sparsity. However, in some factorial 

design experiments, three-order or higher interactions could show some significance. 

In cases three-order interactions are significant, they could contribute to the overall 

enhancement of the disaggregation accuracy. For examples on using three-way 

interactions in various domains in science and engineering, refer to [Montgomery, 

2001; Montgomery and Runger, 2011]. However, incorporating three-way 

interactions between appliances would incur added computational complexity in both 

learning and testing phases. 

3. The adaptive estimations approach was applied on cases when there are 

simultaneously four or less ON appliances in the household. Cases of having five or 

more simultaneously ON appliances was found unlikely to happen. However, 

number of simultaneously ON appliances depends mainly of the number of 

appliances, number of occupants and their usage behavior. Thus, applying an 

adaptive estimation method for cases when there are five or more ON appliances 

could be significant for some households. However, expanding the adaptive 

estimations approach would incur extra computational complexity. 

4. The adaptive estimations approach updates appliances models that are detected by 

the load disaggregation approach. This means that if some appliances were 

incorrectly detected, it would lead to further inappropriate updating to these 

appliances models (i.e. their main power effects and two-way interactions). 

3.10 Summary 

This chapter presented the first proposed approach that aims to enhance the overall load 

disaggregation accuracy by embedding information of appliances mutual interactions. 
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In addition, the proposed approach was extended by adaptive estimations techniques 

that update the models of home devices and their interactions (when possible). The 

proposed approaches were tested on a real house from an available public data set. 

Results showed enhanced performance of the load disaggregation methods when 

applying the proposed approaches, compared to the reference FHMM techniques for 

modeling and estimation of individual appliances power consumptions. 
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Chapter 4 

Disaggregating Continuously Varying 

Loads and a Framework for the Hybrid 

Continuous/Discrete States FHMM 

This chapter presents the second proposed approach that aims to enhance the overall 

performance of non-intrusive load disaggregation. Modeling and disaggregating 

continuously varying home loads is a principal challenge in the field of load 

disaggregation. Continuously varying home loads are those consuming power at infinite 

possible number of states such as light dimmer, electronic devices, power tools, etc. In 

this Chapter, a method is proposed to model continuously varying home loads using a 

quantized continuous-state hidden Markov model (CS-HMM) that estimates the 

transition matrix in a way to mitigate two possible extreme cases of transitions. Finally, 

the proposed CS-HMM was consolidated with the factorial hidden Markov model 

(FHMM) to produce a hybrid continuous/discrete state FHMM that capable of modeling 

and disaggregating various types of home loads. 

4.1 The Continuous-State Hidden Markov Model 

The continuous-state hidden Markov model (CS-HMM), or sometimes called the 

infinite HMM, is that with the belief of having a continuous space of hidden states (i.e. 

possible infinite number of hidden states) which influence the sequence of observable 

emissions or measurements [Beal et al., 2002]. It is notable that increasing complexity 
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of the model or unavailability of the transitions likelihoods of hidden states in the CS-

HMM are essential challenges that arise when applying a CS-HMM on real-world 

problems. To articulate the basic structure of the CS-HMM, Table 4.1 shows a 

comparison between the used notation for both the discrete-state HMM (DS-HMM) and 

the continuous-state HMM (CS-HMM). 

Table 4.1: Notation for the CS-HMM and the DS-HMM. 

Component DS-HMM CS-HMM 

State notation 𝑖, 𝑗 𝑧𝑡−1, 𝑧𝑡 

Observation 𝑥𝑡 𝑥𝑡 

Transition probability 𝑎𝑖,𝑗 𝑃(𝑧𝑡|𝑧𝑡−1, 𝑓𝑍,𝑍) 

Observation probability 𝑏𝑗(𝑥𝑡) 𝑃(𝑥𝑡|𝑧𝑡, 𝑓𝑋) 

Initial state probability 𝜋𝑖 𝑃(𝑧0) 

where 𝑓𝑍,𝑍 is a joint continuous function that represents likelihoods of transitions in the 

continuous space from state 𝑧𝑡−1 at time 𝑡 − 1 to state 𝑧𝑡 at time 𝑡. When the continuous 

transitions probability likelihood (𝑓𝑍,𝑍) is unavailable in prior, some approximating 

methodologies, such as nonparametric statistics or quantizing the continuous states 

range, could be applied. The function 𝑓𝑋 in Table 4.1 defines the probability of having 

an observation 𝑥𝑡 over possible hidden state 𝑧 and 𝑃(𝑧0) defines the likelihood of a state 

𝑧 at time 𝑡 = 0. 

A typical CS-HMM is then often characterized by the joint density functions of both 

observations and states sequences which can be given as 

 𝑃(𝑋𝑇, 𝑍𝑇) = 𝑃(𝑧0)∏𝑃(𝑥𝑡|𝑧𝑡)𝑃(𝑧𝑡|𝑧𝑡−1)

𝑇

𝑡=1

 (4.1) 
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where 𝑇 represents the length of the modeled sequences of observations (measurements 

sequence, 𝑋𝑇) and the hidden states sequence (𝑍𝑇). The prediction of a possible 

observation 𝑥𝑡 at time 𝑡 can be obtained by marginalization of equation (4.1) as follows 

[Ainsleigh, 2001] 

 𝑃(𝑥𝑡) = ∫𝑃(𝑥𝑡, 𝑧0:𝑡) 𝑑𝑧0:𝑡 (4.2) 

where 𝑧0:𝑡 represents all possible sequences of hidden states from 𝑧0 to 𝑧𝑡. The 

estimation of the maximum a posteriori (MAP) of hidden state sequence �̌�𝑇, given a 

sequence of observed measurements is another interesting goal in the CS-HMM, which 

is expressed as follows 

 �̌�𝑇 =  𝑃(𝑍𝑇|𝑋𝑇)𝑍𝑇        

arg𝑚𝑎𝑥
 (4.3) 

Equation (4.3) can be solved efficiently by the Viterbi algorithm starting with the 

initialization of the forward optimal path with ∅(𝑧0) = 𝑃(𝑧0), and the forward recursion 

cab be defined for 𝑡 = 1, 2, …𝑇 as follows [Ainsleigh, 2001] 

4.2 The Quantized Continuous-State Hidden Markov Model 

Quantization of a continuous space or signal in its broad concept have been applied in 

various fields, see e.g. [Widrow et al., 1996; Lloyd, 1982; Lookabaugh and Gray, 1989]. 

The discretization of a continuous space often produces a finite number of levels, that 

range from a minimum point 𝐿𝑚𝑖𝑛 to maximum point 𝐿𝑚𝑎𝑥, with each quantization level 

has a width ∆ that can be given by 

 ∅(𝑧𝑡) = 𝑃(𝑥𝑡|𝑧𝑡)   {𝑃(𝑧𝑡|𝑧𝑡−1)∅(𝑧𝑡−1)𝑍𝑡−1
𝑚𝑎𝑥  (4.4) 

 ∆ =  
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝑁
 (4.5) 
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where 𝑁 is the total number of levels. To distinguish a quantized space from spaces that 

are finite by nature, quantized levels are denoted here as either 𝑘 or 𝑙, with respective 

𝑘 → 𝑙 transition probability of 𝑎𝑘,𝑙 = 𝑃(𝑠𝑡 = 𝑙|𝑠𝑡−1 = 𝑘), where the state model 

switches from state 𝑘 at time 𝑡 − 1 to state 𝑙 at time 𝑡. If the center point of a level 𝑘, 

denoted as 𝑐𝑘, is used to estimate or substitute the actual value of the signal at any time 

𝑡, denoted as 𝑥𝑡, then there is a potential relative estimation error of 

Since this approach approximates the CS-HMM to a version of a DS-HMM, the 

estimation of the transition matrix and prior probabilities of the quantized CS-HMM are 

still required to model real-world applications. Two common classical methods to 

estimate prior state probabilities and the transition matrix are as follows 

1. Using uniform distributions over possible transitions and state priors, in cases no 

information is available [Parson, 2014]. In this method, for each element in the 

𝑁 × 𝑁 transition matrix, the assigned probabilities are 𝑎𝑘,𝑙 = 1/𝑁. This is also 

applicable to the initial or prior states probabilities 𝜋𝑘. The essential shortcoming of 

this method is that some probabilities could be overestimated, and some could be 

underestimated. Hence, errors in the inference process or the prediction process using 

this HMM configuration are likely to occur. In general, using a uniform distribution 

over hidden states transitions degrades the importance of modeling the transitions 

between states, which is an essence when modeling a case application using HMMs. 

2. Using the empirical method that estimate transitions probabilities according to the 

time occupied in these states [Kolter and Jaakkola, 2010]. This method estimates 

transitions probabilities based on counting the number of detected occurrences for 

 𝐸𝑟𝑟𝑜𝑟 =
|𝑐𝑘 − 𝑥𝑡|

𝑥𝑡
 (4.6) 
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each transition. The basic shortcoming of this method is that while some transitions 

may have been never visited during the learning phase, other transitions may 

dominate, especially if the sampling time is too short (i.e. too shorter than reasonable 

time to expect a transition). If a specific transition has never been visited in the 

learning phase (i.e. 𝑎𝑘,𝑙 = 0), then such a transition will never be detected in the 

testing phase even if it actually has occurred in the testing or the validation phase. 

Consequently, a HMM leant by this method is prone to errors in the testing phase 

since some states transitions are unlikely to be detected by the Viterbi algorithm as 

the algorithm will always assign zero likelihood for these transitions. On contrary, 

dominating transitions may get extra detections that they actually occur, which also 

likely to lead toward errors during the testing and validation phase. 

4.3 A Quantized CS-HMM to Model Continuously Varying Home 

Loads 

A quantized CS-HMM is proposed to model and disaggregate home loads with varying 

power consumptions. A method to estimate the transition matrix for the proposed CS-

HMM is proposed aiming to mitigate the effect of the two extreme cases that commonly 

appear in the learning phase of standard HMMs 

• Non-visited transitions in which a transition (e.g. 𝑘 → 𝑙) is never observed during the 

learning phase. In such cases, the empirical time occupancy method concludes that 

the corresponding transition probability 𝑎𝑘,𝑙 = 0 due to zero occurrences of the 

transition during the learning phase.  

• Too frequent transitions which result in high transition probabilities (e.g. 𝑎𝑘,𝑙 ≈ 1.0) 

that dominate other transitions probabilities in the same row of the transition matrix.  
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To model a varying home load using a quantized CS-HMM, it is reasonable to firstly 

quantize the range in which the varying load is fluctuating in power consumptions into 

𝑁 equally-spaced levels, where each level center is denoted as 𝑐𝑘. The power 

consumption at a specific consumption level can be assumed to follow a normal 

distribution pattern as presented and discussed later in section 5.1. Hence, the observed 

measurements of power consumption of an appliance (𝑝𝑚) operating at some quantized 

level 𝑘 can be modeled using the following normal distribution pattern 

where 𝒩(𝑐𝑘, 𝜎𝑘) represents a normal distribution fitting of the consumed power by the 

appliance 𝑝𝑚 with mean value of 𝑐𝑘 and a standard deviation of 𝜎𝑘. 

To estimate the transition matrix 𝐴, the following framework in the learning phase are 

applied with consideration to the above-mentioned concerns 

1. Initialize both the initial prior probabilities (𝜋𝑖) and elements of the transition matrix 

(𝐴) with uniformly distributed probabilities as presented in section 2.3. To some 

extent, this step supports the possibility to detect whatever transitions appear during 

the testing phase, even if they were never visited during the learning phase. Overall, 

using an initialization with a uniform distribution mitigates the extreme cases of 

never-visited transitions during the learning phase of the proposed CS-HMM. 

2. Thereafter, it is proposed to modify the method of time occupancy to estimate 

transitions probabilities in a way that mitigates the cases of domination of one 

transition over others in the same row of the transition matrix. The modified method 

aims to smoothen the assigned probabilities by sharing a portion of the transition 

probability to the direct neighboring states. 

 𝑝𝑚~𝒩(𝑐𝑘, 𝜎𝑘) (4.7) 
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To illustrate the effect of domination of a specific transition probability, the case of two 

adjacent levels 𝑘 and 𝑘 + 1 from the quantized CS-HMM is considered as shown in 

Figure 4.1. A transition is assumed to be done by the varying load when it varies its 

power consumption from 𝑥𝑡 at time 𝑡 to 𝑥𝑡+1 at time 𝑡 + 1, and there is a distance of 𝛿 

between 𝑥𝑡+1 and the upper edge of the level 𝑘 as shown in Figure 4.1. 

 
Fig. 4.1: Adjacent levels in the quantized CS-HMM. 

To show how a transition probability domination may affect the inference process, it is 

assumed that 𝑎𝑘,𝑘 ≫ 𝑎𝑘,𝑘+1 which may lead the model be unable to detect the transition 

from level 𝑘 to level 𝑘 + 1. Figure 4.2 shows an example with a reasonable value of 

∆ = 10 𝑊 and the maximum potential chance for state switching when 𝑎𝑘,𝑘+1 = 1 −

𝑎𝑘,𝑘 (i.e. other transitions in the same row of the transition matrix are neglected). 

The likelihood to detect the new state at 𝑘 + 1 is given by (which also appears as area 2 

in Figure 4.2) 

Likewise, the likelihood to detect the same state at 𝑘 is given by (which also appears as 

area 1 in Figure 4.2) 

 𝑃(𝑠𝑡 = 𝑘 + 1|𝑠𝑡−1 = 𝑘) = 𝑎𝑘,𝑘+1 𝒩(
∆

2
− 𝛿, 𝜇 = 𝑐𝑘+1, 𝜎 = 𝜎𝑘+1) (4.8) 

 𝑃(𝑠𝑡 = 𝑘|𝑠𝑡−1 = 𝑘) = 𝑎𝑘,𝑘 𝒩(
∆

2
+ 𝛿, 𝜇 = 𝑐𝑘, 𝜎 = 𝜎𝑘) (4.9) 

𝒄𝒌 𝒄𝒌+𝟏 𝒙𝒕 

𝒙𝒕+𝟏 

𝜹 

∆ 
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Fig. 4.2: Likelihoods of transiting from level state 𝒌 to 𝒌, or to 𝒌 + 𝟏. 

From Figure 4.2, the following could be concluded: 

• It becomes more unlikely to detect a transition in cases of higher values of 𝑎𝑘,𝑘 for 

farther deviations of an observed 𝑥𝑡 away from the edge of the neighboring level. 

This observation concludes that the more a transition 𝑎𝑘,𝑘 is dominant (bigger than 

others in same row of the transition matrix), the more unlikely to detect the correct 

transition by the model. 

• In the extreme case where 𝑎𝑘,𝑘 = 1, the model would be stuck in this case and may 

never be able to detect future states transitions. Likewise, the more a transition 𝑎𝑘,𝑘 

is close to 1, the more likely a model transition is not detected. 

From the above, a method is needed to smoothen such possible domination of a 

transition probability. However, such method should keep transitions probabilities 

indicative of the actual cases of transitions within the CS-HMM. In general, a state 

transition may dominate other transitions (in the same row of the model transition 

matrix) in the following cases: 

𝜹 

𝒂𝒌,𝒌 
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• The transitions itself is too frequent that its corresponding transition probability (e.g. 

𝑎𝑘,𝑙) is noticeably much larger than other transitions probabilities in the same row of 

the transition matrix. Even in these cases, there is still a need to prevent extreme 

transitions from affecting the detection of other transitions, as illustrated earlier. 

• The effect of a too compact sampling time that is much shorter than the average time 

occupied by the model at a specific state. This is likely to increase the self-state 

transitions probabilities (i.e. the diagonal items 𝑎𝑘,𝑘 for 𝑘 = 1, 2, …𝑁, of the 

transition matrix). 

To perform a reasonable smoothing technique, a triangular probability redistribution is 

proposed with consideration of sharing a transition probability with direct neighboring 

states, whenever a transition 𝑘 → 𝑙 is detected as illustrated in Figure 4.3. 

 
Fig. 4.3: Estimating a specific transition 𝒌 → 𝒍. 

Figure 4.3 shows an example transition 𝑘 → 𝑙, where area of the triangular probability 

redistribution at a given iteration in the learning phase is given by 

where the areas 𝐴𝑙−1, 𝐴𝑙 and 𝐴𝑙+1 are the additional probabilities to be added to 

transitions 𝑎𝑘,𝑙−1, 𝑎𝑘,𝑙 and 𝑎𝑙+1 respectively, 𝑛𝑘 is the total number of times when the 

model operated at state 𝑘. The essence of equation (4.10) is to redistribute the time 

occupancy probability (which is escalated each iteration by a value of 
1

𝑛𝑘
) by sharing a 

 𝐴𝑙−1 + 𝐴𝑙 + 𝐴𝑙+1 =
1

𝑛𝑘
 (4.10) 
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portion with direct neighboring states and same time keeping a substantial value for the 

estimate of 𝑎𝑘,𝑙 to maintain its indication of the ground truth probability of the 

corresponding transition. The time occupancy method, on contrary, assigns the whole 

probability to the corresponding transition based on time of occurrences (e.g. the case 

of equation (4.10) becomes 𝐴𝑙 =
1

𝑛𝑘
 for each iteration in the learning phase). 

Thereafter, the new estimates of the transitions probabilities (denoted as �̇�𝑘,𝑙−1, �̇�𝑘,𝑙 

and �̇�𝑙+1) are obtained by adding the respective probabilities portions to the current 

corresponding values as follows 

Finally, it is crucial to normalize the affected matrix row (𝑘) to maintain transitions 

probabilities that sum to unity. Hence, for 𝑙 = 1, 2, …𝑁, the following is applied 

Therefore, it is concluded that 

The above approach, presented by equation (4.10) through equation (4.14), is then 

iteratively applied during the learning phase so as to estimate the transition matrix of the 

quantized CS-HMM. 

 �̇�𝑘,𝑙−1 = 𝑎𝑘,𝑙−1 + 𝐴𝑙−1 (4.11) 

 �̇�𝑘,𝑙 = 𝑎𝑘,𝑙 + 𝐴𝑙 (4.12) 

 �̇�𝑘,𝑙+1 = 𝑎𝑘,𝑙+1 + 𝐴𝑙+1 (4.13) 

 �̃�𝑘,𝑙 =
�̇�𝑘,𝑙

∑ �̇�𝑘,𝑙
𝑁
𝑙=1

 (4.14) 

 ∑�̃�𝑘,𝑙 = 1

𝑁

𝑙=1

 (4.15) 
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To compare the performance of the proposed methods above to some reference methods, 

three possible quantized CS-HMMs are presented 

• Model A is a quantized CS-HMM that uses the Viterbi algorithm (at maximum 

likelihood) for power estimation and uses the time occupancy method to learn the 

transitions matrix. This model is a standard quantized CS-HMM that can be used as 

a reference model for the purpose of benchmarking and comparisons with the 

proposed models that incorporate modified methods to estimate the transition matrix. 

• Model B is a quantized CS-HMM that uses the Viterbi algorithm (at maximum 

likelihood) for power estimation and uses the proposed modified method to learn the 

transitions matrix. This model is proposed by incorporating the proposed modified 

method to estimate the transition matrix of the quantized CS-HMM. The interest here 

is to test the performance of this model compared to the performance of the standard 

Model A as described above. In brief, the model B adds the layer of the modified 

method learn the transition matrix to the standard model A. 

• Model C is a quantized CS-HMM that uses the Viterbi algorithm (collective mean) 

for power estimation and uses the proposed modified method in this Chapter to learn 

the transitions matrix. This model is proposed by incorporating the proposed 

modified method to estimate the transition matrix of the quantized CS-HMM. The 

interest here is to test the performance of this model compared to the performance of 

the previous Model B by applying the collective mean method to estimate the power 

consumption of the modeled continuously varying home load. In brief, the model C 

is similar to model C except in the method that is used for estimations (which the 

collective mean in model C). 
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4.4 Estimation of Power Consumption of Continuously Varying 

Loads Using Quantized CS-HMM 

In general, Viterbi algorithm is used to infer the most probable hidden sequence of 

states, given a sequence of measurements or observations. However, in the domain of 

non-intrusive load disaggregation, there is an additional vital role for the Viterbi 

algorithm which is to estimate the power consumption of the modeled loads at every 

time instant (i.e. in parallel to each item of the observation sequence). Estimation of 

power consumption of a varying load, that is modeled by a quantized CS-HMM, by 

means of the Viterbi algorithm can be carried out using two methods 

1. Using the maximum likelihood from the Viterbi outcome to assign the corresponding 

level center as an estimate of the consumed power at that time instant. That is, 

whenever a state or a quantized level 𝑘 is inferred at time 𝑡 for the appliance 𝑚, then 

the estimated consumed power can be assigned as �̂�𝑚(𝑡) = 𝑐𝑘. 

2. Using the collective mean (expectation) from the outcomes of the Viterbi algorithm. 

That is, at a time instant 𝑡, the Viterbi outcomes indicate the likelihoods of hidden 

states as a vector 𝑉, which can be written as 

The collective mean is the convex combination that uses the normalized version of 

𝑉 and levels centers to estimate the power consumed by a specific appliance 𝑚 at 

time 𝑡. That is, 

 𝑉 = [𝑣1 = 𝑝(𝑠𝑡 = 1), 𝑣2 = 𝑝(𝑠𝑡 = 2),… , 𝑣𝑁 = 𝑝(𝑠𝑡 = 𝑁)] (4.16) 

 �̂�𝑚(𝑡) = ∑𝑐𝑘
𝑣𝑘

∑ 𝑣𝑛
𝑁
𝑛=1

 

𝑁

𝑘=1

 (4.17) 
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where the term 
𝑣𝑘

∑ 𝑣𝑛
𝑁
𝑛=1

 is essential to normalize the values in the Viterbi vector 𝑉. 

Overall, the estimated power consumption �̂�𝑚(𝑡) can be regarded as the expectation 

of a probability function whose items are the quantized level centers and 

corresponding probabilities of the normalized values from the outcome of the Viterbi 

algorithm at some time 𝑡. 

4.5 A Proposed Framework for Learning in the Hybrid CS/DS-

FHMM Applied to Load Disaggregation 

The hybrid CS/DS-FHMM combines both the CS-HMM and the DS-HMM into one 

FHMM, where some of hidden states chains model discrete loads (i.e. ON/OFF 

appliances and FSMs) and some other hidden states chains model continuously varying 

loads. Dynamic Bayesian networks, which generalizes the structure of HMMs, provide 

modeling and inference of cases of hybrid or mixed discrete-continuous systems 

[Murphy, 2002]. One of the main contributions presented here is the framework of 

learning and estimation applied by the proposed hybrid FHMM to NILM rather than its 

hybrid or mixture structure. The proposed learning and estimation framework applied 

by the hybrid FHMM is tailored to be applied on the problem of load disaggregation. 

The observed aggregate measurements represent the total sum of individual loads 

consumptions apart from their type. In the learning phase, the transition matrix of the 

CS-HMM component of the hybrid FHMM are learned. Besides, it is also necessary to 

model the profiles of power consumption of the existing appliances. The proposed 

learning framework can be summarized as follows 

• For discrete loads such as ON/OFF devices and finite state machines (FSMs), the 

appliance is modeled by its characterizing transitions from the total aggregate signal 

(i.e. switching ON/OFF) same as applied in Chapter 3. These ON/OFF (i.e. 
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rising/falling) transitions from the aggregate measurements are essential features to 

model and detect the corresponding appliance. 

• For the continuously varying loads, the model is learnt and the transition matrix of 

the CS-HMM is estimated using portions of the aggregate signal where the 

continuously varying load is the only ON device. This condition of being the only 

ON devices is necessary to avoid the interference or fluctuations of power 

consumptions from other discrete loads (e.g. ON/OFF loads and FSMs). 

4.6 Estimation of Appliances Power Consumptions Non-Intrusively 

Using the Hybrid CS/DS-FHMM  

The principal objective of an approach for load disaggregation is to estimate the power 

consumption of individual household appliances merely from the total aggregate 

measurements signal. The hybrid CS/DS-FHMM can be used to model a mixture of 

discrete and continuously varying loads as explained earlier. The estimation process 

depends on the types of the detected loads that operate at a specific time. 

For ON/OFF loads and FSMs, instead of using the average consumptions, a first order 

hold (FOH) approach to estimate the power consumption of each load over the period 

of operation was used. The average of consumptions of appliances was not used because 

fluctuations in measurements while a discrete appliance is ON are possibly affected by 

the variations due to the operation of the varying loads, which exist together beside the 

discrete loads. Hence, using averaged models for appliances from measurements 

samples may not be accurate in representing the behavior of the discrete loads only. The 

zero-order hold (ZOH) approach was not used because real appliances consumptions 

profiles rarely show straight horizontal consumption patterns over the operation period 

(i.e. ZOH results in zero-order models, which are horizontal lines). Many appliances, 
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when they are switched ON, showed an overshoot starting power consumptions that is 

usually above their settled power consumption level. In addition, an appliance power 

consumption may increase or decrease during their operations based on the type of the 

appliance and its operation cycle as explained earlier in section 3.4. To illustrate this 

method, an example is presented for an appliance 𝑚 that was detected at time 𝑡𝑥 with 

an ON transition of value 𝑝𝑚(𝑡𝑥), and with an OFF transition at time 𝑡𝑦 of value 𝑝𝑚(𝑡𝑦), 

then an estimate �̂�𝑚 at time 𝑡 may be considered as follows 

On the other hand, the estimation process for the continuously varying load depends on 

whether there are other appliances operating in the ON state simultaneously with the 

varying load. If the varying load is the only ON device, the Viterbi algorithm can then 

be applied to the modeled quantized CS-HMM as presented in section 4.4. In cases when 

there are other operating (ON) discrete loads at same time instant, it is proposed to 

predict the operation of the varying load using a method analogous to that in equation 

(4.2) for the discrete domain with replacement of the integral to a summation operator. 

This prediction method is proposed because it becomes too challenging to distinguish 

between normal signal fluctuations/noise due to discrete loads and fluctuations due to 

the operation of the varying load.  

Generally, there are two basic remarks about the proposed hybrid CS/DS-FHMM which 

are summarized as follows 

• To model a continuously varying home load from the total aggregate signal, observed 

portions of measurements or sequences where it is the only ON device are required. 

Such observations are not required for discrete loads modeled by FHMMs as they 

 �̂�𝑚(𝑡) =
𝑝𝑚(𝑡𝑦) − 𝑝𝑚(𝑡𝑥)

𝑡𝑦 − 𝑡𝑥
(𝑡 − 𝑡𝑥) + 𝑝𝑚(𝑡𝑥), 𝑓𝑜𝑟  𝑡𝑥 ≤ 𝑡 ≤ 𝑡𝑦 (4.18) 
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can be detected and modeled from significant transitions in the total aggregate 

measurements.  

• The method of the learning and inference in the CS-HMM can be applied to one 

continuous varying home load only. If there are two or more varying loads, they can 

be modeled as one lumped varying load. However, several varying loads lumped 

together may produce irregular consumption patterns that it becomes more 

challenging to be learnt or estimated by the CS-HMM. 

4.7 Case Study Application on Varying Home Loads and Applying 

the Hybrid CS/DS-FHMM on Load Disaggregation 

The quantized CS-HMM approach proposed in this Chapter to model and disaggregate 

continuously varying home loads was applied on synthetic data and on real home loads 

data from the REDD public data set. Comparison of performance of different possible 

estimations methods is presented and results are discussed in detail. The proposed 

framework of the hybrid CS/DS-FHMM was tested by applying to modeling and 

disaggregating of various types of home loads merely using their total aggregate 

measurements. A 9- sample median filter on both training and testing phases was applied 

to remove noisy signals and outliers. The used accuracy metric to assess models’ 

performance is the accuracy of estimating an appliance power consumption compared 

to the actual power consumption as presented earlier in subsection 2.2.4 

4.7.1 Applying CS-HMM on a Single Continuously Varying Home Load 

The proposed approaches for both learning and power estimation of continuously 

varying home loads were tested on synthetic data and real home loads. Firstly, a set of 

synthetic data was generated to simulate a light dimmer that represents a typical varying 

home load with power consumptions ranging from 0 𝑊 to 150 𝑊. The transitions were 
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generated to switch to both direct neighboring and far states. The model was learnt from 

a portion of the generated data and then validated on the remaining portion.  

Table 4.2 compares the performance, three possible quantized CS-HMMs (as described 

earlier) were tested 

• Model A is a quantized CS-HMM that uses the Viterbi algorithm (at maximum 

likelihood) for power estimation and uses the time occupancy method to learn the 

transitions matrix. 

• Model B is a quantized CS-HMM that uses the Viterbi algorithm (at maximum 

likelihood) for power estimation and uses the proposed modified method to learn the 

transitions matrix. 

• Model C is a quantized CS-HMM that uses the Viterbi algorithm (collective mean) 

for power estimation and uses the proposed modified method in this Chapter to learn 

the transitions matrix. 

Table 4.2: Comparison of models’ performance applied on a generated data set. 

Number of quantization levels Model A Model B Model C 

5 levels 95.8% 95.9% 96.7% 

10 levels 97.6% 97.7% 98.6% 

To apply the CS-HMM on real home loads from the REDD public data set, the power 

consumptions of the electronics loads were observed and found to be considerable as a 

continuously varying load. Table 4.3 shows the performance results in terms of accuracy 

of power estimation obtained when applying different models (as described earlier) on 

real loads from the REDD. 
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Table 4.3: Comparison of models’ performance applied on real loads. 

Load Model A Model B Model C 

Load A 95.4% 95.4% 96.2% 

Load B 72.4% 72.8% 73.1% 

In Table 4.3, load A represents an electronics load from house 3 and load B represents 

an electronics load from house 5 from the REDD public data set. 

4.7.2 Applying the Hybrid CS/DS-FHMM on Various Types of Home Loads 

The proposed framework for the hybrid CS/DS-FHMM for both learning and power 

estimation of various types of home loads was tested real home loads. The proposed 

framework for the hybrid CS/DS-FHMM was applied on real data from house 3 from 

the REDD public data set. Measurements of four appliances in house 3 were used which 

include the electronics load as a varying load. In addition, the refrigerator, the washer-

dryer and the microwave were used to represent discrete loads (i.e. FSMs).  

The proposed framework of the hybrid CS/DS-FHMM learnt appliances models from a 

portion of the total lumped signal (aggregate consumptions). Thereafter, they were 

tested on subsequent sequences. To illustrate the different methods that were used to 

estimate the transition matrix of the quantized CS-HMM of the varying loads, a case is 

presented where the size of the transition matrix is 5 × 5. 
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Fig. 4.4: Transition matrix using empirical time occupancy method. 

Figure 4.4 shows a lines graph of the transition matrix representing 𝑃(𝑠𝑡 = 𝑙|𝑠𝑡−1 = 𝑘) 

estimated using the empirical time occupancy method. Applied on the same 

measurements sequence as of Figure 4.4, Figure 4.5 shows a lines graph of the transition 

matrix representing 𝑃(𝑠𝑡 = 𝑙|𝑠𝑡−1 = 𝑘) estimated using the modified method to 

estimate the transition matrix of the CS-HMM. 

 
Fig. 4.5: Transition matrix using the modified method. 
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The proposed hybrid CS/DS-FHMM approach was then tested by disaggregating the 

mixture of appliances merely from the total aggregate signal. The power consumption 

of the continuously varying load (electronics) was obtained as shown in Table 4.4 which 

compares the performance of different possible estimation methods. 

Table 4.4: Disaggregation accuracies of the varying load using different methods. 

Method of estimating the 

transition matrix 

Viterbi algorithm 

(maximum likelihood) 

Viterbi algorithm 

(collective mean) 

Time occupancy 78.86% 78.87% 

Modified method 79.81% 79.55% 

The discrete loads (i.e. FSMs) were disaggregated using the method explained earlier in 

section 4.6 and the results obtained were as shown in Table 4.5. 

Table 4.5: Disaggregation accuracy of discrete loads. 

Refrigerator Washer dryer Microwave 

67.3% 57.9% 52.3% 

 
Fig. 4.6: Estimated versus actual power consumption of the varying load. 
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Figure 4.6 and Figure 4.7 show examples for illustration of the estimated versus actual 

power consumptions of the varying load (electronics) and the refrigerator, respectively. 

 
Fig. 4.7: Estimated versus actual power consumption of the refrigerator. 

4.7.3 Interpretations of Varying Loads Disaggregation Results 

The proposed quantized CS-HMM with the modified method to estimate the transition 

matrix showed better performance compared to the method using the common empirical 

time occupancy estimation. The framework of the hybrid CS/DS-FHMM demonstrated 

its capability to model and estimate the power consumptions of a continuously varying 

load and other discrete loads simultaneously from the aggregate total measurements. 

Increasing the number of quantization levels in the CS-HMM, though it may increase 

the computational complexity, enhanced the obtained accuracies of estimating the 

power consumption of the varying load as shown in Table 4.2. As an illustration of 

computational complexity, increasing the number of quantization levels to 10, in Table 

4.2, requires an additional 3.1% increase in computational time compared to using 5 
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levels for the same training and testing data set. In Tables 4.3 and 4.4, it is shown that 

the modified transition matrix outperforms the empirical method based on time 

occupancy in terms of accuracy of power estimation. The modified method to estimate 

the transition matrix has mitigated two extreme possible cases 

• The non-visited transitions in the learning phase. 

• The too-frequent or dominating transitions cases. 

These two extreme cases often reduce the performance of HMM that is learnt by the 

empirical time occupancy method. 

The collective mean method used in the power estimation process provided better 

performance than using the corresponding level center where maximum likelihood 

occurs. This is likely to happen since using levels centers will always produce a stepping 

up/down signal. Meanwhile, the collective mean could estimate the actual signal without 

any restrictions in the assigned estimates. The accuracies obtained as shown in Table 

4.2 and Table 4.3 are for only a single varying load that was used in both the learning 

and testing phases, which is not the case in the hybrid CS/DS-FHMM in the presence of 

discrete loads (i.e. FSMs). 

To estimate the transition matrix of the quantized CS-HMM during the learning phase, 

it was essential to observe sequence of the total aggregate signal where varying load is 

the only ON device. Figure 4.4 shows the existence of both extreme cases of transitions: 

non-visited transitions during the learning phase when 𝑃(𝑠𝑡 = 𝑙|𝑠𝑡−1 = 𝑘) ≈ 0 (e.g. 

𝑎1,2 ≈ 0 and 𝑎4,5 ≈ 0), and too frequent or dominant transitions when 

𝑃(𝑠𝑡 = 𝑘|𝑠𝑡−1 = 𝑘) ≫ 𝑃(𝑠𝑡 = 𝑙|𝑠𝑡−1 = 𝑘), 𝑓𝑜𝑟 𝑙 ≠ 𝑘 (e.g. 𝑎1,1 ≈ 1 and 𝑎3,3 ≈ 1). 

These cases were generally mitigated by the modified transition matrix method as shown 
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in Figure 4.5 where the extreme cases were smoothened if compared to the 

corresponding transitions probabilities seen in Figure 4.4. 

Dealing with varying home loads in both the training and testing phases differs from the 

cases of dealing with only discrete loads because the discrete loads usually show 

characterizing features (i.e. significant transitions) in the aggregate signal. On contrary, 

the power consumptions of the varying home loads often change smoothly without 

noticeable edges. Hence, they should be modeled separately by a CS-HMM in order to 

fit their nature of varying power consumptions. The first order hold (FOH) is an 

estimation method that estimate an appliance power consumption using the ON and OFF 

transitions only. It is not recommended to estimate discrete appliances consumptions 

profiles using averaged consumptions from the data stream since there is a possibility 

that the varying load is affecting/operating in those data sequences. 

Some discrete appliances such as the microwave showed a low disaggregation accuracy. 

In general, the accuracy of disaggregation of the discrete loads were found close to those 

achieved using similar methods that apply standard FHMMs to model and disaggregate 

the discrete appliances. For example, Johnson and Willsky [Johnson and Willsky, 2013] 

achieved a load disaggregation accuracy of 33.3% when applying the standard FHMM 

on house 3 from REDD public data set. Besides, Kolter and Johnson [Kolter and 

Johnson, 2011] achieved load disaggregation accuracies in the range from 33.3% to 

59.6% when applying the reference FHMM on house 3 from the REDD public data set. 

Overall, the proposed framework of the hybrid CS/DS-FHMM showed good 

performance in modeling and disaggregating various types of varying and discrete loads 

merely from the total aggregate measurements signal. 
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4.8 Remarks on the Proposed Approaches in this Chapter 

The proposed approaches aimed to model continuously varying home loads using a 

quantized CS-HMM. In addition, a framework for learning and disaggregation phases 

was proposed for the general hybrid CS/DS-FHMM that models various types of loads. 

Some remarks were noticed in the proposed approach, which can be summarized as 

follows 

1. Quantizing the continuous space of the hidden state of a varying home load 

compromises for the accuracy of appliance modeling, as it substitutes a continuous 

state space by a finite number of discrete states. Nonetheless, quantization of 

continuous spaces mitigates the potential computational complexity that arises when 

dealing with continuous or infinite domains. 

2. In the learning phase of the hybrid CS/DS-FHMM, it was necessary to observe 

measurements sequences when the varying load is the only ON appliance so as to 

model its power consumption and to estimate the transition matrix of the CS-HMM 

component in the CS/DS-FHMM. 

3. The proposed approach could model and disaggregate one varying load in the 

household. In cases where there are two or more varying loads in a household, they 

would be lumped together and assumed to be a one varying load by the proposed 

approach. However, the more there are varying loads, the more unlikely that their 

lumped model to have a consistent pattern of power consumption (repeatable 

shape/style of the power consumptions by the lumped varying loads). 

4. In the disaggregation phase of the hybrid CS/DS-FHMM, it was proposed to estimate 

power consumptions of discrete loads (e.g. FSMs) using a first order hold (FOH) 

technique which assumes a linear modeling of power consumption by discrete-states 

home appliances. 
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4.9 Summary 

This Chapter presented the theory and case study applications of the second proposed 

approach that aims to tackle the problem of modeling and disaggregation of 

continuously varying home loads. A quantized CS-HMM was proposed with a method 

to estimate the transition matrix that mitigates two possible extreme cases of transitions. 

The proposed quantized CS-HMM was consolidated with the standard FHMM to model 

and disaggregate the power consumptions of appliances only from their total aggregate 

measurements. The proposed models and approaches were tested on synthetic data and 

on real home appliances from the REDD public data set. 
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Chapter 5 

Disaggregating Overlapping Home 

Appliances Using a Clusters Splitting 

Approach 

This chapter presents the third proposed approach that aims to enhance the overall 

performance of non-intrusive load disaggregation approaches based on clustering 

methods. An approach for splitting of overlapping appliances clusters is proposed based 

on a test of clusters cohesion. Testing of clusters cohesion is proposed by checking the 

degree of normality fitting of clusters using three normality tests.  

Clustering methods were applied to the field of NILM, where the goal is to group home 

appliances into distinct clusters based on extracted features. Each resulting cluster from 

a clustering approach is supposed to represent one appliance. Goncalves et al. 

[Goncalves et al., 2011] applied an unsupervised blind source separation technique to 

obtain appliance-level consumptions from the aggregate data. They utilized both genetic 

K-means and agglomerative clustering with features like 𝛥𝑃 − 𝛥𝑄 to cluster appliances. 

[Lin et al., 2011] applied a fuzzy K-means clustering and optimization algorithms to 

identify the energizing and de-energizing statuses of each appliance. Load energizing 

and de-energizing transient features were extracted, and the fuzzy classifier was used to 

perform load identification based on these features. Shao et al. [Shao et al., 2012] 

proposed a motif mining method to perform load disaggregation in an unsupervised 
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fashion. Their method was mainly applicable to appliances with distinctive repeatable 

events. Kamoto et al. [Kamoto et al., 2017] presented a new approach based on 

competitive agglomeration which incorporates the good qualities of both hierarchical 

and partitional clustering aiming to carry out energy disaggregation to discover 

appliances without prior information about the number of appliances. In general, 

previous research investigated the usage of clustering in the domain of NILM without 

further investigations on the resulting clusters to test if they originated from two distinct 

appliances, in which a cluster splitting could be reasonable to disaggregate the 

overlapping appliances clusters. 

Overlapping between obtained clusters of home appliances is a common challenge in 

the domain of NILM where two or more appliances consume close or similar amounts 

of power during their operation. Figure 5.1 shows some overlapping cases (particularly 

in low power consuming appliances) in the first NILM work by Hart [Hart, 1992].  

 
Fig. 5.1: Overlapping between appliances clusters [Hart, 1992]. 

Extracting additional distinct features of appliances may help in distinguishing between 

appliances of overlapping power consumptions. However, it may be another challenge 
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to extract additional features for appliances especially if power measurements at low 

frequency rate are the only available information. 

In this Chapter, a proposed approach to split overlapping clusters of home appliances is 

presented. The proposed approach is based on checking of clusters’ cohesion to 

conclude if they were originating from two different sources (i.e. by two appliances); 

thereby to decide a cluster splitting. Testing of clusters cohesion was performed using 

common normality tests carried out against two confidence levels. Once a cluster 

splitting is decided, the splitting can be done using common clustering methods such as 

expectation maximization (EM). 

5.1 Normality Assumption of Appliances Power Consumptions 

The assumption that the pattern of power consumptions of home appliances can fit to a 

normal distribution was discussed and/or adopted in previous studies such as [Kim et 

al., 2010; Kolter and Jaakkola, 2012; Parson et al., 2014; Xie et al., 2017]. Based on 

analysis of histograms of appliances consumptions, Kim et al. [Kim et al., 2010] 

concluded that the normality assumption is valid for most of home appliances except for 

a TV and an office laptop (which fall under the category of electronics). Bases on data 

analysis together with normality tests like Kolmogorov–Smirnov (K–S test), Xie et al. 

[Xie et al., 2017] found that it is reasonable to adopt the assumption of normality fitting 

in applications in modern grids (e.g. probabilistic load forecasting), especially when 

there are no enough resources to build comprehensive underlying models. Besides, 

applying the normality assumption (taken as undisputed) in previous research (e.g. as in 

[Kolter and Jaakkola, 2012; Parson et al., 2014]) yielded in models and/or approaches 

that achieved good performances in the domain of NILM. With the normality 

assumption of appliances power consumptions, finite state machines (FSMs) can also 
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be modeled using a Gaussian Mixture Model (GMM) [Benaglia et al., 2010]. 

Nonetheless, the power consumption of a household appliance could be complicated in 

its pattern and some appliances may show poor normality fitting. Thus, the following 

considerations were taken into account to maintain good normality fitting of home 

appliances for the purpose of load disaggregation 

1. Only appliances (including FSMs) with stable power consumptions were considered 

in this approach in order to comply with the normality assumption. Continuously 

varying loads (e.g. light dimmers and electronics) were neglected as they may show 

varying or inconsistent power consumptions during their operation. 

2. Some appliances show higher/lower power consumption levels within a short time 

of their switching to ON/OFF as presented in section 3.4. For these cases, such 

periods of rising or falling in power consumptions were neglected and only periods 

of stable power consumptions were considered. The significant rising/falling in 

power consumption level of an appliance may distort its normality fitting, thus they 

were ignored in this study. 

3. Measurements of a household total aggregate consumption usually include noisy 

signals. A 9-sample median filter was applied to remove noisy signals and outliers 

which may alter the normality of the power consumed by home appliances. 

As majority of common smart meters mainly provide measurements of real power 

consumptions of residential households, an appliance power consumption (𝑝𝑚) can be 

modeled by a one-dimensional normal distribution as follows 

 𝑝𝑚~𝒩(𝜇𝑚, 𝜎𝑚) (5.1) 

where 𝜇𝑚 is the mean value of the normal distribution and indicates the average power 

consumed by the appliance 𝑚, and 𝜎𝑚 is the standard deviation of the power 
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consumption which indicates fluctuations in power consumption of an appliance. Kim 

et al. [Kim et al., 2010] found that the power consumption of an appliance often 

fluctuates within ±20% from its average value. 

5.2 Checking Clusters Cohesion to Decide Splitting 

The normality fitting as expressed earlier can be used to describe the behavior or 

consumptions pattern of an appliance. The clusters cohesion test aims to investigate if 

the cluster could be originating from two different sources (i.e. two overlapping 

appliances) by checking the degree of normality distortion in the cluster. That is, if the 

cluster of an appliance has originated purely by one appliance, it should show a good 

normality fitting (i.e. good level of cohesion between items in the cluster). On contrary, 

if two appliances with overlapping power consumptions have merged in one cluster, the 

cluster may show poor level of cohesion due to altered normality by the merge of items 

(i.e. measurements) from two appliances into one cluster. 

To encompass different aspects of normality fitting when carrying out cohesion tests on 

clusters, it is recommended to apply more than one normality test like the following 

• Kolmogrov-Smirnov (KS) test [Massey, 1951; Marsaglia et al., 2003]. 

• Anderson-Darling (AD) test [Anderson and Darling, 1954]. 

• Jarque-Bera (JB) test [Jarque and Bera, 1987]. 

These tests are used to encompass possible variabilities within the tested samples. For 

example, while KS test checks normality by testing the distance between the cumulative 

distribution function (CDF) of the reference distribution and the empirical distribution 

of the sample, the AD test gives more weight to tails of the distribution. Besides, JB test 
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detects normality by checking the skewness and kurtosis of the tested sample [Razali 

and Wah, 2011]. 

Though the mechanisms of normality tests may differ, a statistical hypothesis is usually 

performed to check for normality as following 

• Null hypothesis, 𝐻0: the tested sample fits a normal distribution. 

• Alternate hypothesis, 𝐻1: the tested sample does not fit a normal distribution. 

The outcome of the hypothesis testing can be given in several ways, to decide the 

conclusion of the test, such as the test statistic, confidence intervals and the P-value 

[Montgomery and Runger, 2011]. In general, there should be some threshold confidence 

level (1 − 𝛼) used for the purpose of obtaining a test conclusion. Note that 𝛼 is also 

called the probability of committing type I error which indicates the likelihood of 

rejection of 𝐻0, while 𝐻0 is correct. Common used values for 𝛼 are in the range from 

0.001 to 0.10. For more details on confidence levels and hypothesis testing, refer e.g. 

to [Montgomery and Runger, 2011]. 

Using the P-value gives a good indication of how likely the tested sample follows a 

normal distribution. Theoretically, a P-value can fall in the following range  

 0.00 ≤ 𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 1.00 (5.2) 

where larger P-values mean better normality fitting of the tested sample. The ideal case 

of 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 1.0 represents the perfect ideal normal distribution. Hence, the P-value 

may be used as an indicator of the degree of a cluster cohesion, where a cluster cohesion 

is understood as the degree that its items show a good normality fitting. Therefore, it 

can be written that 

 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ≈ 𝑃 − 𝑣𝑎𝑙𝑢𝑒 (5.3) 
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The conclusion of the hypothesis test is obtained as follows 

 𝑇𝑒𝑠𝑡 𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 = {
𝐹𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 > 𝛼

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼
 (5.4) 

In order to perform a cohesion check based on normality tests, it is proposed to run the 

three normality tests on each cluster, then averaging the outcome P-values, denoted later 

as 𝑃𝑉̅̅ ̅̅ , so as to encompass major variability aspects of the tested cluster. Thereafter, it 

is suggested to compare the resulting 𝑃𝑉̅̅ ̅̅  against two confidence levels (denoted as 𝛼1 

and 𝛼2) to decide clusters splitting as follows 

 𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {

𝑆𝑝𝑙𝑖𝑡, 𝑃𝑉̅̅ ̅̅ ≤ 𝛼1
𝑇𝑒𝑠𝑡 𝑠𝑢𝑏 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, 𝛼1 < 𝑃𝑉̅̅ ̅̅ ≤ 𝛼2

𝐷𝑜 𝑛𝑜𝑡 𝑠𝑝𝑙𝑖𝑡,  𝛼2 < 𝑃𝑉̅̅ ̅̅  

 (5.5) 

Equation (5.5) consider the convention that  𝛼1 <  𝛼2 to decide a cluster splitting based 

on the cohesion of the cluster which is represented by its degree of normality fitting. 

The three cases in equation (5.5) can be articulated in the following 

• Cases when 𝑃𝑉̅̅ ̅̅ ≤ 𝛼1, which lead to decide a cluster splitting because of too poor 

normality fitting in the tested cluster. The distorted normality within a cluster 

indicates a poor cohesion degree, which could be caused by two different sources 

(i.e. home appliances) that originated one merged cluster. Hence, a decision to split 

the cluster is reasonable in this case. 

• Cases when  𝛼2 < 𝑃𝑉̅̅ ̅̅ , which lead to decide no splitting on the tested cluster. In these 

cases, the tested clusters show a good normality fitting which indicates a good degree 

of cohesion among cluster elements. Thus, it is reasonable not to decide a splitting 

on the cluster as it is likely has originated from one source (i.e. an appliance). 

• Cases when 𝛼1 < 𝑃𝑉̅̅ ̅̅ ≤ 𝛼2, further normality tests on the possible sub-clusters are 

suggested to be performed before a decision is made. The motivation of testing the 
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sub-clusters is to check if better normality fitting in the sub-clusters is achievable 

more than in the original cluster. Testing both sub-clusters is proposed to be done in 

three subsequent steps as follows 

1. Perform the cluster splitting as depicted in the section 5.3. 

2. Reconstruct the sub-clusters to substitute the sharp cut of the splitting. 

3. Apply cohesion test on both sub-clusters as performed earlier. 

It is crucial to note that splitting in step 1 above is not a final decision till results from 

step 3 lead toward a splitting decision. The splitting of a cluster will often make a 

sharp cut in the assumed normal distributions as shown in Figure 5.2. Therefore, it is 

recommended to run normality tests on reconstructed small clusters as mentioned in 

step 2 above. A reconstructed cluster consists of the split cluster merged to a portion 

placed in the cut region that reflects the other side portion of the cluster as illustrated 

in Figure 5.2. 

 
Fig. 5.2: Sharp cuts in the sub-clusters and reconstructed sub-clusters. 

For illustration on how to obtain the reconstructed portions, we consider the overlapping 

cluster 𝑋 and cluster 𝑌 as shown in Figure 5.2. The reconstructed portion of cluster 𝑋 is 

defined as the items group 𝑥 which is a subset of the cluster 𝑋 where each item 𝑥𝑖 

satisfies the following constraint 
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 min(𝑋) ≤ 𝑥𝑖 ≤ 𝜇𝑋 − |max(𝑋) − 𝜇𝑋| (5.6) 

where min (𝑋), 𝜇𝑋 and max (𝑋) are the minimum item value in the cluster 𝑋, the mean 

of the cluster 𝑋 and the maximum item value in the cluster 𝑋 after the temporary 

splitting, respectively. Similarly, the reconstructed portion of the cluster 𝑌 is defined as 

the items group 𝑦 which is a subset of the cluster 𝑌 where each item 𝑦𝑖 satisfies the 

following constraint 

 𝜇𝑌 + |𝜇𝑌 −min (𝑌)| ≤ 𝑦𝑖 ≤ max(𝑌) (5.7) 

where min (𝑌), 𝜇𝑌 and max (𝑌) are the minimum item value in the cluster 𝑌 after the 

temporary splitting, the mean of the cluster 𝑌 and the maximum item value in cluster 𝑌, 

respectively. These portions of the clusters are then copied in the inverse order and 

appended to the other hand of the corresponding cluster so as to obtain the reconstructed 

version of the clusters. 

The rationale behind obtaining these reconstructed small clusters is due to the fact that 

the sharp cut in one of sides of a cluster is more likely to lead to poor normality fitting 

within that cluster. The poor normality fitting is not due to how data is distributed among 

the cluster, but it is mainly due to the sharp splitting. Hence, it is proposed to perform 

normality tests on a reconstructed version of these sub-clusters. The reconstructed 

portion of these sub-clusters is taken typically the same as the corresponding present 

portion on the other side of the same sub-cluster. Consequently, normality tests results 

could be more reasonable in indication the degree of clusters cohesion; thereby guide 

toward better decision about the splitting. 

Thereafter in step 3, the 𝑃𝑉̅̅ ̅̅ ’s of both reconstructed sub-clusters should be obtained 

separately to compare if any of these 𝑃𝑉̅̅ ̅̅ ’s is larger than the 𝑃𝑉̅̅ ̅̅  of the original cluster 

before the temporary splitting. In cases that any 𝑃𝑉̅̅ ̅̅  of the reconstructed sub-clusters is 
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larger than that of the original clusters before the temporary splitting, it means that the 

sub-cluster shows a better normality fitting than the original cluster. Hence, each 

reconstructed sub-cluster could be originating from a different source and a splitting 

decision should be taken. In cases the contrary result appears, no splitting decision 

should be taken since the original cluster before the temporary splitting shows a better 

degree of cohesion among its items. 

5.3 Executing Clusters Splitting 

Once a decision is taken to split a cluster into two smaller clusters, it is proposed to 

perform some inner clustering method like expectation maximization (EM) which will 

assign the original cluster elements into the two small clusters. It is proposed to initialize 

the EM with two centroids 𝐶1 and 𝐶2 to be 2𝜎 distance from the mean value of the 

original cluster. That is, 

 𝐶1 = 𝜇 + 2𝜎 (5.8) 

 𝐶2 = 𝜇 − 2𝜎 (5.9) 

where 𝜇 and 𝜎 are the mean and the standard deviation of the original cluster before 

splitting, respectively. To initialize each small cluster with some elements, it is 

reasonable to assign elements according to which minimum distance from the centroids. 

Finally, an EM clustering can be applied to obtain the final version of the two split 

clusters (the sub-clusters that are supposed to represent two distinct home appliances). 

The correct assignment of elements to the resulting small clusters is good measures to 

assess the accuracy of the splitting methodology. Since the assignment task is like a 

binary decision as we need only to assign an element to one of the two split clusters, it 

is reasonable to use the Precision, Recall and F-measure to assess the accuracy of 

elements assignment after splitting as explained earlier in subsection 2.2.4. 
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5.4 Case Study Applications on Overlapping Clusters 

The approach proposed in this Chapter to disaggregate overlapping cases of home 

appliances was applied on overlapping cases of six real houses data from the REDD 

public data set. The cases of overlapping appliances consumptions were investigated 

from the individual consumption (sub-metered at appliance-level) data from the REDD 

data set. Thereafter, the cohesion of appliances clusters (a merged cluster from two 

overlapping appliances) was checked and clusters splitting was carried out as explained 

earlier in this Chapter. Same as applied to other proposed approaches, a 9-sample 

median filter to was applied on the data to filter out noisy signals and outliers. 

5.4.1 Investigating Cases of Overlapping Appliances Clusters 

In this work, it was focused only on cases where there is a possibility of overlapping 

between appliances clusters. This usually occurs when two appliances or more have 

close power consumptions or overlapping power fluctuations at some states of their 

operation. From appliance-level data, possible cases of overlapping between appliances 

were searched in each house in the REDD separately. Table 5.1 through Table 5.6 show 

the detected possible cases of overlapping between clusters (which represent appliances) 

in house 1 through house 6 from the REDD public data set, respectively. 

  



109 
 

Table 5.1: Overlapping clusters in house 1 from the REDD. 

Cluster 

number 

Appliance type 

Power consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Oven 𝑁(1657.3, 11.6) Cluster 2 

Cluster 2 Oven 𝑁(1687.3, 20.4) Cluster 1 

Cluster 3 Microwave 𝑁(1506.9, 43.6) 
Cluster 4, 

cluster 5 

Cluster 4 Bathroom gfi 𝑁(1597.4, 12.1) Cluster 3 

Cluster 5 Kitchen outlet 𝑁(1529.9, 7.7) Cluster 3 

Table 5.2: Overlapping clusters in house 2 from the REDD. 

Cluster number Appliance type 

Power 

consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Lighting 𝑁(155.7, 7.5) Cluster 2 

Cluster 2 Refrigerator 𝑁(163.0, 6.7) Cluster 1 
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Table 5.3: Overlapping clusters in house 3 from the REDD. 

Cluster number Appliance type 

Power 

consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Electronics 𝑁(155.7, 7.5) Cluster 2, cluster 6 

Cluster 2 Refrigerator 𝑁(98.8, 9.5) Cluster 1, cluster 6 

Cluster 3 Lighting 𝑁(181.7, 18.3) Cluster 4, cluster 5 

Cluster 4 Lighting 𝑁(189.9, 5.9) Cluster 3, cluster 5 

Cluster 5 Lighting 𝑁(196.9, 11.8) Cluster 3, cluster 4 

Cluster 6 Kitchen outlet 𝑁(127, 0.7) Cluster 1, cluster 2 

Table 5.4: Overlapping clusters in house 4 from the REDD. 

Cluster 

number 

Appliance type 

Power consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Kitchen outlet 𝑁(137.1, 6.7) Cluster 2 

Cluster 2 Lighting 𝑁(101.5, 15.5) 
Cluster 1, cluster 

3 

Cluster 3 Lighting 𝑁(93.9, 4.9) Cluster 2 

 

  



111 
 

Table 5.5: Overlapping clusters in house 5 from the REDD. 

Cluster 

number 

Appliance type 

Power consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Unknown outlet 𝑁(169.3, 7.6) Cluster 2 

Cluster 2 Refrigerator 𝑁(164.2, 6.2) Cluster 1 

Cluster 3 Lighting 𝑁(576.7, 17.1) Cluster 4 

Cluster 4 Furnace 𝑁(553.4, 12.5) Cluster 3 

Cluster 5 Sub-panel 𝑁(226.7, 4.2) Cluster 6 

Cluster 6 Sub-panel 𝑁(216.8, 6.0) Cluster 5 

Cluster 7 Electric heat 𝑁(808.7, 19.5) Cluster 8 

Cluster 8 Electric heat 𝑁(799.7, 19.0) Cluster 7 

Cluster 9 Lighting 𝑁(112.8, 2.7) Cluster 10 

Cluster 10 Lighting 𝑁(116.8, 1.3) Cluster 9 

  



112 
 

Table 5.6 Overlapping clusters in house 6 from the REDD. 

Cluster number Appliance type 

Power 

consumption 

~ 𝑵(𝝁, 𝝈) (Watts) 

Overlaps with 

Cluster 1 Unknown outlet 𝑁(96.6, 13.0) Cluster 2 

Cluster 2 Lighting 𝑁(121.3, 8.8) Cluster 1 

Cluster 3 Electric heat 𝑁(463.3, 18.4) Cluster 4 

Cluster 4 Air conditioner 𝑁(416.5, 6.8) Cluster 3 

Cluster 5 Bathroom gfi 𝑁(945.9, 3.4) Cluster 6, cluster 7 

Cluster 6 Air conditioner 𝑁(985.2, 31.0) Cluster 5, cluster 7 

Cluster 7 Air conditioner 𝑁(973.5, 31.2) Cluster 5, cluster 6 

Each cluster in the above tables (Table 5.1 through Table 5.6) represents a single stable 

state in an appliance. The appliance itself may have more than one state of operation, 

e.g. a finite state machine (FSM), but only states where overlapping between appliances 

is possible were considered. In addition, each cluster comes from a specific appliance 

even if they have the same appliance type. For example, cluster 1 and cluster 2 in house 

1 come from two independent ovens and so on. Some clusters are defined as outlets or 

unknown outlets where there is no more information from the REDD about the exact 

appliance plugged to those outlets. The real power consumption by each appliance was 

modeled using a normal distribution from the sub-metered data from the REDD. 

To illustrate the positive impact of using the median filter, the following example is 

given for an air conditioner from house 6 from the REDD. Figure 5.3 shows a portion 

of the raw power signal of an air conditioner. Spikes in power signal appearing in Figure 
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5.3 occupy one sample only. After applying a 9-sample median filter, the power signal 

was filtered as shown in Figure 5.4. Applying normality tests presented in section 5.2 

resulted in average P-values of 𝑃𝑉̅̅ ̅̅ = 0.0005 for the signal in Figure 5.3 (which means 

non-normality fitting) and a 𝑃𝑉̅̅ ̅̅ = 0.1676 for the signal in Figure 5.4 (which means a 

good normality fitting).  

 
Fig. 5.3: Raw power consumption signal of an air conditioner. 
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Fig. 5.4: Filtered power consumption signal of an air conditioner. 

5.4.2 Splitting of Overlapping Appliances Clusters 

The proposed approach in this Chapter was tested on each case of overlapping clusters. 

For the proposed splitting decision criteria, two confidence levels as 𝛼1 = 0.01 and 

𝛼2 = 0.10 were applied to provide reasonable indications about clusters cohesion. Table 

5.7 through Table 5.12 show the obtained splitting accuracies in terms of Precision, 

Recall and F-measure for all tested cases in house 1 through house 6, respectively. The 

Precision, Recall and F-measure accuracy metrics were used basically since the splitting 

process aims to assign items to clusters correctly. Therefore, this metric is suitable to 

assess the assignments accuracy as explained earlier in subsection 2.2.4. 
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Table 5.7: Accuracy of clusters splitting in house 1 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 94.5% 79.1% 86.1% 

Cluster 2 74.3% 92.9% 82.6% 

Cluster 3 (versus cluster 4) 100% 72.2% 83.8% 

Cluster 4 82.4% 100% 90.3% 

Cluster 3 (versus cluster 5) 100% 51.1% 67.7% 

Cluster 5 68.9% 100% 81.6% 

Table 5.8: Accuracy of clusters splitting in house 2 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 96.2% 59.8% 73.8% 

Cluster 2 27.4% 86.4% 41.6% 
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Table 5.9: Accuracy of clusters splitting in house 3 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 (versus cluster 2) 100% 95.7% 97.8% 

Cluster 2 (versus cluster 1) 90.4% 100% 95.0% 

Cluster 3 (versus cluster 4) 59.9% 66.9% 63.2% 

Cluster 4 (versus cluster 3) 75.3% 69.2% 72.1% 

Cluster 3 (versus cluster 5) 80.7% 66.9% 73.2% 

Cluster 5 (versus cluster 3) 39.4% 57.4% 46.8% 

Cluster 4 (versus cluster 5) 76.3% 29.8% 42.9% 

Cluster 5 (versus cluster 4) 19.1% 64.2% 29.4% 

Cluster 6 (versus cluster 1) 99.3% 100% 99.6% 

Cluster 1 (versus cluster 6) 100% 96.8% 98.4% 

Cluster 6 (versus cluster 2) 99.3% 100% 99.6% 

Cluster 2 (versus cluster 6) 100% 96.8% 98.4% 

Table 5.10: Accuracy of clusters splitting in house 4 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 75.5% 100% 86.1% 

Cluster 2 (versus cluster 1) 100% 75.9% 86.3% 

Cluster 3 63.0% 99.6% 77.2% 

Cluster 2 (versus cluster 3) 99.3% 45.6% 62.5% 
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Table 5.11: Accuracy of clusters splitting in house 5 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 80.3% 57.5% 67.0% 

Cluster 2 54.8% 78.5% 64.5% 

Cluster 3 98.6% 23.3% 37.7% 

Cluster 4 14.6% 97.6% 25.4% 

Cluster 5 99.5% 70.9% 82.8% 

Cluster 6 66.4% 99.4% 79.6% 

Cluster 7 60.6% 54.7% 57.5% 

Cluster 8 58.6% 64.2% 61.3% 

Cluster 9 3.4% 89.4% 6.5% 

Cluster 10 99.6% 49.4% 66.0% 
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Table 5.12: Accuracy of clusters splitting in house 6 from the REDD. 

Cluster number Precision Recall F-measure 

Cluster 1 27.2% 99.9% 42.7% 

Cluster 2 100% 38.4% 55.5% 

Cluster 3 89.7% 95.1% 92.3% 

Cluster 4 99.3% 98.5% 98.9% 

Cluster 5 (versus cluster 6) 8.6% 100% 15.8% 

Cluster 6 (versus cluster 5) 100% 48.9% 65.7% 

Cluster 5 (versus cluster 7) 8.4% 100% 15.5% 

Cluster 7 (versus cluster 5) 100% 47.8% 64.7% 

Cluster 6 (versus cluster 7) 59.1% 53.3% 56.0% 

Cluster 7 (versus cluster 6) 57.5% 63.1% 60.1% 

It is important to note that although some clusters overlap with more than one cluster, 

the proposed splitting approach was applied separately on each pair of overlapping 

clusters. For illustration about the placement of devices clusters, an example of devices 

clusters in house 1 is shown in Figure 5.5 which provides indications about the degree 

of overlapping between clusters. Moreover, it shows whether a device cluster is tight or 

loose by figuring out the spread their items. For example, cluster 4 and cluster 5 are tight 

but cluster 3 is loose. Besides, cluster 3 and cluster 4 overlap in a quite small degree but 

cluster 5 totally overlaps with cluster 3. 
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Fig. 5.5: Devices clusters in house 1 from the REDD. 

As illustration about cohesion tests and 𝑃𝑉̅̅ ̅̅ ’s of the sub-clusters as explained in this 

Chapter, the case of cluster 3 and cluster 4 in house 1 is presented. The normality tests 

on the merged cluster showed a 𝑃𝑉̅̅ ̅̅  approximately 0.00, which concluded a splitting 

decision. After performing the cluster splitting, the normality fitting of the sub-cluster 3 

was found to be better than the big cluster with 𝑃𝑉̅̅ ̅̅ = 0.033. The 𝑃𝑉̅̅ ̅̅  of sub-cluster 4 

has not changed significantly above that for the big merged cluster. Once either sub-

clusters show better fitting for normality than the big merged cluster, it indicates that 

sub-clusters are likely be originating from two different sources as articulated earlier. 

5.4.3 Interpretation and Discussion of Clusters Splitting Results 

The results in the previous subsection showed that the accuracy of retrieving the split 

devices clusters from the merged one, in general, depends on three essential factors 

• The degree of overlapping between the clusters of these devices. 

• The tightness or looseness (i.e. the spread) of each overlapping cluster. 

• The total number of items in each cluster. 
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The degree of overlapping can be concluded from the distance between the centers of 

two overlapping clusters. The standard deviation indicates whether a cluster is tight 

(items are close to each other) or loose (items spread over wide ranges).  

Results shown in Figures 5.3 and 5.4 show the positive impact of applying the median 

filter on appliances power signal. It can be concluded that applying the median filter to 

remove outliers, spikes and noisy signals would help in presenting filtered power signals 

that show good normality fitting’s. As methods proposed in Chapter 5 depends on the 

assumption of normality fitting of appliances consumptions, the median filter was 

applied to power signals of home appliances. 

Two confidence levels where 𝛼1 = 0.01 and 𝛼2 = 0.10 were used to determine the 

splitting decisions as proposed in this Chapter by providing reasonable indications about 

clusters cohesion. The value of 𝛼1 was chosen as small as 0.01 so as to decide a splitting 

once normality or cohesion of a cluster is deduced to be very poor. Besides, if a 𝑃𝑉̅̅ ̅̅  falls 

in the range between 𝛼1 and 𝛼2, the uncertainty case is dealt with as explained earlier in 

this Chapter. The value of 𝛼2 should not be taken too higher than 𝛼1 because this leads 

to become more prone to commit an error regarding the normality checking of the tested 

device cluster. 

As shown in Table 5.7 for splitting accuracy results of house 1, high accuracies were 

obtained for device cluster 4 and lower accuracies for device cluster 3 (tested versus 

cluster 5). Cluster 4 showed a high accuracy as its center is quite far from cluster 3 and 

its items are close to each other (a tight cluster) as seen in Figure 5.5. Conversely, cluster 

3 (tested versus cluster 5) showed a low accuracy mainly because cluster 5 is entirely 

overlapping with it as seen in Figure 5.5. This implies that several items which originally 

belong to cluster 3 will mostly be assigned to cluster 5. There is an interesting 

observation that if it happens to have a 100% in Precision for one cluster, the other 
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overlapping cluster should have 100% in Recall. These results are logical as a cluster 

retrieved with 100% in Precision means all items assigned to it do belong to this cluster. 

That is, there is a zero element under the category of False Positive (FP) decisions. On 

contrary, a zero element in FP category for one cluster means a zero element in False 

Negative (FN) category for the other cluster which implies a 100% in Recall. To 

articulate this fact, we explain more about such cases in house 1 but the same 

justification applies to all other houses. In house 1, cluster 3 kept a 100% in Precision 

while clusters 4 and 5 kept a 100% in Recall. From Figure 5.5, it is observable that after 

performing the splitting, all assigned items to cluster 3 will most likely do belong to 

cluster 3 in realty due to its notable looseness and tightness of the other overlapping 

clusters. However, several items from cluster 3 could be assigned to cluster 4 or cluster 

5. This fact interprets the low Precision for both cluster 4 and cluster 5. On the other 

hand, since cluster 4 and cluster 5 are notably tight, it is more likely that after splitting, 

all items those really belong to these clusters would be assigned to the corresponding 

cluster. This explains the 100% in Recall in the splitting accuracy results as there are no 

items missed from the assignment, i.e. zero items in the FN category. Such cases have 

repeatedly happened in the other houses for similar reasons. 

In case when both overlapping devices clusters are tight and there is a noticeable 

distance between their centers, it is more likely to obtain high accuracies in retrieving 

both clusters. Cluster 1 and cluster 2 in house 3 are a good example showing this case. 

The converse example can be seen from the case of cluster 4 and cluster 5 in house 3, 

which results in low splitting accuracies. Some cases when two clusters centers are very 

close to each other, the obtained accuracies are very low as seen in the case of cluster 9 

in house 5. Besides, clusters with limited number of items may show lower accuracy 

results as in the case of cluster 4 and cluster 9 in house 5. These clusters have limited 



122 
 

number of items since the corresponding appliances were operating for less time 

durations than other appliances. Therefore, a cluster with fewer items is more likely to 

be less representative for the actual power consumption model of that specific device. 

In addition, an error in assigning a small number of items in small-sized clusters would 

result in noticeable reductions in the obtained accuracies. 

An interesting case appears when the two overlapping clusters represent two identical 

appliances in the same house. From the REDD data, it was found that cluster 6 and 

cluster 7 in house 6 represent two identical air conditioners. However, each appliance 

showed a slightly different amount of fluctuation in power consumption which could be 

due to uneven noise effects. In such cases, it is reasonable to obtain Precisions and 

Recalls around 50% for both clusters. This can be understood as the splitting approach 

resulted in somehow two similar small clusters. Each of these small clusters consists of 

approximately a half of its original items and a half from the other cluster items. 

Therefore, the number of items under the categories of TP, FP and FN are approximately 

close to each other. This conclusion articulates the obtained accuracies around 50%. 

For application of the developed clusters splitting method in a real-world scenario, it is 

proposed to be applied as a subsequent step to a clustering-based NILM approach taking 

into account all other considerations. In brief, a real-world scenario would go through 

the following steps 

1. First of all, a clustering-based NILM approach should be applied. The results are 

supposed to be a number of distinct clusters that represent individual appliances. 

2. The developed clusters splitting method is proposed to be applied to check the 

cohesion of appliances clusters that were obtained in step 1. The developed method 

should be applied to clusters where the normality fitting assumption is reasonable 
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(this means to avoid varying appliances and cases of poor/non-normality as presented 

previously in section 5.1). 

3. In cases where a splitting of a cluster is decided, the two resulting clusters should be 

labeled to two different appliances (even though being close in power consumption). 

This step is done basically manually and may need some experience/knowledge. 

From the above steps, the proposed clusters splitting methods can be applied to clusters 

that are labeled or matched with appliances and their individual consumption can be 

modeled by normal distribution (i.e. excluding continuously varying appliances and 

those with noticeable overshoot periods). Labeling appliances clusters with their 

corresponding appliances is usually done based on the used learning method as follows 

• In the supervised learning methods, models/patterns of individual appliances are 

available and thus constructed clusters are easily labeled/matched with the 

corresponding appliances during the learning phase. 

• In the unsupervised learning methods, models of appliances are built using some 

probabilistic rules. The resulting clusters/models are not labeled with the 

corresponding appliances. Hence, there must be a manual step to label/match clusters 

with respective appliances (this usually requires experience/knowledge about home 

appliances and their consumptions). The proposed clusters splitting method can be 

applied after having the clusters labeled with their respective appliances. 

5.4.4 Contributions to Load Disaggregation Accuracy 

To the best of the author’s knowledge, there is no cohesion testing method that has been 

applied to the same REDD data set for the purpose of dealing with overlapping 

consumptions of the devices. For this reason, we were unable to compare results to 

benchmark reference methods. Clusters cohesion tests in the literature were applied in 
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different fields but the nature of the problem (i.e. measurable features, their dimensions, 

fitting distributions, etc.) are basically dependent on the case under study. 

The proposed approach, to deal with specific cases of overlapping clusters, is suggested 

to work together with NILM approaches as a subsequent step to tackle detected cases of 

overlapping devices clusters. The NILM method should first disaggregate individual 

devices and then the proposed approach refines the findings by tackling the issues of 

overlapped devices. Hence, it contributes to the improvement of the overall load 

disaggregation accuracy. 

5.5 Remarks on the Proposed Approach in this Chapter 

The proposed approach aimed to disaggregate overlapping home appliances using a 

method for clusters splitting. The approach applied a cohesion test that was based on 

three tests for normality fitting. Some remarks were noticed in the proposed approach, 

which can be summarized as follows 

1. Continuously varying appliances and some FSMs showed poor normality fitting of 

their power consumptions. Therefore, the proposed approach becomes inapplicable 

to these appliances as the cohesion test is basically dependent on the normality 

assumption of appliances power consumptions. 

2. The performance of items assignments after clusters splitting is affected by common 

issues such as the degree of overlapping between appliances clusters, whether the 

clusters are tight or loose and the total number of items in the appliances clusters. 

5.6 Summary 

This Chapter presented the third proposed approach which aims to split overlapping 

clusters of appliances, which result when applying a clustering method to load 

disaggregation. The splitting of overlapped clusters is basically taken when poor degrees 
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of clusters cohesion are detected. Checking clusters cohesion was carried out by 

investigating the normality fitting of appliances clusters using three common normality 

tests. The proposed methods were applied on overlapping cases of appliances from six 

real houses from the REDD public data set. 
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Chapter 6 

Conclusions and Potential Future Work 

In this work, three enhanced approaches were proposed and tested aiming to improve 

the overall performance of non-intrusive load disaggregation. This chapter presents 

significant conclusions and suggests potential future work. 

6.1 Conclusions  

In this thesis, three enhanced approaches were proposed to tackle three challenging 

problems in the field of non-intrusive load disaggregation which aims to decompose the 

total aggregate measurements of a household power consumption into individual 

appliances power consumptions. The motivation of this work was augmented as it 

contributes to achieving energy saving in the residential sector. The problem of non-

intrusive load disaggregation was first defined, and main challenges were highlighted. 

Characteristics of promising solutions were explained specially regarding the use of low 

frequency measurements and applying unsupervised learning approaches that do not 

require sub-metering of power consumptions at appliance-level. Literature review and 

previous works were investigated and presented in detail about used appliances features 

and adopted approaches. In addition, basic limitations in related studies were discussed. 

The foundations of the proposed approaches such as HMMs and their extensions and 

clustering methods were presented in brief. 

The first proposed approach targeted improving the disaggregation accuracy of 

individual home appliances. The feature of mutual appliances interactions (two-way 

interactions) was estimated and embedded in a FHMM representation of the aggregate 



127 
 

signal and individual home appliances. Three-way and higher order interactions were 

neglected in accordance with the principle of sparsity. Interactions between appliances 

are usually caused by poor power quality issues in the design of appliances or in 

electricity network components. In addition, an adaptive estimations approach was 

introduced to run during disaggregation process to update appliances models and their 

interactions (if possible). The adaptive estimations approach was applied on cases of 

simultaneously four or less ON appliances. The proposed approaches were tested on 

house 2 from the REDD public data set. Models were first built, and possible 

interactions were observed from a portion of aggregate total signal. Then, the 

disaggregation process was performed on the remaining portion. It was found that 

appliances with known two-way interactions were disaggregated with higher accuracies 

than those with unknown mutual interactions. Besides, the adaptive estimations of main 

power effects and two-way interactions contributed in enhancing the disaggregation 

results. The proposed approaches contributed to enhance the overall disaggregation 

accuracies of individual appliances between 0.81% to 10.11% above the disaggregation 

accuracies obtained by the standard FHMM methods. 

The second enhanced approach aimed to disaggregate continuously varying home loads. 

A quantized CS-HMM was proposed to deal with continuously varying loads by 

applying a modified method to estimate the transition matrix. The proposed estimation 

method of the transitions matrix aims to mitigate two possible extreme cases in the 

learning phase which are cases of never-occurred transitions and too frequent 

transitions. The proposed methods were tested by applying to a set of generated data 

and real data from the REDD public data set. Thereafter, the CS-HMM was combined 

in the structure of the FHMM to produce a hybrid CS/DS-FHMM. In the hybrid CS/DS-

FHMM, a framework for learning and estimation was carried out using the total 
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aggregate signal of real data of four common home appliances. The proposed framework 

of the hybrid CS/DS-FHMM showed enhanced performance in terms of accuracy of 

estimated power consumption when compared to classical methods. It was found that 

increasing the number of quantization levels can improve the disaggregation accuracy, 

for a reasonable cost of complexity and extra execution time. The proposed methods 

could enhance the disaggregation accuracy for the varying load (in presence of other 

discrete loads) almost 1% above a reference common method. 

The third enhanced approach aimed to split overlapping appliances clusters based on a 

method that investigates the degree of clusters cohesion. The cases where appliances 

power consumptions are expected to show good normality fitting were considered. The 

proposed approach analyzes the cohesion of appliances clusters to determine if a cluster 

should be split into two small clusters. The analysis of clusters cohesion was based on 

the collective outcome of three normality tests performed against two confidence levels. 

Thereafter, the splitting is carried out using an inner expectation maximization (EM) 

method. The proposed approach was tested overlapping appliances clusters from six real 

houses from the REDD public data set. The accuracy of splitting, i.e. assignment of 

elements to the small clusters, was found to be depending mainly on the degree of 

overlapping, whether these clusters are tight or loose and total number of items in each 

cluster. The proposed approach is suggested to be applied to the energy disaggregation 

problem to deal with situations where the power consumptions of individual devices 

may overlap. The NILM clustering-based method is suggested to disaggregate 

individual devices first and then the proposed approach may refine the findings by 

disaggregating the overlapped devices in power consumptions. Thereby, the proposed 

splitting approach contributes to the overall performance of the NILM approaches. With 

few cases of exceptions, it was found that the sub-clusters of individual appliances were 
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retrieved with accuracies above 60% using the inner EM to assign items from the 

overlapped cluster to the respective sub-cluster. 

6.2 Potential Future Work  

For the future research work, it is suggested to extend the proposed approaches by 

incorporating added techniques or framework layers that could address some of the 

existing inadequacies. 

The first proposed approach aimed to enhance the overall load disaggregation accuracy 

by embedding information on appliances mutual interaction. It is suggested to extend 

the presented techniques by including information on three-way or higher order 

interactions between home appliances as they may be significant in some applied case 

studies or real houses. This information could help in providing improved modeling and 

disaggregation of appliances when they operate simultaneously and in various 

combinations. Information on three-way or higher order interactions could be captured 

from the aggregate total signal by analyzing longer sequences of aggregate signal till it 

becomes possible that possible cases of combinations of appliances are observed in 

operation. In addition, it is suggested to expand the adaptive estimations approach to 

consider cases when there are five or more concurrently ON appliance. Higher orders 

of fractional factorial designs could be adopted to update appliances models when there 

are five or more ON appliances at the same time. 

The second proposed approach aimed to model and disaggregate continuously varying 

home loads. It is suggested to extend the learning and estimation methods to be able to 

disaggregate more than one varying load (instead of lumped loads modeling). It is 

suggested to detect which of varying loads are actually operating by extracting and 

incorporating possible distinct features or performing deep investigations on their power 
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consumptions patterns. For example, their pattern of fluctuations, nature or shape of 

associated noise signals, mutual interactions with other appliances, duration of use, 

could be some of useful features to distinguish between continuously varying loads. 

The third proposed approach aimed to refine the outcomes of a clustering method 

applied to NILM by checking which appliances clusters should be split according to its 

degree of cohesiveness. It is suggested to extend the proposed cohesion test by including 

additional normality tests so as to investigate more aspects of normality fitting. In 

addition, it is suggested to develop similar methods to test adequacy of appliances 

clusters in cases of appliances that fit to non-normal distributions. Finally, it is suggested 

to re-apply the proposed approach on the resulting clusters after splitting, to test if there 

should be another reasonable splitting. This further cohesion testing could be helpful in 

cases when there are three or more overlapping clusters of appliances. 

In general, future work on NILM should be directed toward large-scale applications that 

capable of showing enhanced applicability and scalability of solutions to the problem of 

non-intrusive load disaggregation. In addition, it is suggested to search for extra 

significant features for home appliances that may be extractable from the total aggregate 

signal. Besides, modern appliances that embed technologies of self-recording of their 

consumptions, should be used (when existing at a household) to assist in the overall 

framework of load disaggregation. 

In some countries, gas and water smart meters began to be deployed alongside with 

electricity smart meters, an interesting research problem is to concurrently disaggregate 

all the three utilities. Similar to electricity disaggregation, a recent research work was 

applied to gas disaggregation [Cohn et al., 2010] and another was applied to water 

disaggregation [Dong et al., 2013]. An interesting recent study [Vitter and Webber, 

2018] utilized the disaggregation of circuit-level electricity data to improve performance 
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by a water end-use disaggregation tool. However, since some appliances consume two 

utilities (e.g. washing machine requires both electricity and water), information derived 

from one utility could also be used to infer the usage of another utility. Therefore, new 

techniques are required to consolidate the disaggregation of multiple utilities while 

allowing mutual information to be shared between each utility [Parson, 2014]. 
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