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Vibronic spectra of the Holstein model for molecular crystals are investigated using

the dynamical mean field theory with the additional aid of the multi-mode Brownian

oscillator model. The effects of temperature, intermolecular transfer integral, damping

constant and quadratic coupling on the vibronic spectra are examined, and spectra

in the presence of two phonon modes are studied in detail. Results from the dynamical

mean field theory are corroborated by those from the multi-mode Brownian oscillator

model. Strength and weakness of the two approaches are discussed to point out the

corresponding regimes of application for each.

I. Introduction

Understanding vibronic spectra of molecular crystals and

conjugated polymers is a prerequisite for optimizing organic

optoelectronic devices such as light-emitting diodes, organic

photovoltaic devices and polymer lasers. One particular type

of material are the poly(fluorene)s (PFO)1 and their derivatives,

known for their exceptional quantum efficiency, charge carrier

mobility and electro-optical characteristics for applications in

optoelectronic devices such as light-emitting diodes. Analysis

of the vibronic spectra of such polymers can help understand

the optical properties that are determined by electronic

excitations and their couplings to dynamic molecular

deformations.2,3

In recent years, Winokur et al.1,4 have extensively studied

optical properties of PFO. For example, the photo-

luminescence spectra for b-phase at low temperature (usually

B15–20 K) are shown to have well-resolved irregular phonon

sidebands.1 Rigorous Franck–Condon (FC) analysis of

photoluminescence spectra and Frenkel-type exciton band

structure calculations are performed to understand the steady

state spectroscopic properties of the b-phase PFO (and its

other phases). Possible multiple-phonon-mode coupling to

the electronic transition was revealed, paving the way for

additional theoretical techniques including various many-body

theories to shed light on the photo-physics of PFO and similar

materials. Efforts have also been made to study the role

multimode exciton–phonon coupling plays in the photo-

luminescence spectra of oligothiophene5 and quaterthiophene6

single crystals by solving model Hamiltonians with product

states and dressed exciton states, respectively. In addition,

canonical transformations and Green’s functions have

been applied recently to derive analytical expressions for

linear vibronic spectra of a Frenkel exciton coupled to

two phonon modes.7,8 Considerable differences were found

between one-phonon and two-phonon vibronic spectra

by the authors. Their theory, however, is perturbative in

nature and only applicable in the limit of weak exciton–

phonon coupling.7

To circumvent the difficulties encountered in the perturbative

treatments, it is useful to introduce the dynamical mean field

theory (DMFT) to treat exciton–phonon coupling. This

many-body technique maps lattice models to corresponding

quantum impurity models subject to self-consistency conditions.9

Beyond the static mean-field treatment, DMFT keeps the full

local dynamics induced by local interactions. A powerful

many-body technique to study electron–electron and electron–

phonon interactions, the DMFT method is capable of

interpolating between band-like and atomic-like behavior of

electrons. As reported in ref. 10, the DMFT method was firstly

applied to the problem of a single electron coupled to a single

phonon mode aiming to unravel the small-polaron structure

consequently formed. Their results suggested that the DMFT

method is exact in the limits of weak and strong couplings and

quite efficient in the intermediate regimes. However, for

realistic systems such as p-conjugated polymers, there are

many optical and acoustic phonon modes, and optical spectra

of these materials are dominated by features closely related to

multiple-phonon modes. Although path-integral Monte Carlo

and momentum-average approximations have been proposed

recently to tackle the issue of multiple phonon modes,11–13

dynamical properties of the generalized Holstein molecular

crystal models with multiple phonon modes have not been

sufficiently examined.

In this work we will make use of the DMFT method to

explicitly compute optical spectra of molecular crystals with

exciton–phonon coupling to multiple phonon modes. In addition,

a phenomenological approach by the name of multi-mode

Brownian oscillator (MBO) model14,15 is used for comparison.

The MBO method was initially designed for understanding

optical coherence loss of chromophores in liquids due to

solvent dynamics. This model has since been successfully

applied to various other systems as its versatile, sophisticated

handling of the thermal environment is seldom matched.3,16,17

The corroboration of the two methods proves fruitful to shed
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light on the understanding of the underlying physics of the

optical processes and spectral features of molecular crystals

and p-conjugated polymers.

The rest of the paper is organized as follows. In section II

the DMFT approach is introduced together with associated

numerical techniques. In section III, effects of control

parameters, such as temperature, transfer integral, damping

constant and quadratic coupling, on the vibronic spectra are

discussed, in the presence of one or two phonon modes.

Results from the DMFT model are compared to those

obtained from MBO. Fitting of an experimental PL spectrum

of PFO has been carried out toward the end of this section.

Conclusions are drawn in section IV.

II. Model and methodology

The original Holstein molecular crystal model18 involves only

linear, diagonal exciton–phonon coupling to one phonon

mode. Here we generalize the Holstein molecular crystal

model by including two Einstein phonon modes together with

their linear and quadratic couplings to the exciton. These

phonon modes may possess different symmetries, and the

Hamiltonian can be written as

Ĥ ¼ Ĥe þ Ĥp þ Ĥep

Ĥe ¼
X
n

Ena
y
nan � J

X
n

aynðanþ1 þ an�1Þ

Ĥp ¼ oa

X
n

b
y
1;nb1;n þ ob

X
n

b
y
2;nb2;n

Ĥep ¼ ga
X
n

aynanðb
y
1;n þ b1;nÞ þ gb

X
n

aynanðb
y
2;n þ b2;nÞ

þ Doa

X
n

b
y
1;nb1;na

y
nan þ Dob

X
n

b
y
2;nb2;na

y
nan

ð1Þ

where awn (an) denotes the creation (annihilation) operator of a

Frenkel exciton on molecule n, En is its on-site energy, and

J is transfer integral between the neighboring molecules.

oa describes the frequency of phonon mode a in the system,

and its creation (annihilation) operator is denoted as bw1,n (b1,n).

Similarly, the other phonon mode in our model is described by

ob and bw2,n (b2,n). The linear and quadratic exciton–phonon

coupling coefficients for 1st (2nd) phonon mode are ga (gb)

and Doa (Dob), respectively. Moreover, to facilitate numerical

implementation, the uniform on-site energy En is regarded

as an energy reference point. The Hamiltonian eqn (1)

in its present form captures a uniform, translationally invariant

aggregate, which is not suitable to describe a disordered

system. For more sophisticated Hamiltonians, such as with

multiple values of En and off-diagonal exciton–phonon

coupling, one may need to use more elaborate dynamical

mean field methods,9 which shall be subjects for future studies.

In a DMFT treatment, the lattice model can be mapped

onto an impurity Anderson model involving a localized

two-level system, labeled by aw(a), coupled to two local

phonons described by bw1,0 (b1,0) and bw2,0 (b2,0), and hybridized

with a fictitious electron conduction band labeled by cwk (ck),

Ĥ imp ¼
X
k

ekc
y
kck þ

X
k

Vkðcykaþ ayckÞ

þ oab
y
1;0b1;0 þ obb

y
2;0b2;0

þ gaa
yaðby1;0 þ b1;0Þ þ gba

yaðby2;0 þ b2;0Þ

þ Doab
y
1;0b1;0a

yaþ Dobb
y
2;0b2;0a

ya

ð2Þ

where Vk describes the couplings between the local impurity

states and the associated bath, and ek represents the dispersion
of the electrons in the bath. The thermally averaged, retarded

one-exciton Green’s function is defined as

iGk;k0 ðtÞ ¼ yðtÞhexpðiĤtÞak expð�iĤtÞaþk0 i ð3Þ

where y(t) is the unit step function, and h i denotes the

canonical average over the phonon population at temperature

1/b. The Fourier transformation of the Green’s function has

the form

Gk;k0 ðoÞ ¼
Z 1
�1

dt expðiotÞGk;k0 ðtÞ ð4Þ

with the imaginary part of o a positive infinitesimal. In the

framework of DMFT, the lattice model with translational

invariance is mapped into an impurity object embedded in a

self-consistently determined effective bath by neglecting all

spatial fluctuations in the self-energy. This mapping is exact

when the coordination number Z is infinite. It is quite intuitive

that the neighbours of a given site can be treated globally as an

external bath when their number becomes large, and the

spatial fluctuations of the local field are negligible. However,

the accuracy of DMFT for three-dimensional systems has been

extensively demonstrated.9 For lower spatial dimensions, the

accuracy of DMFT may be compromised by the fluctuations.

Accordingly, the impurity Green’s function Gimp is

defined as

GimpðoÞ ¼
1

o� Ĥ imp

ð5Þ

After the initial set of coupling parameters {ek, Vk} is chosen,

the impurity Green’s function Gimp and the self-energy

function Sloc are numerically evaluated. By substituting Sloc

into the Dyson equation, the local Green’s function Glatt can

be obtained,

GlattðoÞ ¼
1

N

X
k

1

o� e0k � SlocðoÞ
: ð6Þ

Here e0k denotes the non-interacting exciton energy band.

Consequently, one can get an updated hybridization

function G0

G0
�1(o) = G�1latt(o) + Sloc(o) (7)

Then the critical problem is how to solve the impurity Green’s

function and estimate the local self-energy. The impurity

Hamiltonian eqn (2) can be separated into Ĥ0 and ĤI, where

Ĥ0 corresponds to the hybridization function G0, and ĤI

denotes the local interaction term. This Hamiltonian is similar

6046 | Phys. Chem. Chem. Phys., 2010, 12, 6045–6053 This journal is �c the Owner Societies 2010
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to that for a molecule chemisorbed on a solid surface

previously investigated,19,20 and a similar approach is adopted

here to estimate the impurity Green’s function at zero

temperature. Firstly the self-consistent calculations have been

carried out due to the existence of the hybridization between

local vibrations and the fictitious electron conduction band,

which is absent in Cini’s Hamiltonian.19,20 Secondly, the

effects of quadratic exciton–phonon coupling interactions

can be included in our approach.

The excitonic Green’s function can thus be solved by a

self-consistency procedure, and the details are included in

Appendix A. During the iteration process, a truncation is

necessary to put a limit to the maximum number of phonons

(Na, Nb) participating in the scattering process. While there is

no analytical expression available for the truncation number

(Na, Nb) to ensure the convergence of the numerical calculations,

Na, for example, is known to be proportional to g2a/Joa. For

convenience, we use a bethe lattice for the noninteracting

excitons. The spectral broadening factor Z is set at 0.05 for

most calculations in this paper. Once the Green’s function is

determined, the absorption spectrum can be found from the

imaginary part of the exciton Green’s function21,22 at zero

momentum

AðEÞ ¼ � 1

p
Im

1

E � ek¼0 � SðEÞ

� �
ð8Þ

At variance with the DMFT method, the MBO model

introduces dissipation effects that are omnipresent in real

solids into a harmonic oscillator system by coupling the system

oscillators linearly to bath modes with a continuous spectrum.

In the MBO model, a few primary nuclear coordinates

are coupled linearly to an electronic two-level system, and

simultaneously, to a bath of secondary harmonic oscillators.

The distinction between the primary oscillators and the bath of

secondary ones allows interpolation between coherent and

damped nuclear movements. Details of the MBO model are

included in the ESI.w

III. Results and discussions

In this section, the absorption spectral functions are first

calculated to study the effects of temperature, transfer integral,

damping constant and quadratic coupling in the presence of

one dispersionless phonon mode. The DMFT method is first

used, and results are compared with those of the MBO model.

The role of linear exciton–phonon coupling in the presence of

two phonon modes is discussed next for the extended Holstein

model at zero temperature. For the case of one phonon mode,

the parameters are chosen as: ga = gb = g, oa = ob = o0,

Doa = Dob = Do and Na = Nb = N, where o0 is

the frequency of a typical dispersionless phonon mode in

molecular crystal systems. All spectral integrals in this paper

have been normalized. In addition, we use o0 as the energy

unit, and scale energy-related variables, e.g., o, oa,b, g and

kBT, by o0. For convenience, we also set kB = 1.

A Effect of temperature

The finite-temperature spectral calculation for the case of one

phonon mode follows that in ref. 20. The results are shown in

Fig. 1(a) and (c), where the rescaled temperature, kBT/o0,

changes from 0 to 1. As indicated in the inset of Fig. 1(a), the

widths of peaks increase dramatically when the temperature

rises from 0 to 0.4. However, the widths do not vary greatly

when the temperature increases further. It is also noted

that the number of the visible phonon sidebands gradually

increases as new peaks appear on the lower energy side, thanks

to temperature-induced population of phonon states in the

electronic ground state. The MBO results are compared to

those from the DMFT calculations as shown in Fig. 1(b).

From the inset of Fig. 1(b), the broadening of the selected

peaks obeys differing rules. It is clear that the linewidth of the

peaks increases almost linearly with temperature, especially

Fig. 1 Absorption spectra calculated from (a) DMFT with J = 0.1

and Do = 0.0; (b) MBO calculated with g = 0.02; (c) DMFT with

J= 1.0 and Do= 0.0. The inset of (a) shows FWHM vs. temperature

for the first five peaks of the DMFT spectra. The inset of (b) displays

FWHM vs. temperature for the first five peaks of the MBO spectra.

The other parameters for the calculations are: S = g2 = 1.0 and

o = 1.0. For the DMFT calculations, N is set to 60.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 6045–6053 | 6047
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for low temperatures (e.g., To 0.6), in agreement with ref. 23.

This effect is mainly due to an increase in occupation of the

phonon bath in the MBO model, where more secondary

phonons participate in the dissipation processes, resulting in

a lifetime reduction of the exciton–phonon entity responsible

for the sidebands. From this point of view, the difference

between the linewidths of the two models may be mainly due

to the sophisticated treatment of the phonon bath in the MBO

method. In the DMFT model, only optical phonons participate

in the scattering of the exciton, the increase in temperature

may only affect the lifetime of the exciton when the temperature

is relatively low, as demonstrated in the inset of Fig. 1(a). As

shown in Fig. 1(b), new peaks become visible on the lower

energy side with increasing temperature as more phonons

participate in the exciton–phonon scattering processes.24 One

also observes a strong enhancement of the polaron effective

mass accompanied by further bandwidth narrowing25 with

increasing temperature. For the DMFT spectra with a relatively

large transfer integral J, as shown in Fig. 1(c), the linewidth of

the phonon sidebands have a complicated dependence on

temperature, which may be related to the competing effects

of a sizable exciton–phonon coupling strength and a relatively

large value of the exciton transfer integral.

B Effect of transfer integral J

In a molecular stack, exciton hopping substantially affects

molecular vibronic spectra. In the MBO model,23 this term is

not taken into account as only two electronic levels are

considered. While the assumption of a weak intermolecular

transfer is often made for the Frenkel excitons,8 the transfer

integral is non-perturbatively taken into account in our

DMFT method so that its effects on the vibronic spectra can

be examined in details. The calculated results are displayed in

Fig. 2 for the case of g = 1.0 and Do = 0.0. It can be found

that with increasing J (from 0.1 to 1.0), the peak positions are

red-shifted almost linearly with J (i.e., towards the low

frequency region), while the spectral weights are gradually

transferred to lower peaks (i.e., the effective values of exciton–

phonon coupling is reduced). Known as the motional narrowing

effect, the increase in J leads to the suppression of simultaneous

phonon excitations. Such an effect is also clearly observed

by comparing the DMFT spectrum (J = 1) to the MBO

spectrum, as shown in Fig. 3, since the DMFT model actually

reduced to the Huang–Rhys theory26 when T, J and Do equal

0 (see the ESI for detailsw). Thus, the comparison in Fig. 3 is a

direct evidence of the effect of J in transferring spectral weight

towards lower energy peaks and consequently lowering the

effective g.

C Effect of damping factor g

The effect of the damping constant Z on the vibronic spectra is

displayed in Fig. 4(a), while the effect of g on the MBO spectra

is shown in Fig. 4(b) for comparison. The spectral damping

constant Z has a relatively simple interpretation since it is

directly related to the lifetime of the exciton. The relationship

between Z and width is obvious from the inset of Fig. 4(a) since

the linewidths of the peaks are proportional to Z. However, for

the spectra calculated with the MBO model23 as shown in the

inset of Fig. 4(b), the broadening due to the damping constant

g is more complicated, with added sophistication attributed to

the coupling of the primary phonon mode(s) to the bath

phonons in the MBO model. Due to the lack of a secondary

phonon bath in the DMFT calculation, the lifetime of the

exciton is determined phenomenologically by Z, resulting in a

clear Lorentzian lineshape as shown in Fig. 4(a). However, as

indicated from Fig. 4(a) and (b), dephasing due to the presence

of an external bath plays an important role in determining the

overall spectral lineshape. To achieve a better description of

optical spectral features, it is critical that the merits of the two

methods be combined. Recently, efforts have been made to use

a non-Markovian form of spectral density to describe optical

absorption and energy transfer dynamics in a molecular

aggregate,27 again pointing to the importance of a dissipative

bath to ultrafast relaxation dynamics.

Fig. 2 DMFT absorption spectra for various values of transfer

integral J, T = 0 and g = 1.0. The exciton–phonon coupling is

assumed to be linear here. The peak position as a function of J for the

first five peaks is shown in the inset.

Fig. 3 Comparison of absorption spectra calculated from DMFT

and MBO. For the DMFT spectrum, the parameters are: J = 1,

g2 = 8.0, Do, N = 60, and T = 0.0. For the MBO spectrum, the

parameters are: S = g2 = 8.0, T = 0.01, g = 0.01 and Eeg = �7.0.
o = 1.0 in both spectra.

6048 | Phys. Chem. Chem. Phys., 2010, 12, 6045–6053 This journal is �c the Owner Societies 2010
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D Effect of quadratic exciton–phonon coupling

The quadratic exciton–phonon coupling is considered to be

dominant for the non-totally symmetric molecular vibrations,

where the phonons are localized to a molecule.28 As known

from eqn (1), the Do term actually represents the relative

phonon frequency shift in the excited molecule. In order to

study the effect of the Do term, we first consider the case of g

{ 1, J { 1, where the quadratic coupling must be taken into

account since such interaction is energetically more important

than the linear coupling term.21 The parameters adopted for

this case are J= 0.1 and g2 = 0.01, and the value of Do varies

from 0.0 to 2.0. The calculated absorption spectra are displayed

in Fig. 5, where the bottom spectrum corresponds to the

limiting case with g = 0, and Do = 0. With increasing Do,
the spectral features change from the free-exciton type to that

with an additional one-phonon sideband form (primarily

due to the weak linear exciton–phonon coupling here, only a

one-phonon sideband is resolved). The spacing between two

peaks are strongly dependent on the value of Do, which

manifests the effect of this term in determining the relative

phonon frequency shift in the excited molecule. What is more

interesting is the observation of the transfer of spectral weight

of the phonon sideband to the major peak and increase of

relative intensity ratio between first and second peak as Do
increases. This phenomenon is even more pronounced for

cases with larger g. As demonstrated in Fig. 6, the quadratic

coupling Do strongly influences the absorption spectra. It is

also noted that the maximum phonon number Na(Nb) must be

large enough to guarantee the convergence of the spectral

calculation with a large value of J. The peak position is plotted

as a function of the peak number in the inset of Fig. 6 for

values of Do from 0.0 to 3.0.

E The spectra with two phonon modes

We turn to the case with two dispersionless phonon modes. The

ground state properties, in the context of polaronic self-trapping

Fig. 4 Absorption spectra calculated from (a) DMFT for T = 0,

J = 0.1 and Do = 0.0. (b) MBO for T = 0.01. The inset of (a) shows

FWHM vs. Z for the first four peaks for the DMFT spectrum. The inset

of (b) shows FWHM vs. g for the first four peaks of the MBO spectra.

Other parameters for both calculations are: S = g2 = 1.0 and o0 = 1.0

Fig. 5 Absorption spectra in the weak-coupling regime with various

quadratic coupling Do, where J = 0.1, o = 1.0, N = 60 and T = 0.

Fig. 6 Absorption spectra in the strong-coupling regime, where

J = 1.0, o = 1.0, g2 = 8.0 and T = 0. Inset of the figure displays

the peak position vs. peak number of the spectra for various values of

the quadratic coupling Do.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 6045–6053 | 6049
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transition, are determined by the mode coupled more strongly

to the exciton.12 In order to study the effects on the properties

on the high-energy regime, we consider two cases of varying

exciton–phonon couplings. For the weak coupling case, the

parameters are J=0.5, Doa = Dob = 0.0,Na = 30,Nb = 15.

For the first mode, oa =2.0 and ga =1.5, while for the second

mode, ob = 0.2 and gb = 0.3. The absorption spectra are

displayed in Fig. 7. The spectrum in the sole presence of the

b-mode shows a phonon progression despite the small phonon

frequency and weak coupling. When two phonon modes are

simultaneously taken into account, the effects of the two types

of phonon excitations are combined to yield the overall

absorption lineshape at the bottom of Fig. 7. The overall

lineshape is found to be composed of both types of phonon

excitations despite their large difference in phonon frequency.

As the phonon excitations are effectively coupled through the

band continuum, even the weak coupling to the second

phonon mode will have effects on the lineshape in the high-

energy regime of the overall spectrum.

When the couplings to the two phonon modes are comparable

in strength, some interesting features may appear in the high-

energy portion of the spectra. We first consider the case with

oa = 1.0, ga = 1.0, ob = 1.5 and gb = 1.0, as shown in

Fig. 8(a). Other parameters for the case are J = 0.2,

Doa = Dob = 0.0, Na = Nb = 30. The spectra with a single

phonon mode are also shown as a reference. For the bottom

spectrum with two phonon modes, the spacing between

the lowest exciton band and the one-phonon continuum

corresponds to the value of oa, while for higher energy states,

the spacings all equal to 0.5, which is the difference of the

two frequencies, i.e., |oa � ob| = 0.5. To gain a better

understanding of the DMFT spectra, the MBO counterpart

and their peak positions are plotted in Fig. 8(b) and its

inset, respectively. It is clear that for the single-mode spectra,

the phonon sidebands are equally spaced as shown in the

inset of Fig. 8(b), and the peak position vs. peak number plots

from the two methods are in close agreement. However, due to

the difference of the two models in treating dissipative effects

and the two-level nature of the MBO model, the two spectra in

Fig. 8(b) differ substantially, reminding us the importance of

bath dephasing and exciton transfer integral J to shaping the

spectral features.

As mentioned in the Introduction, the DMFT approach is

applicable to cases with a wide range of the transfer integral

J. Anthracene, for example, is one type of aromatic crystal

with strong intermolecular transfer.7,8,29,30 Vibronic spectra of

anthracene reveal two relevant phonon modes with two sets of

parameters: oa = 1400 cm�1, g2a = 0.9 and ob = 400 cm�1,

g2b = 0.15. Data on the longitudinal-transversal splitting29

gives an estimation of the exciton transfer integral J of

approximately 300–400 cm�1. In ref. 7, the authors used an

analytical expression to calculate the absorption spectra for a

one-dimensional anthracene-like aggregate, violating their

original assumption of weak exciton transfer. Here we set

o0 = 806 cm�1 as the energy unit, and the relevant parameters

are oa = 1.736o0, ob = 0.496o0 and J = 0.372–0.496o0.

Calculated DMFT spectra are displayed in Fig. 9 with the case

of J = 40 cm�1 used as a comparison. For J = 40 cm�1,

the first narrow peak corresponds to one-particle (bound)

Fig. 7 Comparison of a two mode DMFT spectrum and single mode

spectra corresponding to each phonon mode used in the two mode

calculation. The parameters chosen for each spectrum are also shown

in the figure.

Fig. 8 The DMFT absorption spectrum with oa = 1.0, ga = 1.0,

ob = 1.5, Na = Nb = 30, and gb = 1.0, single mode spectra (mode a
and b) are also displayed for comparison. (b) Comparison of DMFT

and MBO spectrum, where the MBO paramters are: S1 = S2 = 1.0,

o1 = 1.0, o2 = 1.5 and g1 = g2 = 0.025.

6050 | Phys. Chem. Chem. Phys., 2010, 12, 6045–6053 This journal is �c the Owner Societies 2010

D
ow

nl
oa

de
d 

by
 N

an
ya

ng
 T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 o

n 
17

 F
eb

ru
ar

y 
20

11
Pu

bl
is

he
d 

on
 0

9 
A

pr
il 

20
10

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

92
52

86
J

View Online

http://dx.doi.org/10.1039/B925286J


exciton–phonon state. The second and third peaks are located

at ob and 2ob, respectively, while the fourth peak is at oa.

These results are consistent with those in ref. 29. When

J assumes a realistic value of 300 cm�1, the absorption

spectrum is red-shifted considerably with almost every peak

broadened compared to J = 40 cm�1. The high-energy

absorption peaks are from many-particle states in the coupled

exciton–phonon system.

The DMFT method described in this paper is also useful to

interpret spectra from materials such as poly(fluorene)s (PFO).

As shown in Fig. 10, the unit of energy in the DMFT approach

is equal to 0.1 eV. The MBO results are also shown to illustrate

the effects of the phonon bath and finite temperature.

The DMFT spectrum agrees with experimental spectrum for

the first two peaks, the difference is mainly attributed to the

absence of a secondary phonon bath which is included in the

MBO model. By reducing the damping factors in the MBO

model to a relatively low value, a much better agreement

between the two models can be obtained. A spectrum calculated

from an underdamped MBO model, labeled as MBO2 in

Fig. 9, recovers the DMFT spectrum qualitatively, suggesting

the important role of the dissipative phonon bath in determining

spectral features in realistic scenarios. By fine tuning the

damping behavior of the secondary phonon bath in the

MBO model, the spectrum labeled as MBO1 is found to be

in good quantitative agreement with the experimental spectrum.

There are also some features not fully reproduced by the MBO

model, such as the small peak around 700 cm�1 away from

the ZPL, assigned as the phonon sideband for the 700 cm�1

mode in the b-phase PFO according to Winokur et al.1 By

incorporating these factors that affect the spectral features in

the MBO calculations, it is possible to achieve better quantitative

agreement with experiment. Moreover, from the semi-empirical

together with rigorous Frank–Condon analysis performed by

Winokur et al.,4 the dominant (e.g., with S > 0.15) phonon

modes in the PL spectrum of b-phase PFO (measured

at T = 18 K) were determined as: o1 = 1605 cm�1,

o2 = 1282 cm�1 and o3 = 61 cm�1; with the Huang–Rhys

factors: S1 = 0.30, S2 = 0.17 and S3 = 0.75, respectively. By

comparing these with the MBO fitting results shown in Fig. 9,

a qualitative agreement is obtained. The S values obtained by

MBO are slightly higher due to the presence of the dissipative

phonon bath in this model, pointing to the sensitivity of the

PL spectra of b-phase PFO to temperature and importance of

the dissipative phonon baths.

IV. Conclusions

Despite more than six decades of investigation, the Holstein

polaron remains a topic of great interest.31–33 A variety of

approximate methods have been used to study static and

dynamic properties of the coupled exciton–phonon system

such as a hierarchy of time-dependent variational trial states

enlisted recently to spearhead the attack on Holstein polaron

dynamics.34 Also worth mentioning is a powerful method of

diagrammatic quantum Monte Carlo put forward with no

restriction for the form of particle–phonon interaction and

dimensionality of the problem.32,33 In addition, the dynamical

coherent potential approximation in combination with the

Hartree approximation (HA-DCPA) was employed by two

of the authors to study off-diagonal exciton–phonon coupling,31

dispersive phonons and multiexcitons. In this work, by applying

the DMFT method, we have investigated systematically the

vibronic spectra of the extended Holstein model with linear

and quadratic exciton–phonon interactions to one or two

phonon modes. In the presence of one phonon mode, the

effects of temperature, transfer integral, damping constant and

quadratic coupling on the vibronic spectra have been studied

in detail. For weak linear exciton–phonon coupling, the

introduction of quadratic coupling blueshifts the one-phonon

side band due to modulation of the effective phonon energy.

Fig. 9 The DMFT absorption spectrum for the anthracene with

oa = 1400 cm�1, g2a = 0.9, ob = 400 cm�1, g2b = 0.15, and

J = 300 cm�1, 400 cm�1 and 40 cm�1.

Fig. 10 Comparison of DMFT and MBO fitting of the experimental

b-phase poly(fluorene) (PFO) photoluminescence (PL) spectrum1

measured at 25 K. The DMFT parameters are: o1 = 1.58, o2 =

1.98, S1 = 0.77, S2 = 0.64, J = 0.1 and Z = 0.05. The MBO1

parameters are: o1 = 1275 cm�1, o2 = 1590 cm�1, o3 = 100 cm�1,

S1 = 0.75, S2 = 0.64, S3 = 0.95, g1 = 240 cm�1, g2 = 105 cm�1,

g3 = 200 cm�1, and Eeg = 2.825 eV. TheMBO2 parameters are the same

as those of MBO1 except for g1 = 12.75 cm�1 and g2 = 15.9 cm�1. And

only the coupling of o1 and o2 are considered. The DMFT and MBO

spectra are both normalized, where the x-axis of the DMFT spectrum has

been scaled by 10 in order to fit the PFO spectrum.
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For strong linear exciton–phonon coupling, the quadratic

term shifts the positions of vibronic peaks while reducing the

effective coupling strength. Increasing temperature can result

in the formation of new peaks on the lower energy side while

introducing thermal broadening to the spectral peaks. In the

presence of two phonon modes, even very weak coupling to

the second phonon will bring pronounced effects to the

vibronic spectra. The two phonon modes are found to be

inextricably coupled, and their interactions are facilitated

indirectly by the exciton band. When the second phonon mode

is comparable in energy to the first one and both modes

have similar coupling strength, vibronic spectra will display

non-uniform peak spacings in contrast to the equal spacings

for one phonon mode. Similar behavior is also found in the

spectra calculated by the MBO model.

We have compared spectra calculated from DMFT with

those from the MBO model with respect to spectral features

such as lineshapes and linewidths. Such comparisons indicate

that, when J/S, T and Do are negligible compared to o0, these

methods are in principle equivalent. However, in the presence

of relatively large values of J and Do, the DMFT approach

can provide additional features that are not fully described by

the MBO model. The DMFT approach fails to account for the

effect of temperature on the linewidth properly due to the

absence of a sophisticated phonon bath. Attempts has also

been made to employ both the DMFT and MBO methods to

fit the experimental low-temperature (20 K) PL spectrum of

the b-phase PFO. While individually the MBO approach

is shown to produce a better quantitative agreement with

the experimental results than the DMFT counterpart, in

combination the two methods can generate qualitative insights

into the PFO spectra. It is shown from the comparison of the

results from both methods that secondary dissipative phonon

bath has an important role in determining spectral features of

realistic materials. Thus, it is meaningful to combine the

DMFT approach described in this paper with the MBO model

to probe optical processes in organic molecular crystals and

conjugated polymers.

Appendix: The self-consistency procedure

Here, we introduce a general continued-fraction algorithm to

recursively solve the impurity self-energy and Green’s function

for the system with two phonon modes. Below we sketch a

derivation, which follows the ideas of ref. 19.

First of all, let us introduce two auxiliary quantities as

Gðm; n; zÞ ¼ 0; 0; 0h jbm1;0bn2;0ðz� Ĥ impÞ�1 0; 0; 0j i

G0ðm; n; zÞ ¼ 0; 0; 0h jðz� Ĥ0 �moa � nobÞ�1 0; 0; 0j i
ðA1Þ

By using the operator identities as follows,

1

z� Ĥ imp

¼ 1

z� Ĥ0

þ 1

z� Ĥ0

Ĥ1
1

z� Ĥ imp

bm1;0b
n
2;0ðz� Ĥ0Þ�1 ¼ ðz� Ĥ0 �moa � nobÞbm1;0bn2;0

ðA2Þ

the solution of the impurity Green’s function will be reduced

to a system of recursive equations in terms of G(m, n, z),

G(m, n) = dm,0dn,0G0(0,0)

+G0(m, n) [ga(G(m + 1, n) + mG(m � 1, n))

+gb(G(m, n + 1) + nG(m, n � 1))

+DoamG(m, n) + DobnG(m, n)] (A3)

The set of recursive equations can be further transformed into a

generalized continued fraction by defining auxiliary quantities,19

L(m, n, p, q) = dmpdnq

�G0(m, n) [ga(dp,m+1 + mdp,m�1)dq,n

+gb(dq,n+1 + ndq,n�1)dp,m

+Doamdp,mdq,n + Dobndq,ndp,m] (A4)

then the equations regarding to G(m, n) can be rewritten the

following formX
p;q

Lðm; n; p; qÞGðp; qÞ ¼ dm;0dn;0G0ð0; 0Þ ðA5Þ

where the non-zero matrix elements of L(m, n, p, q) can be

written as

Dnq
mp = L(m, n, p, q) = dm,p

�gaG0(m,q)(dp,m+1 + mdp,m�1)

�DoamdpmG0(m,q) � DobqdpmG0(m,q)

Enq
mp = L(m,q � 1, p, q) = �gbG0(m, q � 1)dmp

Fnq
mp = L(m,q + 1, p, q) = �gb(q + 1)G0(m, q + 1)dmp

(A6)

As indicated by eqn (A2), L(m, n, p, q) is a series of three

diagonal matrices in the nq indices and its elements are the

same type of matrices in the mp indices. Thus the component

G(0,0) can be expressed in a matrix of continued fraction as

Gð0; 0Þ ¼ Gimp ¼ K00G0ð0; 0Þ

K ¼ 1

D00 � E01
1

D11 � E12
1

D22 � � � �F
21
F10

ðA7Þ
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